WO2022267869A1 - 电池壳体、电池和电子器件 - Google Patents

电池壳体、电池和电子器件 Download PDF

Info

Publication number
WO2022267869A1
WO2022267869A1 PCT/CN2022/097167 CN2022097167W WO2022267869A1 WO 2022267869 A1 WO2022267869 A1 WO 2022267869A1 CN 2022097167 W CN2022097167 W CN 2022097167W WO 2022267869 A1 WO2022267869 A1 WO 2022267869A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery case
flange
concave structure
case according
Prior art date
Application number
PCT/CN2022/097167
Other languages
English (en)
French (fr)
Inventor
汤国胜
梁立维
胡树敏
张剑
欧阳进忠
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to JP2023559672A priority Critical patent/JP2024527217A/ja
Priority to EP22827365.2A priority patent/EP4300675A1/en
Priority to KR1020237033658A priority patent/KR20230152137A/ko
Publication of WO2022267869A1 publication Critical patent/WO2022267869A1/zh
Priority to US18/373,963 priority patent/US20240021936A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/202Casings or frames around the primary casing of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the application belongs to the technical field of electronic devices, and in particular relates to a battery case, a battery and an electronic device.
  • Battery energy density refers to the ratio of the energy that can be charged to the mass or volume of the energy storage medium for a given electrochemical energy storage device. From lead-acid batteries, nickel-cadmium batteries, nickel-metal hydride batteries, to lithium-ion batteries, the energy density has been continuously improved. However, the improved efficiency is not enough compared to the growth efficiency of industrial companies and the stage of human civilization's demand for kinetic energy.
  • the battery energy density is an important indicator used to judge whether the battery is good or bad, so improving the energy density of the battery is the first priority in designing the battery. How to effectively increase the energy density of batteries is a technical problem that needs to be solved urgently.
  • the technical problem to be solved in this application is how to improve the energy density of the battery, and provide a battery case, battery and electronic device.
  • the embodiment of the present application provides a battery casing, including a lower casing and an upper casing
  • the lower casing includes a bottom and a first side wall, and the first side wall Extending upward along the bottom, the bottom and the first side wall are surrounded to form a cavity, the side of the first side wall away from the bottom has a first flange, and the upper casing is located on the
  • the upper casing includes a top and a second flange, the connection between the second flange and the top has a second concave structure, the first flange and the second flange contact, so that when the upper shell and the lower shell are welded, the melt after melting the first flange and the second flange flows into the second concave structure.
  • the upper part of the first side wall has a first recessed structure recessed into the cavity.
  • the first concave structure supports the second concave structure.
  • the battery casing is used to accommodate the pole core, and the height of the molten material does not exceed the top.
  • the second concave structure is arc-shaped.
  • the first concave structure is arc-shaped, and the width of the first concave structure is twice the depth.
  • the depth of the first recessed structure is less than or equal to the radius of the chamfer formed between the side where the first recessed structure is located and the bottom of the lower case, and/or, the depth of the second recessed structure
  • the width is less than or equal to the radius of the chamfer.
  • the lower casing is made of metal, and/or the upper casing is made of metal.
  • the thickness of the lower shell is in the range of 0.03mm-0.15mm, and/or the thickness of the upper shell is in the range of 0.03mm-0.15mm.
  • the thickness of the upper case is greater than or equal to the thickness of the lower case.
  • the lower casing is provided with a rivet, a liquid injection hole and a sealing nail for the liquid injection hole, and the sealing nail for the liquid injection hole is used to seal the liquid injection hole.
  • the distance from the first concave structure to the first flange is equal to the depth of inward depression of the second concave structure.
  • the radiation distance of the work hardening ranges from 0.2 mm to 0.5 mm.
  • both the first concave structure and the second concave structure are semicircular, and the radius of the second concave structure is equal to the radius of the first concave structure.
  • an embodiment of the present application provides a battery, including a pole core and the battery described in the above aspect.
  • an embodiment of the present application provides an electronic device, including the battery described in the above aspect.
  • a recessed structure and a flange are provided on the upper case of the battery, and a flange is provided on the lower case of the battery, so that the flange can be melted and the melt can flow into the recessed structure when the case is welded , so that the space occupied by the melt does not exceed the battery casing, thereby reducing the volume of the entire battery and increasing the energy density of the battery.
  • Figure 1 is an exploded view of a battery structure provided by an embodiment of the present application.
  • Fig. 2 is a plan view of a battery case provided by an embodiment of the present application.
  • Fig. 3 is a plan view of a battery case provided by another embodiment of the present application.
  • Fig. 4 is a plan view of the battery case after the flange is melted according to an embodiment of the present application
  • Fig. 5 is a plan view of the battery case after the flange is melted according to another embodiment of the present application.
  • Fig. 6 is a plan view of the battery case after the flange is melted according to an embodiment of the present application
  • Fig. 7 is a plan view of the battery case after the flange is melted according to another embodiment of the present application.
  • Fig. 8 is a schematic diagram of the size of the first recessed structure provided by an embodiment of the present application.
  • Fig. 9 is a schematic diagram of the first flange and the second flange provided by an embodiment of the present application before melting.
  • the battery case and the battery of the present application will be described in detail below with reference to FIGS. 1 to 9 .
  • the battery case provided in the embodiment of the present application includes a lower case 1 and an upper case 2 .
  • the lower housing 1 includes a bottom 11 and a first side wall 12, the first side wall 12 extends upwards along the bottom 11, the bottom 11 and the first side wall 12 surround to form a cavity, the first side wall 12
  • the side facing away from the bottom 11 has a first flange 14 .
  • the upper casing 2 is located above the lower casing 1, the upper casing 2 includes a top 21 and a second flange 24, the connection between the second flange 24 and the top 21 has a second concave structure 23, the first flange 14 and the second The two flanges 24 are in contact, so that the molten material 4 after melting the first flange 14 and the second flange 24 flows into the second concave structure 23 when the upper casing 2 and the lower casing 1 are welded.
  • a recessed structure and a flange are provided on the upper case of the battery, and a flange is provided on the lower case of the battery, so that the flange can be melted and the melt can flow into the recessed structure when the case is welded In this way, the space occupied by the molten material does not exceed the top 21 of the battery casing, thereby reducing the volume for containing the entire battery and increasing the energy density of the battery.
  • the upper casing 2 includes a top 21 and a second flange 24 , and a second concave structure 23 is formed at the connection between the second flange 24 and the top 21 .
  • the upper casing 2 has a second side wall 22, the second side wall 22 has a certain thickness, the second concave structure 23 is formed by stamping the second side wall 22, and one end of the second concave structure 23 has a first Two flanges 24, the second flange 24 is a part of the second side wall 22, that is, before stamping, the upper casing 2 includes the top 21 and the second side wall 22, and the second recess is formed by stamping the second side wall 22 structure 23 and the second flange 24 , the stamped upper casing 2 includes the top 21 , the second recessed structure 23 and the second flange 24 .
  • the height of the first side wall 12 of the lower case 1 is greater than the height of the second side wall 22 of the upper case 2 .
  • the height of the second side wall 22 of the upper case 2 is relatively small, and the upper case 2 may be approximately a flat plate.
  • the recessed structure can also serve as a reinforcing rib to avoid deformation of the lower shell 1 during welding.
  • the upper portion of the first side wall 12 has a first recessed structure 13 recessed into the cavity.
  • a recessed structure (such as the first recessed structure 13 ) is provided on the first side wall 12 of the lower case 1 , and the recessed structure can also be used as a reinforcing rib to further avoid deformation of the upper case 2 during welding while increasing energy density.
  • the first flange 14 can be a part of the first concave structure 13 extending out of the battery case along a direction perpendicular to the concave direction of the first concave structure 13, and the second flange 24 can be a part extending parallel to the first flange. 14 The part extending out of the battery case.
  • the dimensions of the first flange 14 and the second flange 24 are both relatively small, which only needs to be able to realize fusion connection during welding of the casing.
  • the first sidewall 12 has a first concave structure 13
  • the connection between the second flange 24 and the top 21 has a second concave structure 23 .
  • the recessed structure (the first recessed structure or the second recessed structure) may be formed by stamping.
  • the first recessed structure 13 supports the second recessed structure 23 .
  • the first recessed structure 13 can be used to support the second recessed structure 23, so that the first recessed structure 13 can play a supporting and positioning function for battery assembly, so as to ensure that the melt can flow into the second recessed structure when the battery case is welded, improving The energy density of the battery.
  • the first concave structure 13 can also be used as a reinforcing rib when the lower shell 1 and the upper shell 2 are welded to resist welding stress and prevent shell deformation.
  • the first recessed structure 13 and the second recessed structure 23 may not be in contact, and at this time, the first recessed structure 13 and the second recessed structure 23 can prevent welding deformation.
  • the first recessed structure 13 and the second recessed structure 23 can cope with welding deformation, and at the same time, the first recessed structure 13 can support the second recessed structure 23 .
  • the battery casing is used to accommodate the pole core 3, and the height of the molten material 4 does not exceed the top 21, as shown in the schematic structure in Fig. 4 and Fig. 5 .
  • the molten material 4 at the welded part flows into the second concave structure 23, and the space occupied by the molten material 4 does not exceed the space enclosed by the side wall of the battery case and the bottom of the top 21, and the overall size of the battery is not affected by welding. impact, can increase the energy density of the battery.
  • the first flange 14 can be a part of the first concave structure 13 extending out of the battery case along the direction perpendicular to the concave direction of the first concave structure 13, and the second flange 24 is a part of the second concave structure 23 along the direction parallel to the concave direction of the first concave structure 13.
  • the part of the first flange 14 extending out of the battery case.
  • the sizes of the first flange 14 and the second flange 24 are both relatively small, which is enough to meet the fusion connection during shell welding.
  • the flow of the molten material 4 of the flange into the second recessed structure 23 can be controlled by controlling the angle of irradiation of the laser light 8 and the angle of the gas blown out by the coaxial gas 9 .
  • the second concave structure 23 may be arc-shaped.
  • the cross-section of the second recessed structure 23 can be semicircular, wherein, the cross-section of the second recessed structure 23 is along the width direction of the upper case 2 (direction A as shown in FIG. 1 ) to the first The cross section of the second concave structure 23 is taken, and the cross section of the second concave structure 23 is parallel to the width direction of the upper case 2 and perpendicular to the surface of the top 21 of the upper case 2 .
  • the first concave structure 13 may be arc-shaped, and the width of the first concave structure 13 is twice the depth. As shown in Figure 8, b is the width and c is the depth. For example, in some embodiments, when the cross section of the first concave structure 13 is semicircular, the width of the first concave structure 13 is the diameter of the semicircle, and the depth of the first concave structure 13 is the diameter of the semicircle. Radius, wherein, the cross section of the first concave structure 13 is a cross section taken along the width direction of the lower housing 1 (direction A as shown in FIG.
  • the first concave structure 13 The section is parallel to the width direction of the lower case 1 and perpendicular to the surface of the bottom 11 of the lower case 1 . Therefore, when the arc shape of the first recessed structure 13 is a semicircle, the width of the first recessed structure 13 is twice the depth.
  • the flange part is completely melted into the second recessed structure 23, and the distance a between the first recessed structure 13 and the original first flange 14 is equal to the inward recessed depth of the second recessed structure 23, that is, the first recess
  • the structure 13 is located at a distance a from the first flange 14
  • the second recessed structure 23 may be located inside the upper case 2 connected to the second flange 24 . This design can make the first recessed structure 13 of the lower case 1 and the second recessed structure 23 of the upper case 2 fit into contact.
  • first concave structure 13 and the second concave structure 23 are arc-shaped, further, both arcs are semicircular and the radius of the two arcs is the same, the first concave structure 13 and the second concave structure can be The structure 23 fits more tightly, which further strengthens the positioning of the entire battery, and can effectively prevent the pole core 3 from being scalded during welding.
  • the first side wall 12 may include two long side walls and two short side walls.
  • the first concave structure 13 can be arranged on the sidewall of the long side or the sidewall of the short side, or the first concave structure 13 can be provided on the sidewall of the long side and the sidewall of the short side, and the present application does not do this limit.
  • the recessed structure (the first recessed structure 13 or the second recessed structure 23 ) can be used as a reinforcing rib to deal with welding stress and prevent deformation caused by welding when the battery case is welded.
  • the recessed structure can be formed by a stamping process.
  • the first recessed structure 13 can support and position the second recessed structure 23 .
  • both the first concave structure 13 and the second concave structure 23 can resist welding stress and suppress welding deformation during welding.
  • the strength of the structural bending section is not enough to resist the thermal stress generated by laser 8 welding, resulting in deformation of the section.
  • strong plastic deformation will occur near the depression to achieve the effect of work hardening, and the strength, hardness, and stiffness of the material itself will be improved, so that its energy against bending moment will be significantly improved, so as to achieve a controllable
  • the dent deformation suppresses the actual unwanted welding deformation.
  • the depth of the first recessed structure 13 is less than or equal to the radius of the chamfer formed between the side where the first recessed structure 13 is located and the bottom 11 of the lower case 1, and/or, the second recess
  • the width of the structure 23 is less than or equal to the radius of the chamfer.
  • the side surface where the first concave structure 13 is located and the bottom 11 of the lower housing 1 form a chamfer R with a radius of d, and for the first concave structure, c ⁇ d.
  • the width of the second recessed structure 23 is less than or equal to d.
  • the depth of the first recessed structure 13 and the width of the second recessed structure 23 are set to be less than or equal to d, so that the recessed structure does not occupy much battery space, thereby effectively improving the energy density of the battery.
  • L1 is the length of the pole core
  • e is the radius of the arc
  • p is the radiation distance of work hardening.
  • p is related to processing force, temperature, deformation speed and other factors.
  • the longer the length of the first concave structure 13 as a reinforcing rib the larger the work-hardening area is relatively, but an R angle will be formed between the long and short sides of the shell.
  • the length of the structure 13 should be set to satisfy both the strength of the R angle and the size of the work-hardened region.
  • p is set to 0.2mm-0.5mm, which is enough to make the concave structure as close as possible to the weld seam and generate sufficient resistance to bending moment.
  • the surrounding area of the first concave structure 13 will be plastically deformed to form a work-hardened radiation area surrounding the first concave structure 13, and the first concave structure 13
  • the distance between the first end of the first end and the work-hardened radiation region in the length direction of the first concave structure 13 near the first end is the work-hardened radiation distance.
  • the first end may be any end of the first recessed structure 13 in the length direction of the first recessed structure 13 .
  • the design of the first concave structure 13 can resist the stress generated by welding, prevent the shell from deforming, and can also provide positioning for battery assembly, preventing battery welding light leakage from scalding the pole core 3 and slag falling into the cavity.
  • the shells can be connected by pressurization.
  • the length design of the second recessed structure 23 can provide a positioning reference line for pressurization, so that the pressurized clamp will not press against the edge of the case and damage the battery, and the second recessed structure 23 on the upper case 2 acts as a reinforcing rib.
  • the circular arc of the second concave structure 23 can play a certain buffering role in the formation, so that the force generated by the formation will not pull the weld edge, avoid welding deformation, and protect the welding edge.
  • the material of the upper shell 2 and the lower shell 1 can be metal.
  • the lower casing 1 is made of steel or alloy
  • the upper casing 2 is made of steel or alloy.
  • the material of the lower case 1 and the upper case 2 may be stainless steel, aluminum alloy, nickel alloy, chrome alloy, etc.
  • the shell is made of metal.
  • the metal shell has good sealing performance, high metal strength, is not easy to break, and the metal size processing tolerance is small, which is conducive to improving energy density.
  • the thickness of the lower case 1 is in the range of 0.03mm-0.15mm, and/or the thickness of the upper case 2 is in the range of 0.03mm-0.15mm.
  • the tensile capacity of different shell thicknesses is different, and the thicker the material itself, the stronger the bending moment resistance.
  • the thickness of the upper shell 2 is greater than or equal to the thickness of the lower shell 1 , such a design can further improve the bending moment resistance of the upper shell 2 and reduce welding deformation.
  • the welding method in the embodiment of the present application may be laser welding. Specifically, as shown in FIG. 9 , the melting of the first flange 14 and the second flange 24 can just flow into the second concave structure 23 through the irradiation angle of the laser 8 and the blowing angle of the coaxial gas 9 .
  • the lower casing 1 is provided with a rivet 6 , a liquid injection hole 5 and a sealing nail 7 for the liquid injection hole.
  • the liquid injection hole 5 can be sealed with the liquid injection hole sealing nail 7 , in other words, the liquid injection hole sealing nail 7 is used to seal the liquid injection hole 5 .
  • an explosion-proof valve is provided on the casing to ensure that when the internal pressure of the battery reaches a threshold value, the explosion-proof valve is automatically opened to ensure the safety of the battery.
  • the distance from the first concave structure 13 to the first flange 14 before melting is equal to the inward concave depth of the second concave structure 23 .
  • the melted material 4 is sunken to the inside of the housing, so that the overall volume of the battery will not be affected, and the energy density of the battery can be increased.
  • the height of the frit edge formed by the molten material 4 is flush with the shell body of the upper shell 2 , and the melting does not occupy the space of the battery, which can further increase the energy density of the battery.
  • An embodiment of the present application provides a battery, and the battery includes a pole core and the battery case of the foregoing embodiments, and the pole core is housed in the battery case.
  • the battery case here, reference may be made to the foregoing description, and details will not be repeated here.
  • An embodiment of the present application provides an electronic device, and the electronic device includes the battery of the foregoing embodiment.
  • the battery case in the battery here, refer to the foregoing description, and details will not be repeated here.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

本申请涉及电池壳体、电池和电子器件,其中电池壳体包括上壳体和下壳体,下壳体的侧壁设置凸缘,上壳体具有凹陷结构和凸缘,上下壳体的凸缘接触,以使上下壳体焊接时两凸缘熔融后的熔融物流入上壳体的凹陷结构。相对于现有的电池壳体,本申请通过在电池上壳体设置凹陷结构和凸缘,这样壳体焊接时熔融物所占的空间不超过电池壳体,进而使得容纳整个电池的体积减小,可以提高电池的能量密度。

Description

电池壳体、电池和电子器件
本申请要求于2021年6月24日提交中国专利局、申请号为202121412769.6、申请名称为“电池壳体、电池和电子器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电子器件技术领域,特别是涉及电池壳体、电池和电子器件。
背景技术
电池能量密度指的是对于给定的电化学储能装置,所能充入的能量与储能介质的质量或体积之比。从铅酸电池、镍镉电池、镍氢电池、再到锂离子电池,能量密度一直在持续不断的提升。但是提升的效率相比于工业公司经营规模的发展壮大效率来讲,相比于人类文明对动能的市场需求阶段来讲还不够。电池能量密度是用来判断电池好坏的一项重要指标,因此提高电池的能量密度,是设计电池的第一要务。如何有效提升电池能量密度,是亟待解决的技术难题。
发明内容
本申请所要解决的技术问题是如何提高电池的能量密度,提供一种电池壳体、电池和电子器件。
为解决上述技术问题,第一方面,本申请实施例提供了一种电池壳体,包括下壳体和上壳体,所述下壳体包括底部和第一侧壁,所述第一侧壁沿所述底部向上延伸,所述底部和所述第一侧壁围设形成空腔,所述第一侧壁远离所述底部的一侧具有第一凸缘,所述上壳体位于所述下壳体的上方,所述上壳体包括顶部和第二凸缘,所述第二凸缘和所述顶部连接处具有第二凹陷结构,所述第一凸缘和所述第二凸缘接触,以使所述上壳体和所述下壳体焊接时所述第一凸缘和所述第二凸缘熔融后的熔融物流入所述第二凹陷结构。
作为一个实施例,所述第一侧壁的上部具有向所述空腔内部凹陷的第一凹陷结构。
作为一个实施例,所述第一凹陷结构支撑所述第二凹陷结构。
作为一个实施例,所述电池壳体用于容纳极芯,所述熔融物的高度不超过所述顶部。
作为一个实施例,所述第二凹陷结构为圆弧状。
作为一个实施例,第一凹陷结构为圆弧状,所述第一凹陷结构的宽度为深度的两倍。
作为一个实施例,所述第一凹陷结构的深度小于或等于所述第一凹陷结构所在侧面与所述下壳体的底部形成的倒角的半径,和/或,所述第二凹陷结构的宽度小于或等于所述倒角的半径。
作为一个实施例,所述第一凹陷结构的长度L根据如下公式确定:L=L1-2e-p,其中,L1为所述电池壳体极芯的长度,所述下壳体的四个第一侧壁两两相交处设置为弧形,e为所述弧形的半径,p为加工硬化的辐射距离。
作为一个实施例,所述下壳体的材质为金属,和/或,上壳体的材质为金属。
作为一个实施例,所述下壳体的厚度范围是0.03mm-0.15mm,和/或,所述上壳体的厚度范围是0.03mm-0.15mm。
作为一个实施例,所述上壳体的厚度大于或等于所述下壳体的厚度。
作为一个实施例,所述下壳体设置有铆钉、注液孔及注液孔密封钉,所述注液孔密封钉用于对注液孔进行密封。
作为一个实施例,熔融前,所述第一凹陷结构到所述第一凸缘的距离等于所述第二凹陷结构向内凹陷的深度。
作为一个实施例,所述加工硬化的辐射距离的范围是0.2mm-0.5mm。
作为一个实施例,第一凹陷结构和第二凹陷结构均为半圆形,所述第二凹陷结构的半径等于所述第一凹陷结构的半径。
再一方面,本申请实施例提供了一种电池,包括极芯和上面一方面所述的电池。
另一方面,本申请实施例提供了一种电子器件,包括上面再一方面所述的电池。
本申请实施例中的电池壳体,通过在电池上壳体设置凹陷结构和凸缘,在电池下壳体设置凸缘,这样在壳体焊接时可以使凸缘熔融并将熔融物流入凹陷结构,这样熔融物所占的空间不超过电池壳体,进而使得容纳整个电池的体积减小,可以提高电池的能量密度。
附图说明
图1是本申请一个实施例提供的电池结构的爆炸图;
图2是本申请一个实施例提供的电池壳体刨面图;
图3是本申请另一实施例提供的电池壳体刨面图;
图4是本申请一个实施例提供的凸缘熔融后的电池壳体刨面图;
图5是本申请另一实施例提供的凸缘熔融后的电池壳体刨面图;
图6是本申请一个实施例提供的凸缘熔融后的电池壳体刨面图;
图7是本申请另一实施例提供的凸缘熔融后的电池壳体刨面图;
图8是本申请一个实施例提供的第一凹陷结构的尺寸示意图;
图9是本申请一个实施例提供的第一凸缘和第二凸缘熔融前的示意图。
说明书中的附图标记如下:
1、下壳体;11、底部;12、第一侧壁;13、第一凹陷结构;14、第一凸缘;
2、上壳体;21、顶部;22、第二侧壁;23、第二凹陷结构;24、第二凸缘;
3、极芯;
4、熔融物;
5、注液孔;
6、铆钉;
7、注液孔密封钉;
8、激光;
9、同轴气体。
具体实施方式
为了使本申请所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步的详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
下面结合附图1至9详细说明本申请的电池壳体和电池。本申请实施例提供的电池壳体包括下壳体1和上壳体2。其中,下壳体1包括底部11和第一侧壁12,第一侧壁12沿所述 底部11向上延伸,底部11和所述第一侧壁12围设形成空腔,第一侧壁12远离底部11的一侧具有第一凸缘14。上壳体2位于下壳体1的上方,上壳体2包括顶部21和第二凸缘24,第二凸缘24和顶部21连接处具有第二凹陷结构23,第一凸缘14和第二凸缘24接触,以使上壳体2和下壳体1焊接时第一凸缘14和第二凸缘24熔融后的熔融物4流入第二凹陷结构23。
本申请实施例中的电池壳体,通过在电池上壳体设置凹陷结构和凸缘,在电池下壳体设置凸缘,这样在壳体焊接时可以使凸缘熔融并将熔融物流入凹陷结构,这样熔融物所占的空间不超过电池壳体的顶部21,进而使得容纳整个电池的体积减小,可以提高电池的能量密度。
如图2所示,上壳体2包括顶部21和第二凸缘24,第二凸缘24和顶部21连接处具有第二凹陷结构23。另外,也可以理解上壳体2是具有第二侧壁22,第二侧壁22具有一定的厚度,第二凹陷结构23是第二侧壁22冲压形成,第二凹陷结构23的一端具有第二凸缘24,第二凸缘24为第二侧壁22的一部分,即在冲压前,上壳体2包括顶部21及第二侧壁22,通过对第二侧壁22冲压形成第二凹陷结构23及第二凸缘24,冲压后的上壳体2包括顶部21、第二凹陷结构23及第二凸缘24。在将上壳体2理解为具有第二侧壁22时,下壳体1的第一侧壁12的高度大于上壳体2的第二侧壁22的高度。上壳体2的第二侧壁22的高度较小,上壳体2可以近似于一个平板。在本申请实施例中,通过在上壳体2设置凹陷结构(如第二凹陷结构23),在提高能量密度的同时,凹陷结构还可以作为加强筋,避免焊接时下壳体1变形。
在一些实施例中,如图3所示,第一侧壁12的上部具有向空腔内部凹陷的第一凹陷结构13。在下壳体1的第一侧壁12上设置凹陷结构(如第一凹陷结构13),也可以将该凹陷结构作为加强筋,在提高能量密度的同时,进一步避免焊接时上壳体2变形。
第一凸缘14可以为第一凹陷结构13沿着垂直于第一凹陷结构13的凹陷方向的方向向电池壳体外延伸出的部分,第二凸缘24可以为沿着平行于第一凸缘14向电池壳体外延伸出的部分。在一些实施例中,第一凸缘14和第二凸缘24设置的尺寸都较小,能够满足壳体焊接时实现熔融连接即可。
第一侧壁12具有第一凹陷结构13,第二凸缘24和顶部21连接处具有第二凹陷结构23。凹陷结构(第一凹陷结构或第二凹陷结构)可以是冲压形成的。
第一凹陷结构13支撑第二凹陷结构23。第一凹陷结构13可以用于支撑第二凹陷结构23,这样第一凹陷结构13可以为电池装配起到支撑、定位的功能,以确保电池壳体焊接时熔融物够流入第二凹陷结构,提高电池的能量密度。另外,第一凹陷结构13还可以在下壳体1和上壳体2焊接时作为加强筋,抵抗焊接应力,防止壳体变形。
第一凹陷结构13和第二凹陷结构23可以不接触,这时第一凹陷结构13和第二凹陷结构23可以起到防止焊接变形的作用。第一凹陷结构13和第二凹陷结构23接触时,第一凹陷结构13和第二凹陷结构23可应对焊接变形的同时,第一凹陷结构13可以对第二凹陷结构23起到支撑作用。
电池壳体用于容纳极芯3,熔融物4的高度不超过顶部21,如图4和图5所示的示意结构。在上下壳体焊接之后,焊接部位的熔融物4流入第二凹陷结构23,熔融物4所占的空间不超出电池壳侧壁和顶部21底部围成的空间,电池整体尺寸不因焊接而受到影响,可以提高电池的能量密度。
第一凸缘14可以为第一凹陷结构13沿着垂直于第一凹陷结构13的凹陷方向的方向向电池壳体外延伸出的部分,第二凸缘24为第二凹陷结构23沿着平行于第一凸缘14向电池壳体 外延伸出的部分。第一凸缘14和第二凸缘24设置的尺寸都较小,能够满足壳体焊接时实现熔融连接即可。
如图9所示,可以通过控制激光8照射的角度和同轴气体9吹出气体的角度,控制凸缘的熔融物4流入第二凹陷结构23。
第二凹陷结构23可以为圆弧状。在一些实施例中,第二凹陷结构23的截面可以为半圆形,其中,第二凹陷结构23的截面为沿着上壳体2的宽度方向(如图1所示的A方向)对第二凹陷结构23截取得到的横截面,第二凹陷结构23的截面与所述上壳体2的宽度方向平行且与所述上壳体2的顶部21表面垂直。
第一凹陷结构13可以为圆弧状,第一凹陷结构13的宽度为深度的两倍。如图8所示,b为宽度,c为深度。例如,在一些实施例中,当第一凹陷结构13的截面为半圆形时,第一凹陷结构13的宽度即为半圆形的直径,第一凹陷结构13的深度即为半圆形的半径,其中,第一凹陷结构13的截面为沿着下壳体1的宽度方向(如图1所示的A方向)对第二凹陷结构23截取得到的横截面,所述第一凹陷结构13的截面与所述下壳体1的宽度方向平行且与所述下壳体1的底部11表面垂直。所以,当第一凹陷结构13的圆弧状为半圆形时,第一凹陷结构13的宽度为深度的两倍。
壳体焊接熔融后凸缘部分完全熔融到第二凹陷结构23,第一凹陷结构13到原第一凸缘14所在的距离a等于第二凹陷结构23向内凹陷的深度,即,第一凹陷结构13位于距离第一凸缘14距离a的位置,另外,第二凹陷结构23可以位于上壳体2连接第二凸缘24的内侧。这样设计可以使得下壳体1的第一凹陷结构13和上壳体2的第二凹陷结构23贴合接触。
当第一凹陷结构13和第二凹陷结构23均为圆弧状,进一步地,两个圆弧均为半圆形且两个圆弧的半径相同时,第一凹陷结构13可以与第二凹陷结构23贴合更加紧密,进一步的对整个电池起到加强定位作用,同时可以有效避免焊接时烫伤极芯3。
第一侧壁12可以包括两个长边侧壁和两个短边侧壁。第一凹陷结构13可以设置在长边侧壁,也可以设置在短边侧壁,也可以在长边侧壁上和短边侧壁上都具有第一凹陷结构13,本申请对此不做限制。
凹陷结构(第一凹陷结构13,或第二凹陷结构23)可以作为加强筋,在电池壳体焊接时,应对焊接应力,防止焊接产生的形变。
凹陷结构可以通过冲压工艺形成。第一凹陷结构13可以对第二凹陷结构23起到支撑、定位的作用。另外,第一凹陷结构13和第二凹陷结构23都可以抵抗焊接应力,抑制焊接时产生的焊接变形。
当壳体较薄时,结构承弯截面强度不足以抵抗激光8焊接产生的热应力,导致截面出现形变。在凹陷结构形成过程中,凹陷附近会产生强烈的塑性变形,达到加工硬化效果,材料本身的强度、硬度、刚度得到提升,从而使其抵抗弯矩的能量得到显著提升,从而达到用一个可控的凹陷变形抑制实际不想要的焊接变形。
作为一个实施例,如图8所示,第一凹陷结构13的深度小于或等于第一凹陷结构13所在侧面与下壳体1的底部11形成的倒角的半径,和/或,第二凹陷结构23的宽度小于或等于该倒角的半径。例如,第一凹陷结构13所在侧面与下壳体1的底部11形成倒角R的半径为d,对第一凹陷结构,c≤d。对于第二凹陷结构23,第二凹陷结构23的宽度小于或等于d。第一凹陷结构13的深度和第二凹陷结构23的宽度设置为小于或等于d,这样可以使得凹陷结构不占用较多的电池空间,从而有效提高电池的能量密度。
第一凹陷结构13的长度L根据如下公式确定:L=L1-2e-p,其中,L1为极芯的长度,下 壳体1的四个第一侧壁12两两相交处设置为弧形,e为该弧形的半径,p为加工硬化的辐射距离。p与加工力、温度、变形速度等因素有关。作为加强筋的第一凹陷结构13的长度越长,可以加工硬化区域相对越大,但是壳体长短边之间会形成R角,如果加强筋延伸会影响到R角的强度,所以第一凹陷结构13的长度应设置为既能满足R角的强度,又能满足加工硬化区域的大小。一般地,p设置为0.2mm-0.5mm,这样设置可以足够使得凹陷结构尽可能靠近焊缝,产生足够的抵抗弯矩能力。其中,在冲压形成第一凹陷结构13时,第一凹陷结构13的周围区域会产生塑性变形而形成绕设于所述第一凹陷结构13的加工硬化的辐射区域,所述第一凹陷结构13的第一端与该加工硬化的辐射区域在所述第一凹陷结构13的长度方向上的靠近该第一端的一端的距离即为所述加工硬化的辐射距离。其中,所述第一端可为所述第一凹陷结构13在所述第一凹陷结构13的长度方向上的任一端。
第一凹陷结构13的设计可以抵抗焊接产生的应力,防止壳体变形,还可以为电池装配提供定位,防止电池焊接漏光烫伤极芯3以及熔渣掉落腔体内部。
上壳体2和下壳体1通过第一凹陷结构13和第二凹陷结构23接触后,可以使用加压化成的方式使得壳体连接。第二凹陷结构23的长度设计可以为加压化成提供定位基准线,使加压夹具不会压到壳体边缘而损伤电池,且上壳体2上的第二凹陷结构23作为加强筋,第二凹陷结构23的圆弧在化成中可以起到一定的缓冲作用,使化成产生的力不会拉扯熔边,避免焊接变形,对焊接熔边起到保护作用。
上壳体2和下壳体1的材质可以为金属。比如,下壳体1的材质为钢或合金,上壳体2的材质为钢或合金。更为具体地,下壳体1和上壳体2的材质可以是不锈钢,还可以铝合金、镍合金、铬合金等。壳体采用金属材质,金属壳体密封性能好,金属强度高、不易破裂,金属尺寸加工公差小,有利于提升能量密度。
不同壳体厚度的拉伸能力不同,可以根据电池厚度和容量选择合适的壳体厚度。壳体的厚度既要能够满足封装要求,又要尽可能设置的不会太厚,以免因此缩小了电池体积,影响电池的能量密度。在本申请的一个实施例中,下壳体1的厚度范围是0.03mm-0.15mm,和/或,上壳体2的厚度范围是0.03mm-0.15mm。
不同壳体厚度的拉伸能力不同,材料越厚本身的抗弯矩能力越强。上壳体2的厚度大于或等于下壳体1的厚度,这样设计可以进一步提高上壳体2的抗弯矩能力,减小焊接形变。
本申请实施例中的焊接方式可以为激光焊。具体地,如图9所示,可以通过激光8的照射角度、同轴气体9吹出的角度等,使得第一凸缘14和第二凸缘24熔融刚好流入第二凹陷结构23中。
在一些实施例中,如图1所示,下壳体1设置有铆钉6、注液孔5及注液孔密封钉7。注液孔5可以使用注液孔密封钉7进行密封,换句话说,注液孔密封钉7用于对注液孔5进行密封。
在一些实施例中,壳体上设置有防爆阀,以确保电池内部压强达到阈值时,防爆阀自动开启,确保电池安全。
熔融前第一凹陷结构13到第一凸缘14的距离等于第二凹陷结构23向内凹陷的深度。这样第一凸缘14和第二凸缘24熔融后,熔融物4向壳体内部凹陷,不至于影响电池整体的体积,可以提高电池的能量密度。在一些实施例中,熔融物4形成的熔边的高度与上壳体2的壳本体齐平,熔融不占用电池的空间,可以进一步提高电池的能量密度。
本申请实施例提供一种电池,电池包括极芯和前述实施例的电池壳体,极芯容纳在电池壳体中。这里的电池壳体结构可以参照前述描述,在此不再一一赘述。
本申请实施例提供一种电子器件,电子器件包括前述实施例的电池。这里的电池中的电池壳体参照前述描述,在此不再一一赘述。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种电池壳体,其特征在于,包括:
    下壳体,所述下壳体包括底部和第一侧壁,所述第一侧壁沿所述底部向上延伸,所述底部和所述第一侧壁围设形成空腔,所述第一侧壁远离所述底部的一侧具有第一凸缘;
    上壳体,所述上壳体位于所述下壳体的上方,所述上壳体包括顶部和第二凸缘,所述第二凸缘和所述顶部连接处具有第二凹陷结构,所述第一凸缘和所述第二凸缘接触,以使所述上壳体和所述下壳体焊接时所述第一凸缘和所述第二凸缘熔融后的熔融物流入所述第二凹陷结构。
  2. 根据权利要求1所述的电池壳体,其特征在于,所述第一侧壁的上部具有向所述空腔内部凹陷的第一凹陷结构。
  3. 根据权利要求2所述的电池壳体,其特征在于,所述第一凹陷结构支撑所述第二凹陷结构。
  4. 根据权利要求1-3中任一项所述的电池壳体,其特征在于,所述电池壳体用于容纳极芯,所述熔融物的高度不超过所述顶部。
  5. 根据权利要求1-3中任一项所述的电池壳体,其特征在于,所述第二凹陷结构为圆弧状。
  6. 根据权利要求2或3所述的电池壳体,其特征在于,第一凹陷结构为圆弧状,所述第一凹陷结构的宽度为深度的两倍。
  7. 根据权利要求2或3所述的电池壳体,其特征在于,所述第一凹陷结构的深度小于或等于所述第一凹陷结构所在侧面与所述下壳体的底部形成的倒角的半径,和/或,所述第二凹陷结构的宽度小于或等于所述倒角的半径。
  8. 根据权利要求6所述的电池壳体,其特征在于,所述第一凹陷结构的长度L根据如下公式确定:L=L1-2e-p,其中,L1为所述电池壳体容纳的极芯的长度,所述下壳体的四个第一侧壁两两相交处设置为弧形,e为所述弧形的半径,p为加工硬化的辐射距离。
  9. 根据权利要求1-3中任一项所述的电池壳体,其特征在于,所述下壳体的材质为金属,和/或,上壳体的材质为金属。
  10. 根据权利要求1-3中任一项所述的电池壳体,其特征在于,所述下壳体的厚度范围是0.03mm-0.15mm,和/或,所述上壳体的厚度范围是0.03mm-0.15mm。
  11. 根据权利要求1-3中任一项所述的电池壳体,其特征在于,所述上壳体的厚度大于或等于所述下壳体的厚度。
  12. 根据权利要求1-3任一项所述的电池壳体,其特征在于,所述下壳体设置有铆钉、注液孔及注液孔密封钉,所述注液孔密封钉用于对注液孔进行密封。
  13. 根据权利要求2或3所述的电池壳体,其特征在于,熔融前,所述第一凹陷结构到所述第一凸缘的距离等于所述第二凹陷结构向内凹陷的深度。
  14. 根据权利要求8所述的电池壳体,其特征在于,所述加工硬化的辐射距离的范围是0.2mm-0.5mm。
  15. 根据权利要求1所述的电池壳体,其特征在于,第一凹陷结构和第二凹陷结构均为半圆形,所述第二凹陷结构的半径等于所述第一凹陷结构的半径。
  16. 一种电池,包括极芯和如权利要求1-15中任一项所述的电池壳体,所述极芯容纳在所述电池壳体中。
  17. 根据权利要求16所述的电池,其特征在于,所述第二凹陷结构内有熔融物。
  18. 一种电子器件,其特征在于,包括如权利要求16或17所述的电池。
PCT/CN2022/097167 2021-06-24 2022-06-06 电池壳体、电池和电子器件 WO2022267869A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023559672A JP2024527217A (ja) 2021-06-24 2022-06-06 電池ハウジング、電池及び電子デバイス
EP22827365.2A EP4300675A1 (en) 2021-06-24 2022-06-06 Battery case, battery and electronic device
KR1020237033658A KR20230152137A (ko) 2021-06-24 2022-06-06 배터리 케이스, 배터리 및 전자 디바이스
US18/373,963 US20240021936A1 (en) 2021-06-24 2023-09-28 Battery housing, battery, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202121412769.6U CN214706073U (zh) 2021-06-24 2021-06-24 电池壳体、电池和电子器件
CN202121412769.6 2021-06-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/373,963 Continuation US20240021936A1 (en) 2021-06-24 2023-09-28 Battery housing, battery, and electronic device

Publications (1)

Publication Number Publication Date
WO2022267869A1 true WO2022267869A1 (zh) 2022-12-29

Family

ID=78555932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097167 WO2022267869A1 (zh) 2021-06-24 2022-06-06 电池壳体、电池和电子器件

Country Status (6)

Country Link
US (1) US20240021936A1 (zh)
EP (1) EP4300675A1 (zh)
JP (1) JP2024527217A (zh)
KR (1) KR20230152137A (zh)
CN (1) CN214706073U (zh)
WO (1) WO2022267869A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214706073U (zh) * 2021-06-24 2021-11-12 比亚迪股份有限公司 电池壳体、电池和电子器件
CN117121274A (zh) * 2022-01-04 2023-11-24 宁德时代新能源科技股份有限公司 电池单体、电池、用电设备及电池单体的制造方法和设备
CN114447486A (zh) * 2022-01-21 2022-05-06 宁德新能源科技有限公司 电池壳、电池及电子装置
CN217387320U (zh) * 2022-04-20 2022-09-06 比亚迪股份有限公司 一种电池外壳、电池及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004164979A (ja) * 2002-11-13 2004-06-10 Matsushita Electric Ind Co Ltd 角形電池の製造方法
CN202749423U (zh) * 2012-07-16 2013-02-20 松下能源(无锡)有限公司 电池封口板、电池外壳、以及二次电池
CN104412414A (zh) * 2012-06-28 2015-03-11 丰田自动车株式会社 电池及其制造方法
CN210668432U (zh) * 2019-10-10 2020-06-02 宁德新能源科技有限公司 壳体及具有该壳体的电池
CN212907908U (zh) * 2020-08-26 2021-04-06 上海兰钧新能源科技有限公司 电芯结构和电动车辆
CN214706073U (zh) * 2021-06-24 2021-11-12 比亚迪股份有限公司 电池壳体、电池和电子器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004164979A (ja) * 2002-11-13 2004-06-10 Matsushita Electric Ind Co Ltd 角形電池の製造方法
CN104412414A (zh) * 2012-06-28 2015-03-11 丰田自动车株式会社 电池及其制造方法
CN202749423U (zh) * 2012-07-16 2013-02-20 松下能源(无锡)有限公司 电池封口板、电池外壳、以及二次电池
CN210668432U (zh) * 2019-10-10 2020-06-02 宁德新能源科技有限公司 壳体及具有该壳体的电池
CN212907908U (zh) * 2020-08-26 2021-04-06 上海兰钧新能源科技有限公司 电芯结构和电动车辆
CN214706073U (zh) * 2021-06-24 2021-11-12 比亚迪股份有限公司 电池壳体、电池和电子器件

Also Published As

Publication number Publication date
EP4300675A1 (en) 2024-01-03
KR20230152137A (ko) 2023-11-02
US20240021936A1 (en) 2024-01-18
JP2024527217A (ja) 2024-07-24
CN214706073U (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2022267869A1 (zh) 电池壳体、电池和电子器件
CN215451578U (zh) 一种电池
JP5096671B2 (ja) 密閉角形電池
JP2002134071A (ja) 偏平角形電池
CN212571194U (zh) 二次电池
CN216120508U (zh) 顶盖组件及二次电池
US8288026B2 (en) Secondary battery
JP2011129266A (ja) 角形密閉電池の製造方法
US20240014480A1 (en) Housing, battery, and electronic device
JP4789434B2 (ja) 密閉型電池及びその製造方法
JP2001266804A (ja) 密閉二次電池
WO2023246078A1 (zh) 壳体、弧形电池及用电设备
JP4643176B2 (ja) 缶型電池およびその製造方法
JP3838764B2 (ja) 角型密閉電池及びその製造方法
JP4473411B2 (ja) 密閉二次電池
JP2018190591A (ja) 端子固定構造
CN113809482A (zh) 电池和电池的制备方法
WO2024082837A1 (zh) 电池
WO2023186105A1 (zh) 电池壳体和电池
CN208820001U (zh) 二次电池
CN215933703U (zh) 电池
CN217214996U (zh) 锂离子电池防爆结构和包含该结构的锂离子电池
WO2023087556A1 (zh) 锂离子电池盖板和包含该盖板的锂离子电池及其防爆方法
CN214848968U (zh) 一种动力电池壳体、动力电池及电池模组
CN221747360U (zh) 电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023559672

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20237033658

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022827365

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022827365

Country of ref document: EP

Effective date: 20230929

NENP Non-entry into the national phase

Ref country code: DE