WO2022267990A1 - 诺卜醇生物基含硅氧杂环丁烷单体及其制备方法 - Google Patents

诺卜醇生物基含硅氧杂环丁烷单体及其制备方法 Download PDF

Info

Publication number
WO2022267990A1
WO2022267990A1 PCT/CN2022/099401 CN2022099401W WO2022267990A1 WO 2022267990 A1 WO2022267990 A1 WO 2022267990A1 CN 2022099401 W CN2022099401 W CN 2022099401W WO 2022267990 A1 WO2022267990 A1 WO 2022267990A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
alkyl
alkoxy
reaction
Prior art date
Application number
PCT/CN2022/099401
Other languages
English (en)
French (fr)
Inventor
孙芳
杨宗鑫
邹应全
Original Assignee
湖北固润科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北固润科技股份有限公司 filed Critical 湖北固润科技股份有限公司
Publication of WO2022267990A1 publication Critical patent/WO2022267990A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • C07F7/0872Preparation and treatment thereof
    • C07F7/0876Reactions involving the formation of bonds to a Si atom of a Si-O-Si sequence other than a bond of the Si-O-Si linkage
    • C07F7/0878Si-C bond
    • C07F7/0879Hydrosilylation reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2170/00Compositions for adhesives

Definitions

  • the invention relates to the field of photocurable materials, in particular to a nopol alcohol bio-based monomer containing silicon oxetane.
  • the present invention also relates to a preparation method of the monomer, a photocurable composition comprising the monomer and a photocurable material obtained from the photocurable composition.
  • Photopolymerization technology is the process of using light to initiate the conversion of liquid oligomers or monomers with active substances into solid products. Compared with traditional thermal polymerization technology, photopolymerization can achieve efficient and pollution-free production without using volatile organic solvents, saving a lot of energy. It is estimated that energy costs can be reduced by 20-25% by switching from thermal to photopolymerization. Photopolymerization technology is regarded as a green process because of its unique low energy consumption requirements, fast curing, solvent-free formula, no pollution, room temperature treatment and environmental protection, so it is widely used in the fields of photocuring coatings, adhesives and ink printing. Wide range of applications.
  • cationic photopolymerization technology Compared with free radical photopolymerization technology, cationic photopolymerization technology has many advantages. Cationic photopolymerization technology does not suffer from the phenomenon of oxygen-inhibited polymerization during the polymerization process, which means that it no longer needs anaerobic conditions in the actual application process, and the surface of the photopolymerization coating prepared in the air will not appear dry. This greatly simplifies the production process. Oxycyclane monomer is the main raw material of high-end cationic photocurable products. This system not only has low viscosity and low toxicity.
  • the inventors of the present invention have carried out extensive and in-depth research on Nopol alcohol bio-based materials, in order to find a class of novel oxetane cationic photocurable monomers, which
  • the body is made of bio-based materials, with fast polymerization rate, good tensile properties, good heat resistance, excellent hydrophobic properties, anti-staining, anti-fingerprint, anti-yellowing and other advantages after light curing.
  • the inventors have found that nopol alcohol bio-based siloxane monomer has good polymerization rate and conversion rate and promotes the polymerization of other cationic monomers, and the photocurable material obtained by it has good mechanical properties, especially Tensile properties and thermal stability, excellent hydrophobic properties, and anti-stain, anti-fingerprint, anti-yellowing.
  • the present invention to provide a nopol alcohol bio-based silicon-containing oxetane monomer prepared from bio-based materials.
  • the monomer has a good polymerization rate and conversion rate and promotes the polymerization of other cationic monomers, and the photocurable material obtained therefrom has good mechanical properties, especially tensile properties, excellent hydrophobic properties, anti-staining, anti- Fingerprint, chemical corrosion resistance, anti-aging performance and strong yellowing resistance.
  • Another object of the present invention is to provide a method for preparing the nopol bio-based silicone-containing monomer of the present invention.
  • the preparation process is simple and easy, the conditions are mild, the raw materials are readily available and the price is low.
  • Yet another object of the present invention is to provide a photocurable composition comprising the nopol bio-based silicone-containing monomer according to the present invention.
  • a final object of the present invention is to provide a photocurable material obtained by photocuring the photocurable composition of the present invention.
  • n 1-50;
  • L is a divalent linking group with 1-8 carbon atoms
  • R 1 , R 2 , R 3 , R 4 , R 5 are the same or different, and are independently organic groups with 1-12 carbon atoms;
  • R 6 is H, halogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 alkoxy or C 1 -C 6 haloalkoxy.
  • n 1-30;
  • R 1 is C 1 -C 12 alkyl or C 1 -C 12 alkoxy
  • R 2 , R 3 , R 4 , and R 5 are the same or different, and are independently C 6 -C 10 aryl, C 1 -C 12 alkyl, C 1 -C 12 alkoxy, and are independently represented by one or more C 2 -C 12 alkyl separated by non-adjacent heteroatoms selected from NR a , O, S, or C separated by one or more non-adjacent heteroatoms independently selected from NR a , O, S 2 -C 12 alkoxy, and
  • L is a C 1 -C 8 alkylene, or a C 2 -C 8 alkylene interrupted by one or more non-adjacent heteroatoms independently selected from NR a , O, S,
  • R a is H or C 1 -C 4 alkyl.
  • - m is 1-20, preferably 2-15;
  • R 1 is C 1 -C 6 alkyl or C 1 -C 6 alkoxy; R 1 is preferably C 1 -C 4 alkyl or C 1 -C 4 alkoxy;
  • R a is H or C 1 -C 4 alkyl; preferably, R 2 , R 3 , R 4 , R 5 , the same or different, and independently phenyl, C 1 -C 4 alkyl, C 1 -C 4 alkoxy, or one or more independently selected from NR a , O, S C 2 -C 4 alkyl interspersed by non-adjacent heteroatoms, wherein R a is H or C 1 -C 4 alkyl;
  • -R 6 is H, halogen, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 1 -C 4 hydroxyalkyl, C 1 -C 4 alkoxy or C 1 -C 4 haloalkoxy ;
  • -L is C 1 -C 6 alkylene, or C 2 -C 6 alkylene interrupted by one or more non-adjacent heteroatoms independently selected from NR a , O, S, wherein R a is H or C 1 -C 4 alkyl.
  • n 1-9;
  • R 1 is C 1 -C 4 alkyl or C 1 -C 4 alkoxy
  • R 2 , R 3 , R 4 , and R 5 are the same or different, and are independently phenyl, C 1 -C 4 alkyl, C 1 -C 4 alkoxy, or one or more independently selected from NR a , C 1 -C 4 alkyl interspaced by non-adjacent heteroatoms of O, S, wherein R a is H or C 1 -C 4 alkyl, wherein R a is H or C 1 -C 4 alkyl;
  • R 6 is H, halogen, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 1 -C 4 hydroxyalkyl, C 1 -C 4 alkoxy or C 1 -C 4 haloalkoxy; as well as
  • L is C 1 -C 4 alkylene, or a C 2 -C 4 alkylene interrupted by one or more non-adjacent heteroatoms independently selected from NR a , O, S, wherein R a is H or C 1 -C 4 alkyl;
  • n 3-9;
  • R 1 is C 1 -C 4 alkyl
  • R 2 , R 3 , R 4 , and R 5 are the same or different, and are independently C 1 -C 4 alkyl;
  • R 6 is H or C 1 -C 4 alkyl
  • L is a C 1 -C 3 alkylene group.
  • L and R are as defined in item 6
  • X is halogen, such as chlorine, bromine or iodine
  • reaction of the compound of formula (IV) and the compound of formula (V) is carried out in the presence of Karstedt catalyst or SpeIer catalyst, preferably, the amount of catalyst is 2-500ppm based on the weight of hydrogen-containing silicone oil;
  • reaction between the compound of formula (IV) and the compound of formula (V) is carried out at 80-110°C, preferably 85-100°C;
  • reaction between the compound of formula (IV) and the compound of formula (V) is carried out for 2-12 hours, preferably 3.5-8 hours.
  • reaction of the compound of formula (II) with the compound of formula (III) is carried out in the presence of a basic catalyst, preferably sodium hydride, sodium hydroxide, potassium hydroxide, triethylamine, potassium carbonate or any mixture thereof, More preferably, the molar ratio of the compound of formula (II) to the basic catalyst is 1:1-1:5;
  • reaction between the compound of formula (II) and the compound of formula (III) is carried out at 30-120°C, preferably 40-70°C, for 3-16, preferably 4-10 hours.
  • a photocurable composition comprising a compound of formula (I) according to any one of items 1 to 5 as a polymerizable monomer.
  • Fig. 1 is a graph showing the change of E4221 conversion rate with irradiation time in the system containing compound 1 prepared in Example 1.
  • Fig. 2 is a graph showing the change of E4221 conversion rate with irradiation time in the system containing compound 2 prepared in Example 2.
  • Fig. 3 is a graph showing the change of E4221 conversion rate with irradiation time in the system containing compound 3 prepared in Example 3.
  • FIG. 4 is a graph showing the conversion rate of Compound 1 in the system containing Compound 1 prepared in Example 1 as a function of irradiation time.
  • Fig. 5 is a graph of the conversion of compound 2 in the system containing compound 2 prepared in Example 2 as a function of irradiation time.
  • Fig. 6 is a graph showing the conversion of compound 3 in the system containing compound 3 prepared in Example 3 as a function of irradiation time.
  • Fig. 7 is a contact angle graph of a blank E4221 cured film and a cured film of a system comprising compounds 1-3 prepared in each of Examples 1-3.
  • Fig. 8 is a thermogravimetric graph of cured films of blank E4221 and cured films of systems comprising compounds 1-3 prepared in each of Examples 1-3.
  • Fig. 9 is a graph showing the mechanical properties of a blank E4221 cured film and a cured film of a system containing compounds 1-3 prepared in each of Examples 1-3.
  • FIG. 10 is the anti-yellowing performance of the cured film of the system containing Compound 1 prepared in Example 1.
  • a numerical range is used to indicate a range in which the numerical values described before and after are taken as the minimum value and the maximum value, respectively.
  • n 1-50;
  • L is a divalent linking group with 1-8 carbon atoms
  • R 1 , R 2 , R 3 , R 4 , R 5 are the same or different, and are independently organic groups with 1-12 carbon atoms;
  • R 6 is H, halogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 alkoxy or C 1 -C 6 haloalkoxy.
  • the prefix "C n -C m " indicates in each case that the number of carbon atoms contained in the group is nm.
  • Halogen refers to fluorine, chlorine, bromine and iodine. In the present invention, it is preferred that the halogen includes fluorine, chlorine or a combination thereof.
  • C n -C m alkyl refers to a branched or unbranched saturated hydrocarbon group having nm, such as 1-12, preferably 1-6, particularly preferably 1-4 carbon atoms, such as Methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1-methyl Butyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2- Dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethyl Dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,
  • the C 1 -C 6 alkyl group may be methyl, ethyl, propyl, isopropyl, n-butyl, 2-butyl, tert-butyl, pentyl, isopentyl, hexyl and isomers thereof.
  • C 1 -C 4 Alkyl can be methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl groups and their isomers.
  • C 6 -C m aryl refers to a monocyclic, bicyclic or multicyclic aromatic hydrocarbon group containing 6-m carbon atoms, for example 6-10 carbon atoms.
  • C 6 -C m aryl groups mention may be made of phenyl, tolyl, ethylphenyl, propylphenyl, butylphenyl, xylyl, methylethylphenyl, diethylphenyl, Methyl-propylphenyl and naphthyl, etc.; preferably phenyl or naphthyl, especially phenyl.
  • C n -C m alkoxy refers to a C n -C m alkyl corresponding to any carbon atom of an open chain C n -C m alkane bonded with an oxygen atom as a linking group C n -C m alkyl, such as C 1 -C 12 alkoxy, more preferably C 1 -C 6 alkoxy, especially preferably C 1 -C 4 alkoxy.
  • C 1 -C 6 alkoxy can be methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, 2-butoxy, tert-butoxy, pentyloxy, isopentyloxy group, hexyloxy group and its isomers.
  • C 1 -C 4 alkoxy can be methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, sec-butoxy, isobutoxy, tert-butoxy and its isomers body.
  • C n -C m haloalkyl refers to C n -C m alkyl substituted by one or more same or different halogen atoms, such as C 1 -C 12 haloalkyl, preferably C 1 -C 6 Haloalkyl, particularly preferably C 1 -C 4 haloalkyl.
  • Cn- Cm haloalkyl groups mention may be made of monochloromethyl, monochloroethyl, dichloroethyl, trichloroethyl, monochloropropyl, 1-chloromethylethyl, monochlorobutyl Base, 1-chloromethylpropyl, 2-chloromethylpropyl, 1,1-dichloromethylethyl, 1-chloropentyl, 1-chloromethylbutyl, 2-chloromethylbutyl, 3-chloromethylbutyl, 2,2-dichloromethylpropyl, 1-chloroethylpropyl, monochlorohexyl, 1,1-dichloromethylpropyl, 1,2-dichloromethyl Propyl, 1-chloromethylpentyl, 2-chloromethylpentyl, 3-chloromethylpentyl, 4-chloromethylpentyl, 1,1-dichloromethylbutyl, 1,
  • C n -C m haloalkoxy refers to C n -C m alkoxy substituted by one or more same or different halogen atoms, such as C 1 -C 12 haloalkoxy, more preferably C 1 -C 6 haloalkoxy, especially preferably C 1 -C 4 haloalkoxy.
  • C n -C m haloalkoxy mention may be made of monochloromethoxy, 2-chloroethoxy, 3-chloropropoxy, 2-chloroisopropoxy, 4-chloro-n-butoxy , 3-chloro-sec-butoxy, 2-chloro-tert-butoxy, 5-chloropentyloxy, 4-chloroisoamyloxy, 6-chlorohexyloxy and its isomers.
  • C n -C m hydroxyalkyl refers to a C n -C m that has a hydroxyl group bonded to any carbon atom of an open chain C n -C m alkane corresponding to a C n -C m alkyl group.
  • Alkyl such as C 1 -C 6 hydroxyalkyl, especially preferably C 1 -C 4 hydroxyalkyl, such as hydroxymethyl, hydroxyethyl, hydroxypropyl, hydroxyisopropyl, hydroxybutyl, hydroxypentyl, Hydroxyhexyl and its isomers.
  • C 1 -C 30 alkylene as used herein includes C 1 -C 26 alkylene, C 1 -C 18 alkylene, C 1 -C 12 alkylene, C 1 -C 6 alkylene, C 2 -C 26 alkylene, C 2 -C 18 alkylene, C 2 -C 12 alkylene, C 2 -C 6 alkylene, C 3 -C 26 alkylene, C 3 -C 18 alkylene Alkyl, C 3 -C 12 alkylene or C 3 -C 6 alkylene.
  • m is usually 1-50, such as 1-40, 1-30, 1-20, 1-18, 1-15, 1-12, 1-9, 2-40, 2-30, 2-20, 2-18, 2-15, 2-12, 2-9, 3-40, 3-30, 3-20, 3-18, 3-15, 3-12 or 3-9, for example 3, 4, 5, 6, 7, 8, 9, 10, 12 or 15.
  • R 1 , R 2 , R 3 , R 4 , and R 5 are the same or different, and are independently an organic group with 1-12 carbon atoms, such as an organic group with 1-6 or 1-4 carbon atoms.
  • R 1 is usually C 1 -C 12 alkyl or C 1 -C 12 alkoxy.
  • R 1 is C 1 -C 6 alkyl or C 1 -C 6 alkoxy.
  • R 1 is C 1 -C 4 alkyl or C 1 -C 4 alkoxy.
  • R 1 is C 1 -C 4 alkyl.
  • R 1 is methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl or tert-butyl.
  • R 2 , R 3 , R 4 , and R 5 are the same or different, and are usually independently C 6 -C 10 aryl, C 1 -C 12 alkyl, C 1 -C 12 alkoxy Or C 1 -C 12 alkyl interrupted by one or more non-adjacent heteroatoms independently selected from NR a , O, S, wherein R a is H or C 1 -C 4 alkyl.
  • R 2 , R 3 , R 4 , and R 5 are the same or different, and are independently C 6 -C 10 aryl, C 1 -C 6 alkyl, C 1 -C 6 alkoxy or replaced by one or multiple non-adjacent heteroatom-interrupted C 1 -C 6 alkyl groups independently selected from NR a , O, S, wherein R a is H or C 1 -C 4 alkyl.
  • R 2 , R 3 , R 4 , and R 5 are the same or different, and are independently phenyl, C 1 -C 4 alkyl, C 1 -C 4 alkoxy, or replaced by one or more independently A C 1 -C 4 alkyl group selected from NR a , O, S with non-adjacent heteroatom intervals, wherein R a is H or C 1 -C 4 alkyl.
  • R 2 , R 3 , R 4 , R 5 are the same or different, and are independently C 1 -C 4 alkyl.
  • R 2 , R 3 , R 4 , and R 5 are the same or different, and are independently phenyl, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, Methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy or tert-butoxy.
  • non-adjacent heteroatom means that there is a non-adjacent heteroatom between two carbon atoms, for example, two carbon atoms of the divalent linking group.
  • an ethylene group interrupted by O can be represented as: -CH2 - O-CH2-.
  • R 6 is usually H, halogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 alkoxy or C 1 -C 6 haloalkoxy.
  • R 6 is H, halogen, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 1 -C 4 hydroxyalkyl, C 1 -C 4 alkoxy or C 1 -C 4 Haloalkoxy. It is particularly preferred that R 6 is H or C 1 -C 4 alkyl.
  • R can be H, chloro, bromo, methyl, ethyl, n - propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, methoxy, ethoxy, n-propoxy , isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, hydroxymethyl, hydroxyethyl, hydroxy-n-propyl, hydroxyisopropyl, hydroxy-n-butyl, hydroxy-sec-butyl or hydroxy tert-butyl.
  • L is a divalent linking group with 1-8 carbon atoms, for example a divalent linking group with 1-6, 1-4, 1-3 carbon atoms, or for example with 1, 2, A divalent linking group of 3, 4, 5, 6, 7 or 8 carbon atoms.
  • the divalent linking group has one or more non-adjacent heteroatoms independently selected from NR a , O, S, preferably O, wherein R a is H or C 1 -C 4 alkyl .
  • L is C 1 -C 8 alkylene, or C 2 -C 8 interrupted by one or more non-adjacent heteroatoms independently selected from NR a , O, S, preferably O Alkylene, wherein R a is H or C 1 -C 4 alkyl.
  • L is C 1 -C 6 alkylene, or C 2 -C 6 interrupted by one or more non-adjacent heteroatoms independently selected from NR a , O, S, preferably O Alkylene, wherein R a is H or C 1 -C 4 alkyl.
  • L is C 1 -C 4 alkylene, or C 2 -C 4 interrupted by one or more non-adjacent heteroatoms independently selected from NR a , O, S, preferably O Alkylene, wherein R a is H or C 1 -C 4 alkyl.
  • each variable in the compound of formula (I) is defined as follows:
  • n 1-30;
  • R 1 is C 1 -C 12 alkyl or C 1 -C 12 alkoxy
  • R 2 , R 3 , R 4 , and R 5 are the same or different, and are independently C 6 -C 10 aryl, C 1 -C 12 alkyl, C 1 -C 12 alkoxy, and are independently represented by one or more C 2 -C 12 alkyl separated by non-adjacent heteroatoms selected from NR a , O, S, or C separated by one or more non-adjacent heteroatoms independently selected from NR a , O, S 2 -C 12 alkoxy, and
  • L is a divalent linking group having 1-6 carbon atoms
  • R a is H or C 1 -C 4 alkyl.
  • each variable in the compound of formula (I) is defined as follows:
  • n 1-30;
  • R 1 is C 1 -C 12 alkyl or C 1 -C 12 alkoxy
  • R 2 , R 3 , R 4 , and R 5 are the same or different, and are independently C 6 -C 10 aryl, C 1 -C 12 alkyl, C 1 -C 12 alkoxy, and are independently represented by one or more C 2 -C 12 alkyl separated by non-adjacent heteroatoms selected from NR a , O, S, or C separated by one or more non-adjacent heteroatoms independently selected from NR a , O, S 2 -C 12 alkoxy, and
  • L is a C 1 -C 8 alkylene, or a C 2 -C 8 alkylene interrupted by one or more non-adjacent heteroatoms independently selected from NR a , O, S,
  • R a is H or C 1 -C 4 alkyl.
  • each variable in the compound of formula (I) satisfies at least one of the following definitions, preferably all:
  • - m is 1-20, preferably 2-15;
  • R 1 is C 1 -C 6 alkyl or C 1 -C 6 alkoxy; R 1 is preferably C 1 -C 4 alkyl or C 1 -C 4 alkoxy;
  • R a is H or C 1 -C 4 alkyl; preferably, R 2 , R 3 , R 4 , R 5 , the same or different, and independently phenyl, C 1 -C 4 alkyl, C 1 -C 4 alkoxy, or one or more independently selected from NR a , O, S C 2 -C 4 alkyl interspersed by non-adjacent heteroatoms, wherein R a is H or C 1 -C 4 alkyl;
  • -R 6 is H, halogen, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 1 -C 4 hydroxyalkyl, C 1 -C 4 alkoxy or C 1 -C 4 haloalkoxy ;
  • -L is C 1 -C 6 alkylene, or C 2 -C 6 alkylene interrupted by one or more non-adjacent heteroatoms independently selected from NR a , O, S, wherein R a is H or C 1 -C 4 alkyl.
  • each variable in the compound of formula (I) is defined as follows:
  • n 1-12, preferably 1-9;
  • R 1 is C 1 -C 4 alkyl or C 1 -C 4 alkoxy
  • R 2 , R 3 , R 4 , and R 5 are the same or different, and are independently C 1 -C 4 alkyl;
  • R is H or C 1 -C 4 alkyl , especially H or ethyl, and
  • L is C 1 -C 6 alkylene, or C 2 -C 6 alkylene interrupted by one or more non-adjacent heteroatoms independently selected from NR a , O, S, wherein R a is H or C 1 -C 4 alkyl.
  • each variable in the compound of formula (I) is defined as follows:
  • n 1-9;
  • R 1 is C 1 -C 4 alkyl or C 1 -C 4 alkoxy
  • R 2 , R 3 , R 4 , and R 5 are the same or different, and are independently phenyl, C 1 -C 4 alkyl, C 1 -C 4 alkoxy, or one or more independently selected from NR a , C 1 -C 4 alkyl interspaced by non-adjacent heteroatoms of O, S, wherein R a is H or C 1 -C 4 alkyl, wherein R a is H or C 1 -C 4 alkyl;
  • R 6 is H, halogen, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 1 -C 4 hydroxyalkyl, C 1 -C 4 alkoxy or C 1 -C 4 haloalkoxy; as well as
  • L is C 1 -C 4 alkylene, or a C 2 -C 4 alkylene interrupted by one or more non-adjacent heteroatoms independently selected from NR a , O, S, wherein R a is H or C 1 -C 4 alkyl;
  • n 3-9;
  • R 1 is C 1 -C 4 alkyl
  • R 2 , R 3 , R 4 , and R 5 are the same or different, and are independently C 1 -C 4 alkyl;
  • R 6 is H or C 1 -C 4 alkyl
  • L is a C 1 -C 3 alkylene group.
  • the compound of formula (I) is one or more compounds selected from the group consisting of:
  • the compound of formula (IV) can be prepared as follows:
  • L and R6 are as defined above, and X is halogen, such as chlorine, bromine or iodine, compounds of formula (IV) are obtained.
  • the reaction of the terminal hydroxyl group in the compound of formula (II) with the halogen in the compound of formula (III) belongs to the type of reaction known in the art, and the reaction produces hydrogen halide.
  • the reaction is carried out in the presence of a catalyst.
  • suitable catalysts for this reaction mention may be made of sodium hydride, sodium hydroxide, potassium hydroxide, triethylamine, potassium carbonate or any mixture thereof.
  • the amount of catalyst used is also conventional.
  • the molar ratio of the compound of formula (II) to the catalyst is 1:1-1:5, preferably 1:1-1:3.
  • the reaction of the compound of formula (II) with the compound of formula (III) is usually carried out in a solvent.
  • a solvent there is no special limitation, as long as the compound of formula (II), compound of formula (III) and the corresponding catalyst can be dissolved and do not participate in the reaction between the compound of formula (II) and the compound of formula (III), preferably The solvent also facilitates the precipitation of the product, namely the compound of formula (III).
  • an organic solvent is usually used, preferably toluene, acetone, methyl ethyl ketone, toluene, tetrahydrofuran, cyclohexane, 1,4-dioxane, dichloromethane, acetonitrile or any mixture thereof.
  • the amount of solvent used is also conventional, generally speaking, the amount of solvent used is 1.0-3 times the total weight of the compound of formula (II) and compound of formula (III).
  • the compound of formula (II) and the compound of formula (III) are usually used in approximately equimolar amounts.
  • the molar ratio of the compound of formula (II) to that of formula (III) is 1:0.75-1:1.5 or 1:1-1:1.2.
  • the compound of formula (II) and the catalyst are usually dissolved in a solvent, then the compound of formula (III) is added, and then reacted at 30-120° C., preferably 40-70° C., for 3-16 hours, preferably reaction 4- 10 hours.
  • the reaction is advantageously carried out with stirring.
  • the compound of formula (IV) can be obtained through conventional post-treatment.
  • the post-treatment usually includes extraction or washing (such as washing with water, after which water-absorbing compounds such as magnesium sulfate or sodium sulfate are advantageously used to remove water), filtration or centrifugation to remove solid impurities, rotary evaporation to remove solvents, and vacuum distillation to further remove solvents. If a higher purity product is to be obtained, impurities can also be separated by recrystallization or column chromatography.
  • the silicon atom of the compound of formula (V) contains hydrogen atoms, therefore, the compound of formula (V) can be called hydrogen-containing silicone oil.
  • Addition reactions of silicon-bonded hydrogen atoms in compounds of formula (V) to unsaturated carbon-carbon double bonds in compounds of formula (IV) are of the type known in the art.
  • the reaction is carried out in the presence of a catalyst.
  • a catalyst suitable for this reaction a Karstedt catalyst or a Speier catalyst is generally used.
  • the amount of catalyst used is also conventional.
  • the catalyst is used in an amount of 2-500 ppm, preferably 10-300 ppm.
  • the reaction of the compound of formula (IV) with the compound of formula (V) is usually carried out in a solvent.
  • a solvent As the type of solvent, there is no special limitation, as long as the compound of formula (IV), the compound of formula (V) and the catalyst can be dissolved and do not participate in the reaction between the compound of formula (IV) and the compound of formula (V), preferably the The solvent also facilitates the precipitation of the product, the compound of formula (I).
  • an organic solvent is usually used, preferably petroleum ether, dichloromethane, toluene, xylene or any mixture thereof.
  • the amount of solvent used is also conventional, generally speaking, the amount of solvent used is 1.5-3 times the total weight of the compound of formula (IV) and compound of formula (V).
  • the compound of formula (IV) and the compound of formula (V) are usually used in approximately equimolar amounts.
  • the molar ratio of the compound of formula (IV) to the compound of formula (V) is 1:0.75-1:1.5 or 1:1-1:1.5.
  • the compound of formula (IV) and catalyst are usually dissolved in a solvent for aging for a period of time, and then contacted with the compound of formula (V), and then heated to the reaction temperature for a period of time to obtain the compound of formula (I). Aging is usually carried out at elevated temperature, usually at 40-70°C. The aging time is usually 30-60 minutes.
  • the reaction temperature between the compound of formula (IV) and the compound of formula (V) is usually 80-110°C, preferably 85-100°C.
  • the holding time of the reaction between the compound of formula (IV) and the compound of formula (V) at the reaction temperature is usually 2-12 hours, preferably 3.5-8 hours.
  • the reaction is advantageously carried out with stirring.
  • the product of the compound of formula (I) can be obtained through conventional post-treatment.
  • the post-treatment usually includes filtration or centrifugation to remove solid impurities, rotary evaporation to remove solvent, and vacuum distillation to further remove solvent. If a higher purity product is to be obtained, it can also be recrystallized.
  • the compound of formula (I) of the present invention is a cationic photocurable monomer, which has fast polymerization rate, high conversion rate and can promote the polymerization of other cationic monomers.
  • the mechanical properties of the photocurable material obtained after photocuring polymerization especially the tensile properties Good, excellent hydrophobicity, anti-stain, anti-fingerprint, anti-chemical corrosion, strong anti-aging performance, good heat resistance and yellowing resistance.
  • a photocurable composition comprising the compound of formula (I) of the present invention as a polymerizable monomer.
  • the photocurable composition may also include a cationic photoinitiator for ring-opening polymerization (a photoinitiator capable of initiating cationic polymerization) and optionally other photoinitiators containing cationic photocurable groups.
  • Groups such as vinyl ether double bonds, alicyclic epoxy, oxiranyl or oxetanyl monomers, oligomers, such as 3,4-epoxycyclohexylmethyl3,4- Epoxycyclohexyl carboxylate (E4221).
  • the amount of the compound of formula (I) of the present invention may be at least 0.5 mol%, at least 1 mol%, at least 2 mol%, for example 0.5-12 mol%, based on the total amount of polymerized monomers, Or 0.5-10mol%, or 1-10mol%.
  • the photocurable composition of the present invention may be a photocurable coating composition, a photocurable ink composition, a photoresist composition, and the like. After the composition is cured, the obtained cured product has better mechanical properties, especially tensile properties, excellent hydrophobic properties, anti-staining, anti-fingerprint, anti-chemical corrosion, anti-aging properties and strong anti-yellowing properties.
  • iodonium salts and sulfonium salts are commonly used.
  • the iodonium salt photoinitiator and the sulfonium salt photoinitiator have the following general formulas (A) and (B) respectively
  • R a , R b , R c , R d , R e are each independently unsubstituted C 6 -C 10 aryl, or are selected from halogen, nitro, carbonyl, C 1 -C 12 alkyl, C 1 C 6 -C 10 aryl substituted by substituents of -C 12 alkoxy, phenylthio, phenyl and substituted phenyl, preferably phenyl or naphthyl, or selected from halogen, nitro, C 1 - C 6 alkyl and substituted phenyl or naphthyl substituted by substituents of phenyl, wherein the substituted phenyl contains one or more substituents selected from halogen, nitro, C 1 -C 6 alkyl and C 1 -C 6 alkoxy radicals; and
  • Y and Z are non-nucleophilic anions, such as trifluoromethanesulfonate, BF 4 - , ClO 4 - , PF 6 - , AsF 6 - , SbF 6 - .
  • a photoinitiator one or more selected from the group consisting of 4-(phenylthio)phenyl diphenylsulfonium hexafluorophosphate, 4-(phenylthio)phenyl ⁇ Diphenylsulfonium hexafluoroantimonate, bis(4-(diphenylsulfonium)phenyl)sulfide bishexafluorophosphate, bis(4-(diphenylsulfonium)phenyl)sulfide bishexafluorophosphate Fluoroantimonate, 10-(4-biphenyl)-2-isopropylthioxanthone-10-sulfonium hexafluorophosphate, 10-(4-biphenyl)-2-isopropylthioxanthone Keto-10-sulfonium hexafluoroantimonate, diphenyliodonium hexafluoroantimonate
  • the photocurable composition of the present invention may also contain a sensitizer.
  • a sensitizer mention may be made, for example, of 2-isopropylthioxanthone.
  • the amount of photoinitiator used is conventional. Based on the total molar weight of the photocurable composition of the present invention, the content of the photoinitiator is generally 0.5-5 mol%, preferably 1-3 mol%.
  • a photocurable material obtained from the photocurable composition of the present invention which is obtained by photocuring the photocurable composition of the present invention.
  • the light-curing material has good mechanical properties, especially tensile properties, excellent hydrophobic properties, and has the advantages of anti-staining, anti-fingerprint, anti-chemical corrosion, strong anti-aging performance, good heat resistance and yellowing resistance.
  • the compounds of formula (I) according to the invention are also useful in photocurable coatings, adhesives, inks and photoresists. Accordingly, the present invention also relates to the use of compounds of formula (I) in photocurable coatings, adhesives, inks and photoresists.
  • the purpose of this example is to illustrate the photopolymerizable properties of the compounds of the present invention.
  • the preparation process of photocurable composition is as follows:
  • X 1 +X 2 in the photocurable composition is fixed at 100.
  • the preparation method of the photocurable composition containing compound 2-3 is consistent with that of compound 1.
  • the molar ratio X 1 of compounds 1, 2 and 3 of the present invention ie Nopol-Si 3 , Nopol-Si 6 and Nopol-Si 9 ) in each photocomposition is shown in the following table 1-3, as mentioned above X 1 +X 2 Fixed at 100, X 3 and X 4 remain the same.
  • a mixture of photoinitiator diphenyliodonium hexafluorophosphate (810) and 2-isopropylthioxanthone (ITX, sensitizer) in a molar ratio of 2:1 was used as the photoinitiation system, and real-time infrared
  • the (RT-IR) method was used to test the photopolymerization kinetics of compounds 1-3, and to investigate the effects of each of them on the photopolymerization performance of E4221 at different contents.
  • the vibrational absorption peak of the COC of the monomer E4221 three-membered oxygen heterocycle is located at 750cm -1
  • the vibrational absorption peak of the COC of the four-membered oxygen heterocycle of compound 1-3 is 980cm -1 .
  • the monomer and photoinitiator are composed of smear the photocurable liquid evenly on the potassium bromide salt sheet (dip a little photocurable liquid with a thin tube, dot it on the potassium bromide salt sheet, and then spread it evenly), irradiate the liquid sample with a high-pressure mercury lamp for 900 seconds, and
  • the mercury lamp mainly emits at 365nm and has an optical fiber with a diameter of 5mm.
  • the distance between one end of the optical fiber and the test sample is 10cm, and the radiation intensity is 20mW cm -2 .
  • compound 1-3 only a small amount of addition of compound 1-3 (3-12mol%) can significantly increase the conversion rate of monomer E4221, and its maximum conversion rate has reached at least 67%; and it can be seen from Figure 4-6 that compound 1- The conversion rate of 3 self-quaternary oxygen heterocycles is about 74%. Therefore, the compound of the present invention can improve the photopolymerization performance of the E4221 monomer, and the compound of the present invention itself has excellent photopolymerization activity.
  • the purpose of this example is to illustrate that the compound of the present invention can improve the surface hydrophobicity of the photocured film.
  • the surface hydrophobicity of the photocured film was characterized by a DSA25 water contact angle measuring instrument, and the test temperature was 25°C. At the same time, use the same method to prepare a blank E4221 cured film as a reference. The results for reference and compounds 1-3 are shown in Figure 7.
  • thermogravimetric analyzer (DTG-60AH Shimadzu Enterprise Management (China) Co., Ltd.) to measure the heat resistance of each photocured film.
  • the test conditions are: under nitrogen protection, the temperature range is 25-700°C, and the heating rate is 10°C/min.
  • the initial decomposition temperature (T 5% ) and the maximum thermal weight loss temperature of the cured film are the decomposition temperature (T max1 ) and the first stage of the fastest weight loss.
  • the decomposition temperature (T max2 ) is obviously increased when the weight loss is the fastest in the second stage, so the heat resistance is obviously improved.
  • the purpose of this example is to illustrate that the compounds of the present invention can improve the tensile properties of photocured films.
  • the respective cured films of Compounds 1-3 were prepared in exactly the same manner as described in Example 7. Then, the electronic universal testing machine (E44.304, Meters Industrial Systems (China) Co., Ltd.) was used to test the tensile properties of the light-cured film according to the international standard ISO 1184-1983 "Determination of Tensile Properties of Plastic Films". The test temperature is 25°C, the humidity is 60%, and the test speed is 1mm/min. At the same time, use the same method to prepare a blank E4221 cured film as a reference. The results are shown in Figure 9 and Table 5.
  • E44.304 Meters Industrial Systems (China) Co., Ltd.
  • the tensile strength of the pure E4221 photocured film is 6.10 MPa, and the elongation at break is 1.69%.
  • the tensile strength and elongation at break of the light-cured film gradually increased after the addition of compound 1-3 monomers.
  • the compounds of the present invention are able to significantly improve the tensile properties of cured films.
  • the purpose of this example is to illustrate that the photocured film prepared by the compound of the present invention has good yellowing resistance.
  • a cured film of Compound 1 was prepared in exactly the same manner as described in Example 7. Detect the yellowing resistance of the light-cured film at 120°C for different times, and use the ultraviolet spectrophotometer (UV-2700i Shimadzu Enterprise Management (China) Co., Ltd.) to change the transmittance of the light-cured film at high temperature to characterize Yellowing resistance of the material.
  • the light transmittance of the photo-cured film over time at a wavelength of 700-800 nm is shown in Table 6 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

本发明涉及一种诺卜醇生物基含硅氧杂环丁烷单体,制备该单体的方法,包含该单体的可光固化组合物和由该可光固化组合物得到的光固化材料。本发明的诺卜醇生物基含硅氧杂环丁烷单体具有良好的聚合速率和转化率且促进其他阳离子单体聚合,并且由其得到的光固化材料具有良好的机械性能和热稳定性,疏水性能优良,抗沾污,抗指纹和耐黄变性能好。

Description

诺卜醇生物基含硅氧杂环丁烷单体及其制备方法 技术领域
本发明涉及光固化材料领域,具体来说涉及一种诺卜醇生物基含硅氧杂环丁烷单体。本发明还涉及该单体的制备方法,包含该单体的可光固化组合物和由该可光固化组合物得到的光固化材料。
背景技术
光聚合技术是利用光来引发带有活性物质的液态低聚物或单体转变为固态产物的过程。相比于传统的热聚合技术,光聚合无需使用挥发性有机溶剂即可实现高效的无污染生产,节省了大量能源。据估计,通过从热聚合转换为光聚合,能源成本可以降低20-25%。光聚合技术以其特有的低能耗要求、快速固化、无溶剂配方、无污染、室温处理和环保等特点而被视为一种绿色工艺,因而在光固化涂料、粘合剂和油墨印刷等领域应用广泛。
相对于自由基型光聚合技术,阳离子型光聚合技术具有诸多优势。阳离子型光聚合技术在聚合过程中不会发生氧抑制聚合的现象,这就意味着其在实际应用过程中不再需要无氧条件,在空气中制备的光聚合涂层表面不会出现不干的情况,这大大简化了生产工艺。氧杂环烷烃单体是高端阳离子光固化产品的主要原料,这种体系不仅粘度低且毒性低。然而,在紫外光固化以节能、环保、高效等优点迅速发展的同时,对于光固化材料的耐热性、拒水性、表面的抗沾污、耐腐蚀、抗老化及抗指纹等方面人们提出了更高的要求。消费者对产品外观的要求日益提高,除了色彩美观以及手感舒适外,还要求表面具有抗指纹、耐沾污、耐黄变的性能。
另外,目前用于光聚合的大多数预聚物和单体仍是化石基的。由于化石资源的不可再生特性和对环境有一定污染。
因此,迫切需要用可再生的生物基预聚物或单体代替化石基预聚物或单体,使光聚合技术更加环保。目前,能够满足前述要求的光固化阳离子单体的种类较少,需要开发更多类型的可阳离子光固化单体。
发明内容
鉴于现有技术的上述状况,本发明的发明人在诺卜醇生物基材料方面进行了广泛而又深入的研究,以期发现一类新型的氧杂环丁烷可阳离子光固化单体,该单体由生物基材料制备而成,聚合速率快,光固化后具有拉伸性能好,耐热性好,疏水性能优良,抗沾污,抗指纹,耐黄变等优点。本发明人发现诺卜醇生物基含硅氧杂环烷烃单体具有良好的聚合速率和转化率且促进其他阳离子单体的聚合,且由其得到的光固化材料具有良好的机械性能,特别是拉伸性能和热稳定性,疏水性能优良,且抗沾污,抗指纹,耐黄变。
因此,本发明的一个目的是提供一种诺卜醇生物基含硅氧杂环丁烷单体,该单体由生物基材料制备而成。所述单体具有良好的聚合速率和转化率且促进其他阳离子单体的聚合,并且由其得到的光固化材料具有良好的机械性能,特别是拉伸性能,疏水性能优良,抗沾污,抗指纹,抗化学品腐蚀,抗老化性能和耐黄变性能强。
本发明的另一目的是提供一种制备本发明诺卜醇生物基含硅氧杂环丁烷单体的方法。该制备过程简单易行,条件温和,原料易得,价格低廉。
本发明的再一个目的是提供一种可光固化组合物,该组合物包含根据本发明的诺卜醇生物基含硅氧杂环丁烷单体。
本发明的最后一个目的是提供一种光固化材料,该材料通过将本发明的可光固化组合物光固化而获得。
实现本发明上述目的的技术方案可以概括如下:
1.下式(Ⅰ)化合物:
Figure PCTCN2022099401-appb-000001
其中
m为1-50;
L为具有1-8个碳原子的二价连接基团;
R 1、R 2、R 3、R 4、R 5相同或不同,并独立地为具有1-12碳原子的有机基团;以及
R 6为H、卤素、C 1-C 6烷基、C 1-C 6卤代烷基、C 1-C 6羟烷基、C 1-C 6烷氧基或者C 1-C 6卤代烷氧基。
2.根据第1项的化合物,其中
m为1-30;
R 1为C 1-C 12烷基或者C 1-C 12烷氧基;和
R 2、R 3、R 4、R 5相同或不同,并独立地为C 6-C 10芳基、C 1-C 12烷基、C 1-C 12烷氧基、被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 12烷基,或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 12烷氧基,以及
L为C 1-C 8亚烷基、或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 8亚烷基,
其中R a为H或C 1-C 4烷基。
3.根据第1或2项的化合物,其满足下述定义中的至少一个,优选全部:
-m为1-20,优选为2-15;
-R 1为C 1-C 6烷基或者C 1-C 6烷氧基;R 1优选为C 1-C 4烷基或者C 1-C 4烷氧基;
-R 2、R 3、R 4、R 5、相同或不同,并独立地为C 6-C 10芳基、C 1-C 6烷基、C 1-C 6烷氧基或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 6烷基,其中R a为H或C 1-C 4烷基;优选的是,R 2、R 3、R 4、R 5、相同或不同,并独立地为苯基、C 1-C 4烷基、C 1-C 4烷氧基或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 4烷基,其中R a为H或C 1-C 4烷基;
-R 6为H、卤素、C 1-C 4烷基、C 1-C 4卤代烷基、C 1-C 4羟烷基、C 1-C 4烷氧基或者C 1-C 4卤代烷氧基;
-L为C 1-C 6亚烷基、或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 6亚烷基,其中R a为H或C 1-C 4烷基。
4.根据第1项的化合物,其中
m为1-9;
R 1为C 1-C 4烷基或者C 1-C 4烷氧基;
R 2、R 3、R 4、R 5相同或不同,并独立地为苯基、C 1-C 4烷基、C 1-C 4烷氧基或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 1-C 4烷基,其中R a为H或C 1-C 4烷基,其中R a为H或C 1-C 4烷基;
R 6为H、卤素、C 1-C 4烷基、C 1-C 4卤代烷基、C 1-C 4羟烷基、C 1-C 4烷氧基或者C 1-C 4卤代烷氧基;以及
L为C 1-C 4亚烷基、或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 4亚烷基,其中R a为H或C 1-C 4烷基;
优选的是,
m为3-9;
R 1为C 1-C 4烷基;
R 2、R 3、R 4、R 5相同或不同,并独立地为C 1-C 4烷基;
R 6为H或C 1-C 4烷基,以及
L为C 1-C 3亚烷基。
5.根据第1-4项中任一项的化合物,其为一种或多种选自下组的化合物:
Figure PCTCN2022099401-appb-000002
Figure PCTCN2022099401-appb-000003
6.一种制备根据第1-5项中任一项的式(Ⅰ)化合物的方法,包括:
使式(Ⅳ)化合物
Figure PCTCN2022099401-appb-000004
其中L和R 6如第1-5项中任一项所定义,
与式(Ⅴ)化合物反应,得到式(Ⅰ)化合物,
Figure PCTCN2022099401-appb-000005
其中m、R 1、R 2、R 3、R 4和R 5如对第1-5项中任一项所定义。
7.根据第6项的方法,其中式(IV)化合物如下制备:
使式(Ⅱ)化合物:
Figure PCTCN2022099401-appb-000006
与式(Ⅲ)化合物反应,
Figure PCTCN2022099401-appb-000007
其中L和R 6如第6项中所定义,并且X为卤素,例如氯、溴或碘,
得到式(Ⅳ)化合物。
8.根据第6项的方法,其中式(Ⅳ)化合物与式(Ⅴ)化合物的反应满足下述条件中的至少一个:
-式(Ⅳ)化合物与式(Ⅴ)化合物的反应在Karstedt催化剂或SpeⅠer催化剂存在下进行,优选的是,催化剂用量基于含氢硅油的重量为2-500ppm;
-式(Ⅳ)化合物与式(Ⅴ)化合物摩尔比为1:0.75-1:1.5;
-式(Ⅳ)化合物与式(Ⅴ)化合物之间的反应在80-110℃,优选85-100℃下进行;
-式(Ⅳ)化合物与式(Ⅴ)化合物之间的反应进行2-12小时,优选3.5-8小时。
8.根据第7项的方法,其中式(Ⅱ)化合物与式(Ⅲ)化合物的反应满足下述条件中的至少一个:
-式(Ⅱ)化合物与式(Ⅲ)化合物的反应在碱性催化剂存在下进行,该碱性催化剂优选是氢化钠、氢氧化钠、氢氧化钾、三乙胺、碳酸钾或其任意混合物,更优选的是,式(Ⅱ)化合物与碱性催化剂的摩尔比为1:1-1:5;
-式(Ⅱ)化合物与式(Ⅲ)化合物的摩尔比为1:0.75-1:1.5;
-式(Ⅱ)化合物与式(Ⅲ)化合物之间的反应在30-120℃,优选40-70℃下进行反应进行3-16,优选4-10小时。
9.一种可光固化组合物,包含根据第1-5项中任一项的式(Ⅰ)化合物作为聚合单体。
10.一种由第9项的可光固化组合物得到的光固化材料。
11.根据第1-5项中任一项的式(I)化合物在光固化涂料、粘合剂、油墨和光致抗蚀剂中的用途。
附图说明
图1是包含实施例1所制备的化合物1的体系中的E4221转化率随辐照时间的变化曲线图。
图2是包含实施例2所制备的化合物2的体系中的E4221转化率随辐照时间的变化曲线图。
图3是包含实施例3所制备的化合物3体系的中的E4221转化率随辐照时间的变化曲线图。
图4是包含实施例1所制备的化合物1的体系中的化合物1的转化率随辐照时间的变化曲线图。
图5是包含实施例2所制备的化合物2的体系中的化合物2的转化率随辐照时间的变化曲线图。
图6是包含实施例3所制备的化合物3的体系中的化合物3的转化率随辐照时间的变化曲线图。
图7是空白E4221固化膜和包含实施例1-3各自制备的化合物1-3的体系的固化膜的接触角图。
图8是空白E4221固化膜和包含实施例1-3各自制备的化合物1-3的体系的固化膜的热重曲线图。
图9是空白E4221固化膜和包含实施例1-3各自制备的化合物1-3的体系的固化膜的力学性能曲线图。
图10是包含实施例1制备的化合物1的体系的固化膜的耐黄变性能。
具体实施方式
以下对本发明的实施方式进行说明。但是,本发明不限于以下的实施方式。
本文中,使用数值范围表示前后所记载的数值分别作为最小值和最大值的范围。
本文对相关特征公开具体值(包括范围的端点)可以相互结合成一个新的范围。
根据本发明的一个方面,提供了一种下式(Ⅰ)化合物:
Figure PCTCN2022099401-appb-000008
其中
m为1-50;
L为具有1-8个碳原子的二价连接基团;
R 1、R 2、R 3、R 4、R 5相同或不同,并独立地为具有1-12碳原子的有机基团;以及
R 6为H、卤素、C 1-C 6烷基、C 1-C 6卤代烷基、C 1-C 6羟烷基、C 1-C 6烷氧基或者C 1-C 6卤代烷氧基。
在本发明中,前缀“C n-C m”在每种情况下表示该基团中包含的碳原子数为n-m个。
“卤素”是指氟、氯、溴和碘。在本发明中,优选的是,卤素包括氟、氯或其组合。
本文所用的术语“C n-C m烷基”是指具有n-m个,例如1-12个,优选1-6个,特别优选1-4个碳原子的支化或未支化饱和烃基,例如甲基、乙基、丙基、1-甲基乙基、丁基、1-甲基丙基、2-甲基丙基、1,1-二甲基乙基、戊基、1-甲基丁基、2-甲基丁基、3-甲基丁基、2,2-二甲基丙基、1-乙基丙基、己基、1,1-二甲基丙基、1,2-二甲基丙基、1-甲基戊基、2-甲基戊基、3-甲基戊基、4-甲基戊基、1,1-二甲基丁基、1,2-二甲基丁基、1,3-二甲基丁基、2,2-二甲基丁基、2,3-二甲基丁基、3,3-二甲基丁基、1-乙基丁基、2-乙基丁基、1,1,2-三甲基丙基、1,2,2-三甲基丙基、1-乙基-1-甲基丙基、1-乙基-2-甲基丙基、庚基、辛基、2-乙基己基、壬基、癸基、十一烷基、十二烷基及其异构体。C 1-C 6烷基可以是甲基、乙基、丙基、异丙基、正丁基、2-丁基、叔丁基、戊基、异戊基、己基及其异构体。C 1-C 4烷基可以是甲基、乙基、丙基、1-甲基乙基、丁基、1-甲基丙基、2-甲基丙基、1,1-二甲基乙基及其异构体。
本文所用术语“C 6-C m芳基”是指含有6-m个碳原子,例如6-10个碳原子的单环、双环或更多环芳族烃基。作为C 6-C m芳基的实例,可提及苯基、甲苯基、乙苯基、丙苯基、丁苯基、二甲苯基、甲基·乙基苯基、二乙基苯基、甲基·丙基苯基和萘基等;优选苯基或萘基,尤其是苯基。
本文所用的术语“C n-C m烷氧基”是指在C n-C m烷基对应的开链C n-C m烷烃的任何碳原子上键合有一个氧原子作为连接基团的C n-C m烷基,例如C 1-C 12烷氧 基,更优选C 1-C 6烷氧基,尤其优选C 1-C 4烷氧基。C 1-C 6烷氧基可以是甲氧基、乙氧基、丙氧基、异丙氧基、正丁氧基、2-丁氧基、叔丁氧基、戊氧基、异戊氧基、己氧基及其异构体。C 1-C 4烷氧基可以是甲氧基、乙氧基、丙氧基、异丙氧基、正丁氧基、仲丁氧基、异丁氧基、叔丁氧基及其异构体。
本文所用的术语“C n-C m卤代烷基”是指被一个或多个相同或不同卤素原子取代的C n-C m烷基,例如C 1-C 12卤代烷基,优选C 1-C 6卤代烷基,特别优选C 1-C 4卤代烷基。作为C n-C m卤代烷基的实例,可以提及一氯甲基、一氯乙基、二氯乙基、三氯乙基、一氯丙基、1-氯甲基乙基、一氯丁基、1-氯甲基丙基、2-氯甲基丙基、1,1-二氯甲基乙基、一氯戊基、1-氯甲基丁基、2-氯甲基丁基、3-氯甲基丁基、2,2-二氯甲基丙基、1-氯乙基丙基、一氯己基、1,1-二氯甲基丙基、1,2-二氯甲基丙基、1-氯甲基戊基、2-氯甲基戊基、3-氯甲基戊基、4-氯甲基戊基、1,1-二氯甲基丁基、1,2-二氯甲基丁基、1,3-二氯甲基丁基、2,2-二氯甲基丁基、2,3-二氯甲基丁基、3,3-二氯甲基丁基、1-氯乙基丁基、2-氯乙基丁基、1,1,2-三氯甲基丙基、1,2,2-三氯甲基丙基、1-氯乙基-1-甲基丙基、1-乙基-2-氯甲基丙基及其异构体。
本文所用的术语“C n-C m卤代烷氧基”是指被一个或多个相同或不同卤素原子取代的C n-C m烷氧基,例如C 1-C 12卤代烷氧基,更优选C 1-C 6卤代烷氧基,尤其优选C 1-C 4卤代烷氧基。作为C n-C m卤代烷氧基的实例,可以提及一氯甲氧基、2-氯乙氧基、3-氯丙氧基、2-氯异丙氧基、4-氯正丁氧基、3-氯仲丁氧基、2-氯叔丁氧基、5-氯戊氧基、4-氯异戊氧基、6-氯己氧基及其异构体。
本文所用的术语“C n-C m羟烷基”是指在C n-C m烷基对应的开链C n-C m烷烃的任何碳原子上键合有一个羟基的C n-C m烷基,例如C 1-C 6羟烷基,尤其优选C 1-C 4羟烷基,例如羟甲基、羟乙基、羟丙基、羟异丙基、羟丁基、羟戊基、羟己基及其异构体。
本文所用的术语C 1-C 30亚烷基包括C 1-C 26亚烷基、C 1-C 18亚烷基、C 1-C 12亚烷基、C 1-C 6亚烷基、C 2-C 26亚烷基、C 2-C 18亚烷基、C 2-C 12亚烷基、C 2-C 6亚烷基、C 3-C 26亚烷基、C 3-C 18亚烷基、C 3-C 12亚烷基或C 3-C 6亚烷基。
在本发明化合物中,m通常为1-50,例如1-40、1-30、1-20、1-18、1-15、1-12、1-9、2-40、2-30、2-20、2-18、2-15、2-12、2-9、3-40、3-30、3-20、3-18、 3-15、3-12或3-9,例如为3、4、5、6、7、8、9、10、12或15。
R 1、R 2、R 3、R 4、R 5相同或不同,并独立地为具有1-12碳原子的有机基团,例如具有1-6或1-4个碳原子的有机基团。
在本发明化合物中,R 1通常为C 1-C 12烷基或者C 1-C 12烷氧基。优选的是,R 1为C 1-C 6烷基或者C 1-C 6烷氧基。特别优选的是,R 1为C 1-C 4烷基或者C 1-C 4烷氧基。尤其是R 1为C 1-C 4烷基。例如,R 1为甲基、乙基、正丙基、异丙基、正丁基、仲丁基或叔丁基。
在本发明化合物中,R 2、R 3、R 4、R 5相同或不同,并通常独立地为C 6-C 10芳基、C 1-C 12烷基、C 1-C 12烷氧基或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 1-C 12烷基,其中R a为H或C 1-C 4烷基。优选的是,R 2、R 3、R 4、R 5相同或不同,并独立地为C 6-C 10芳基、C 1-C 6烷基、C 1-C 6烷氧基或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 1-C 6烷基,其中R a为H或C 1-C 4烷基。特别优选的是,R 2、R 3、R 4、R 5相同或不同,并独立地为苯基、C 1-C 4烷基、C 1-C 4烷氧基或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 1-C 4烷基,其中R a为H或C 1-C 4烷基。尤其是R 2、R 3、R 4、R 5相同或不同,并独立地为C 1-C 4烷基。例如,R 2、R 3、R 4、R 5相同或不同,并独立地为苯基、甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基、甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、仲丁氧基或叔丁氧基。
本领域技术人员可以理解,被所述非相邻杂原子间隔是指,在两个碳原子,例如所述二价连接基团的两个碳原子中间存在非相邻杂原子。例如,被O间隔的亚乙基可以表示为:-CH 2-O-CH 2-。
在本发明化合物中,R 6通常为H、卤素、C 1-C 6烷基、C 1-C 6卤代烷基、C 1-C 6羟烷基、C 1-C 6烷氧基或者C 1-C 6卤代烷氧基。优选的是,R 6为H、卤素、C 1-C 4烷基、C 1-C 4卤代烷基、C 1-C 4羟烷基、C 1-C 4烷氧基或者C 1-C 4卤代烷氧基。特别优选的是,R 6为H或C 1-C 4烷基。例如,R 6可以为H、氯、溴、甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基、甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、仲丁氧基、叔丁氧基、羟甲基、羟乙基、羟正丙基、羟异丙基、羟正丁基、羟仲丁基或羟叔丁基。
根据本发明,L为具有1-8个碳原子的二价连接基团,例如具有1-6,1-4,1-3 个碳原子的二价连接基团,或例如具有1、2、3、4、5、6、7或8个碳原子的二价连接基团。根据一个实施方案,所述二价连接基团具有一个或多个独立地选自NR a、O、S,优选O的非相邻杂原子,其中R a为H或C 1-C 4烷基。
在一个优选实施方案中,L为C 1-C 8亚烷基、或者被一个或多个独立地选自NR a、O、S,优选O的非相邻杂原子间隔的C 2-C 8亚烷基,其中R a为H或C 1-C 4烷基。在一个优选实施方案中,L为C 1-C 6亚烷基、或者被一个或多个独立地选自NR a、O、S,优选O的非相邻杂原子间隔的C 2-C 6亚烷基,其中R a为H或C 1-C 4烷基。在一个优选实施方案中,L为C 1-C 4亚烷基、或者被一个或多个独立地选自NR a、O、S,优选O的非相邻杂原子间隔的C 2-C 4亚烷基,其中R a为H或C 1-C 4烷基。
在本发明的一个实施方案中,式(I)化合物中的各变量如下所定义:
m为1-30;
R 1为C 1-C 12烷基或者C 1-C 12烷氧基;和
R 2、R 3、R 4、R 5相同或不同,并独立地为C 6-C 10芳基、C 1-C 12烷基、C 1-C 12烷氧基、被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 12烷基,或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 12烷氧基,和
L为具有1-6个碳原子的二价连接基团,
其中R a为H或C 1-C 4烷基。
在本发明的一个实施方案中,式(I)化合物中的各变量如下所定义:
m为1-30;
R 1为C 1-C 12烷基或者C 1-C 12烷氧基;和
R 2、R 3、R 4、R 5相同或不同,并独立地为C 6-C 10芳基、C 1-C 12烷基、C 1-C 12烷氧基、被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 12烷基,或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 12烷氧基,和
L为C 1-C 8亚烷基、或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 8亚烷基,
其中R a为H或C 1-C 4烷基。
根据本发明的一个实施方案,式(I)化合物中的各变量满足下述定义中的至 少一个,优选全部:
-m为1-20,优选为2-15;
-R 1为C 1-C 6烷基或者C 1-C 6烷氧基;R 1优选为C 1-C 4烷基或者C 1-C 4烷氧基;
-R 2、R 3、R 4、R 5、相同或不同,并独立地为C 6-C 10芳基、C 1-C 6烷基、C 1-C 6烷氧基或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 6烷基,其中R a为H或C 1-C 4烷基;优选的是,R 2、R 3、R 4、R 5、相同或不同,并独立地为苯基、C 1-C 4烷基、C 1-C 4烷氧基或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 4烷基,其中R a为H或C 1-C 4烷基;
-R 6为H、卤素、C 1-C 4烷基、C 1-C 4卤代烷基、C 1-C 4羟烷基、C 1-C 4烷氧基或者C 1-C 4卤代烷氧基;
-L为C 1-C 6亚烷基、或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 6亚烷基,其中R a为H或C 1-C 4烷基。
在本发明的一些优选实施方案中,式(I)化合物中的各变量如下所定义:
m为1-12,优选1-9;
R 1为C 1-C 4烷基或者C 1-C 4烷氧基;
R 2、R 3、R 4、R 5相同或不同,并独立地为C 1-C 4烷基;
R 6为H或C 1-C 4烷基,尤其是H或乙基,和
L为C 1-C 6亚烷基、或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 6亚烷基,其中R a为H或C 1-C 4烷基。
根据本发明的一个实施方案,式(I)化合物中的各变量如下所定义:
m为1-9;
R 1为C 1-C 4烷基或者C 1-C 4烷氧基;
R 2、R 3、R 4、R 5相同或不同,并独立地为苯基、C 1-C 4烷基、C 1-C 4烷氧基或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 1-C 4烷基,其中R a为H或C 1-C 4烷基,其中R a为H或C 1-C 4烷基;
R 6为H、卤素、C 1-C 4烷基、C 1-C 4卤代烷基、C 1-C 4羟烷基、C 1-C 4烷氧基或者C 1-C 4卤代烷氧基;以及
L为C 1-C 4亚烷基、或者被一个或多个独立地选自NR a、O、S的非相邻杂原子 间隔的C 2-C 4亚烷基,其中R a为H或C 1-C 4烷基;
优选的是,
m为3-9;
R 1为C 1-C 4烷基;
R 2、R 3、R 4、R 5相同或不同,并独立地为C 1-C 4烷基;
R 6为H或C 1-C 4烷基,以及
L为C 1-C 3亚烷基。
在本发明的另一实施方案中,式(Ⅰ)化合物为一种或多种选自下组的化合物:
Figure PCTCN2022099401-appb-000009
根据本发明的第二个方面,提供了一种制备本发明式(Ⅰ)化合物的方法,包 括:
使式(Ⅳ)化合物
Figure PCTCN2022099401-appb-000010
其中L和R 6如上对式(I)化合物所定义,
与式(Ⅴ)化合物反应,得到式(Ⅰ)化合物,
Figure PCTCN2022099401-appb-000011
其中m、R 1、R 2、R 3、R 4和R 5如上对式(I)化合物所定义。
根据本发明,式(IV)化合物可如下制备:
使式(Ⅱ)化合物:
Figure PCTCN2022099401-appb-000012
与式(Ⅲ)化合物反应,
Figure PCTCN2022099401-appb-000013
其中L和R 6如上所定义,并且X为卤素,例如氯、溴或碘,得到式(Ⅳ)化合物。
在式(II)化合物与式(III)化合物的反应中,式(Ⅱ)化合物中的端羟基与式(Ⅲ)化合物中的卤素的反应属于本领域已知的反应类型,反应产生卤化氢。通常而言,该反应在催化剂存在下进行。作为适合该反应的催化剂,可以提及氢化钠、氢氧化钠、氢氧化钾、三乙胺、碳酸钾或其任意混合物。催化剂的用量也是常规的。通常而言,式(Ⅱ)化合物与催化剂的摩尔用量比为1:1-1:5,优选1:1-1:3。式(Ⅱ)化合物与式(Ⅲ)化合物的反应通常在溶剂中进行。作为溶剂的类 型,没有特别的限制,只要能将式(Ⅱ)化合物、式(Ⅲ)化合物和相应催化剂溶解并且不参与式(Ⅱ)化合物与式(Ⅲ)化合物之间的反应即可,优选该溶剂还有有利于产物,即式(Ⅲ)化合物析出。作为该溶剂,通常使用有机溶剂,优选使用甲苯、丙酮、丁酮、甲苯、四氢呋喃、环己烷、1,4-二氧六环、二氯甲烷、乙腈或其任意混合物。溶剂的用量也是常规的,通常而言,溶剂的用量为式(Ⅱ)化合物和式(Ⅲ)化合物总重量的1.0-3倍。式(Ⅱ)化合物和式(Ⅲ)化合物的用量通常以大致等摩尔量使用。有利的是,式(Ⅱ)化合物与式(Ⅲ)化合物的用量摩尔比为1:0.75-1:1.5或1:1-1:1.2。为了实现上述反应,通常将式(Ⅱ)化合物和催化剂溶解在溶剂中,然后加入式(Ⅲ)化合物,然后在30-120℃,优选40-70℃下反应3-16小时,优选反应4-10小时。当然,反应有利地在搅拌下进行。反应完毕之后,通过常规后处理,即获得式(Ⅳ)化合物。该后处理通常包括萃取或洗涤(例如用水洗涤,水洗涤之后有利地采用吸水化合物比如硫酸镁或硫酸钠除水)、过滤或离心除去固体杂质,旋蒸除去溶剂,减压蒸馏进一步除去溶剂。如果要获得更高纯度的产物,还可重结晶或柱层析法分离杂质。
在式(IV)化合物与式(V)化合物的反应中,式(Ⅴ)化合物的硅原子上含有氢原子,因此,式(Ⅴ)化合物可称作含氢硅油。式(Ⅴ)化合物中硅原子键合的氢原子与式(Ⅳ)化合物中的不饱和碳碳双键的加成反应属于本领域已知的反应类型。通常而言,该反应在催化剂存在下进行。作为适合该反应的催化剂,通常采用Karstedt催化剂或SpeⅠer催化剂。催化剂的用量也是常规的。通常而言,基于含氢硅油的重量,催化剂的用量为2-500ppm,优选10-300ppm。式(Ⅳ)化合物与式(Ⅴ)化合物的反应通常在溶剂中进行。作为溶剂的类型,没有特别的限制,只要能将式(Ⅳ)化合物、式(Ⅴ)化合物和催化剂溶解并且不参与式(Ⅳ)化合物与式(Ⅴ)化合物之间的反应即可,优选该溶剂还有利于产物,即式(Ⅰ)化合物析出。作为该溶剂,通常使用有机溶剂,优选使用石油醚、二氯甲烷、甲苯、二甲苯或其任意混合物。溶剂的用量也是常规的,通常而言,溶剂的用量为式(Ⅳ)化合物和式(Ⅴ)化合物总重量的1.5-3倍。式(Ⅳ)化合物和式(Ⅴ)化合物的用量通常以大致等摩尔量使用。有利的是,式(Ⅳ)化合物与式(Ⅴ)化合物的用量摩尔比为1:0.75-1:1.5或1:1-1:1.5。为了实现上述反应,通常先将式(Ⅳ)化合物与催化剂溶解在溶剂中陈化一段时间后,再与式(Ⅴ) 化合物接触,然后升温至反应温度保持一段时间,得到式(Ⅰ)化合物。陈化通常在升高的温度下进行,通常在40-70℃陈化。陈化时间通常为30-60分钟。式(Ⅳ)化合物与式(Ⅴ)化合物之间的反应温度通常为80-110℃,优选85-100℃。式(Ⅳ)化合物与式(Ⅴ)化合物之间的反应在反应温度下的保持时间通常为2-12小时,优选3.5-8小时。当然,反应有利地在搅拌下进行。反应完毕之后,通过常规后处理,即获得式(Ⅰ)化合物产物。该后处理通常包括过滤或离心除去固体杂质,旋蒸除去溶剂,减压蒸馏进一步除去溶剂。如果要获得更高纯度的产物,还可重结晶。
本发明式(Ⅰ)化合物是一种阳离子光固化单体,其聚合速率快、转化率高且可促进其他阳离子单体聚合,光固化聚合之后得到的光固化材料机械性能,特别是拉伸性能较好,疏水性能优良,抗沾污,抗指纹,抗化学品腐蚀,抗老化性能强,耐热且耐黄变性好。
根据本发明的第三个方面,提供了一种可光固化组合物,该组合物包含本发明的式(Ⅰ)化合物作为聚合单体。该可光固化组合物除了包含本发明的式(Ⅰ)化合物以外,还可包含开环聚合的阳离子光引发剂(可引发阳离子聚合的光引发剂)以及任选地其它含有可阳离子光固化基团如乙烯基醚双键、脂环族环氧基、环氧乙烷基或者氧杂环丁烷基的单体、低聚物,例如3,4-环氧环己基甲基3,4-环氧环己基甲酸酯(E4221)。
在本发明的可光固化组合物中,基于聚合单体的总量,本发明的式(I)化合物的量可以为至少0.5mol%,至少1mol%,至少2mol%,例如0.5-12mol%,或0.5-10mol%,或1-10mol%。
本发明可光固化组合物可以为光固化涂料组合物、光固化油墨组合物、光致抗蚀组合物等。该组合物在固化后,所得固化产物机械性能,特别是拉伸性能较好,疏水性能优良,抗沾污,抗指纹,抗化学品腐蚀,抗老化性能和耐黄变性能强。
作为开环聚合的光引发剂,常用的有碘鎓盐和硫鎓盐。有利的是,所述碘鎓盐光引发剂和硫鎓盐光引发剂分别具有如下通式(A)和(B)
Figure PCTCN2022099401-appb-000014
其中
R a、R b、R c、R d、R e各自独立地是未取代的C 6-C 10芳基,或者被选自卤素、硝基、羰基、C 1-C 12烷基、C 1-C 12烷氧基、苯硫基、苯基和取代苯基的取代基取代的C 6-C 10芳基,优选是苯基或萘基,或者被选自卤素、硝基、C 1-C 6烷基和取代苯基的取代基取代的苯基或萘基,其中所述取代苯基包含的取代基为一个或多个选自卤素、硝基、C 1-C 6烷基和C 1-C 6烷氧基的基团;以及
Y、Z是非亲核性阴离子,例如三氟甲磺酸根、BF 4 -、ClO 4 -、PF 6 -、AsF 6 -、SbF 6 -
例如,作为光引发剂,可以使用选自下组中的一种或多种:4-(苯硫基)苯基·二苯基硫鎓六氟磷酸盐、4-(苯硫基)苯基·二苯基硫鎓六氟锑酸盐、双(4-(二苯基锍)苯基)硫醚双六氟磷酸盐、双(4-(二苯基锍)苯基)硫醚双六氟锑酸盐、10-(4-联苯基)-2-异丙基噻吨酮-10-硫鎓六氟磷酸盐、10-(4-联苯基)-2-异丙基噻吨酮-10-硫鎓六氟锑酸盐、六氟磷酸二苯基碘鎓盐(810)、4-辛氧基二苯碘鎓六氟磷酸盐、4-辛氧基二苯碘鎓六氟锑酸盐、4-异丁基苯基·4'-甲基苯基碘鎓六氟磷酸盐、4-异丁基苯基·4'-甲基苯基碘鎓六氟锑酸盐、双(4-十二烷基苯)碘鎓六氟锑酸盐、双(4-十二烷基苯)碘鎓六氟磷酸盐、双(4-叔丁基苯)碘鎓六氟磷酸盐、双(4-叔丁基苯)碘鎓六氟锑酸盐。
本发明可光固化组合物还可以包含增感剂。作为增感剂,例如可以提及2-异丙基硫杂蒽酮。
对本发明而言,光引发剂的用量是常规的。基于本发明可光固化组合物的总摩尔量,光引发剂的含量通常为0.5-5mol%,优选为1-3mol%。
根据本发明的一个方面,提供了一种由本发明的可光固化组合物得到的光固化材料,该材料通过将本发明的可光固化组合物光固化而获得。该光固化材料具有良好的机械性能,特别是拉伸性能,疏水性能优良,且具有抗沾污,抗指纹,抗化学品腐蚀,抗老化性能强,耐热性和耐黄变性好的优点。
根据本发明的式(I)化合物还可用于光固化涂料、粘合剂、油墨和光致抗 蚀剂。因此,本发明还涉及式(I)化合物在光固化涂料、粘合剂、油墨和光致抗蚀剂中的用途。
实施例
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
首先将220mmol氢化钠加入到含有150mL的无水四氢呋喃的三口烧瓶中。再将200mmol的诺卜醇加到三口瓶中,之后将220mmol的3-乙基-3-氯甲基氧杂环丁烷加到反应体系中,搅拌均匀后升温至50℃冷凝回流。反应6h后结束反应。反应完毕后加入500mL水猝灭反应,随后通过旋转蒸发器旋蒸除去溶剂。之后用300mL乙酸乙酯萃取3遍。收集有机层再用200mL水洗3遍。向有机相中加入无水硫酸镁搅拌后过夜。最后进行减压蒸馏得到产物1-a,产率49%。
Figure PCTCN2022099401-appb-000015
[1-a]: 1H NMR(400MHz,DMSO-d 6)δ5.21(dq,J=2.9,1.5Hz,1H),4.34-4.27(m,4H),3.89(s,2H),3.46-3.33(m,2H),2.34(tt,J=8.5,5.6Hz,1H),2.24-2.01(m,6H),1.75(q,J=7.5Hz,2H),1.26(d,J=4.1Hz,3H),1.09(d,J=8.4Hz,1H),0.86(t,J=7.5Hz,3H),0.80(d,J=2.7Hz,3H)。
在装有温度探头和回流冷凝管的三口烧瓶中,将含氢硅油4.12g(10mmol)(对应于式(Ⅴ)化合物,其中m=3,R 1为正丁基,以及R 2、R 3、R 4和R 5为甲基)和0.824g 100ppm浓度的Karstedt催化剂(Karstedt催化剂,安耐吉化学)溶解在溶剂无水甲苯中,然后升温至60℃保持40min。之后向三口烧瓶中滴加化合物1-a 3.168g(12mmol),升温至90℃,在搅拌下保持4h。离心除去固体杂质,用旋转蒸发器于温度45℃和压力0.1MPa下旋蒸,再将所得溶液于300Pa和40℃下减压蒸馏,得到产物。经核磁氢谱表征,确定为化合物1,产率91%,下文有时称作Nopol-Si 3
Figure PCTCN2022099401-appb-000016
[Nopol-Si 3] : 1H NMR(400MHz,Chloroform-d)δ4.52-4.33(m,4H),3.55(s,2H),3.49(td,J=7.0,1.5Hz,2H),2.38(dt,J=8.5,5.6Hz,1H),2.32-2.17(m,4H),2.08(pd,J=5.7,4.9,2.1Hz,2H),1.76(q,J=7.5Hz,2H),1.33(tt,J=6.4,3.2Hz,6H),1.29(s,3H),1.17(d,J=8.5Hz,1H),0.92-0.88(m,6H),0.85(s,3H),0.60-0.51(m,2H),0.13-0.03(m,24H)。
实施例2
在装有温度探头和回流冷凝管的三口烧瓶中,将含氢硅油6.34g(10mmol)(对应于式(Ⅴ)化合物,其中m=6,R 1为正丁基,以及R 2、R 3、R 4和R 5为甲基)和1.268g 100ppm浓度的Karstedt催化剂(Karstedt催化剂,安耐吉化学)溶解在溶剂无水甲苯中,然后升温至60℃保持40min。之后向三口烧瓶中滴加化合物1-a 3.168g(12mmol),升温至90℃,在搅拌下保持4h。离心除去固体杂质,用旋转蒸发器于温度45℃和压力0.1MPa下旋蒸,再将所得溶液于300Pa和40℃下减压蒸馏,得到产物。经核磁氢谱表征,确定为化合物2,产率90%,下文有时称作Nopol-Si 6
Figure PCTCN2022099401-appb-000017
[Nopol-Si 6]: 1H NMR(400MHz,Chloroform-d)δ4.51-4.33(m,4H),3.55(s,2H),3.50(td,J=7.0,1.5Hz,2H),2.38(d,J=2.6Hz,1H),2.32-2.17(m,4H),2.09(dt,J=7.0,5.4,2.9Hz,2H),1.76(q,J=7.5Hz,2H),1.41-1.28(m,6H),1.29(s,3H),1.17(d,J=8.5Hz,1H),0.95-0.85(m,6H),0.85(s,3H),0.61-0.52(m,2H),0.15-0.04(m,42H)。
实施例3
在装有温度探头和回流冷凝管的三口烧瓶中,将含氢硅油8.56g(10mmol)(对应于式(Ⅴ)化合物,其中m=9,R 1为正丁基,以及R 2、R 3、R 4和R 5为甲基)和1.712g 100ppm浓度的Karstedt催化剂(Karstedt催化剂,安耐吉化学)溶解在溶剂无水甲苯中,然后升温至60℃保持40min。之后向三口烧瓶中滴加化合物1-a 3.168g(12mmol),升温至90℃,在搅拌下保持4h。离心除去固体杂质,用旋转蒸发器于温度45℃和压力0.1MPa下旋蒸,再将所得溶液于300Pa和40℃下减压蒸馏,得到产物。经核磁氢谱表征,确定为化合物3,产率91%,下文有时称作Nopol-Si 9
Figure PCTCN2022099401-appb-000018
[Nopol-Si 9]: 1H NMR(400MHz,Chloroform-d)δ4.51-4.32(m,4H),3.55(s,2H),3.50(td,J=7.0,1.5Hz,2H),2.41-2.34(m,1H),2.32-2.18(m,4H),2.09(td,J=6.1,5.4,2.4Hz,2H),1.76(q,J=7.5Hz,2H),1.34(tt,J=5.3,1.5Hz,6H),1.29(s,3H),1.17(d,J=8.5Hz,1H),0.93-0.87(m,6H),0.85(s,3H),0.60-0.53(m,2H),0.12-0.05(m,60H)。
实施例4
在装有温度探头和回流冷凝管的三口烧瓶中,将含氢硅油13.0g(10mmol)(对应于式(Ⅴ)化合物,其中m=15,R 1为正丁基,以及R 2、R 3、R 4和R 5为甲基)和2.610g 100ppm浓度的Karstedt催化剂(Karstedt催化剂,安耐吉化学)溶解在溶剂无水甲苯中,然后升温至60℃保持40min。之后向三口烧瓶中滴加化合物1-a 3.168g(12mmol),升温至90℃,在搅拌下保持4h。离心除去固体杂质,用旋转蒸发器于温度45℃和压力0.1MPa下旋蒸,再将所得溶液于300Pa和40℃下减压蒸馏,得到产物。经核磁氢谱表征,确定为化合物4,产率92%,下文有时称作Nopol-Si 15
Figure PCTCN2022099401-appb-000019
[Nopol-Si 15]: 1H NMR(400MHz,Chloroform-d)δ4.51-4.32(m,4H),3.55(s,2H),3.50(td,J=7.0,1.5Hz,2H),2.41-2.34(m,1H),2.32-2.18(m,4H),2.09(td,J=6.1,5.4,2.4Hz,2H),1.76(q,J=7.5Hz,2H),1.34(tt,J=5.3,1.5Hz,6H),1.29(s,3H),1.17(d,J=8.5Hz,1H),0.93-0.87(m,6H),0.85(s,3H),0.60-0.53(m,2H),0.12-0.05(m,96H)。
实施例5
首先将220mmol氢化钠加入到含有150mL的无水四氢呋喃的三口烧瓶中。再将200mmol的诺卜醇加到三口瓶中,之后将220mmol的3-氯甲基氧杂环丁烷加到反应体系中,搅拌均匀后升温至50℃冷凝回流。反应6h后结束反应。反应完毕后加入500mL水猝灭反应,随后通过旋转蒸发器旋蒸除去溶剂。之后用300mL乙酸乙酯萃取3遍。收集有机层再用200mL水洗3遍。向有机相中加入无水硫酸镁搅拌后过夜。最后进行减压蒸馏得到产物5-a,产率49%。
Figure PCTCN2022099401-appb-000020
[5-a]: 1H NMR(400MHz,DMSO-d 6)δ5.21(dq,J=2.9,1.5Hz,1H),4.34-4.27(m,4H),3.89(s,2H),3.46-3.33(m,2H),3.03-2.81(m,1H)2.34(tt,J=8.5,5.6Hz,1H),2.24-2.01(m,6H),1.26(d,J=4.1Hz,3H),1.09(d,J=8.4Hz,1H),0.80(d,J=2.7Hz,3H)。
在装有温度探头和回流冷凝管的三口烧瓶中,将含氢硅油4.12g(10mmol)(对应于式(Ⅴ)化合物,其中m=3,R 1为正丁基,以及R 2、R 3、R 4和R 5为甲基)和0.824g 100ppm浓度的Karstedt催化剂(Karstedt催化剂,安耐吉化学)溶解在溶剂无水甲苯中,然后升温至60℃保持40min。之后向三口烧瓶中滴加化合物5-a 2.832g(12mmol),升温至90℃,在搅拌下保持4h。离心除去固体杂质,用旋转蒸发器于温度45℃和压力0.1MPa下旋蒸,再将所得溶液于 300Pa和40℃下减压蒸馏,得到产物。经核磁氢谱表征,确定为化合物5,产率90%。
Figure PCTCN2022099401-appb-000021
[化合物5]: 1H NMR(400MHz,Chloroform-d)δ4.52-4.33(m,4H),3.55(s,2H),3.49(td,J=7.0,1.5Hz,2H),2.92(m,1H),2.38(dt,J=8.5,5.6Hz,1H),2.32-2.17(m,4H),2.08(pd,J=5.7,4.9,2.1Hz,2H),1.33(tt,J=6.4,3.2Hz,6H),1.29(s,3H),1.17(d,J=8.5Hz,1H),0.92-0.88(m,3H),0.85(s,3H),0.60-0.51(m,2H),0.13-0.03(m,24H)。
实施例6
本实施例的目的在于说明本发明化合物的光聚合性能。
光固化组合物的制备过程如下:
称取适量X 1mol的上述化合物1,X 2mol的E4221(3,4-环氧环己基甲基3,4-环氧环己基甲酸酯),X 3mol的光引发剂六氟磷酸二苯基碘鎓盐(810)和X 4mol的光敏剂2-异丙基硫杂蒽酮(ITX)加入到棕色瓶中并搅拌均匀,避光保存,以光固化组合物Nopol-Si 3-3.0%为例,其各组分摩尔比例为:化合物1(X 1):E4221(X 2):810(X 3):ITX(X 4)=3:97:3:1.5(均为摩尔比)。在本公开的实施例中,光固化组合物中的X 1+X 2固定为100。包含化合物2-3的光固化组合物制备方式与化合物1相一致。各光组合物中本发明化合物1、2和3(即Nopol-Si 3、Nopol-Si 6和Nopol-Si 9)摩尔比例X 1如下表1-3所示,如上所述X 1+X 2固定为100,X 3和X 4保持不变。
以光引发剂六氟磷酸二苯基碘鎓盐(810)与2-异丙基硫杂蒽酮(ITX,增感剂)以2:1摩尔比组成的混合物作为光引发体系,采用实时红外(RT-IR)的方法测试了化合物1-3光聚合动力学性能,并考察各自在不同含量下对E4221光聚合性能的影响。所使用单体E4221三元氧杂环的C-O-C的振动吸收峰位于750cm -1位置,化合物1-3的四元氧杂环的C-O-C的振动吸收峰为980cm -1,将单体和光引发剂组成的可光固化液体均匀涂抹在溴化钾盐片上(用细管蘸取一点可 光固化液体,在溴化钾盐片上点一下,然后平铺均匀),用高压汞灯照射液体样品900s,其中汞灯主要发射波长为365nm,并且带有直径为5mm的光导纤维。光纤一端距离测试样品距离为10cm,辐照强度为20mW cm -2。通过测量在750cm -1和980cm -1处C-O-C键峰面积的变化,表征了不同环氧基团,即单体的实时转化率和聚合速率。
其中化合物1-3(即Nopol-Si 3、Nopol-Si 6和Nopol-Si 9)各自的结果分别如图1-3所示(图和下文表中,以Nopol-Si 3-3.0%为例,其表示配方中X 1为3.0mol%,X 1+X 2固定为100,X 3和X 4保持不变)。结果显示,化合物1-3的加入可以明显改善E4421单体的转化率和转化速率。另外,化合物1-3仅需少量添加(3-12mol%)就可以明显提高单体E4221的转化率,其最大转化率都达到了至少67%;并且由图4-6可以看出化合物1-3自身四元氧杂环转化率均在74%左右。因此本发明化合物可以提高E4221单体的光聚合性能,并且本发明化合物自身具有优异的光聚合活性。
表1:使用化合物1(Nopol-Si 3)的光固化组合物的900s时单体转化率
Figure PCTCN2022099401-appb-000022
表2:使用化合物2(Nopol-Si 6)的光固化组合物的900s时单体转化率
Figure PCTCN2022099401-appb-000023
表3:使用化合物3(Nopol-Si 9)的光固化组合物的900s时单体转化率
Figure PCTCN2022099401-appb-000024
实施例7
本实施例的目的在于说明本发明化合物能够改善光固化膜的表面疏水性。
称取适量X 1mol的上述化合物1-3(即Nopol-Si 3、Nopol-Si 6和Nopol-Si 9),X 2mol的E4221,X 3mol的光引发剂六氟磷酸二苯基碘鎓盐(810)和X 4mol的光敏剂2-异丙基硫杂蒽酮(ITX)加入到棕色瓶中并搅拌均匀,避光保存,配方各组分摩尔比例为:单体(X 1):E4221(X 2):810(X 3):ITX(X 4)=3:97:3:1.5。在6mm×8mm×70mm的聚四氟乙烯模具中加入搅拌均匀的感光液,然后将模具放置于汞灯下照射(波长365nm,光强为60mW cm -2),照射时间900s后取出固化膜,进行水接触角测试。
采用DSA25型水接触角测定仪对光固化膜的表面疏水性进行表征,测试温度为25℃。同时,利用同样方法制备空白E4221固化膜作为参比。参比和化合物1-3的结果见图7。
由图7可见,当E4221聚合体系不添加本发明化合物时,固化膜的水接触角为58.4°,而额外加入化合物1-3后,固化膜的水接触角明显提高,分别达到83.4°、90.1°及98.7°。另外,额外加入化合物1-3中之一获得的固化膜的接触角均超过85°。因此,本发明化合物可以显著地提高固化膜的表面疏水性,因而抗沾污,抗指纹。
实施例8
按照实施例7中所述完全相同的方法分别制得化合物1-3各自的固化膜。然后采用热失重分析仪(DTG-60AH岛津企业管理(中国)有限公司)测定各光固化 膜的耐热性。测试条件为:氮气保护下,温度范围25-700℃,升温速度为10℃/min。同时,利用同样方法制备空白E4221固化膜作为参比。其结果见图8及表4。
由表4和图8可见,加入化合物1-3中任何一种后,固化膜的初始分解温度(T 5%)及最大热失重温度第一阶段失重最快时分解温度(T max1)和第二阶段失重最快时分解温度(T max2)明显提高,因而耐热性明显被改善。
表4
System T 5%(℃) T max1(℃) T max2(℃)
E4221 267 379 -
Nopol-Si 3 291 395 602
Nopol-Si 6 301 398 604
Nopol-Si 9 308 406 606
实施例9
本实施例的目的在于说明本发明化合物能够改善光固化膜的拉伸性能。
按照实施例7中所述完全相同的方法分别制得化合物1-3各自的固化膜。然后采用电子万能试验机测试(E44.304型,美特斯工业系统(中国)有限公司)依据国际标准ISO 1184-1983《塑料薄膜拉伸性能的测定》进行光固化膜的拉伸性能测试。测试温度为25℃,湿度60%,测试速度为1mm/min。同时,利用同样方法制备空白E4221固化膜作为参比。其结果见图9和表5。
由图9和表5可见,纯E4221光固化膜的拉伸强度为6.10MPa,断裂伸长率为1.69%。额外加入化合物1-3单体后,光固化膜的拉伸强度和断裂伸长率都逐渐增大。因此,本发明化合物能够明显改善固化膜的拉伸性能。
表5
体系 拉伸强度(MPa) 断裂伸长率(%)
E4221 6.1 1.7
Nopol-Si 3 7.2 3.2
Nopol-Si 6 8.6 4.6
Nopol-Si 9 9.4 6.4
实施例10
本实施例的目的在于说明本发明化合物所制备的光固化膜具有良好的耐黄变性。
按照实施例7中所述完全相同的方法制得化合物1的固化膜。检测光固化膜在120℃放置不同时间的耐黄变性,通过紫外分光光度计(UV-2700i岛津企业管理(中国)有限公司)对光固化膜在高温下的透过率的改变来对表征材料的耐黄变性。
如图10所示,对于化合物1(X 1):E4221(X 2):810(X 3):ITX(X 4)=3:97:3:1.5的体系,其光固化膜随着在120℃下放置时间的延长,光聚合薄膜透光率逐渐下降,但加热12小时后,透过率下降幅度较低,为6.1%,说明利用化合物1所制备的光固化膜具有良好的耐黄变性。
光固化膜在700-800nm波长下随时间的透光率如下表6所示。
表6
时间(h) 透光率(%)
0 90
2 90
4 87
6 86
8 85
10 85
12 84

Claims (12)

  1. 下式(I)化合物:
    Figure PCTCN2022099401-appb-100001
    其中
    m为1-50;
    L为具有1-8个碳原子的二价连接基团;
    R 1、R 2、R 3、R 4、R 5相同或不同,并独立地为具有1-12碳原子的有机基团;以及
    R 6为H、卤素、C 1-C 6烷基、C 1-C 6卤代烷基、C 1-C 6羟烷基、C 1-C 6烷氧基或者C 1-C 6卤代烷氧基。
  2. 根据权利要求1的化合物,其中
    m为1-30;
    R 1为C 1-C 12烷基或者C 1-C 12烷氧基;和
    R 2、R 3、R 4、R 5相同或不同,并独立地为C 6-C 10芳基、C 1-C 12烷基、C 1-C 12烷氧基、被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 12烷基,或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 12烷氧基,以及
    L为C 1-C 8亚烷基、或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 8亚烷基,
    其中R a为H或C 1-C 4烷基。
  3. 根据权利要求1或2的化合物,其满足下述定义中的至少一个,优选全部:
    -m为1-20,优选为2-15;
    -R 1为C 1-C 6烷基或者C 1-C 6烷氧基;R 1优选为C 1-C 4烷基或者C 1-C 4烷氧基;
    -R 2、R 3、R 4、R 5、相同或不同,并独立地为C 6-C 10芳基、C 1-C 6烷基、C 1-C 6烷氧基或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 6烷基,其中R a为H或C 1-C 4烷基;优选的是,R 2、R 3、R 4、R 5、相同或不同,并独立地为苯基、C 1-C 4烷基、C 1-C 4烷氧基或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 4烷基,其中R a为H或C 1-C 4烷基;
    -R 6为H、卤素、C 1-C 4烷基、C 1-C 4卤代烷基、C 1-C 4羟烷基、C 1-C 4烷氧基或者C 1-C 4卤代烷氧基;
    -L为C 1-C 6亚烷基、或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 6亚烷基,其中R a为H或C 1-C 4烷基。
  4. 根据权利要求1-3中任一项的化合物,其中
    m为1-9;
    R 1为C 1-C 4烷基或者C 1-C 4烷氧基;
    R 2、R 3、R 4、R 5相同或不同,并独立地为苯基、C 1-C 4烷基、C 1-C 4烷氧基或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 1-C 4烷基,其中R a为H或C 1-C 4烷基,其中R a为H或C 1-C 4烷基;
    R 6为H、卤素、C 1-C 4烷基、C 1-C 4卤代烷基、C 1-C 4羟烷基、C 1-C 4烷氧基或者C 1-C 4卤代烷氧基;以及
    L为C 1-C 4亚烷基、或者被一个或多个独立地选自NR a、O、S的非相邻杂原子间隔的C 2-C 4亚烷基,其中R a为H或C 1-C 4烷基;
    优选的是,
    m为3-9;
    R 1为C 1-C 4烷基;
    R 2、R 3、R 4、R 5相同或不同,并独立地为C 1-C 4烷基;
    R 6为H或C 1-C 4烷基,以及
    L为C 1-C 3亚烷基。
  5. 根据权利要求1-4中任一项的化合物,其为一种或多种选自下组的化合物:
    Figure PCTCN2022099401-appb-100002
  6. 一种制备根据权利要求1-5中任一项的式(I)化合物的方法,包括:使式(IV)化合物
    Figure PCTCN2022099401-appb-100003
    其中L和R 6如权利要求1-5中任一项所定义,
    与式(V)化合物反应,得到式(I)化合物,
    Figure PCTCN2022099401-appb-100004
    其中m、R 1、R 2、R 3、R 4和R 5如对权利要求1-5中任一项所定义。
  7. 根据权利要求6的方法,其中式(IV)化合物如下制备:
    使式(II)化合物:
    Figure PCTCN2022099401-appb-100005
    与式(III)化合物反应,
    Figure PCTCN2022099401-appb-100006
    其中L和R 6如权利要求6中所定义,并且X为卤素,例如氯、溴或碘,
    得到式(IV)化合物。
  8. 根据权利要求6的方法,其中式(IV)化合物与式(V)化合物的反应满足下述条件中的至少一个:
    -式(IV)化合物与式(V)化合物的反应在Karstedt催化剂或SpeIer催化剂存在下进行,优选的是,催化剂用量基于含氢硅油的重量为2-500ppm;
    -式(IV)化合物与式(V)化合物摩尔比为1∶0.75-1∶1.5;
    -式(IV)化合物与式(V)化合物之间的反应在80-110℃,优选85-100℃下进行;
    -式(IV)化合物与式(V)化合物之间的反应进行2-12小时,优选3.5-8小时。
  9. 根据权利要求7的方法,其中式(II)化合物与式(III)化合物的反应满足下述条件中的至少一个:
    -式(II)化合物与式(III)化合物的反应在碱性催化剂存在下进行,该碱性催化剂优选是氢化钠、氢氧化钠、氢氧化钾、三乙胺、碳酸钾或其任意混合物,更优选的是,式(II)化合物与碱性催化剂的摩尔比为1∶1-1∶5;
    -式(II)化合物与式(III)化合物的摩尔比为1∶0.75-1∶1.5;
    -式(II)化合物与式(III)化合物之间的反应在30-120℃,优选40-70℃下进行反应进行3-16,优选4-10小时。
  10. 一种可光固化组合物,包含根据权利要求1-5中任一项的式(I)化合物作为聚合单体。
  11. 一种由权利要求10的可光固化组合物得到的光固化材料。
  12. 根据权利要求1-5中任一项的式(I)化合物在光固化涂料、粘合剂、油墨和光致抗蚀剂中的用途。
PCT/CN2022/099401 2021-06-21 2022-06-17 诺卜醇生物基含硅氧杂环丁烷单体及其制备方法 WO2022267990A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110684291.0 2021-06-21
CN202110684291.0A CN113336946B (zh) 2021-06-21 2021-06-21 诺卜醇生物基含硅氧杂环丁烷单体及其制备方法

Publications (1)

Publication Number Publication Date
WO2022267990A1 true WO2022267990A1 (zh) 2022-12-29

Family

ID=77477839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099401 WO2022267990A1 (zh) 2021-06-21 2022-06-17 诺卜醇生物基含硅氧杂环丁烷单体及其制备方法

Country Status (2)

Country Link
CN (1) CN113336946B (zh)
WO (1) WO2022267990A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336946B (zh) * 2021-06-21 2022-10-11 湖北固润科技股份有限公司 诺卜醇生物基含硅氧杂环丁烷单体及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030073770A1 (en) * 2000-03-31 2003-04-17 Klemarczyk Philip T Reworkable compositions of oxirane(s) or thirane(s)-containing resin and curing agent
CN1427831A (zh) * 2000-03-31 2003-07-02 亨克尔洛克泰特公司 包含环氧乙烷或硫杂丙环的树脂和固化剂的可再加工的组合物
CN112111063A (zh) * 2019-06-21 2020-12-22 湖北固润科技股份有限公司 含多硅的氧杂环丁烷类单体及其制备和应用
CN113336946A (zh) * 2021-06-21 2021-09-03 湖北固润科技股份有限公司 诺卜醇生物基含硅氧杂环丁烷单体及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030073770A1 (en) * 2000-03-31 2003-04-17 Klemarczyk Philip T Reworkable compositions of oxirane(s) or thirane(s)-containing resin and curing agent
CN1427831A (zh) * 2000-03-31 2003-07-02 亨克尔洛克泰特公司 包含环氧乙烷或硫杂丙环的树脂和固化剂的可再加工的组合物
CN112111063A (zh) * 2019-06-21 2020-12-22 湖北固润科技股份有限公司 含多硅的氧杂环丁烷类单体及其制备和应用
CN113336946A (zh) * 2021-06-21 2021-09-03 湖北固润科技股份有限公司 诺卜醇生物基含硅氧杂环丁烷单体及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RICARDO ACOSTA ORTIZ ET AL.: "Highly reactive novel biobased cycloaliphatic epoxy resins derived from nopol and a study of their cationic photopolymerization", 《JOURNAL OF POLYMER RESEARCH》, vol. 27, 10 May 2020 (2020-05-10), XP037188175, DOI: 10.1007/s10965-020-02106-4 *

Also Published As

Publication number Publication date
CN113336946A (zh) 2021-09-03
CN113336946B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2020253840A1 (zh) 含多硅的氧杂环丁烷类单体及其制备和应用
WO2022267989A1 (zh) 丁香酚生物基含硅氧杂环丁烷单体及其制备方法
TWI784090B (zh) 含有不飽和雙鍵之化合物、使用其之氧吸收劑、及樹脂組成物
WO2022267990A1 (zh) 诺卜醇生物基含硅氧杂环丁烷单体及其制备方法
CN102225922B (zh) 一种氨酯改性桐油乙烯基树脂的制备方法
WO2016066146A1 (zh) 一种含氧杂环丁烷基团的酯化合物及其制备方法
TW200940604A (en) Organosilicon compounds which have oxetanyl groups, and a method for the production and curable compositions of the same
JP2019521118A (ja) 多官能オキセタン系化合物およびその製造方法
CN112300042B (zh) 4-苯并五元环-苯基硫鎓盐类化合物及其制备方法和应用
WO2019120036A1 (zh) 一种改性松香树脂及其制备方法和应用
CN102702477B (zh) 一种高生物含量多臂型光敏预聚物的合成方法
TW201522391A (zh) 含反應性聚矽氧化合物之聚合性組成物
WO2022267991A1 (zh) 硫醚基氧杂环丁烷硅烷偶联剂及其制备方法
WO2024067719A1 (zh) 三氟甲基有机硅氧杂环烷烃单体及其制备和应用
WO2024067720A1 (zh) 三氟甲基有机硅脂环族环氧单体及其制备和应用
CN109232668A (zh) 一种可用作光聚合中光氧化还原催化剂的二茂铁衍生物及其组合物
CN104650341A (zh) 一种以单宁酸为内核的多臂型光敏树脂的制备
WO2020253838A1 (zh) 一种含双氧杂环的含硅单体及其制备和应用
US20230365756A1 (en) Polyfunctionalized macromolecular photoinitiator containing alpha-aminoketone, and preparation and application thereof
CN110452191B (zh) 一种改性丙烯酸酯、制备方法及其导电胶粘剂的应用
CN114369027B (zh) 衣康酸二酯型光固化单体、组合物、制备方法及应用
JP2014201534A (ja) ケイ素化合物
CN112939779B (zh) 适用于uv-led深层光聚合的对苯二甲酰甲酸酯型光引发剂及其制备方法
TW201510051A (zh) 硬化性樹脂組合物
CN113527138B (zh) 一种用于制备光致变色材料的对氟苯偶酰型肟酯类光引发剂及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE