WO2023186105A1 - 电池壳体和电池 - Google Patents

电池壳体和电池 Download PDF

Info

Publication number
WO2023186105A1
WO2023186105A1 PCT/CN2023/085528 CN2023085528W WO2023186105A1 WO 2023186105 A1 WO2023186105 A1 WO 2023186105A1 CN 2023085528 W CN2023085528 W CN 2023085528W WO 2023186105 A1 WO2023186105 A1 WO 2023186105A1
Authority
WO
WIPO (PCT)
Prior art keywords
upper cover
shell body
lower cover
battery
battery case
Prior art date
Application number
PCT/CN2023/085528
Other languages
English (en)
French (fr)
Inventor
梁立维
汤国胜
马陈冲
张剑
欧阳进忠
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2023186105A1 publication Critical patent/WO2023186105A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the field of battery technology. Specifically, the present application relates to a battery case and a battery having the battery case.
  • the battery case of the prior art includes a case body and a cover body, and the case body includes a bottom plate and a side plate.
  • the battery case body is usually integrally formed by stamping process. Due to the limitation of stress concentration in the process, during the process of preparing the case body, a transition surface is inevitably formed between the bottom plate and the side plate, so that the transition surface part corresponds to The space cannot be fully utilized, reducing the energy density of the battery.
  • the present application aims to solve, at least to a certain extent, one of the technical problems in the related art.
  • one purpose of this application is to propose a battery case that can solve the technical problems in the prior art of low space utilization and low battery energy density due to the existence of transition surfaces.
  • Another object of the present application is to provide a battery having the above-mentioned battery case.
  • a battery case which includes:
  • a lower cover which is connected to one end of the shell body for closing an open end
  • An upper cover connected to the other end of the shell body for closing the other open end;
  • the lower cover and/or the upper cover is a plate-shaped member, and the side wall of the shell body is arranged perpendicularly to the plate-shaped member.
  • the battery case of the present application by directly connecting the case body to the upper cover and the lower cover, the connection between the case body and the upper cover or the case body and the lower cover through a transition surface is avoided, thereby reducing the size of the battery at the transition surface.
  • the impact increases the energy density of the battery.
  • a battery including: a battery case, the battery case being the above-mentioned battery case Pool shell.
  • Figure 1 is an exploded view of a prior art battery
  • Figure 2 is a schematic three-dimensional structural diagram of a battery case according to an embodiment of the present application.
  • Figure 3 is a schematic three-dimensional structural diagram of a battery case according to another embodiment of the present application.
  • Figure 4 is a side view of the battery case according to the embodiment provided by the present application.
  • Figure 5 is a top view of the battery case according to the embodiment provided by the present application.
  • Figure 6 is a cross-sectional view of the battery case before welding according to one embodiment of the present application.
  • Figure 7 is an enlarged view of area C circled in Figure 6;
  • Figure 8 is an enlarged view of the area D circled in Figure 6;
  • Figure 9 is a cross-sectional view of the battery case after welding according to an embodiment of the present application.
  • Figure 10 is an enlarged view of the area E circled in Figure 9;
  • Figure 11 is an enlarged view of the area F circled in Figure 9;
  • Figure 12 is an exploded view of the battery housing from another embodiment provided by the present application.
  • Figure 13 is an exploded view of the battery case from another angle according to yet another embodiment provided by the present application.
  • Figure 14 is a cross-sectional view of the exploded structure of a battery case according to another embodiment of the present application.
  • Figure 15 is a cross-sectional view of the battery case before welding according to another embodiment of the present application.
  • Figure 16 is an enlarged view of the G area circled in Figure 15;
  • Figure 17 is a cross-sectional view of the battery case after welding according to another embodiment of the present application.
  • Figure 18 is an enlarged view of the H area circled in Figure 17;
  • Figure 19 is a cross-sectional view along the A-A direction of the battery according to the embodiment provided by the application;
  • Figure 20 is a cross-sectional view along the B-B direction of the battery according to the embodiment provided by this application;
  • Figure 21 is a top view of the pole core of the battery according to the embodiment provided by this application.
  • Figure 22 is an assembly schematic diagram of the battery case and the rivets, the second insulating sheet, the first insulating sheet and the metal sheet from an angle according to the embodiment provided by this application;
  • Figure 23 is a schematic assembly diagram of the battery case, rivets, second insulating sheet, first insulating sheet and metal sheet from another angle according to the embodiment provided by this application;
  • Figure 24 is a cross-sectional view of the battery case after assembly with rivets, second insulating sheet, first insulating sheet and metal sheet according to the embodiment provided by the present application;
  • FIG. 25 is an enlarged view of the area I circled in FIG. 24 .
  • any specific values are to be construed as illustrative only and not as limiting. Accordingly, other examples of the exemplary embodiments may have different values.
  • Figure 1 shows a battery case in the prior art.
  • the battery case includes a case body and a cover 4.
  • the case body includes a bottom plate 1 and a side plate 2.
  • the bottom plate 1 and the side plates 2 are connected by an arc transition surface 3.
  • the above battery case has the following defects: Since the case body is integrally formed using a stamping process, for the sake of avoiding stress concentration in the process, the arc transition surface 3 is unavoidable during the processing, so the space in this part cannot be fully utilized. Reduced battery energy density.
  • the battery case 10 includes a case body 11 , a lower cover 12 and an upper cover 13 .
  • the shell body 11 defines a receiving space 111.
  • the shell body 11 has two open ends, each open end is connected to the receiving space 111.
  • the lower cover 12 is connected to one end of the shell body 11 for closing an open end.
  • the upper cover 13 is connected to the other end of the shell body 11 for closing the other open end.
  • the lower cover 12 and/or the upper cover 13 are plate-shaped parts, and the side walls of the shell body 11 are arranged perpendicularly to the plate-shaped parts.
  • the battery case 10 mainly consists of a case body 11, a lower cover 12 and an upper cover 13.
  • the battery case 10 can be made of metal materials such as stainless steel, nickel alloy or chromium alloy.
  • a receiving space 111 is formed in the shell body 11 , and the pole core is accommodated in the receiving space 111 .
  • the pole core may be a wound pole core or a laminated pole core.
  • the pole core may include a positive pole piece 21 , a negative pole piece 22 and a separator 23 .
  • the lower cover 12 and/or the upper cover 13 are plate-shaped parts, and the shell itself The side walls of the body 11 are arranged perpendicularly to the plate-shaped member.
  • the lower cover 12 When an open end is closed by the lower cover 12, the lower cover 12 is directly connected to the lower end of the shell body 11. That is to say, the lower cover 12 and the shell body 11 are directly butt connected, and there is no transition part between them.
  • the existence of the transition surface not only helps to improve the external aesthetics of the battery case 10 , but also reduces the impact of the transition surface on the size of the pole cores housed in the receiving space 111 , thereby improving the energy density of the battery 100 .
  • the upper cover 13 when the other open end is closed by the upper cover 13, the upper cover 13 is directly connected to the shell body 11, and there is no transition surface between the two, which will not be described again here.
  • the shell body 11 has two open ends respectively connected with the receiving space 111 .
  • the two open ends can be divided into a first open end and a second open end.
  • the first open end can be closed by the lower cover 12, and the second open end can be closed by the upper cover 13.
  • the lower cover 12 and the upper cover 13 are arranged oppositely.
  • the receiving space 111 is a linear installation channel, and the first open end can be Located axially above the mounting channel, the second open end may be located axially below the mounting channel.
  • the lower cover 12 When the first open end is closed by the lower cover 12, the lower cover 12 is directly connected to the lower end of the shell body 11, that is to say, the lower cover 12 and the shell body 11 are directly butt connected, and there is no transition part between them.
  • the absence of a transition surface not only helps to improve the external aesthetics of the battery case 10 , but also reduces the impact of the transition surface on the size of the pole cores housed in the receiving space 111 , thereby improving the energy density of the battery 100 .
  • the upper cover 13 when the second open end is closed by the upper cover 13, the upper cover 13 is directly connected to the shell body 11, and there is no transition surface between the two, which will not be described again here.
  • the lower cover 12 and/or the upper cover 13 are plate-shaped parts, and the side walls of the shell body 11 are arranged perpendicularly to the plate-shaped parts. That is to say, at least one of the lower cover 12 and the upper cover 13 is a plate-shaped member, and the extending direction of the plate-shaped member is perpendicular to the side wall of the shell body 11.
  • the plate-shaped member extends in the horizontal direction
  • the shell body 11 extends in the vertical direction. direction extension.
  • the thickness of the plate-shaped part can be set to a uniform thickness.
  • the angle between the outer surface of the plate-shaped part and the outer surface of the shell body 11 can be 90°, and the angle between the inner surface of the plate-shaped part and the outer surface of the shell body 11 The angle between them can also be 90°.
  • any surface of the plate-shaped member is perpendicular to the inner and outer surfaces of the shell body 11 .
  • the shell body 11 is welded to the upper cover 13 and/or the lower cover 12 , that is to say, the shell body 11 can be connected to at least one of the upper cover 13 and the lower cover 12 by welding.
  • a CCD camera can be used to overlap the upper cover 13 or the lower cover 12 with the case body 11 through image positioning, and be fixed with a clamp, and then the battery case 10 can be sealed through laser welding.
  • the shell body 11 and the upper cover 13 are connected by welding, so that no transition surface is formed between the shell body 11 and the upper cover 13 , and the connection between the shell body 11 and the upper cover 13 is realized.
  • direct connection By connecting the shell body 11 and the lower cover 12 by welding, direct connection between the shell body 11 and the lower cover 12 can also be achieved, which will not be described again here.
  • the upper cover 13 and the shell body 11 of the present application are directly connected, and the lower cover 12 and the shell body 11 are directly connected, which avoids the need for the upper cover 13 and the shell body 11 and between the lower cover 12 formed between the shell body 11 and
  • the transition surface for example, forms an arc-shaped transition surface.
  • the present application can make full use of the space inside the battery case 10 through the direct connection structure.
  • the battery case 10 by directly connecting the case body 11 to the upper cover 13 and the lower cover 12 , there is no need for a gap between the case body 11 and the upper cover 13 or between the case body 11 and the lower cover 12 . are connected through a transition surface, which reduces the impact of the transition surface on the size of the battery 100 and improves the energy density of the battery 100 .
  • the lower cover 12 and/or the upper cover 13 are plate-shaped parts, and the thickness of the plate-shaped parts is smaller than the wall thickness of the shell body 11 .
  • the thickness of the lower cover 12 is smaller than the thickness of the shell body 11 ;
  • the thickness of the upper cover 13 is smaller than the thickness of the shell body 11 .
  • the thickness of the upper cover 13 and the lower cover 12 can be reduced.
  • the shell body 11 is thicker than the upper cover 13 and the lower cover 12.
  • this embodiment can not only ensure the sealing performance between the upper cover 13 or the lower cover 12 and the shell body 11, but also Reduce the thickness of the battery and improve space utilization.
  • the thickness of the upper cover 13 can be defined as w1, the thickness of the lower cover 12 can be defined as w2, and the thickness of the shell body 11 can be defined as w3.
  • w1 ⁇ w3 that is, the thickness of the upper cover 13 is smaller than the thickness of the shell body 11, it can not only ensure the area of the connection area between the upper cover 13 and the shell body 11, but also improve the firmness of the connection between the shell body 11 and the upper cover 13. properties, the thickness of the upper cover 13 can also be reduced, and the space utilization of the battery can be improved.
  • the thickness of the upper cover 13 can be reduced, and the thickness of the battery 100 can be reduced, thereby reducing the space occupied by the battery case 10 and improving the space utilization of the battery.
  • w2 ⁇ w3 the space utilization of the battery can be improved while ensuring the sealing performance between the lower cover 12 and the case body 11, which will not be described again here.
  • the upper cover 13 the lower cover 12 and the shell body 11 in the above numerical range, not only the structural strength can be ensured, but also mutual resistance can be ensured. connection reliability.
  • the thickness of the upper cover 13 and the thickness of the lower cover 12 may be different or the same, and may be set according to actual needs.
  • a receiving space 111 is defined in the shell body 11.
  • the shell body 11 has two open ends, and each open end is connected to the receiving space 111.
  • the shell body 11 is provided with There is a liquid injection hole 112 and a conductive connection area.
  • the lower cover 12 is connected to one end of the shell body 11 for closing one open end.
  • the upper cover 13 is connected to the other end of the shell body 11 for closing the other open end.
  • the liquid injection hole 112 can also be provided on the upper cover 12 or the lower cover 13.
  • the conductive connection area can be provided on the upper cover 12 or the lower cover 13 together with the liquid injection hole 112, or can also be provided on the shell body 11 as needed. .
  • it can be set according to the polarity of the pole core accommodated in the accommodation space 111 .
  • a liquid injection hole 112 and a conductive connection area are provided on the shell body 11, the upper cover 12 or the lower cover 13.
  • the liquid hole 112 pours electrolyte into the receiving space 111 .
  • the conductive connection area may include a positive connection area 117 and a negative connection area 118 .
  • the positive connection area 117 may be used for components provided at the through holes on the case body 11
  • the negative connection area 118 may be a partial area on the case body 11 .
  • the positive electrode tabs on the pole core are electrically connected to the positive electrode conductive connector located in the positive electrode connection area 117, and the negative electrode tabs 24 on the pole core can be electrically connected to the inner wall surface of the shell body 11 corresponding to the negative electrode connection area 118.
  • At least a part of the outer peripheral edge of the open end exceeds the outer peripheral edge of the corresponding lower cover 12 or upper cover 13 .
  • the edge of the upper end surface of the second open end exceeds the edge of the upper cover 13 .
  • the edge of the lower end surface of the first open end exceeds the edge of the lower cover 12 .
  • the overlapping area refers to: comparing the orthographic projection of the upper cover 13 with the orthographic projection of the upper end surface of the second open end along the top-down direction, the orthographic projection of the upper cover 13 and The overlapping portion between the orthographic projections of the upper end surface of the second open end is the overlapping area.
  • the corresponding width of the overlapping area refers to: along the direction from the inside to the outside, the width of the overlapping area is h2, where the inside refers to the direction close to the receiving space 111, and the outside refers to the direction close to the battery case 10 external direction.
  • the thickness of the shell body 11 when the thickness of the shell body 11 is uniform, the thickness of the shell body 11 can be defined as w3. At this time, the relationship between the width h2 of the overlapping area and the thickness w3 of the shell body 11 can be limited to: 1/2w3 ⁇ h2 ⁇ w3. Through the limitation of the above numerical range, the stability of the shell body 11 to the upper cover 13 can be effectively guaranteed. Support strength. Similarly, by defining a part of the lower end surface of the first open end to overlap with the upper end surface of the lower cover 12, the width of the corresponding overlapping area can also be defined as h2, and the width of the overlapping area and the width of the lower end surface of the first open end can be defined as h2. Limiting the relationship can also ensure the support strength of the shell body 11 to the lower cover 12, which will not be described again here.
  • a gap 14 is formed between the outer peripheral edge of the open end and the outer peripheral edge of the lower cover 12 or upper cover 13 corresponding to it, and the shell body 11 and the lower cover 12 or upper cover 13 corresponding to the open end are laser They are connected by welding, and a part of the weld seam 113 formed by welding is located in the notch 14 .
  • a step is formed between a part of the upper end surface of the second open end and the upper end surface of the upper cover 13 . Specifically, a part of the upper end surface of the second open end and the upper end surface of the upper cover 13 are stepped. The lower end surfaces overlap, and the outer peripheral edge of the other part of the upper end surface of the second open end exceeds the outer edge of the upper cover 13.
  • a step that is, a gap 14, is formed between the upper end surface of the second open end and the upper end surface of the upper cover 13.
  • welding can be performed from obliquely above (in the direction indicated by the arrow in Figure 17), and the direction of light emission and the intensity of the welding can be controlled to make the protrusion of the weld seam 113 Formed at the notch 14 , there is no need to perform post-processing on the protrusion, nor does it increase the overall height or width of the battery case 10 .
  • the angle between the welding direction and the second open end can be determined according to the size of the notch 14 and the welding strength, and is not limited here. same Similarly, when the gap 14 is formed between the lower cover 12 and the shell body 11, welding can also be performed in the above manner at the position of the gap 14, which will not be described again here.
  • the outer peripheral edge of the open end is flush with the outer peripheral edge of the corresponding lower cover 12 or upper cover 13 .
  • the upper cover 13 will be described below as an example.
  • the outer peripheral edge of the second open end is flush with the outer peripheral edge of the upper cover 13.
  • the width of the overlapping area between the upper end surface of the second open end and the lower end surface of the upper cover 13 is equal to that of the second open end.
  • the thickness of the upper end faces is equal.
  • the open end is connected to the corresponding lower cover 12 or upper cover 13 by laser welding, and the weld 113 formed by welding passes through the lower cover corresponding to the open end.
  • 12 or the upper cover 13 extends to the shell body 11, and the width of the weld 113 can be defined as w4.
  • the upper cover 13 will be described below as an example.
  • the upper end surface of the second open end completely coincides with the lower end surface of the upper cover 13 .
  • the upper cover 13 is located above the shell body 11.
  • the upper cover 13 can be welded vertically from top to bottom, as shown in the direction of the arrow in Figure 9.
  • Welding seams 113 will be generated during welding, and the welding seams 113 can penetrate the upper cover 13 and extend into the shell body 11 , thereby sealing the upper cover 13 and the shell body 11 .
  • the lower cover 12 and the shell body 11 can also be fixed by welding from bottom to upward, which will not be described again here.
  • the shell body 11 has an arc segment along its circumference, and the outer contour of the lower cover 12 and/or the upper cover 13 has the same shape as the outer contour of the shell body 11. same.
  • the outer surface of the shell body 11 includes multiple side surfaces, and the side surfaces may be straight side wall surfaces 114 or arc-shaped side wall surfaces 115 .
  • the side walls may include four straight side wall surfaces 114 and four arc-shaped side wall surfaces 115. There is an arc-shaped side wall between two adjacent straight side wall surfaces 114.
  • the wall surface 115 that is to say, two adjacent straight side wall surfaces 114 can be connected through the arcuate side wall surface 115 .
  • the shell body 11 may be formed by bending a steel plate and welding the ends of the steel plates. Since the steel plate itself has strength, the arc-shaped side wall surface 115 will be naturally formed during the bending process of the steel plate. That is to say, when the shell body 11 is prepared by bending or other methods, an arc-shaped side wall surface 115 will be produced. By bending or other methods to manufacture the shell body 11, the manufacturing difficulty of the shell body 11 can be reduced.
  • the outer circumference of the shell body 11 has an arc segment, which can reduce the difficulty of manufacturing the shell body 11 , and the shape of the outer contour of the upper cover 13 and/or the lower cover 12 is defined to be consistent with the outer contour of the shell body 11 .
  • the consistent outline can improve the appearance and save raw materials.
  • the fillet radius of the arc-shaped side wall surface 115 of the shell body 11 is defined as R2, and 0.2mm ⁇ R2.
  • the upper cover 13 and the lower cover 12 may also be provided with fillets with radii R1 and R3 respectively.
  • the positive electrode piece 21 and/or the negative electrode piece 22 can also be provided with a rounded corner with a radius R4, and R1, R2, R3 and R4 can be consistent.
  • the outer surface of the shell body 11 includes a plurality of side surfaces connected in sequence, and the areas of the upper cover 13 and the lower cover 12 are respectively larger than the area of any one side surface. It should be noted that when improving the sealing performance between the shell body 11 and the upper cover 13 or the lower cover 12, the thickness of the shell body 11 needs to be larger to facilitate increasing the area of the connection area, such as increasing the welding area. If the case body 11 is designed as a large-area structure, the occupied space of the battery case 10 will be increased, which is not conducive to improving the energy density of the battery 100 .
  • the side wall of the shell body 11 may include a plurality of sequentially adjacent side wall portions, for example, two first side wall portions extending along the length direction and two second side wall portions extending along the width direction.
  • the areas of the upper cover 13 and the lower cover 12 may be larger than the area of either side wall part. That is to say, the upper cover 13 and the lower cover 12 respectively correspond to the large surface of the pole core, and the shell body 11 corresponds to the small surface of the pole core.
  • the area of the large surface of the pole core is larger than the area of the small surface of the pole core.
  • an explosion-proof mark 116 is provided on the upper cover 13 or the lower cover 12.
  • the pole core easily expands in the thickness direction of the battery 100.
  • the battery 100 may explode. Therefore, since the bottom thickness of the explosion-proof mark 116 is smaller than the thickness of other parts, when the internal pressure of the battery 100 increases, the explosion-proof mark 116 will rupture and discharge the gas, which can prevent the battery 100 from exploding and improve the safety of the battery 100 .
  • the explosion-proof mark 116 is provided on the outer surface of the upper cover 13 , and the rounded corners of the explosion-proof mark 116 are in an opposite direction to the rounded corners of the top corners of the upper cover 13 that are closest to the explosion-proof mark 116 .
  • the explosion-proof mark 116 can be an arc-shaped groove, and the arc length can be from 1/4 circle to 3/4 circle.
  • the radius of the circle is defined as R5, for example, 3mm ⁇ R5 ⁇ 6mm.
  • the battery 100 includes a battery case 10 and a pole core.
  • the battery case 10 is the battery case 10 of any of the above embodiments.
  • the conductive connection area includes a positive electrode connection area 117 and a negative electrode connection area 118.
  • the positive connection area 117 can be used for components provided at the through holes on the case body 11
  • the negative connection area 118 can be a partial area on the case body 11 .
  • the pole core is located in the receiving space 111.
  • the pole core includes a positive pole tab and a negative pole tab 24 arranged on the pole core.
  • the positive pole tab is electrically connected to the positive electrode connecting area 117
  • the negative electrode tab 24 is electrically connected to the negative electrode connecting area 118.
  • the pole core can be prepared by rolling or laminating.
  • the negative electrode tab 24 can be directly welded to the inner wall of the case body 11 corresponding to the negative electrode connection area 118. Specifically, the negative electrode tab 24 can be retracted and then welded to the inner wall of the negative electrode connection area 118, so that the negative electrode The tabs 24 are electrically connected to the shell body 11 .
  • the positive conductive connector includes a first insulating sheet 33 and a metal sheet 34 provided on the outside of the battery case 10, and a first insulating sheet 33 and a metal sheet 34 provided on the inside of the battery case 10. rivets 31 and the second insulating sheet 32.
  • the rivets 31 , the second insulating sheet 32 , the shell body 11 , the first insulating sheet 33 and the metal sheet 34 can be arranged in sequence, wherein the metal sheet 34 , the first insulating sheet 33 and the second insulating sheet 32 are provided with Through the through hole, the rivet 31 can pass through the second insulating sheet 32, the first insulating sheet 33, the shell body 11 and the metal sheet 34 in sequence. Finally, the rivet 31 and the metal sheet 34 can be fixed and electrically connected by gravity extrusion. . In addition, the positive electrode tab is folded and welded to the rivet 31 .
  • the width of the first insulating sheet 33 ⁇ the width of the metal sheet 34, and the width of the second insulating sheet 32 ⁇ the width of the rivet 31 can avoid contact between the rivet 31 or the metal sheet 34 and the case body 11 .
  • the left ends of the first insulating sheet 33 and the second insulating sheet 32 cannot exceed the junction between the arc surface and the side surface of the housing body 11 to avoid poor sealing.
  • the first insulating sheet 33 and the second insulating sheet 32 can insulate the rivet 31 and the shell body 11 to avoid short circuit.
  • the first insulating sheet 33 and the second insulating sheet 32 can improve the sealing performance of the positive electrode connection area 117. Avoid leakage.
  • the metal sheet 34 can be provided with a step-shaped groove 35 at the position where the rivet 31 is riveted. When the rivet 31 is squeezed, the end of the rivet 31 can be accommodated in the groove, thereby ensuring that the end surface of the rivet 31 does not exceed the metal after extrusion.
  • the upper end surface of the piece 34 facilitates subsequent welding operations when the battery 100 is assembled into a module.
  • the metal sheet 34 and the rivet 31 can be made of aluminum, nickel, copper and other materials.
  • the pole core is a laminated pole core.
  • the pole core may include a negative electrode sheet 22, a separator 23, and a positive electrode sheet 21 that are stacked in sequence.
  • the shape of the laminated pole core is generally a cube shape.
  • the shape of the battery case 10 mainly enclosed by the lower cover 12 , the case body 11 and the upper cover 13 can also be generally a cube shape, and the corresponding receiving space 111 The shape is also roughly cubic, making it easy to adapt to the lamination structure.
  • the stacking direction of the pole core is parallel to the axis direction of the liquid injection hole.
  • the pole cores may be stacked in a direction perpendicular to the upper cover 12 or the lower cover 13 , and the liquid injection hole is provided on the upper cover 12 or the lower cover 13 .
  • the pole cores may also be stacked in a direction parallel to the upper cover 12 or the lower cover 13 , and the liquid injection hole is provided on the shell body 11 .
  • the stacking direction of the pole cores is parallel to the axis of the injection hole, which allows the electrolyte to flow quickly between the stacked pole cores and better infiltrate the pole cores.
  • the pole core includes a plurality of positive electrode sheets 21 and a plurality of negative electrode sheets 22.
  • One end of each positive electrode sheet 21 is provided with a positive electrode lug
  • one end of each negative electrode sheet 22 is provided with a negative electrode electrode.
  • the distance between the ear portion and one end of the negative electrode sheet 22 and the inner wall surface of the case body 11 is the first distance
  • the distance between the other end of the negative electrode sheet 22 and the inner wall surface of the case body 11 is the second distance.
  • the first distance and The sum of the second distances is not less than 2mm and not greater than 5mm.
  • this embodiment is limited by the size of the negative electrode piece.
  • the distance between the lower end of the negative electrode piece and the case body 11 is defined as h2
  • the distance between the upper end of the negative electrode piece and the case body 11 is defined as h3.
  • the distance between the left end of the negative electrode piece and the case body 11 is h4
  • the distance between the right end of the negative electrode piece and the case body 11 is h5.
  • the battery case 10 includes an upper cover 13, a case body 11 and a lower cover 12, wherein both the lower cover 12 and the upper cover 13 are directly connected to the case body 11, such as vertically connected, so that the case body 11 is connected to the case body 11.
  • the battery 100 in the embodiment of the present application includes the battery case 10 of any of the above embodiments
  • the battery case 10 in the embodiment of the present application has the advantage of a large receiving space 111 and can accommodate pole cores with high energy density.
  • the battery 100 of the application embodiment also has the above advantages and can improve the energy density of the battery 100, which will not be described in detail here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

一种电池壳体(10)和电池(100),电池壳体(10)包括:壳本体(11),所述壳本体(11)内限定有收容空间(111),所述壳本体(11)具有两个敞开端,每个所述敞开端与所述收容空间(111)连通;下盖(12),所述下盖(12)与所述壳本体(11)的一端连接,以用于封闭一个敞开端;上盖(13),所述上盖(13)与所述壳本体(11)的另一端连接,以用于封闭另一个敞开端;所述下盖(12)和/或所述上盖(13)为板形件,所述壳本体(11)的侧壁与所述板形件垂直设置。

Description

电池壳体和电池
相关申请的交叉引用
本申请基于申请号为202220774022.3、申请日为2022年04月01日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请属于电池技术领域,具体地,本申请涉及一种电池壳体和具有该电池壳体的电池。
背景技术
现有技术的电池壳体包括壳本体和盖体,壳本体包括底板和侧板。电池壳本体通常采用冲压工艺一体成型,由于工艺上受到应力集中的限制,因此在制备壳本体的工艺过程中,底板和侧板之间不可避免的会形成过渡面,从而使得过渡面部分对应的空间不能够得到充分利用,降低了电池的能量密度。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的一个目的在于提出一种电池壳体,能够解决现有技术中的因存在过渡面而导致空间利用率不高,电池能量密度低的技术问题。
本申请的另一目的在于提出一种电池,该电池具有上述电池壳体。
根据本申请的第一方面,提供了一种电池壳体,其中,包括:
壳本体,所述壳本体内限定有收容空间,所述壳本体具有两个敞开端,每个所述敞开端与所述收容空间连通;
下盖,所述下盖与所述壳本体的一端连接,以用于封闭一个敞开端;
上盖,所述上盖与所述壳本体的另一端连接,以用于封闭另一个敞开端;
所述下盖和/或所述上盖为板形件,所述壳本体的侧壁与所述板形件垂直设置。
根据本申请的电池壳体,通过将壳本体与上盖以及下盖直接连接,避免了壳本体与上盖之间或者壳本体与下盖之间通过过渡面连接,降低了过渡面对电池尺寸的影响,提高了电池的能量密度。
根据本申请的第二方面,提供了一种电池,包括:电池壳体,所述电池壳体为上述的电 池壳体。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是现有技术的电池的爆炸图;
图2是本申请提供的一个实施例的电池壳体的立体结构示意图;
图3是本申请提供的又一个实施例的电池壳体的立体结构示意图;
图4是本申请提供的实施例的电池壳体的侧视图;
图5是本申请提供的实施例的电池壳体的俯视图;
图6是本申请提供的一个实施例的电池壳体在焊接前的剖面图;
图7是图6中圈示的C区域的放大图;
图8是图6中圈示的D区域的放大图;
图9是本申请提供的一个实施例的电池壳体在焊接后的剖面图;
图10是图9中圈示的E区域的放大图;
图11是图9中圈示的F区域的放大图;
图12是本申请提供的又一个实施例的电池壳体的一个角度的爆炸图;
图13是本申请提供的又一个实施例的电池壳体的又一个角度的爆炸图;
图14是本申请提供的又一个实施例的电池壳体的爆炸结构的剖面图;
图15是本申请提供的又一个实施例的电池壳体在焊接前的剖面图;
图16是图15中圈示的G区域的放大图;
图17是本申请提供的又一个实施例的电池壳体在焊接后的剖面图;
图18是图17中圈示的H区域的放大图;
图19是本申请提供的实施例的电池中沿A-A方向的剖面图;
图20是本申请提供的实施例的电池中沿B-B方向的剖面图;
图21是本申请提供的实施例的电池的极芯的俯视图;
图22是本申请提供的实施例的电池壳体与铆钉、第二绝缘片、第一绝缘片和金属片的一个角度的装配示意图;
图23是本申请提供的实施例的电池壳体与铆钉、第二绝缘片、第一绝缘片和金属片的又一个角度的装配示意图;
图24是本申请提供的实施例的电池壳体与铆钉、第二绝缘片、第一绝缘片和金属片的装配后的剖面图;
图25是图24中圈示的I区域的放大图。
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本申请是发明人基于以下事实作出的发明创造。
图1显示了现有技术中的一种电池壳。
如图1所示,电池壳包括壳本体和盖体4,壳本体包括底板1和侧板2,底板1和侧板2之间通过圆弧过渡面3连接。
如上电池壳存在如下缺陷:由于壳本体是采用冲压工艺一体成形的,出于工艺上避免应力集中的考虑,圆弧过渡面3在加工过程中不可避免,从而该部分的空间无法得到充分利用,降低了电池的能量密度。
基于此,本申请的发明人经过长期的研究和实验,创造性的得出以下发明创造。
如图2至图25所示,根据本申请实施例的电池壳体10包括壳本体11、下盖12和上盖13。
具体而言,壳本体11内限定有收容空间111,壳本体11具有两个敞开端,每个敞开端与收容空间111连通,下盖12与壳本体11的一端连接,以用于封闭一个敞开端,上盖13与壳本体11的另一端连接,以用于封闭另一个敞开端。下盖12和/或上盖13为板形件,壳本体11的侧壁与板形件垂直设置。
换言之,根据本申请实施例的电池壳体10主要由壳本体11、下盖12和上盖13组成,电池壳体10可以采用不锈钢、镍合金或铬合金等金属材质制成。在壳本体11内形成有收容空间111,极芯容纳于收容空间111中,在本实施例中,极芯可以是卷绕极芯或者叠片极芯。极芯可以包括正极片21、负极片22和隔膜23。下盖12和/或上盖13为板形件,壳本 体11的侧壁与板形件垂直设置。在通过下盖12封闭一敞开端时,下盖12与壳本体11的下端直接连接,也就是说,下盖12和壳本体11之间直接对接连接,两者之间未设置过渡部,不存在过渡面,不仅有利于提升电池壳体10的外部美观性,还降低了过渡面对收容空间111内容置的极芯的尺寸的影响,可以提高电池100的能量密度。同样的,在通过上盖13封闭另一敞开端时,上盖13与壳本体11直接对接连接,两者之间未设置过渡面,在此不作赘述。
其中,如图6和图12所示,壳本体11具有两个分别与收容空间111连通的敞开端,为了便于描述,可以将两个敞开端分为第一敞开端和第二敞开端。通过下盖12可以封闭第一敞开端,通过上盖13可以封闭第二敞开端,可选地,下盖12与上盖13相对设置,收容空间111为直线形安装通道,第一敞开端可以位于安装通道的轴向的上方,第二敞开端可以位于安装通道的轴向的下方。
在通过下盖12封闭第一敞开端时,下盖12与壳本体11的下端直接连接,也就是说,下盖12和壳本体11之间直接对接连接,两者之间未设置过渡部,不存在过渡面,不仅有利于提升电池壳体10的外部美观性,还降低了过渡面对收容空间111内容置的极芯的尺寸的影响,可以提高电池100的能量密度。同样的,在通过上盖13封闭第二敞开端时,上盖13与壳本体11直接对接连接,两者之间未设置过渡面,在此不作赘述。
如图4和图6所示,下盖12和/或上盖13为板形件,壳本体11的侧壁与板形件垂直设置。也就是说,下盖12和上盖13中的至少一个为板形件,板形件的延伸方向与壳本体11的侧壁垂直,例如板形件沿水平方向延伸,壳本体11沿竖直方向延伸。板形件的厚度可以设置为均一厚度,此时板形件的外表面和壳本体11的外表面之间的夹角可为90°,板形件的内表面和壳本体11的外表面之间的夹角也可以为90°。当壳本体11的厚度也为均一厚度时,板形件的任一表面均与壳本体11的内、外表面垂直。
在本申请的一些具体实施方式中,壳本体11与上盖13和/或下盖12焊接连接,也就是说,壳本体11与上盖13和下盖12中的至少一个可以通过焊接方式相连。在具体焊接时,可以利用CCD相机通过图像定位的方式,使上盖13或者下盖12与壳本体11搭接,并用夹具固定,再通过激光焊接使电池壳体10密封。
在本实施例中,通过采用焊接的方式将壳本体11与上盖13连接,不会在壳本体11和上盖13之间之间形成过渡面,实现了壳本体11和上盖13之间的直接连接。同样的,通过采用焊接的方式将壳本体11与下盖12连接,也能够实现壳本体11和下盖12之间直接连接,在此不作赘述。
相对现有技术而言,本申请的上盖13和壳本体11之间直接连接,下盖12和壳本体11之间直接连接,避免了在上盖13和壳本体11之间以及在下盖12和壳本体11之间形成过 渡面,例如形成圆弧形过渡面,本申请通过直接连接的结构能够使电池壳体10内部的空间得到充分利用。
由此,根据本申请实施例的电池壳体10,通过将壳本体11与上盖13以及下盖12直接连接,避免了壳本体11与上盖13之间或者壳本体11与下盖12之间通过过渡面连接,降低了过渡面对电池100尺寸的影响,提高了电池100的能量密度。
在本申请的一些具体实施方式中,如图6至图8所示,下盖12和/或上盖13为板形件,板形件的厚度小于壳本体11的壁厚。例如,在下盖12为板形件时,下盖12的厚度小于壳本体11的厚度;在上盖13为板形件时,上盖13的厚度小于壳本体11的厚度。在本实施例中,通过将板形件的厚度限定为小于壳本体11的壁厚时,能够减薄上盖13以及下盖12的厚度。此外,壳本体11的厚度相对于上盖13和下盖12而言较厚,由于壁厚尺寸较大,在将注液孔112、导电连接区限定在壳本体11上时,便于安装或者焊接正极导电连接件。同时,由于上盖13或者下盖12与壳本体11之间的可焊接区域面积不变,因此本实施例不仅能够保证上盖13或者下盖12与壳本体11之间的密封性能,还能减小电池的厚度,提高空间利用率。
为了便于说明,可以将上盖13的厚度定义为w1,将下盖12的厚度定义为w2,并将壳本体11的厚度定义为w3。在w1<w3时,即上盖13的厚度小于壳本体11的厚度,不仅能够保证上盖13与壳本体11之间的连接区域的面积,提高壳本体11与上盖13之间的连接牢固性,还可以减小上盖13的厚度,提高电池的空间利用率。例如可以减小上盖13的厚度,减小电池100的厚度,从而减小电池壳体10占用的空间,提高电池的空间利用率。同样的,在w2<w3时,也能够在保证下盖12与壳本体11之间的密封性能的同时提高电池的空间利用率,在此不作赘述。
可选地,30μm≤w1≤100μm,30μm≤w2≤100μm,100μm<w3≤200μm,通过采用上述数值范围的上盖13、下盖12和壳本体11,不仅能够保证结构强度,还能够保证相互之间的连接可靠性。其中,上盖13的厚度与下盖12的厚度可以不同或者相同,具体可以根据实际需要进行设置。
根据本申请的一个实施例,如图2-3所示,壳本体11内限定有收容空间111,壳本体11具有两个敞开端,每个敞开端与收容空间111连通,壳本体11上设有注液孔112和导电连接区,下盖12与壳本体11的一端连接,以用于封闭一个敞开端,上盖13与壳本体11的另一端连接,以用于封闭另一个敞开端。当然注液孔112也可以设置在上盖12或者下盖13上,这个时候导电连接区可以与注液孔112一起设置在上盖12或者下盖13上,也可以根据需要设置在壳本体11。具体可以根据收容空间111中容纳的极芯极性设置。
在壳本体11上、上盖12上或者下盖13上设有注液孔112和导电连接区,可以通过注 液孔112向收容空间111内灌注电解液。导电连接区可以包括正极连接区117和负极连接区118,正极连接区117可以用于设在壳本体11上的通孔处的组件,负极连接区118可以是壳本体11上的部分区域。极芯上的正极极耳与位于正极连接区117的正极导电连接件电连接,极芯上的负极极耳24可以与壳本体11上与负极连接区118对应的内壁面电连接。
根据本申请的一个实施例,敞开端的外周缘的至少一部分超出与其对应的下盖12或上盖13的外周缘。例如,第二敞开端的上端面的边缘超出上盖13的边缘。第一敞开端的下端面的边缘超出下盖12的边缘。
下面以上盖13为例进行说明,第二敞开端的上端面的一部分与上盖13的下端面重合,将重合区域的宽度定义为h2。其中需要说明的是,此处重合区域指的是:沿着从上向下的方向,将上盖13的正投影与第二敞开端的上端面的正投影进行比较,上盖13的正投影与第二敞开端的上端面的正投影之间的重合部分即为重合区域。对应的重合区域的宽度指的是:沿着从内向外的方向,重合区域的宽度即为h2,此处的内侧指的是靠近收容空间111的方向,外侧指的是靠近电池壳体10的外部的方向。
此外,在壳本体11的厚度均一时,可以将壳本体11的厚度定义为w3。此时,可以将重合区域的宽度h2与壳本体11的厚度w3之间的关系限定为:1/2w3≤h2≤w3,通过上述数值范围的限定,能够有效保证壳本体11对于上盖13的支撑强度。同样的,通过限定第一敞开端的下端面的一部分与下盖12的上端面重合,将对应的重合区域的宽度也能够定义为h2,并对重合区域与第一敞开端的下端面的宽度之间的关系进行限定,也能够保证壳本体11对于下盖12的支撑强度,在此不作赘述。
根据本申请的一个实施例,敞开端的外周缘和与其对应的下盖12或上盖13的外周缘之间形成有缺口14,壳本体11和与敞开端对应的下盖12或上盖13激光焊接相连,焊接形成的焊缝113的一部分位于缺口14。
为了便于描述,下面以上盖13为例进行说明,第二敞开端的上端面的一部分与上盖13的上端面之间形成有台阶,具体地,第二敞开端的上端面的一部分与上盖13的下端面重合,第二敞开端的上端面的另一部分的外周缘超出上盖13的外边缘,在第二敞开端的上端面和上盖13的上端面之间形成有台阶,即形成有缺口14。
可选地,1/2w3≤h2≤3/4w3,通过采用该范围的尺寸关系能够在具有缺口14的同时保证上盖13、下盖12和壳本体11的连接可靠性。
在上盖13与第二敞开端之间形成缺口14时,此时可以从斜上方(如图17中箭头指示的方向)进行焊接,可以控制出光方向和焊接的强度将焊缝113的凸起形成在缺口14处,从而无需对凸起进行后处理,也不会增加电池壳体10的整体高度或者宽度。其中,焊接方向与第二敞开端之间的角度可以根据缺口14的尺寸及焊接强度确定,此处不进行限制。同 样的,在下盖12与壳本体11之间形成缺口14时,也可以在缺口14位置采用上述方式进行焊接,在此不作赘述。
在本申请的一些具体实施方式中,如图7和图8所示,敞开端的外周缘和与其对应的下盖12或上盖13的外周缘齐平。下面以上盖13为例进行说明,第二敞开端的外周缘与上盖13的外周缘齐平,第二敞开端的上端面与上盖13的下端面之间的重合区域的宽度与第二敞开端的上端面的厚度相等。其中,在壳本体11为厚度均匀的结构时,重合区域的宽度可以与壳本体11的厚度相等,即h2=w3。
根据本申请的一个实施例,如图10至图11所示,敞开端和与其对应的下盖12或上盖13激光焊接相连,焊接形成的焊缝113穿过和与敞开端对应的下盖12或上盖13延伸至壳本体11,可以将该焊缝113的宽度定义为w4。下面以上盖13为例进行说明,第二敞开端的上端面与上盖13的下端面完全重合,也就是说上盖13的下端面完全覆盖第二敞开端的上端面,且上盖13的外周缘与第二敞开端的外周缘齐平,即h2=w3时,此时在焊接时,可以沿着从上盖13向壳本体11的方向焊接。例如,上盖13位于壳本体11的上方,在将上盖13与壳本体11焊接连接时,可以采用从上向下垂直焊接的方式焊接,如图9中的箭头方向。在焊接时会产生焊缝113,焊缝113能够穿透上盖13并延伸至壳本体11中,从而使上盖13和壳本体11之间密封。同样的,在下盖12位于壳本体11的下方时,下盖12和壳本体11之间也可以采用从下向上的焊接方式进行固定,在此不作赘述。
进一步地,1/3w3≤w4≤1/2w3,通过采用该范围的数值关系,能够在保证焊接强度的同时,避免激光焊接过程中产生的异物损伤收容空间111内部容置的极芯。
根据本申请的一个实施例,如图12和图22所示,壳本体11沿其周向具有圆弧段,下盖12和/或上盖13的外轮廓与壳本体11的外轮廓的形状相同。例如,壳本体11的外表面包括多个侧表面,侧表面可以是直形侧壁面114或者弧形侧壁面115。在壳本体11的横截面的形状为类矩形时,侧壁可以包括四个直形侧壁面114和四个弧形侧壁面115,相邻两个直形侧壁面114之间具有一个弧形侧壁面115,也就是说,相邻两个直形侧壁面114可以通过弧形侧壁面115连接。在制作时,壳本体11可以是通过将钢板折弯,并将钢板首尾焊接形成。由于钢板自身具有强度,因此在钢板折弯过程中会自然形成弧形侧壁面115。也就是说,壳本体11在采用弯折等方式制备时,会产生弧形侧壁面115,通过采用折弯等方式制作壳本体11能够降低壳本体11的制作难度。
在本实施例中,壳本体11的外周具有圆弧段,能够降低壳本体11的制作难度,并且通过使上盖13和/或下盖12的外轮廓的形状限定为与壳本体11的外轮廓一致,能够提高外表的美观性,以及节省原材料。
可选地,将壳本体11的弧形侧壁面115的圆角半径定义为R2,0.2mm≤R2。为了与之 对应装配,上盖13和下盖12上也可以分别设置有半径为R1和R3的圆角。同时,为了进一步提高电池壳体10内部的空间利用率,正极片21和/或负极片22上也可以设置有半径为R4的圆角,R1、R2、R3和R4可以保持一致。
在本申请的一些具体实施方式中,如图12所示,壳本体11的外表面包括多个依次相连的侧表面,上盖13和下盖12的面积分别大于任一个侧表面的面积。其中需要说明的是,由于在提高壳本体11与上盖13或者下盖12之间的密封性能时,需要使壳本体11的厚度较大,以利于增大连接区域的面积,例如增大焊接区域的面积,如果将壳本体11设计为面积较大的大面结构时,则会增大电池壳体10的占用空间,不利于提升电池100的能量密度。具体地,壳本体11的侧壁可以包括多个依次相邻的侧壁部,例如包括沿长度方向延伸的两个第一侧壁部和沿宽度方向延伸的两个第二侧壁部。上盖13和下盖12的面积可以分别大于任一个侧壁部的面积。也就是说,上盖13和下盖12分别与极芯的大面对应,壳本体11与极芯的小面对应,极芯的大面的面积大于极芯的小面的面积。
根据本申请的一个实施例,如图3和图12所示,在上盖13或下盖12上设置防爆痕116。在电池100在充放电过程中,极芯容易在电池100的厚度方向上发生膨胀,当压力超过上限时,电池100可能发生爆炸。由此,由于防爆痕116的底部厚度小于其他部位的厚度,当电池100内部压力增大时,防爆痕116会破裂并将气体排出,可以防止电池100发生爆炸,提高了电池100的安全性。可选地,防爆痕116设置在上盖13的外表面,防爆痕116的圆角的朝向与最接近防爆痕116的上盖13的顶角的圆角朝向相反。其中,防爆痕116可以是圆弧形凹槽,圆弧长度可以为1/4圆到3/4圆,将圆的半径定义为R5,例如3mm≤R5≤6mm。
本申请还公开了一种电池100,电池100包括电池壳体10和极芯,电池壳体10为上述任一实施例的电池壳体10,导电连接区包括正极连接区117和负极连接区118,正极连接区117可以用于设在壳本体11上的通孔处的组件,负极连接区118可以是壳本体11上的部分区域。极芯设于收容空间111,极芯包括设置在极芯上的正极极耳和负极极耳24,正极极耳与正极连接区117电连接,负极极耳24与负极连接区118电连接。在本实施例中,极芯可以采用卷绕或者叠片的方式制备。
其中,负极极耳24可以直接焊接在壳本体11上与负极连接区118对应的内壁上,具体地,可以在将负极极耳24收拢后再焊接在负极连接区118的内壁上,从而使负极极耳24与壳本体11之间电连接。
可选地,如图19、图20、图22至图25所示,正极导电连接件包括设置在电池壳体10外侧的第一绝缘片33和金属片34,以及设置在电池壳体10内侧的铆钉31和第二绝缘片32。也就是说,沿着从内向外的方向,可以依次层设有铆钉31、第二绝缘片32、壳本体11、第一绝缘片33和金属片34,其中金属片34、第一绝缘片33和第二绝缘片32上均开设有 贯穿孔,铆钉31可以依次穿过第二绝缘片32、第一绝缘片33、壳本体11和金属片34,最后可以通过重力挤压的方式使铆钉31与金属片34之间固定并电连接。此外,正极极耳收拢后与铆钉31焊接。在电池100的宽度方向上,第一绝缘片33的宽度≥金属片34的宽度,第二绝缘片32的宽度≥铆钉31的宽度,能够避免铆钉31或金属片34与壳本体11之间接触。同时,第一绝缘片33和第二绝缘片32的左端不能超过壳本体11的弧面与侧面的交界位置,避免出现密封不良。第一绝缘片33和第二绝缘片32可以使铆钉31与壳本体11之间绝缘,避免发生短路,同时,第一绝缘片33和第二绝缘片32可以提高正极连接区117的密封性能,避免发生漏液。
金属片34上与铆钉31铆接的位置可以设置有台阶状凹槽35,在挤压铆钉31时可以使铆钉31的末端容纳于该凹槽中,从而保证挤压后的铆钉31端面不超出金属片34的上端面,便于后续电池100组装成模组时进行焊接操作。其中,金属片34、铆钉31可以采用铝、镍、铜等材质。
根据本申请的一个实施例,极芯为叠片极芯,其中需要说明的是,由于叠片结构的空间利用率更高,因此在本实施例中采用叠片结构。在采用叠片结构时,极芯可以包括依次层叠设置的负极片22、隔膜23和正极片21。例如,叠片极芯的形状大致为立方体形状,此时主要由下盖12、壳本体11和上盖13围合形成的电池壳体10的形状也可以大致为立方体形状,对应的收容空间111的形状也大致为立方体,便于适配于叠片结构。
根据本申请的一个实施例,如图12,19-20所示,极芯的层叠方向与注液孔的轴线方向平行。具体说极芯可以是沿着垂直于上盖12或下盖13的方向层叠,注液孔设置在上盖12或下盖13上。极芯也可以是沿平行于上盖12或下盖13的方向层叠,注液孔设置在壳本体11上。极芯的层叠方向与注液孔的轴线方向平行可以使电解液在层叠的极芯之间快速流动,能够更好地浸润极芯。
在本申请的一些具体实施方式中,极芯包括多个正极片21和多个负极片22,每个正极片21的一端设置有正极极耳部,每个负极片22的一端设置有负极极耳部,负极片22的一端与壳本体11的内壁面之间的距离为第一距离,负极片22的另一端与壳本体11的内壁面之间的距离为第二距离,第一距离和第二距离之和不小于2mm,且不大于5mm。
换句话说,因为负极活性物质层需要完全包裹正极活性物质层,所以本实施例以负极极片的尺寸进行限定。在电池100的长度方向上,将负极极片的下端部与壳本体11之间的距离定义为h2,将负极极片的上端部与壳本体11之间的距离定义为h3,通过限定h2>0,h3>0,2mm≤h2+h3≤5mm,能够避免负极极片与壳本体11之间产生接触导致极片发生褶皱,保证给极耳预留足够的焊接空间。此外,在电池100的宽度方向上,负极极片的左端部与壳本体11之间的距离为h4,负极极片的右端部与壳本体11之间的距离为h5,通过限定h4 >0,h5>0,能够避免负极极片与壳本体11之间产生接触导致极片发生褶皱。
总而言之,根据本申请实施例的电池壳体10包括上盖13、壳本体11和下盖12,其中下盖12和上盖13均与壳本体11直接连接,例如垂直连接,使得壳本体11与上盖13和下盖12之间无需设置过渡面,降低了过渡面对电池100尺寸的影响,可以提高电池100的能量密度。由于本申请实施例的电池100包括上述任一实施例的电池壳体10,因此在本申请实施例的电池壳体10具有收容空间111大的优点、可以容置大能量密度的极芯,本申请实施例的电池100也具有上述优点,可以提高电池100的能量密度,在此不作赘述。
虽然已经通过例子对本申请的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本申请的范围。本领域的技术人员应该理解,可在不脱离本申请的范围和精神的情况下,对以上实施例进行修改。本申请的范围由所附权利要求来限定。

Claims (21)

  1. 一种电池壳体(10),其中,包括:
    壳本体(11),所述壳本体(11)内限定有收容空间(111),所述壳本体(11)具有两个敞开端,每个所述敞开端与所述收容空间(111)连通;
    下盖(12),所述下盖(12)与所述壳本体(11)的一端连接,以用于封闭一个敞开端;
    上盖(13),所述上盖(13)与所述壳本体(11)的另一端连接,以用于封闭另一个敞开端;
    所述下盖(12)和/或所述上盖(13)为板形件,所述壳本体(11)的侧壁与所述板形件垂直设置。
  2. 根据权利要求1所述的电池壳体(10),其中,所述板形件的厚度小于所述壳本体(11)的壁厚。
  3. 根据权利要求1或2所述的电池壳体(10),其中,30μm≤w1≤100μm,30μm≤w2≤100μm,100μm<w3≤200μm,其中,w1、w2和w3分别为所述上盖(13)、所述下盖(12)和所述壳本体(11)的厚度。
  4. 根据权利要求1-3中任一项所述的电池壳体(10),其中,所述壳本体(11)上设有注液孔(112)和导电连接区。
  5. 根据权利要求1-3中任一项所述的电池壳体(10),其中,所述上盖(13)或所述下盖(12)上设有注液孔(112),所述壳本体(11)上设有导电连接区。
  6. 根据权利要求1-5中任一项所述的电池壳体(10),其中,所述敞开端的外周缘的至少一部分超出与其对应的所述下盖(12)或所述上盖(13)的外周缘。
  7. 根据权利要求6所述的电池壳体(10),其中,1/2w3≤h2≤w3,h2为所述上盖(13)或所述下盖(12)与所述壳本体(11)之间的重合区域的宽度,w3为所述壳本体(11)的厚度。
  8. 根据权利要求7所述的电池壳体(10),其中,所述敞开端的外周缘和与其对应的所述下盖(12)或所述上盖(13)的外周缘之间形成有缺口(14),所述壳本体(11)和与所述敞开端对应的所述下盖(12)或所述上盖(13)激光焊接相连,焊接形成的焊缝(113)的一部分位于所述缺口(14)。
  9. 根据权利要求8所述的电池壳体(10),其中,1/2w3≤h2≤3/4w3。
  10. 根据权利要求1-5中任一项所述的电池壳体(10),其中,所述敞开端的外周缘和与其对应的所述下盖(12)或所述上盖(13)的外周缘齐平。
  11. 根据权利要求1-7中任一项所述的电池壳体(10),其中,所述敞开端和与其对应的 所述下盖(12)或所述上盖(13)激光焊接相连,焊接形成的焊缝(113)穿过和与所述敞开端对应的所述下盖(12)或所述上盖(13)延伸至所述壳本体(11)。
  12. 根据权利要求11所述的电池壳体(10),其中,1/3w3≤w4≤1/2w3,w3为所述壳本体(11)的厚度,w4为所述焊缝(113)的宽度。
  13. 根据权利要求1-12中任一项所述的电池壳体(10),其中,所述壳本体(11)沿其周向具有圆弧段,所述下盖(12)和/或所述上盖(13)的外轮廓与所述壳本体(11)的外轮廓的形状相同。
  14. 根据权利要求1-13中任一项所述的电池壳体(10),其中,所述壳本体(11)的外表面包括多个依次相连的侧表面,所述上盖(13)和所述下盖(12)的面积分别大于任一个所述侧表面的面积。
  15. 一种电池(100),其中,包括:
    电池壳体(10),所述电池壳体(10)为根据权利要求1-14中任一所述的电池壳体(10)。
  16. 根据权利要求15所述的电池(100),其中,所述导电连接区包括正极连接区(117)和负极连接区(118);
    极芯,所述极芯设于所述收容空间(111),所述极芯包括正极极耳和负极极耳(24),所述正极极耳与所述正极连接区(117)电连接,所述负极极耳(24)与所述负极连接区(118)电连接。
  17. 根据权利要求16所述的电池(100),其中,所述极芯为叠片极芯。
  18. 根据权利要求17所述的电池(100),其中,所述极芯的层叠方向与注液孔的轴线方向平行。
  19. 根据权利要求18所述的电池(100),其中,所述极芯沿着垂直于所述上盖(13)或下盖(12)的方向层叠,所述注液孔(112)设置在所述上盖(13)或所述下盖(12)上。
  20. 根据权利要求18所述的电池(100),其中,所述极芯沿平行于所述上盖(13)或下盖(12)的方向层叠,注液孔(112)设置在所述壳本体(11)上。
  21. 根据权利要求15-21中任一项所述的电池(100),其中,所述极芯包括多个正极片(21)和多个负极片(22),每个所述正极片(21)的一端设置有正极极耳部,每个所述负极片(22)的一端设置有负极极耳(24)部,所述负极片(22)的一端与所述壳本体(11)的内壁面之间的距离为第一距离,所述负极片(22)的另一端与所述壳本体(11)的内壁面之间的距离为第二距离,所述第一距离和所述第二距离之和不小于2mm,且不大于5mm。
PCT/CN2023/085528 2022-04-01 2023-03-31 电池壳体和电池 WO2023186105A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220774022.3 2022-04-01
CN202220774022.3U CN217387313U (zh) 2022-04-01 2022-04-01 电池壳体和电池

Publications (1)

Publication Number Publication Date
WO2023186105A1 true WO2023186105A1 (zh) 2023-10-05

Family

ID=83104442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085528 WO2023186105A1 (zh) 2022-04-01 2023-03-31 电池壳体和电池

Country Status (2)

Country Link
CN (1) CN217387313U (zh)
WO (1) WO2023186105A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217387313U (zh) * 2022-04-01 2022-09-06 比亚迪股份有限公司 电池壳体和电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090893A (ja) * 1998-09-17 2000-03-31 Japan Storage Battery Co Ltd 電池及び電池の製造方法
CN214477665U (zh) * 2021-06-23 2021-10-22 比亚迪股份有限公司 壳体、二次电池和用电装置
CN215451564U (zh) * 2021-06-28 2022-01-07 比亚迪股份有限公司 电池壳组件和具有其的锂电池
CN215933695U (zh) * 2021-09-30 2022-03-01 珠海冠宇电池股份有限公司 电池和电子设备
CN216085065U (zh) * 2021-09-30 2022-03-18 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN217387313U (zh) * 2022-04-01 2022-09-06 比亚迪股份有限公司 电池壳体和电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090893A (ja) * 1998-09-17 2000-03-31 Japan Storage Battery Co Ltd 電池及び電池の製造方法
CN214477665U (zh) * 2021-06-23 2021-10-22 比亚迪股份有限公司 壳体、二次电池和用电装置
CN215451564U (zh) * 2021-06-28 2022-01-07 比亚迪股份有限公司 电池壳组件和具有其的锂电池
CN215933695U (zh) * 2021-09-30 2022-03-01 珠海冠宇电池股份有限公司 电池和电子设备
CN216085065U (zh) * 2021-09-30 2022-03-18 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN217387313U (zh) * 2022-04-01 2022-09-06 比亚迪股份有限公司 电池壳体和电池

Also Published As

Publication number Publication date
CN217387313U (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
JP6142466B2 (ja) 電池の製造方法、および、電池
CN108598353B (zh) 充电电池
JP5504007B2 (ja) 角形電池およびその製造方法
WO2023185283A1 (zh) 电池
JP6230543B2 (ja) 電気コネクタおよびそれを備える電池
WO2020156198A1 (zh) 电池单元及电池模组
WO2023186105A1 (zh) 电池壳体和电池
TWI525876B (zh) 具有包含兩個以上構件之蓄電池外殼的稜形蓄電池
KR102654935B1 (ko) 파우치형 이차 전지 및 이의 제조 방법
CN117374485B (zh) 电芯壳体、电芯及电池包
US20240014480A1 (en) Housing, battery, and electronic device
US20240170809A1 (en) Tab welding method, welding tool, battery cell, battery, and electric device
WO2023185279A1 (zh) 电池
CN109686919A (zh) 一种新型的纽扣电池
CN215644674U (zh) 电池壳体及电池
CN214848800U (zh) 一种单体电池外壳、单体电池及电池模组
WO2024001698A1 (zh) 电化学装置及电子装置
CN218123566U (zh) 方形电池的壳体结构
JP2011070977A (ja) ラミネート電池
CN218123567U (zh) 圆柱型锂离子电池
WO2022247177A1 (zh) 电池外壳和锂电池
CN215933695U (zh) 电池和电子设备
CN206364127U (zh) 方壳电池
CN216750078U (zh) 一种电芯壳体、电池及电池模组
CN115224340A (zh) 一种圆柱电池结构的装配工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778469

Country of ref document: EP

Kind code of ref document: A1