WO2022267044A1 - 驱动基板、发光装置及其制备方法、拼接显示装置 - Google Patents

驱动基板、发光装置及其制备方法、拼接显示装置 Download PDF

Info

Publication number
WO2022267044A1
WO2022267044A1 PCT/CN2021/102512 CN2021102512W WO2022267044A1 WO 2022267044 A1 WO2022267044 A1 WO 2022267044A1 CN 2021102512 W CN2021102512 W CN 2021102512W WO 2022267044 A1 WO2022267044 A1 WO 2022267044A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
area
connection electrode
bending
Prior art date
Application number
PCT/CN2021/102512
Other languages
English (en)
French (fr)
Inventor
卢鑫泓
朱小研
刘超
董水浪
王久石
李柳青
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180001648.9A priority Critical patent/CN115769293A/zh
Priority to PCT/CN2021/102512 priority patent/WO2022267044A1/zh
Publication of WO2022267044A1 publication Critical patent/WO2022267044A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the field of display technology, and in particular to a driving substrate, a light emitting device and a manufacturing method thereof, and a spliced display device.
  • Mini LED Mini Light Emitting Diode, sub-millimeter light-emitting diode
  • Micro LED Micro Light Emitting Diode, micro-light-emitting diode
  • One of the advantages of Micro/mini LED display products is that it can realize large-area splicing, that is, splicing with multiple driving substrates, so as to obtain super-sized display products.
  • Embodiments of the present application provide a driving substrate, a light emitting device and a manufacturing method thereof, and a spliced display device.
  • the light emitting device prepared by the driving substrate has a narrow frame and good display effect.
  • the driving substrates of the device setting area, the bending area and the binding area all include a buffer layer, a first conductive layer and a flexible medium layer that are sequentially stacked;
  • the driving substrate of the device setting area and the bonding area further includes a substrate disposed on the side of the buffer layer away from the first conductive layer, and a substrate disposed on the side of the flexible medium layer away from the first conductive layer. a second conductive layer on one side of the first conductive layer;
  • the driving substrate of the bending area is configured to be bendable along a bending axis.
  • the driving substrate further includes a first passivation layer, and the first passivation layer covers the device setting region and the flexible medium layer of the bonding region.
  • the driving substrate further includes a second passivation layer, the second passivation layer covers the second conductive layer, and the orthographic projection of the second passivation layer on the buffer layer is the same as the Orthographic projections of the flexible medium layer on the buffer layer in the bending area do not overlap each other.
  • the driving substrate further includes an organic layer, the organic layer covers the second passivation layer, and the orthographic projection of the organic layer on the buffer layer is related to the flexibility of the bending region. Orthographic projections of the medium layer on the buffer layer do not overlap each other.
  • the driving substrate further includes an organic layer, and the organic layer covers the second passivation layer and also covers the flexible medium layer of the bending region.
  • the surface of the substrate of the device setting region away from the flexible dielectric layer and the substrate of the binding region are far away from the flexible medium layer.
  • the surfaces of the dielectric layer are located in the same plane;
  • the surface of the substrate of the binding area away from the flexible medium layer is fixed to the surface of the substrate of the device setting area away from the flexible medium layer together.
  • the surface of the substrate of the binding region away from the flexible medium layer and the substrate of the device setting region away from the flexible medium is arranged between the surfaces of the layers, and the adhesive layer also extends to the surface of the buffer layer in the bending region away from the flexible medium layer.
  • the material of the flexible dielectric layer includes polyimide.
  • the thickness of the flexible dielectric layer is in the range of 3um-6um.
  • the driving substrate further includes a sacrificial layer and a third passivation layer, the sacrificial layer is located between the substrate and the buffer layer, the third passivation layer is located on the first conductive layer and between the flexible medium layer.
  • the first conductive layer includes a first connection electrode and a second connection electrode, and the orthographic projection of the first connection electrode on the buffer layer has the same The orthographic projections on the buffer layer overlap; the second connection electrode is located in the bending region, and the two ends of the second connection electrode respectively extend to the device setting region and the binding region .
  • the second conductive layer includes a third connection electrode, a fourth connection electrode and a fifth connection electrode; both the third connection electrode and the fourth connection electrode are located in the device setting area, and the first connection electrode Five connecting electrodes are located in the binding area;
  • the third connection electrode is electrically connected to the first connection electrode
  • the fifth connection electrode is electrically connected to the second connection electrode
  • the flexible dielectric layer has a first via hole and a second via hole along a direction perpendicular to the substrate, the first via hole exposes a partial area of the first connection electrode, the The second via hole exposes a partial area of the second connection electrode at one end of the binding region;
  • the third connection electrode is electrically connected to the first connection electrode through the first via hole
  • the fifth connection electrode is electrically connected to the second connection electrode through the second via hole.
  • the present application also provides a light-emitting device, including: a light-emitting device, a circuit board, and the driving substrate as described above, the light-emitting device is respectively connected to the third connection electrode and the fourth connection electrode of the device setting area.
  • the electrodes are electrically connected, and the circuit board is electrically connected to the fifth connection electrode of the binding area.
  • the present application also provides a spliced display device, including: a multi-port transponder, at least one power supply device, a first frame body, a second frame body, and at least two light emitting devices as described above;
  • each of the light-emitting devices are located on the same plane, and each of the light-emitting devices is fixed to the first frame, the first frame is fixed to the second frame, and the first frame is fixed to the second frame.
  • the second frame is located on the side of the first frame away from the light-emitting device, and the multi-port transponder and the power supply device are both fixed to the second frame;
  • the multi-port transponder is electrically connected to the power supply device, and the circuit board of each light emitting device is electrically connected to the multi-port transponder respectively.
  • a method for preparing a light-emitting device includes:
  • the substrate is divided into a device setting area, a bending area, and a binding area, and the bending area is located between the device setting area and the binding area;
  • the buffer layer is located between the substrate and the first conductive layer;
  • the flexible dielectric layer is located on a side of the first conductive layer away from the substrate;
  • the second conductive layer is located on the side of the flexible medium layer away from the substrate, and the orthographic projection area of the second conductive layer on the substrate is in the same direction as the bending area Orthographic projections of the flexible medium layer on the substrate do not overlap each other;
  • the substrate of the bending region is removed.
  • the method further includes:
  • a first passivation layer is formed on the flexible dielectric layer on the device setting area and the binding area.
  • the method further includes:
  • An organic layer is formed on the second passivation layer; the organic layer at least covers the second passivation layer.
  • forming an organic layer on the second passivation layer, where the organic layer at least covers the second passivation layer includes:
  • the organic layer covers the second passivation layer, and the orthographic projection of the organic layer on the buffer layer is the same as the orthographic projection of the flexible medium layer on the buffer layer on the bending region.
  • the projections do not overlap each other; or, the organic layer covers the second passivation layer and also covers the flexible medium layer on the bending area.
  • the method further includes:
  • the organic layer covers the second passivation layer, and the orthographic projection of the organic layer on the buffer layer is the same as that of the flexible medium layer located in the bending region on the buffer layer If the orthographic projections do not overlap each other, the water-repelling layer covers the flexible medium layer on the bending area, and also covers the side of the organic layer close to the bending area;
  • the organic layer covers the second passivation layer and also covers the flexible medium layer in the bending region, then the water-blocking layer covers the organic layer.
  • said forming the first conductive layer includes:
  • Said forming the second conductive layer includes:
  • connection electrode Simultaneously form a third connection electrode, a fourth connection electrode and a fifth connection electrode; wherein, the third connection electrode is electrically connected to the first connection electrode, and the fifth connection electrode is electrically connected to the second connection electrode .
  • the method further includes:
  • the method further includes:
  • the method further includes:
  • the substrate in the binding region is far away from the surface of the flexible medium layer
  • the substrate in the device setting region is far away from the surface of the flexible medium layer
  • the buffer layer in the bending region is far away from the surface of the flexible medium layer.
  • An adhesive layer is formed on the surface of the flexible medium layer and on the side of the substrate parallel to the direction perpendicular to the flexible medium layer and close to the bending area;
  • Fig. 1a schematically shows a frame structure diagram of a light emitting device in the related art
  • FIG. 2 schematically shows a schematic structural view of a driving substrate in the related art
  • FIG. 3 schematically shows a schematic structural view of a driving substrate in another related art
  • FIG. 4 schematically shows a schematic structural view of a drive substrate of the present application
  • FIG. 5 schematically shows a schematic structural view of another driving substrate of the present application
  • Fig. 6 schematically shows a schematic structural view of a light emitting device of the present application
  • Fig. 7 schematically shows a schematic structural view of another light-emitting device of the present application.
  • FIG. 8 schematically shows a schematic structural view of the light emitting device in FIG. 6 in a bent state in the bending region
  • Fig. 9 schematically shows a schematic structural diagram of the light emitting device in Fig. 7 in a bent state in the bent region;
  • FIG. 10 schematically shows a schematic structural view of a spliced display device of the present application
  • Figure 11 schematically shows a flow chart of a method for preparing a light-emitting device of the present application.
  • Micro/mini-LED technology transfers micron-sized Micro/mini-LEDs to the driving substrate through mass transfer technology, thereby forming Micro/mini-LED display devices of various sizes.
  • a major advantage of the Micro/mini LED display device is that it can be spliced, that is, a certain number of small-sized display devices can be used to realize a super-large-sized display.
  • eliminating the stitching seam has always been a major problem in the stitching process. For this reason, display products with narrow borders are a hot spot that people pay attention to.
  • the substrate 101 in the bonding area D3 and the substrate 101 in the device setting area D1 need to be filled with protective glue for fixing.
  • the filling thickness of the protective glue has an error of 10um. Therefore, the current driver
  • a horizontal seam width is used for matching, that is, the size of the pixel unit is 0.525*0.525mm. In other words, if you want to further reduce the size of the pixel unit and increase the resolution, you need to have a smaller seam width to match, so as to improve the display effect.
  • the thickness T of each film layer and the bending edge distance R can be reduced by changing the structural design.
  • two types of driving substrates as shown in FIG. 1 and FIG. 2 are used to reduce the width of a frame on one side, specifically as follows.
  • the first type of drive substrate in the related art includes a device setting area D1, a binding area D3, and a bending area D2 between the device setting area D1 and the binding area D3; the bending area D2
  • the drive substrate includes a flexible substrate 103, a buffer layer (Buffer) 104, a first conductive layer 105, a first passivation layer 106, a first organic layer 107 and a second organic layer 112 which are sequentially stacked; the device setting area D1 and the binding
  • the driving substrate of the fixed area D3 includes a rigid substrate 101, a photomask alignment mark 102, a flexible substrate 103, a buffer layer 104, a first conductive layer 105, a first passivation layer 106, and a first organic layer, which are sequentially stacked. 107 , the second passivation layer 108 , the second conductive layer 109 , the ITO layer 110 , the third passivation layer 111 and the second organic layer 112 .
  • the second driving substrate in the related art includes a device setting area E1, a binding area E3, and a bending area E2 between the device setting area E1 and the binding area E3; the device setting area E1 and the bonding area E3
  • the driving substrate of the bonding area E3 includes a rigid substrate 201, a sacrificial layer 202, a first buffer layer 203, a bonding electrode layer 204, a flexible organic material layer 205, a second buffer layer 206, and a first conductive layer 207, which are sequentially stacked.
  • the driving substrate in the bending region E2 includes a first buffer layer 203, a bonding electrode layer 204, a flexible organic material layer 205 and a second buffer layer which are sequentially stacked.
  • Layer 206 The driving substrate in the bending region E2 includes a first buffer layer 203, a bonding electrode layer 204, a flexible organic material layer 205 and a second buffer layer which are sequentially stacked.
  • Table 1 Simulated strain values of each film layer in the bending region of the driving substrate in the related art
  • the material of the flexible substrate 103 is polyimide with a thickness of 6.0um; the material of the buffer layer 104 is SiNx with a thickness of 01.um; the material of the first conductive layer 105 is copper with a thickness of 2um; the first passivation layer The material of 106 is SiNx with a thickness of 0.1um; the material of the first organic layer 107 and the second organic layer 112 are both resins, and the total thickness of the materials of the first organic layer 107 and the second organic layer 112 is 4.5um.
  • the strain ⁇ is proportional to the stress ⁇ ; in the formula (2), the stress ⁇ is equal to the Young’s modulus E of the material multiplied by the total film layer in the bending area Half of the thickness y, divided by the bend margin R.
  • the bending edge distance R decreases, the strains of the outer inorganic layers of the two driving substrates in the related art shown in Table 1 will inevitably further increase, thereby accelerating the failure of each film layer.
  • the present application provides a driving substrate, as shown in FIG. 4 , including: a device setting area A1, a bending area A2 and a binding area A3, and the bending area A2 is located between the device setting area A1 and the binding area A3 Between; the driving substrates in the device setting area A1, the bending area A2 and the binding area A3 all include a buffer layer 3, a first conductive layer and a flexible dielectric layer 6 stacked in sequence;
  • the driving substrate of the device setting area A1 and the binding area A3 also includes the substrate 1 arranged on the side of the buffer layer 3 away from the first conductive layer, and the second substrate 1 arranged on the side of the flexible medium layer 6 away from the first conductive layer.
  • the conductive layer; the driving substrate in the bending area A2 is configured to be bendable along the bending axis.
  • the above-mentioned device installation area A1 refers to an area for setting light-emitting devices
  • the above-mentioned binding area A3 refers to an area for binding circuit boards. After arranging light-emitting devices and circuit boards on the driving substrate, a light-emitting device is formed.
  • the aforementioned substrate 1 may be a flexible substrate, or may also be a rigid substrate.
  • the embodiment of the present application is described by taking the aforementioned substrate 1 as a rigid substrate as an example, specifically, the rigid substrate is glass.
  • the specific material of the buffer layer 3 is not limited here.
  • the material of the above-mentioned buffer layer 3 may be an organic material, or may also be an inorganic material.
  • the material of the above-mentioned buffer layer 3 is silicon nitride, silicon oxide or silicon oxynitride, and its thickness ranges from 500A to 1000A, which is used to prevent water vapor from entering the inside of the driving substrate;
  • the above-mentioned first conductive layer and The material of the second conductive layer is at least one of copper, molybdenum, titanium or aluminum, for example, the material of the first conductive layer and the second conductive layer are both copper, and the thickness range is 1um-2um;
  • the material of layer 6 is polyimide (PI), and its thickness range is 3um-6um, because polyimide material has insulation and a certain degree of flexibility, the flexible dielectric layer 6 serves as the first conductive layer and the first conductive layer on the one hand.
  • the dielectric layer of the second conductive layer also serves as a supporting layer for each film layer in the bending area.
  • the bending direction of the driving substrate is not limited here.
  • the bending direction may be the OA direction as shown in FIG. 4 , or may be the AO direction.
  • the specific bending direction can be determined according to the actual situation.
  • the driving substrate is bent along the OA direction as an example for illustration.
  • the driving substrate in the bending area A2 since the driving substrate in the bending area A2 includes the buffer layer 3, the first conductive layer and the flexible medium layer 6, when the driving substrate in the bending area A2 is bent along the bending axis, the bending The total thickness of each film layer in area A2 is small and the flexibility of each film layer is better, which can greatly reduce the bending edge distance R, thereby reducing the width of the single side frame; in addition, the buffer layer 3, the first conductive layer and the The flexible dielectric layer 6 is subjected to relatively small bending stress, which can also improve the problem of failure of each film layer caused by bending stress during bending.
  • the driving substrate further includes a first passivation layer 7 covering the flexible dielectric layer 6 in the device setting area A1 and the bonding area A3 .
  • the driving substrate further includes a second passivation layer 9, the second passivation layer 9 covers the second conductive layer, and the orthographic projection of the second passivation layer 9 on the buffer layer 3 is the same as that of the bending region A2. Orthographic projections of the flexible medium layer 6 on the buffer layer 3 do not overlap each other.
  • the first passivation layer 7 since both the first passivation layer 7 and the second passivation layer 9 are made of inorganic materials, can greatly improve the effect of blocking water and oxygen of the driving substrate. Further, in order not to increase the total film thickness in the bending area of the driving substrate, the first passivation layer 7 only covers the flexible dielectric layer 6 in the device setting area A1 and the binding area A3, and does not cover the flexible dielectric layer 6 in the bending area A2. layer 6; and the second passivation layer 9 covers the second conductive layer and does not cover the flexible dielectric layer 6 in the bending area A2.
  • the above-mentioned second passivation layer 9 also covers the area where the second conductive layer is not provided in the device setting area A1 and the bonding area A3 .
  • the driving substrate further includes an organic layer 10, the organic layer 10 covers the second passivation layer 9, and the orthographic projection of the organic layer 10 on the buffer layer 3 and the flexible medium layer of the bending area A2
  • the orthographic projections of 6 on the buffer layer 3 do not overlap each other.
  • Table 2 Strain simulation results of each film layer in the bending region of the driving substrate of this application
  • the material of the buffer layer 3 is silicon nitride with a thickness of 0.1um; the material of the first conductive layer is copper with a thickness of 2um; the material of the third passivation layer 5 is Silicon nitride with a thickness of 0.1um; the material of the flexible dielectric layer 6 is polyimide (PI) with a thickness of 3.0um as an example for illustration.
  • the third passivation layer 5 is located between the first conductive layer and the flexible dielectric layer 6 .
  • the thickness of the flexible dielectric layer is in the range of 3um-6um.
  • the film layers in the bending area A2 are the buffer layer SiNx, the first conductive layer Cu, the third passivation layer SiNx and the flexible dielectric layer PI.
  • the compressive strain in Table 2 is within the allowable strain range of the driving substrate.
  • the film layer failure caused by strain mainly refers to the film layer failure caused by tensile strain.
  • the simulation results of the strains in Table 1 and Table 2 are all simulated and calculated when the substrate is driven to bend along the OA direction as shown in FIG. 4 .
  • the organic layer 10 in the bending area A2 is removed, which reduces the total thickness of the film layer in the bending area A2, thereby reducing the bending margin R, thereby reducing the width of the single-side frame; in addition , when the driving substrate in the bending region A2 is bent, the strain in the bending region A2 is reduced, thereby reducing the probability of failure of each film layer in the bending region A2, thereby prolonging the service life of the driving substrate.
  • the driving substrate further includes an organic layer 10 covering the second passivation layer 9 and also covering the flexible dielectric layer 6 in the bending area A2.
  • the organic layer 10 in the bending region A2 remains, so that, in the process of manufacturing the driving substrate, when the substrate 1 in the bending region A2 is removed, the organic layer 10 in the bending region A2 is The flexible dielectric layer 6 in the bending area A2 plays a strong supporting role, avoiding damage to the driving substrate when the substrate 1 is peeled off by a mechanical method.
  • the surface of the substrate 1 in the device setting area A1 away from the flexible medium layer 6 is far away from the substrate 1 in the binding area A3.
  • the surfaces of the flexible medium layer 6 are located in the same plane;
  • the surface of the substrate 1 in the bonding area A3 away from the flexible dielectric layer 6 is the same as the surface of the substrate 1 in the device setting area A1 away from the flexible dielectric layer 6. The surfaces are held together.
  • the adhesive layer 15 is made of cured glue, for example, light cured glue or heat cured glue.
  • the thickness range of the adhesive layer 15 is between 5um-15um, for example, 5um, 8um, 10um or 15um.
  • the buffer layer 3 in the bending area A2 is away from the surface of the flexible medium layer 6, and on the side of the substrate 1 parallel to the direction perpendicular to the flexible medium layer 6 and close to the bending area A2 , all coated with a layer of adhesive layer 15, and then the driving substrate in the bending area A2 is bent along the direction OA shown in FIG.
  • the surfaces of the substrate 1 in the device installation area A1 away from the flexible dielectric layer 6 are fixed together, and then the driving substrate is subjected to light treatment or heat treatment to cure the adhesive layer 15 .
  • the driving substrate further includes a sacrificial layer 2 and a third passivation layer 5, the sacrificial layer 2 is located between the substrate 1 and the buffer layer 3, and the third passivation layer 5 is located on the first conductive layer And between the flexible dielectric layer 6.
  • the sacrificial layer 2 is also called DBL layer (De-Bonding Layer, mechanical peeling layer), made of polyimide, and its thickness ranges from 300-1000A, such as 300A, 500A or 800A.
  • DBL layer De-Bonding Layer, mechanical peeling layer
  • the substrate 1 in the bending area A2 is removed, the sacrificial layer 2 in the bending area A2 and the substrate 1 in the bending area A2 are peeled off at the same time.
  • the substrate 1 can be removed. Protect the drive substrate from being damaged.
  • the above-mentioned third passivation layer 5 is located between the first conductive layer and the flexible dielectric layer 6, and the third passivation layer 5 covers the first conductive layer.
  • the flexible dielectric layer 6 polyimide
  • a third passivation layer 5 is provided between the first conductive layer and the flexible dielectric layer 6 to protect the first conductive layer.
  • the first conductive layer includes a first connection electrode 41 and a second connection electrode 42
  • the orthographic projection of the first connection electrode 41 on the buffer layer 3 is the same as that located in the device installation area A1.
  • the orthographic projections of the second conductive layer on the buffer layer 3 partially overlap; the second connection electrode 42 is located in the bending area A2, and the two ends of the second connection electrode 42 respectively extend to the device setting area A1 and the binding area A2;
  • the second conductive layer includes a third connection electrode 81, a fourth connection electrode 82 and a fifth connection electrode 83; both the third connection electrode 81 and the fourth connection electrode 82 are located in the device setting area A1, and the fifth connection electrode 83 is located in the binding area A3;
  • connection electrode 81 is electrically connected to the first connection electrode 41
  • fifth connection electrode 83 is electrically connected to the second connection electrode 42 .
  • the drive substrate provided in the embodiment of the present application constitutes a part of the control circuit through the first connection electrode 41, the third connection electrode 81 and the fourth connection electrode 82 arranged in the device installation area A1, and is used to provide electrical signals to the light emitting device. , to control the on and off of the light emitting device 13; through the second connection electrode 42 and the fifth connection electrode 83, a part of the driving circuit is formed to be electrically connected to the control circuit and provide a driving signal to the control circuit.
  • the flexible dielectric layer 6 has a first via hole and a second via hole in a direction perpendicular to the substrate 1 , and the first via hole exposes a part of the first connection electrode 41 , the second via hole exposes a partial area of the second connecting electrode 42 located at one end of the bonding area A3;
  • connection electrode 81 is electrically connected to the first connection electrode 41 through the first via hole
  • fifth connection electrode 83 is electrically connected to the second connection electrode 42 through the second via hole.
  • the embodiment of the present application provides the flexible dielectric layer 6 with the first via hole and the second via hole.
  • the third connection electrode 81 and the first connection electrode 41 can also be electrically connected through other media or structures.
  • the fifth connecting electrode 83 and the second connecting electrode 42 may also be electrically connected through other media or structures, for details, reference may be made to related technologies, which will not be further described here.
  • the organic layer 10 has a third via hole, a fourth via hole and a fifth via hole along the direction perpendicular to the substrate 1, and the third via hole exposes the third connection electrode 81
  • the fourth via hole exposes a partial area of the fourth connecting electrode 82
  • the fifth via hole exposes a partial area of the fifth connecting electrode 83 .
  • the above-mentioned driving substrate also includes other film structures and components.
  • the film structure and components related to the invention of the present application are introduced.
  • other film structures and components included in the above-mentioned driving substrate please refer to the introduction of related technologies, which are not mentioned here. Let me repeat.
  • the embodiment of the present application also provides a light emitting device, as shown in FIG. 6 or FIG.
  • the pins are respectively electrically connected to the third connection electrode 81 and the fourth connection electrode 82 of the device setting area A1 through the soldering material S (such as solder), and the circuit board 14 is connected to the fifth connection electrode 83 of the bonding area A3 through anisotropy. Glue connection.
  • the above-mentioned light-emitting device can be a micro LED, for example: Mini LED or Micro LED.
  • the above-mentioned circuit board may be a flexible circuit board (FPC).
  • the light-emitting device further includes a protective layer 12 disposed on the side of the light-emitting device 13 away from the substrate 1, and the protective layer 12 covers each light-emitting device 13 and two adjacent light-emitting devices 13 the area between.
  • the above protective layer may also cover the organic layer in the device setting region.
  • the above protective layer may include a first sublayer and a second sublayer, wherein the second sublayer is located on a side of the first sublayer away from the light-emitting device, the second sublayer is made of white glue or transparent glue material, Used to protect light-emitting devices; the first sub-layer is a dark (such as black/dark green/dark blue, etc.) adhesive material, which is arranged between adjacent light-emitting devices to prevent the light emitted by each light-emitting device from cross-coloring.
  • the above-mentioned protective layer may only include one sublayer, that is, only black glue is used to cover the light-emitting device and the area between two adjacent light-emitting devices through black glue, and at the same time play a role in protecting the light-emitting device and preventing cross-color,
  • the thickness of the black glue covering the light-emitting surface of the light-emitting device should not affect the light effect of the light-emitting device.
  • the light emitting device further includes a water-proof layer 11 .
  • the water barrier layer 11 covers the flexible medium layer 6 on the bending area A2, and also covers the side of the organic layer 10 close to the bending area A2;
  • the organic layer 10 covers the second passivation layer 9 and also covers the flexible dielectric layer 6 in the bending area A2, then the water barrier layer 11 covers the organic layer 10 in the bending area A2.
  • the flexible medium layer 6 is usually made of polyimide, its water-proof performance is poor, and the water-proof layer 11 is covered on the flexible medium layer 6 in the bending area A2 to protect the flexible medium layer 6, and then Improve the quality of the drive substrate.
  • the above light emitting device can be used as a backlight device, or can also be used as a display device.
  • the plurality of light-emitting devices 13 in the light-emitting device are all light-emitting devices that emit blue light
  • the above-mentioned light-emitting device can be used as a backlight device
  • three light-emitting devices that emit blue light the above-mentioned light-emitting device can be used as a display device.
  • the driving substrate of the bending area A2 in the light emitting device includes the buffer layer 3, the first conductive layer and the flexible medium layer 6, when the bending area A2 is bent along the bending axis, the bending The total thickness of each film layer in area A2 is small and the flexibility of each film layer is better, which can greatly reduce the bending edge distance R, thereby reducing the width of the single side frame; in addition, the buffer layer 3, the first conductive layer and the The flexible dielectric layer 6 is subjected to relatively small bending stress, which can also improve the problem of failure of each film layer caused by bending stress during bending.
  • the embodiment of the present application also provides a mosaic display device, as shown in FIG. Body 302 and at least two light emitting devices 300 as above;
  • each light emitting device 300 is located on the same plane, and each light emitting device 300 is fixed to the first frame body 301, the first frame body 301 is fixed to the second frame body 302, and the second frame body 302 is located on the first frame body 302.
  • the side of the frame body 301 away from the light emitting device 300, the multi-port transponder 304 and the power supply device 303 are both fixed to the second frame body 302;
  • the multiport transponder 304 is electrically connected to the power supply device 303
  • the circuit board 14 of each light emitting device 300 is electrically connected to the multiport transponder 302 respectively.
  • the present application also provides a method for manufacturing a light-emitting device, wherein, as shown in FIG. 11 , the method includes:
  • the substrate 1 is divided into a device setting area A1, a bending area A2, and a binding area A3, and the bending area A2 is located between the device setting area A1 and the binding area A3 ;
  • the aforementioned substrate may be a flexible substrate, or may also be a rigid substrate.
  • the embodiments of the present application are described by taking the aforementioned substrate as a rigid substrate as an example.
  • the rigid substrate is glass.
  • the buffer layer is made of silicon nitride, silicon oxide or silicon oxynitride, and its thickness ranges from 500 ⁇ to 1000 ⁇ , which is used to prevent water vapor from entering the inside of the driving substrate.
  • the above buffer layer is formed by CVD (Chemical Vapor Deposition, chemical vapor deposition) method.
  • the material of the flexible dielectric layer is polyimide (PI), and its thickness range is 3um-6um. Since the polyimide material has insulation and a certain degree of flexibility, the flexible dielectric layer serves as the first conductive layer and the The dielectric layer of the second conductive layer, on the other hand, also serves as a supporting layer for each film layer in the bending area.
  • PI polyimide
  • the materials of the above-mentioned first conductive layer and the second conductive layer are at least one of copper, molybdenum, titanium or aluminum, for example, the materials of the first conductive layer and the second conductive layer are both copper, and the thickness range is 1um -2um.
  • the bending area of the light-emitting device includes the buffer layer 3, the first conductive layer and the flexible medium layer 6, the driving substrate in the bending area A2 is bent along the bending axis.
  • the total thickness of each film layer in the bending area A2 is small and the flexibility of each film layer is better, which can greatly reduce the bending edge distance R, thereby reducing the width of the single side frame; in addition, the buffer layer 3, Both the first conductive layer and the flexible dielectric layer 6 are subjected to relatively small bending stress, which can also improve the problem of failure of each film layer caused by bending stress during bending.
  • step S904 forming the flexible dielectric layer 6 and before step S905, forming the second conductive layer
  • the method further includes:
  • the flexible dielectric layer 6 is usually made of organic materials, the water and oxygen barrier effect of organic materials is relatively low.
  • the driving force can be greatly improved.
  • the first passivation layer 7 only covers the flexible dielectric layer 6 in the device setting area A1 and the binding area A3, and does not cover the flexible dielectric layer 6 in the bending area A2.
  • the method further includes:
  • the process of forming the second passivation layer 9 is specifically as follows:
  • the CVD method is used to form a whole layer of the second passivation layer film, and the second passivation layer film is patterned to form the second passivation layer 9 .
  • the process of forming the first passivation layer 7 and the second passivation layer 9 is specifically as follows:
  • the CVD method is used to form a whole layer of the second passivation layer film, and the first passivation layer film and the second passivation layer film are patterned simultaneously to obtain the first passivation layer 7 and the second passivation layer film at the same time.
  • Layer 9 the first passivation layer film and the second passivation layer film are patterned simultaneously to obtain the first passivation layer 7 and the second passivation layer film at the same time.
  • step S909 forming an organic layer 10 on the second passivation layer 9, the organic layer 10 covering at least the second passivation layer 9 includes:
  • the organic layer 10 covers the second passivation layer 9, and the orthographic projection of the organic layer 10 on the buffer layer 3 and the orthographic projection of the flexible medium layer 6 on the bending area A2 on the buffer layer 3 do not overlap each other; or, as shown in FIG. 7 , the organic layer 10 covers the second passivation layer 9 and also covers the flexible dielectric layer 6 on the bending area A2 .
  • the first method an organic thin film can be formed on the second passivation layer 9 first, and then the organic layer 10 as shown in FIG. 6 can be obtained after patterning.
  • the above-mentioned second preparation method of the organic layer 10 enables the organic layer 10 to effectively support the driving substrate when the substrate 1 in the bending region A2 is peeled off, so as to avoid damage to the driving substrate during the peeling process.
  • the method further includes:
  • Step S910 forming the water-resistant layer 11 as shown in FIG. 6 or FIG. 7;
  • the organic layer 10 covers the second passivation layer 9, and the orthographic projection of the organic layer 10 on the buffer layer 3 is the same as the orthographic projection of the flexible dielectric layer 6 located in the bending area A2 on the buffer layer 3
  • the projections do not overlap each other, so the water-resistant layer 11 covers the flexible medium layer 6 on the bending area A2, and also covers the side of the organic layer 10 close to the bending area A2;
  • the organic layer 10 covers the second passivation layer 9 and also covers the flexible dielectric layer 6 in the bending area A2, then the water barrier layer 11 covers the organic layer 10 in the bending area A2.
  • the water barrier layer 11 is electrically connecting the light emitting device 13 with the third connection electrode 81 and the fourth connection electrode 82; electrically connecting the circuit board 14 with the fifth connection electrode 83; formed after the step of forming the protective layer 12 on the light emitting device 13; or, after electrically connecting the light emitting device 13 to the third connection electrode 81 and the fourth connection electrode 82; electrically connecting the circuit board 14 to the fifth connection electrode 83; and then
  • the protective layer 12 is formed on the light emitting device 13; and it is formed after bending the light emitting device.
  • step S903 forming the first conductive layer includes: simultaneously forming the first connection electrode 41 and the second connection electrode 42 as shown in FIG. 13 .
  • Step S905 forming the second conductive layer, including: simultaneously forming the third connection electrode 81, the fourth connection electrode 82 and the fifth connection electrode 83 as shown in FIG. 16; wherein, the third connection electrode 81 and the first connection electrode 41 The fifth connection electrode 83 is electrically connected to the second connection electrode 42 .
  • the method further includes:
  • Step S912 electrically connect the circuit board 14 to the fifth electrode 83 ; wherein, the circuit board 14 is located in the bonding area A3.
  • step S912 electrically connect the circuit board 14 to the fifth electrode 83; then proceed to step S911, electrically connect the light emitting device 13 to the third connection electrode 81 and the fourth connection electrode 82.
  • step S911 electrically connect the light emitting device 13 to the third connection electrode 81 and the fourth connection electrode 82. The details are determined according to the actual situation.
  • the drive substrate provided in the embodiment of the present application constitutes a part of the control circuit through the first connection electrode 41, the third connection electrode 81 and the fourth connection electrode 82 provided in the device installation area A1, and is used to supply power to the light emitting device 13. signal to control the on and off of the light-emitting device 13; through the second connection electrode 42 and the fifth connection electrode 83, a part of the drive circuit is formed to be electrically connected to the control circuit and provide the drive signal to the control circuit.
  • the method further includes:
  • a protective layer 12 is formed on the light emitting devices 13 ; the protective layer 12 covers each light emitting device 13 and the area between two adjacent light emitting devices 13 .
  • the above protective layer 12 can be formed after the light emitting device 13 and the circuit board 14 are bonded and before the substrate 1 in the bending area A2 is removed; or, it can also be formed after the substrate 1 in the bending area A2 is removed. , and formed after the light emitting device is bent.
  • the protective layer 12 may include a first sublayer and a second sublayer, wherein the second sublayer is located on the side of the first sublayer away from the light-emitting device, and the first sublayer is white glue for protecting The light emitting device 13; the second sub-layer is black glue, which is used to prevent the light emitted by each light emitting device 13 from cross-coloring.
  • the protective layer 12 may only include one sub-layer, that is, only include black glue, and cover the light-emitting device 13 and the area between two adjacent light-emitting devices 13 through the black glue, so as to protect the light-emitting device 13 and prevent crosstalk.
  • the role of color is, only include black glue, and cover the light-emitting device 13 and the area between two adjacent light-emitting devices 13 through the black glue, so as to protect the light-emitting device 13 and prevent crosstalk. The role of color.
  • the method further includes:
  • the substrate 1 in the bonding area A3 is away from the surface of the flexible medium layer 6, the substrate 1 in the device setting area A1 is away from the surface of the flexible medium layer 6, and the buffer layer 3 in the bending area A2 is away from the surface of the flexible medium.
  • An adhesive layer 15 is formed on the surface of the layer 6 and on the side of the substrate 1 parallel to the direction perpendicular to the flexible medium layer 6 and close to the bending area A2;
  • the bending area A2 is bent so that the surface of the substrate 1 in the binding area A3 away from the flexible dielectric layer 6 is fixed together with the surface of the substrate 1 in the device setting area A1 away from the flexible dielectric layer 6 .
  • the substrate 1 in the binding area A3 is kept away from the flexible medium.
  • the surface of the layer 6 is fixed with the surface of the substrate 1 in the device installation area A1 away from the flexible medium layer 6 , and then the driving substrate is subjected to light treatment or heat treatment to cure the adhesive layer 15 .
  • first conductive layer 4 includes a first connection electrode 41 and a second connection electrode 42;
  • the thickness L1 on the second connection electrode 42 will be significantly lower than the coating thickness L2, so as to change the direction to reduce the thickness of the film layer in the bending area A2 during the subsequent bending, thereby reducing the strain of the film layer and improving the failure problem of the film layer caused by strain.
  • PI polyimide material
  • the second conductive layer includes a third connection electrode 81, a fourth connection electrode 82, and a fifth connection electrode 83;
  • the second passivation layer 9 covers the second conductive layer, and also covers the first passivation layer 7 of the device setting area A1 and the binding area A3;
  • the substrate 1 can be cut along the junction of the device setting area A1 and the bending area A2, and the junction of the binding area A3 and the bending area A2, and then The substrate in the bending area is removed by mechanical peeling. At this time, the sacrificial layer 2 in the bending area A2 is removed together with the substrate 1. Of course, it can also be removed by laser lift-off, which is not limited here.
  • the light-emitting device of the present application has a relatively small bending margin (R). Therefore, the filling thickness of the above-mentioned adhesive layer 15 is relatively thin, and the process can control its thickness. Thickness uniformity is greatly improved.
  • the material of the water barrier layer 11 can be SiNx material, and the thickness range is 2000A-4000A; or, the water barrier layer 11 includes two sub-layers, and the two sub-layers
  • the materials used are SiNx and organic OC materials to further protect them. It should be noted that if the water-blocking layer 11 includes two sublayers, and the materials of the two sublayers are SiNx and organic OC material respectively, then the sublayer made of SiNx is located between the sublayer made of organic OC material and the flexible dielectric layer 6. between.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请提供了一种驱动基板、发光装置及其制备方法、拼接显示装置,涉及显示技术领域,驱动基板包括:器件设置区、弯折区和绑定区,弯折区位于器件设置区和绑定区之间;器件设置区、弯折区和绑定区的驱动基板均包括依次层叠设置的缓冲层、第一导电层和柔性介质层;其中,器件设置区和绑定区的驱动基板还包括设置在缓冲层背离第一导电层一侧的衬底,以及设置在柔性介质层背离第一导电层一侧的第二导电层;弯折区的驱动基板被配置为能沿弯折轴弯折。该驱动基板制备的发光装置的边框较窄,产品质量高、显示效果好。

Description

驱动基板、发光装置及其制备方法、拼接显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种驱动基板、发光装置及其制备方法、拼接显示装置。
背景技术
随着显示技术的快速发展,Mini LED(Mini Light Emitting Diode,次毫米发光二极管)和Micro LED(Micro Light Emitting Diode,微发光二极管)的显示产品引起人们广泛的关注。Micro/mini LED显示产品的优势之一在于其能够实现大面积拼接,即用多个驱动基板进行拼接,从而获得超大尺寸的显示产品。
发明内容
本申请的实施例提供了一种驱动基板、发光装置及其制备方法、拼接显示装置,该驱动基板制备的发光装置的边框较窄,显示效果好。
本申请的实施例采用如下技术方案:
一方面,提供了一种驱动基板,包括:器件设置区、弯折区和绑定区,所述弯折区位于所述器件设置区和所述绑定区之间;
所述器件设置区、所述弯折区和所述绑定区的所述驱动基板均包括依次层叠设置的缓冲层、第一导电层和柔性介质层;
其中,所述器件设置区和所述绑定区的所述驱动基板还包括设置在所述缓冲层背离所述第一导电层一侧的衬底,以及设置在所述柔性介质层背离所述第一导电层一侧的第二导电层;
所述弯折区的所述驱动基板被配置为能沿弯折轴弯折。
可选地,所述驱动基板还包括第一钝化层,所述第一钝化层覆盖所述器件设置区和所述绑定区的所述柔性介质层。
可选地,所述驱动基板还包括第二钝化层,所述第二钝化层覆盖所述第二导电层,且所述第二钝化层在所述缓冲层上的正投影与所述弯折区的所述柔性介质层在所述缓冲层上的正投影互不交叠。
可选地,所述驱动基板还包括有机层,所述有机层覆盖所述第二钝化层, 且所述有机层在所述缓冲层上的正投影与所述弯折区的所述柔性介质层在所述缓冲层上的正投影互不交叠。
可选地,所述驱动基板还包括有机层,所述有机层覆盖所述第二钝化层、且还覆盖所述弯折区的所述柔性介质层。
可选地,在所述弯折区处于非弯折状态下,所述器件设置区的所述衬底远离所述柔性介质层的表面与所述绑定区的所述衬底远离所述柔性介质层的表面位于同一平面内;
在所述弯折区处于弯折状态下,所述绑定区的所述衬底远离所述柔性介质层的表面与所述器件设置区的所述衬底远离所述柔性介质层的表面固定在一起。
可选地,在所述弯折区处于弯折状态下,所述绑定区的所述衬底远离所述柔性介质层的表面与所述器件设置区的所述衬底远离所述柔性介质层的表面之间设置有粘结层,所述粘结层还延伸至所述弯折区的所述缓冲层远离所述柔性介质层的表面处。
可选地,所述柔性介质层的材料包括聚酰亚胺。
可选地,所述柔性介质层的厚度范围为3um-6um。
可选地,所述驱动基板还包括牺牲层和第三钝化层,所述牺牲层位于所述衬底和所述缓冲层之间,所述第三钝化层位于所述第一导电层和所述柔性介质层之间。
可选地,所述第一导电层包括第一连接电极和第二连接电极,所述第一连接电极在所述缓冲层上的正投影与位于所述器件设置区的所述第二导电层在所述缓冲层上的正投影部分交叠;所述第二连接电极位于所述弯折区、且所述第二连接电极的两端分别延伸至所述器件设置区和所述绑定区。
可选地,所述第二导电层包括第三连接电极、第四连接电极和第五连接电极;所述第三连接电极和所述第四连接电极均位于所述器件设置区,所述第五连接电极位于所述绑定区;
其中,所述第三连接电极和所述第一连接电极电连接,所述第五连接电极和所述第二连接电极电连接。
可选地,所述柔性介质层具有沿垂直于所述衬底方向上的第一过孔和第 二过孔,所述第一过孔暴露出所述第一连接电极的部分区域,所述第二过孔暴露出所述第二连接电极位于所述绑定区的一端的部分区域;
其中,所述第三连接电极通过所述第一过孔和所述第一连接电极电连接,所述第五连接电极通过所述第二过孔和所述第二连接电极电连接。
另一方面,本申请还提供了一种发光装置,包括:发光器件、电路板以及如前文所述的驱动基板,所述发光器件分别与所述器件设置区的第三连接电极和第四连接电极电连接,所述电路板与所述绑定区的所述第五连接电极电连接。
可选地,所述发光装置还包括设置在所述发光器件远离所述衬底一侧的保护层,所述保护层覆盖每个所述发光器件以及相邻两个所述发光器件之间的区域。
又一方面,本申请还提供了一种拼接显示装置,包括:多端口转发器、至少一个供电设备、第一框体、第二框体以及至少两个如上所述的发光装置;
每个所述发光装置的出光面均位于同一平面、且每个所述发光装置均与所述第一框体固定,所述第一框体与所述第二框体固定,且所述第二框体位于所述第一框体远离所述发光装置的一侧,所述多端口转发器和所述供电设备均与所述第二框体固定;
其中,所述多端口转发器和所述供电设备电连接,每个所述发光装置的电路板分别与所述多端口转发器电连接。
再一方面,还提供了一种发光装置的制备方法,其中,该方法包括:
提供衬底;所述衬底被划分为器件设置区、弯折区和绑定区,所述弯折区位于所述器件设置区和所述绑定区之间;
形成缓冲层;
形成第一导电层;所述缓冲层位于所述衬底与所述第一导电层之间;
形成柔性介质层;所述柔性介质层位于所述第一导电层远离所述衬底的一侧;
形成第二导电层;所述第二导电层位于所述柔性介质层远离所述衬底的一侧,且所述第二导电层在所述衬底上的正投影区域与所述弯折区上的所述柔性介质层在所述衬底上的正投影互不交叠;
去除所述弯折区的所述衬底。
可选地,在所述形成柔性介质层之后、且在所述形成第二导电层之前,所述方法还包括:
在所述器件设置区和所述绑定区上的所述柔性介质层上形成第一钝化层。
可选地,在所述形成第二导电层之后,且在所述去除所述弯折区的所述衬底之前,所述方法还包括:
在所述第二导电层上形成第二钝化层;所述第二钝化层覆盖所述第二导电层,且所述第二钝化层在所述缓冲层上的正投影与位于所述弯折区的所述柔性介质层在所述缓冲层上的正投影互不交叠;
在所述第二钝化层上形成有机层;所述有机层至少覆盖所述第二钝化层。
可选地,所述在所述第二钝化层上形成有机层,所述有机层至少覆盖所述第二钝化层包括:
在所述第二钝化层上形成有机薄膜;
对所述有机薄膜进行图案化处理,得到所述有机层;
其中,所述有机层覆盖所述第二钝化层,且所述有机层在所述缓冲层上的正投影与所述弯折区上的所述柔性介质层在所述缓冲层上的正投影互不交叠;或者,所述有机层覆盖所述第二钝化层,且还覆盖所述弯折区上的所述柔性介质层。
可选地,所述去除所述弯折区的所述衬底之后,所述方法还包括:
形成隔水层;
其中,若所述有机层覆盖所述第二钝化层,且所述有机层在所述缓冲层上的正投影与位于所述弯折区的所述柔性介质层在所述缓冲层上的正投影互不交叠,则所述隔水层覆盖所述弯折区上的所述柔性介质层,还覆盖靠近所述弯折区的所述有机层的侧面;
若所述有机层覆盖所述第二钝化层,且还覆盖所述弯折区的所述柔性介质层,则所述隔水层覆盖所述有机层。
可选地,所述形成第一导电层,包括:
同时形成第一连接电极和第二连接电极;
所述形成第二导电层,包括:
同时形成第三连接电极、第四连接电极和第五连接电极;其中,所述第三连接电极和所述第一连接电极电连接,所述第五连接电极和所述第二连接电极电连接。
可选地,所述形成第二导电层之后、且在所述去除所述弯折区的所述衬底之前,所述方法还包括:
将发光器件与所述第三连接电极和所述第四连接电极电连接;其中,所述发光器件位于所述器件设置区;
将电路板与所述第五电极电连接;其中,所述电路板位于所述绑定区。
可选地,在所述将电路板与所述第五电极电连接之后、且在所述去除所述弯折区的所述衬底之前,所述方法还包括:
在所述发光器件上形成保护层;所述保护层覆盖每个所述发光器件以及相邻两个所述发光器件之间的区域。
可选地,在所述去除所述弯折区的所述衬底之后,所述方法还包括:
在所述绑定区的所述衬底远离所述柔性介质层的表面、所述器件设置区的所述衬底远离所述柔性介质层的表面、所述弯折区的所述缓冲层远离所述柔性介质层的表面、与垂直于所述柔性介质层的方向平行且靠近所述弯折区的所述衬底的侧面上均形成粘结层;
将所述弯折区弯折,使得所述绑定区的所述衬底远离所述柔性介质层的表面与所述器件设置区的所述衬底远离所述柔性介质层的表面固定在一起。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a示意性地示出了一种相关技术中的发光装置的边框结构示意图;
图1b示意性地示出了一种相关技术中的一种像素尺寸计算示意图;
图2示意性地示出了一种相关技术中的驱动基板的结构示意图;
图3示意性地示出了另一种相关技术中的驱动基板的结构示意图;
图4示意性地示出了一种本申请的驱动基板的结构示意图;
图5示意性地示出了又一种本申请的驱动基板的结构示意图;
图6示意性地示出了一种本申请的发光装置的结构示意图;
图7示意性地示出了又一种本申请的发光装置的结构示意图;
图8示意性地示出了图6的发光装置在弯折区处于弯折状态下的结构示意图;
图9示意性地示出了图7的发光装置在弯折区处于弯折状态下的结构示意图;
图10示意性地示出了一种本申请的拼接显示装置的结构示意图;
图11示意性地示出了一种本申请的发光装置的制备方法流程图;以及
图12-17示意性地示出了一种本申请的发光装置的制备过程中间结构示意图。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的实施例中,采用“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,仅为了清楚描述本申请实施例的技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。另外,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
Micro/mini-LED技术是通过巨量转移技术,将微米量级的Micro/mini-LED转移到驱动基板上,从而形成各种不同尺寸的Micro/mini-LED显示装置。Micro/mini LED显示装置的一大优势在于可以实现拼接,即用一定数量的小尺寸显示装置来实现超大尺寸的显示。不过,消 除拼接缝一直是拼接工艺的一大难题,为此,窄边框的显示产品是人们关注的热点。
参考图1a所示,显示装置的单侧边框主要由三部分构成:①在切割弯折区的玻璃衬底310时产生的切割公差X,②弯折区中各膜层的厚度T,③弯折时各膜层产生的弯折边距R,即单侧边框宽度=X+T+R。切割公差X由切割工艺决定,弯折区中各膜层的厚度T由膜层设计决定,弯折边距R由弯折区中各膜层的柔韧性决定。当前的驱动基板,其切割公差X=10um,弯折边距R=50um,弯折区中各膜层的厚度T=14um,另外,以图2所示的结构为例,在弯折区的驱动基板弯折后,绑定区D3的衬底101与器件设置区D1的衬底101之间还需要填充保护胶进行固定,通常,保护胶的填充厚度有10um的误差,因此,当前的驱动基板的单侧边框宽度=10um*2+50um+14um+10um=94um。若两个显示装置进行拼接,则两个显示装置之间的拼缝至少为94*2=188um;此时,若Micro/mini-LED显示装置的像素单元(Pixel Pitch)尺寸与该拼缝尺寸不匹配,会严重降低显示效果;目前,选择如图1b中所示的芯片的尺寸为100um*145um的单色Mini LED,通过芯片间距为75um/190um的固晶工艺形成的像素来与当前这种水平的拼缝宽度来进行匹配,即像素单元的尺寸为0.525*0.525mm。也就是说,若想进一步降低像素单元的尺寸,提高分辨率,需要有更小的拼缝宽度来匹配,以提高显示效果。
根据上述单侧边框宽度的计算方法,为了减小单侧边框宽度,可以通过结构设计的变化来降低各膜层的厚度T以及弯折边距R。相关技术中通过如图1和如图2中所示的两种驱动基板来减小单侧边框宽度,具体如下文。
参考图2所示,相关技术中的第一种驱动基板包括器件设置区D1、绑定区D3,以及位于器件设置区D1和绑定区D3之间的弯折区D2;弯折区D2的驱动基板包括依次层叠设置的柔性衬底103、缓冲层(Buffer)104、第一导电层105、第一钝化层106、第一有机层107和第二有机层112;器件设置区D1和绑定区D3的驱动基板包括依次层叠设置的刚性衬底101、光罩的对位标记102、柔性衬底103、缓冲层104、第一导电层105、第一钝化层106、第一有机层107、第二钝化层108、第二导电层109、ITO层110、第三钝化层111和第二有机层112。
参考图3所示,相关技术中的第二种驱动基板包括器件设置区E1、绑定区E3,以及位于器件设置区E1和绑定区E3之间的弯折区E2;器件设置区E1和绑定区E3的驱动基板包括依次层叠设置的刚性衬底201、牺牲层202、第一缓冲层203、搭接电极层204、柔性有机材料层205、第二缓冲层206、第一导电层207、平坦层208、第一导电层209和第三缓冲层210;弯折区E2的驱动基板包括依次层叠设置的第一缓冲层203、搭接电极层204、柔性有机材料层205和第二缓冲层206。
表1:相关技术中驱动基板的弯折区中各膜层的应变模拟值
Figure PCTCN2021102512-appb-000001
其中,相关技术中第一种驱动基板弯折区的各膜层的具体情况如下:
柔性衬底103的材料为聚酰亚胺,厚度为6.0um;缓冲层104的材料为SiNx,厚度为01.um、第一导电层105的材料为铜,厚度为2um;第一钝化层106的材料为SiNx,厚度为01.um;第一有机层107和第二有机层112的材料均为树脂,第一有机层107和第二有机层112的材料的总厚度为4.5um。
相关技术中第二种驱动基板弯折区的各膜层的具体情况如下:
第一缓冲层203的材料为SiNx,厚度为01.um;搭接电极层204的材料为铜,厚度为0.7um;柔性有机材料层205的材料为聚酰亚胺,厚度为6.0um;第二缓冲层206的材料为SiNx,厚度为01.um。
然而,根据表1中各膜层的应变数据可知,相关技术中两种驱动基板的弯折区的各膜层仍存在不同程度的拉应变,该拉应变会导致其对应的膜层产生裂纹甚至失效,进而降低驱动基板的使用寿命。需要说明的是,表1中的压应变在驱动基板可允许承受的应变范围内。
σ∝ε      公式(1)
σ=E*y/R      公式(2)
另外,根据弯折应变计算公式可知,在公式(1)中,应变ε和应力σ成正比;在公式(2)中,应力σ等于材料的杨氏模量E乘以弯折区总膜层厚度的一半y,再除以弯折边距R。在弯折边距R减小的情况下,表1中相关技术中的两种驱动基板的外层无机层的应变必然会进一步增大,进而加速各膜层的失效。
基于此,本申请提供了一种驱动基板,参考图4所示,包括:器件设置区A1、弯折区A2和绑定区A3,弯折区A2位于器件设置区A1和绑定区A3之间;器件设置区A1、弯折区A2和绑定区A3的驱动基板均包括依次层叠设置的缓冲层3、第一导电层和柔性介质层6;
其中,器件设置区A1和绑定区A3的驱动基板还包括设置在缓冲层3背离第一导电层一侧的衬底1,以及设置在柔性介质层6背离第一导电层一侧的第二导电层;弯折区A2的驱动基板被配置为能沿弯折轴弯折。
上述器件设置区A1是指用于设置发光器件的区域,上述绑定区A3是指用于绑定电路板的区域,通过在驱动基板上设置发光器件和电路板之后,形成发光装置。
上述衬底1可以是柔性衬底,或者,也可以是刚性衬底。本申请的实施例以上述衬底1为刚性衬底为例进行说明,具体的,该刚性衬底为玻璃。
这里对于上述缓冲层3的具体材料不做限定。示例的,上述缓冲层3的材料可以为有机材料,或者,也可以为无机材料。
在本申请提供的实施例中,上述缓冲层3的材料为氮化硅、氧化硅或氮氧化硅,其厚度范围为500A-1000A,用来阻挡水汽进入驱动基板内部;上述第一导电层和第二导电层的材料均为铜、钼、钛或铝中的至少一种,例如,第一导电层和第二导电层的材料均为铜,其厚度范围均为1um-2um;上述柔性介质层6的材料为聚酰亚胺(PI),其厚度范围为3um-6um,由于聚酰亚胺材料具有绝缘性和一定程度的柔韧性,柔性介质层6一方面作为第一导电层和第二导电层的介质层,另一方面还作为弯折区中各膜层的支撑层。
需要说明的是,上述弯折轴并不是驱动基板中存在的实际结构,只是为 了说明驱动基板的弯折过程提出的概念。
另外,这里对于上述驱动基板的弯折方向也不做限定。示例的,其弯折方向可以为如图4中所示的OA方向,或者,可以是AO方向。其具体弯折方向可以根据实际情况确定。在本申请提供的实施例以上述驱动基板沿OA方向弯折为例进行说明。
在本申请提供的实施例中,由于弯折区A2的驱动基板包括缓冲层3、第一导电层和柔性介质层6,在弯折区A2的驱动基板沿弯折轴弯折时,弯折区A2中各膜层的总厚度较小且各膜层柔韧性较好,能够很大程度上降低弯折边距R,进而降低单侧边框宽度;另外,缓冲层3、第一导电层和柔性介质层6受到的弯曲应力均较小,还能改善在弯折时由于弯折应力造成各膜层的失效问题。
参考图4所示,驱动基板还包括第一钝化层7,第一钝化层7覆盖器件设置区A1和绑定区A3的柔性介质层6。
参考图4所示,驱动基板还包括第二钝化层9,第二钝化层9覆盖第二导电层,且第二钝化层9在缓冲层3上的正投影与弯折区A2的柔性介质层6在缓冲层3上的正投影互不交叠。
由于上述柔性介质层6通常采用有机材料制作,有机材料的隔水氧效果较低,通过在柔性介质层6与第二导电层之间设置第一钝化层7,在第二导电层上设置第二钝化层9,由于第一钝化层7和第二钝化层9均采用无机材料制作,能够很大程度上提高驱动基板的阻隔水氧的效果。进一步的,为了不增加驱动基板弯折区中的总膜层厚度,第一钝化层7只覆盖器件设置区A1和绑定区A3的柔性介质层6,不覆盖弯折区A2的柔性介质层6;且第二钝化层9覆盖第二导电层,不覆盖弯折区A2的柔性介质层6。
需要说明的是,上述第二钝化层9除覆盖第二导电层之外,还覆盖器件设置区A1和绑定区A3中未设置第二导电层的区域。
可选地,参考图4所示,驱动基板还包括有机层10,有机层10覆盖第二钝化层9,且有机层10在缓冲层3上的正投影与弯折区A2的柔性介质层6在缓冲层3上的正投影互不交叠。
表2:本申请驱动基板的弯折区中各膜层的应变模拟结果
Figure PCTCN2021102512-appb-000002
还需要进行说明的是,本申请的实施例以缓冲层3的材料为氮化硅,厚度为0.1um;第一导电层的材料为铜,厚度为2um;第三钝化层5的材料为氮化硅,厚度为0.1um;柔性介质层6的材料为聚酰亚胺(PI),厚度为3.0um为例进行说明。参考图4所示,第三钝化层5位于第一导电层和柔性介质层6之间。在本申请提供的实施例中,上述柔性介质层的厚度范围为3um-6um。
如表2中所示,弯折区A2中的膜层依次为缓冲层SiNx、第一导电层Cu、第三钝化层SiNx和柔性介质层PI,此时,弯折区A2中各膜层的总厚度为H3=5.2um;且在这种情况下,根据前文的单侧边框宽度计算公式,其单侧边框可低达40um,在此结构下通过进一步调整制备工艺,其单侧边框宽度甚至可以更小。
需要说明的是,表2中的压应变在驱动基板可允许承受的应变范围内。本申请中应变造成的膜层失效主要是指拉应变造成膜层失效。且表1和表2中应变的模拟结果均是在驱动基板沿如图4中所示的OA方向进行弯折时模拟计算得到的。
图4所示的驱动基板中,弯折区A2的有机层10被去除,降低了弯折区A2的膜层的总厚度,从而降低弯折边距R,进而能够降低单侧边框宽度;另外,在弯折区A2的驱动基板进行弯折时,降低了弯折区A2的应变,从而降低了弯折区A2中各膜层失效的概率,进而延长驱动基板的使用寿命。
参考图5所示,驱动基板还包括有机层10,有机层10覆盖第二钝化层9、且还覆盖弯折区A2的柔性介质层6。
图5所示的驱动基板中,弯折区A2的有机层10保留,这样,在制作驱动基板的过程中,在去除弯折区A2的衬底1时,弯折区A2的有机层10对 弯折区A2的柔性介质层6起到强有力的支撑作用,避免采用机械法剥离衬底1时对驱动基板的损坏。
可选地,参考图4或图5所示,在弯折区A2处于非弯折状态下,器件设置区A1的衬底1远离柔性介质层6的表面与绑定区A3的衬底1远离柔性介质层6的表面位于同一平面内;
参考图8或图9所示,在弯折区A2处于弯折状态下,绑定区A3的衬底1远离柔性介质层6的表面与器件设置区A1的衬底1远离柔性介质层6的表面固定在一起。
需要说明的是,在弯折区的驱动基板沿如图4中所示的OA方向弯折后,绑定区A3的衬底1远离柔性介质层6的表面与器件设置区A1的衬底1远离柔性介质层6的表面固定在一起。本申请未绘制处于弯折状态下的驱动基板,为了说明弯折后的驱动基板的结构,以图8和图9所示的由驱动基板构成的发光装置弯折之后的结构进行说明。
可选地,参考图8或图9所示,在弯折区A2处于弯折状态下,绑定区A3的衬底1远离柔性介质层6的表面与器件设置区A1的衬底1远离柔性介质层6的表面之间设置有粘结层15,粘结层15还延伸至弯折区A2的缓冲层3远离柔性介质层6的表面处。
需要说明的是,本申请未绘制处于弯折状态下的驱动基板,为了说明粘结层在弯折后的驱动基板中的具体位置,以图8和图9所示的由驱动基板构成的发光装置弯折之后的结构进行说明。
上述粘结层15采用固化胶制作,例如,光固化胶或者热固化胶。上述粘结层15的厚度范围为5um-15um之间,例如,5um、8um、10um或者15um。
在实际制作过程中,在去除弯折区A2的衬底1之后,参考图4所示,在绑定区A3的衬底1远离柔性介质层6的表面,在器件设置区A1的衬底1远离柔性介质层6的表面,在弯折区A2的缓冲层3远离柔性介质层6的表面,以及在与垂直于柔性介质层6的方向平行且靠近弯折区A2的衬底1的侧面上,均涂覆一层粘结层15,再将弯折区A2的驱动基板沿图4中所示的OA方向弯折后,使得绑定区A3的衬底1远离柔性介质层6的表面与器件设置区A1的衬底1远离柔性介质层6的表面固定在一起,再对驱动基板进 行光照处理或者热处理,使粘结层15固化。
可选地,参考图4所示,驱动基板还包括牺牲层2和第三钝化层5,牺牲层2位于衬底1和缓冲层3之间,第三钝化层5位于第一导电层和柔性介质层6之间。
上述牺牲层2又称作DBL层(De-Bonding Layer,机械剥离层),采用聚酰亚胺制作,且其厚度范围为300-1000A,例如300A、500A或800A。实际制作过程中,在去除弯折区A2的衬底1时,弯折区A2的牺牲层2与弯折区A2的衬底1同时被剥离,通过设置牺牲层2,可以在去除衬底1时保护驱动基板不被损坏。
上述第三钝化层5位于第一导电层和柔性介质层6之间,且第三钝化层5覆盖第一导电层,在实际应用中,由于柔性介质层6(聚酰亚胺)采用高温固化,例如350℃,为了避免第一导电层在高温时被氧化,在第一导电层和柔性介质层6之间设置第三钝化层5,以对第一导电层起到保护作用。
可选地,参考图4或图5所示,第一导电层包括第一连接电极41和第二连接电极42,第一连接电极41在缓冲层3上的正投影与位于器件设置区A1的第二导电层在缓冲层3上的正投影部分交叠;第二连接电极42位于弯折区A2、且第二连接电极42的两端分别延伸至器件设置区A1和绑定区A2;
第二导电层包括第三连接电极81、第四连接电极82和第五连接电极83;第三连接电极81和第四连接电极82均位于器件设置区A1,第五连接电极83位于绑定区A3;
其中,第三连接电极81和第一连接电极41电连接,第五连接电极83和第二连接电极42电连接。
本申请的实施例提供的驱动基板,通过器件设置区A1中设置的第一连接电极41、第三连接电极81和第四连接电极82,构成部分的控制电路,用于向发光器件提供电信号,以控制发光器件13的开启和关闭;通过第二连接电极42和第五连接电极83,形成部分的驱动电路,以和控制电路电连接,并向控制电路提供驱动信号。
需要说明的是,上述控制电路和驱动电路中包括的其它结构可以参考相关技术,这里不再赘述。
具体的,参考图4或图5所示,柔性介质层6具有沿垂直于衬底1方向上的第一过孔和第二过孔,第一过孔暴露出第一连接电极41的部分区域,第二过孔暴露出第二连接电极42位于绑定区A3的一端的部分区域;
其中,第三连接电极81通过第一过孔和第一连接电极41电连接,第五连接电极83通过第二过孔和第二连接电极42电连接。
本申请的实施例提供了具有第一过孔和第二过孔的柔性介质层6,在实际应用中,第三连接电极81和第一连接电极41还可以通过其它介质或结构电连接,第五连接电极83和第二连接电极42也还可以通过其它介质或结构电连接,具体可以参考相关技术,这里不做进一步说明。
另外,参考图4或图5所示,有机层10具有沿垂直于衬底1方向上的第三过孔、第四过孔和第五过孔,第三过孔暴露出第三连接电极81的部分区域,第四过孔暴露出第四连接电极82的部分区域,第五过孔暴露出第五连接电极83的部分区域。
当然,上述驱动基板还包括其它膜层结构和部件,这里仅介绍与本申请发明点相关的膜层结构和部件,上述驱动基板包括的其它膜层结构和部件可以参考相关技术的介绍,这里不再赘述。
另一方面,本申请的实施例还提供了一种发光装置,参考图6或图7所示,包括:发光器件13、电路板14以及如前文提到的驱动基板,发光器件13的两个引脚分别与器件设置区A1的第三连接电极81和第四连接电极82电通过焊接材料S(例如焊锡)连接,电路板14与绑定区A3的第五连接电极83通过异方性导电胶电连接。
上述发光器件可以为微LED,例如:Mini LED或Micro LED。上述电路板可以为柔性电路板(FPC)。
可选地,参考图6或图7所示,发光装置还包括设置在发光器件13远离衬底1一侧的保护层12,保护层12覆盖每个发光器件13以及相邻两个发光器件13之间的区域。
进一步的,上述保护层还可以覆盖器件设置区的有机层。在实际应用中,上述保护层可以包括第一子层和第二子层,其中,第二子层位于第一子层远离发光器件的一侧,第二子层为白胶或透明胶材料,用来保护发光器件;第 一子层为深色(如黑色/墨绿/深蓝等)胶材,设置在相邻发光器件之间,用来防止各个发光器件发出的光线串色。
或者,上述保护层也可以只包括一个子层,即只包括黑胶,通过黑胶覆盖发光器件及相邻两个发光器件之间的区域,同时起到保护发光器件和防止串色的作用,这种情况下,覆盖在发光器件出光表面的黑胶的厚度应以不影响发光器件的光效为准。
进一步的,发光装置还包括隔水层11。
参考图6所示,若有机层10覆盖第二钝化层9,且有机层10在缓冲层3上的正投影与位于弯折区A2的柔性介质层6在缓冲层3上的正投影互不交叠,则隔水层11覆盖弯折区A2上的柔性介质层6,还覆盖靠近弯折区A2的有机层10的侧面;
参考图7所示,若有机层10覆盖第二钝化层9,且还覆盖弯折区A2的柔性介质层6,则隔水层11覆盖弯折区A2的有机层10。
由于柔性介质层6通常采用聚酰亚胺制作,其隔水性能较差,通过在弯折区A2的柔性介质层6上覆盖隔水层11,以对柔性介质层6起到保护作用,进而提高驱动基板的品质。
在实际应用中,根据发光器件13设置种类的不同,上述发光装置可以用作背光装置,或者,也可以用作显示装置。具体的,若发光装置中的多个发光器件13均为发蓝光的发光器件,则上述发光装置可以用作背光装置;若发光装置中的多个发光器件13同时包括发红光、发绿光和发蓝光的三种发光器件,则上述发光装置可以用作显示装置。
在本申请提供的实施例中,由于发光装置中弯折区A2的驱动基板包括缓冲层3、第一导电层和柔性介质层6,在弯折区A2沿弯折轴弯折时,弯折区A2中各膜层的总厚度较小且各膜层柔韧性较好,能够很大程度上降低弯折边距R,进而降低单侧边框宽度;另外,缓冲层3、第一导电层和柔性介质层6受到的弯曲应力均较小,还能改善在弯折时由于弯折应力造成各膜层的失效问题。
又一方面,本申请的实施例还提供了一种拼接显示装置,参考图10所示,包括:多端口转发器(Hub)304、至少一个供电设备303、第一框体301、 第二框体302以及至少两个如上的发光装置300;
每个发光装置300的出光面均位于同一平面、且每个发光装置300均与第一框体301固定,第一框体301与第二框体302固定,且第二框体302位于第一框体301远离发光装置300的一侧,多端口转发器304和供电设备303均与第二框体302固定;
其中,多端口转发器304和供电设备303电连接,每个发光装置300的电路板14分别与多端口转发器302电连接。
上述供电设备的数量可以与发光装置的数量一一对应,也可以多个发光装置共用一个供电设备,具体可以根据情况确定。
再一方面,本申请还提供了一种发光装置的制备方法,其中,参考图11所示,该方法包括:
S901、提供如图12所示的衬底1;衬底1被划分为器件设置区A1、弯折区A2和绑定区A3,弯折区A2位于器件设置区A1和绑定区A3之间;
上述衬底可以是柔性衬底,或者,也可以是刚性衬底。本申请的实施例以上述衬底为刚性衬底为例进行说明,具体的,该刚性衬底为玻璃。
S902、形成缓冲层3;
在本申请提供的实施例中,上述缓冲层的材料为氮化硅、氧化硅或氮氧化硅,其厚度范围为500A-1000A,用来阻挡水汽进入驱动基板内部。上述缓冲层采用CVD(Chemical Vapor Deposition,化学气相沉积)法形成。
S903、形成如图13中的第一导电层4;其中,缓冲层3位于衬底1和第一导电层4之间;
S904、形成如图14所示的柔性介质层6;柔性介质层6位于第一导电层4远离衬底1的一侧;
上述柔性介质层的材料为聚酰亚胺(PI),其厚度范围为3um-6um,由于聚酰亚胺材料具有绝缘性和一定程度的柔韧性,柔性介质层一方面作为第一导电层和第二导电层的介质层,另一方面还作为弯折区中各膜层的支撑层。
S905、形成如图16所示的第二导电层;其中,第二导电层位于柔性介质层6远离衬底1的一侧,且第二导电层在衬底1上的正投影区域与弯折区A2上的柔性介质层6在衬底上的正投影互不交叠;
上述第一导电层和第二导电层的材料均为铜、钼、钛或铝中的至少一种,例如,第一导电层和第二导电层的材料均为铜,其厚度范围均为1um-2um。
S906、去除弯折区A2的衬底1。
在本申请的实施例提供的制备方法出的发光装置,由于该发光装置弯折区包括缓冲层3、第一导电层和柔性介质层6,在弯折区A2的驱动基板沿弯折轴弯折时,弯折区A2中各膜层的总厚度较小且各膜层柔韧性较好,能够很大程度上降低弯折边距R,进而降低单侧边框宽度;另外,缓冲层3、第一导电层和柔性介质层6受到的弯曲应力均较小,还能改善在弯折时由于弯折应力造成各膜层的失效问题。
可选地,在步骤S904、形成柔性介质层6之后、且在步骤S905、形成第二导电层之前,该方法还包括:
S907、参考图15所示,器件设置区A1和绑定区A3上的在柔性介质层6上形成第一钝化层7。
由于上述柔性介质层6通常采用有机材料制作,有机材料的隔水氧效果较低,通过在柔性介质层6与第二导电层之间设置第一钝化层7,能够很大程度上提高驱动基板的阻隔水氧的效果。进一步的,为了不增加驱动基板弯折区中的总膜层厚度,第一钝化层7只覆盖器件设置区A1和绑定区A3的柔性介质层6,不覆盖弯折区A2的柔性介质层6。
需要说明的是,在形成第一钝化层7时,可以先采用CVD法成膜形成整层的第一钝化层薄膜,再经过图案化处理,形成如图15所示的第一钝化层7;或者,也可以先采用CVD法成膜形成整层的第一钝化层薄膜,再在后续的工艺中,与第二钝化层9同时进行图案化处理,具体参考下文中形成第二钝化层的说明。
可选地,在步骤S905、形成第二导电层之后,且在步骤S906、去除弯折区A2的衬底1之前,该方法还包括:
S908、在第二导电层上形成如图7所示的第二钝化层9;第二钝化层9覆盖第二导电层,且第二钝化层9在缓冲层3上的正投影与位于弯折区A2的柔性介质层6在缓冲层3上的正投影互不交叠;
若在形成第二钝化层9之前,已经形成第一钝化层7,则形成第二钝化 层9的过程具体如下:
先采用CVD法成膜形成整层的第二钝化层薄膜,对第二钝化层薄膜进行图案化处理,形成第二钝化层9。
若在形成第二钝化层9之前,第一钝化层薄膜还未进行图案化处理,则形成第一钝化层7和第二钝化层9的过程具体如下:
先采用CVD法成膜形成整层的第二钝化层薄膜,对第一钝化层薄膜和第二钝化层薄膜同时进行图案化处理,同时得到第一钝化层7和第二钝化层9。
S909、在第二钝化层9上形成有机层10;如图6所示,有机层10至少覆盖第二钝化层9。
进一步的,步骤S909、在第二钝化层9上形成有机层10,有机层10至少覆盖第二钝化层9包括:
S9091、在第二钝化层9上形成有机薄膜;
S9092、对有机薄膜进行图案化处理,得到有机层10;
其中,参考图6所示,有机层10覆盖第二钝化层9,且有机层10在缓冲层3上的正投影与弯折区A2上的柔性介质层6在缓冲层3上的正投影互不交叠;或者,参考图7所示,有机层10覆盖第二钝化层9,且还覆盖弯折区A2上的柔性介质层6。
需要说明的时,当有机层10为如图6中所示的结构时,在形成有机层10时,有两种制备方法:
第一种:可以先在第二钝化层9上形成有机薄膜,然后紧接着图案化处理得到如图6中所示的有机层10。
第二种:可以先在第二钝化层9上形成有机薄膜,然后在步骤S906、去除弯折区A2的衬底1之后,对有机薄膜进行图案化处理,形成如图6中所示的有机层10。
上述第二种有机层10的制备方法,使得在剥离弯折区A2的衬底1时,有机层10可以对驱动基板起到有效的支撑作用,避免在剥离过程中对驱动基板的损坏。
可选地,步骤S906、去除弯折区A2的衬底1之后,该方法还包括:
步骤S910、形成如图6或图7所示的隔水层11;
其中,参考图6所示,若有机层10覆盖第二钝化层9,且有机层10在缓冲层3上的正投影与位于弯折区A2的柔性介质层6在缓冲层3上的正投影互不交叠,则隔水层11覆盖弯折区A2上的柔性介质层6,还覆盖靠近弯折区A2的有机层10的侧面;
参考图7所示,若有机层10覆盖第二钝化层9,且还覆盖弯折区A2的柔性介质层6,则隔水层11覆盖弯折区A2的有机层10。
需要说明的是,在实际制备过程中,隔水层11是在将发光器件13与第三连接电极81和第四连接电极82电连接;将电路板14与第五连接电极83电连接;在发光器件13上形成保护层12的步骤之后形成的;或者,在将发光器件13与第三连接电极81和第四连接电极82电连接;将电路板14与第五连接电极83电连接;再在发光器件13上形成保护层12;且再将发光装置弯折之后形成的。
上述隔水层11的材料为SiNx,厚度范围为2000-4000A,且隔水层11通常在弯折之后,采用3D sputter设备进行侧边沉积得到的。
可选地,步骤S903、形成第一导电层,包括:同时形成如图13所示的第一连接电极41和第二连接电极42。
步骤S905、形成第二导电层,包括:同时形成如图16所示的第三连接电极81、第四连接电极82和第五连接电极83;其中,第三连接电极81和第一连接电极41电连接,第五连接电极83和第二连接电极42电连接。
可选地,在步骤S905、形成第二导电层之后、且在步骤S906、去除弯折区A2的衬底1之前,该方法还包括:
步骤S911、参考图6或图7所示,将发光器件13与第三连接电极81和第四连接电极82电连接;其中,发光器件13位于器件设置区A1;
步骤S912、参考图6或图7所示,将电路板14与第五电极83电连接;其中,电路板14位于绑定区A3。
需要说明的是,上述过程也可以先进行步骤S912、将电路板14与第五电极83电连接;再进行步骤S911、将发光器件13与第三连接电极81和第四连接电极82电连接。具体根据实际情况确定。
本申请的实施例提供的驱动基板,通过器件设置区A1中设置的第一连接电极41、第三连接电极81和第四连接电极82,构成部分的控制电路,用于向发光器件13提供电信号,以控制发光器件13的开启和关闭;通过第二连接电极42和第五连接电极83,形成部分的驱动电路,以和控制电路电连接,并向控制电路提供驱动信号。
需要说明的是,上述控制电路和驱动电路中包括的其它结构可以参考相关技术,这里不再赘述。
可选地,在步骤S912、将电路板14与第五连接电极83电连接之后、且在步骤S906、去除弯折区A2的衬底1之前,该方法还包括:
在发光器件13上形成保护层12;保护层12覆盖每个发光器件13以及相邻两个发光器件13之间的区域。
需要说明的是,上述保护层12可以在发光器件13和电路板14绑定之后、且在去除弯折区A2的衬底1之前形成;或者,也可以在去除弯折区A2的衬底1、且在发光装置弯折之后形成。
在实际应用中,上述保护层12可以包括第一子层和第二子层,其中,第二子层位于第一子层远离发光器件的一侧,第一子层为白胶,用来保护发光器件13;第二子层为黑胶,用来防止各个发光器件13发出的光线串色。
或者,上述保护层12也可以只包括一个子层,即只包括黑胶,通过黑胶覆盖发光器件13及相邻两个发光器件13之间的区域,同时起到保护发光器件13和防止串色的作用。
可选地,在步骤S906、去除弯折区A2的衬底1之后,该方法还包括:
参考图17所示,在绑定区A3的衬底1远离柔性介质层6的表面、器件设置区A1的衬底1远离柔性介质层6的表面、弯折区A2的缓冲层3远离柔性介质层6的表面、与垂直于柔性介质层6的方向平行且靠近弯折区A2的衬底1的侧面上均形成粘结层15;
将弯折区A2弯折,使得绑定区A3的衬底1远离柔性介质层6的表面与器件设置区A1的衬底1远离柔性介质层6的表面固定在一起。
需要说明的是,在本申请的实施例提供的制备方法中,将弯折区A2的驱动基板沿图4中所示的OA方向弯折后,使得绑定区A3的衬底1远离柔 性介质层6的表面与器件设置区A1的衬底1远离柔性介质层6的表面固定在一起,再对驱动基板进行光照处理或者热处理,使粘结层15固化。
下面以图8所示的发光装置的结构为例,具体说明其制备方法:
S1、提供衬底1;
S2、在衬底1上形成牺牲层2;
S3、在牺牲层2上形成缓冲层3;
S4、在缓冲层3上形成第一导电层4;其中第一导电层4包括第一连接电极41和第二连接电极42;
S5、在第一导电层4上形成第三钝化层5;
S6、在第三钝化层5上形成柔性介质层6;
其中,参考图6所示,由于柔性介质层6采用聚酰亚胺材料(PI)制备,聚酰亚胺的流平性,在第二连接电极42上的厚度L1会显著低于涂布厚度L2,从而变向的降低后续弯折时弯折区A2的膜层厚度,进而降低膜层应变,改善膜层因应变造成的失效问题。
S7、在器件设置区A1和绑定区A3的柔性介质层6上形成第一钝化层7;
S8、在第一钝化层7上形成第二导电层;其中,第二导电层包括第三连接电极81、第四连接电极82和第五连接电极83;
S9、在第二导电层上形成第二钝化层9;第二钝化层9覆盖第二导电层,还覆盖器件设置区A1和绑定区A3的第一钝化层7;
S10、在器件设置区A1和绑定区A3的第二钝化层9上形成有机层10;
S11、将发光器件13转移至驱动基板上,使其与第三连接电极81和第四连接电极82电连接;该过程称作发光器件的绑定(Bonding)。
S12、将电路板14转移至驱动基板上,使其与第五连接电极83电连接;该过程称作电路板的绑定(Bonding)。
S13、在发光器件13上形成保护层12;
S14、去除弯折区A2的衬底1;
由于该发光装置中设置有牺牲层2,故可先沿器件设置区A1和弯折区A2的交界处、以及绑定区A3和弯折区A2的交界处对衬底1进行切割,然后再通过机械剥离的方法去除弯折区的衬底,此时,弯折区A2的牺牲层2 与衬底1一并被去除,当然,还可以采用激光剥离的方式去除,这里不做限定。
S15、在绑定区A3的衬底1远离柔性介质层6的表面、器件设置区A1的衬底1远离柔性介质层6的表面、弯折区A2的缓冲层3远离柔性介质层6的表面、与垂直于柔性介质层6的方向平行且靠近弯折区A2的衬底1的侧面上均形成粘结层15;
根据前文说明可知,本申请的发光装置具有较小的弯折边距(R),因此,上述粘结层15的填充厚度相对较薄,工艺对其厚度的可控性较强,且填充的厚度均一性大大提高。
S16、如图17所示,将弯折区A2弯折,使得绑定区A3的衬底1远离柔性介质层6的表面与器件设置区A1的衬底1远离柔性介质层6的表面固定在一起。
S17、用3D sputter设备进行侧边隔水层11沉积;其中,隔水层11的材料可以为SiNx材料,厚度范围为2000A-4000A;或者,隔水层11包括两个子层,且两个子层的材料分别为SiNx和有机OC材料,来进一步起到保护作用。需要说明的是,若隔水层11包括两个子层,且两个子层的材料分别为SiNx和有机OC材料,则材料为SiNx的子层位于材料为有机OC材料的子层与柔性介质层6之间。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技 术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (25)

  1. 一种驱动基板,其中,包括:
    器件设置区;
    弯折区;
    绑定区;
    其中,所述弯折区位于所述器件设置区和所述绑定区之间;
    所述器件设置区、所述弯折区和所述绑定区的所述驱动基板均包括依次层叠设置的缓冲层、第一导电层和柔性介质层;
    所述器件设置区和所述绑定区的所述驱动基板还包括设置在所述缓冲层背离所述第一导电层一侧的衬底,以及设置在所述柔性介质层背离所述第一导电层一侧的第二导电层;
    所述弯折区的所述驱动基板被配置为能沿弯折轴弯折。
  2. 根据权利要求1所述的驱动基板,其中,所述驱动基板还包括第一钝化层,所述第一钝化层覆盖所述器件设置区和所述绑定区的所述柔性介质层。
  3. 根据权利要求1所述的驱动基板,其中,所述驱动基板还包括第二钝化层,所述第二钝化层覆盖所述第二导电层,且所述第二钝化层在所述缓冲层上的正投影与所述弯折区的所述柔性介质层在所述缓冲层上的正投影互不交叠。
  4. 根据权利要求3所述的驱动基板,其中,所述驱动基板还包括有机层,所述有机层覆盖所述第二钝化层,且所述有机层在所述缓冲层上的正投影与所述弯折区的所述柔性介质层在所述缓冲层上的正投影互不交叠。
  5. 根据权利要求3所述的驱动基板,其中,所述驱动基板还包括有机层,所述有机层覆盖所述第二钝化层、且还覆盖所述弯折区的所述柔性介质层。
  6. 根据权利要求1所述的驱动基板,其中,在所述弯折区处于非弯折状态下,所述器件设置区的所述衬底远离所述柔性介质层的表面与所述绑定区的所述衬底远离所述柔性介质层的表面位于同一平面内;
    在所述弯折区处于弯折状态下,所述绑定区的所述衬底远离所述柔性介 质层的表面与所述器件设置区的所述衬底远离所述柔性介质层的表面固定在一起。
  7. 根据权利要求6所述的驱动基板,其中,在所述弯折区处于弯折状态下,所述绑定区的所述衬底远离所述柔性介质层的表面与所述器件设置区的所述衬底远离所述柔性介质层的表面之间设置有粘结层,所述粘结层还延伸至所述弯折区的所述缓冲层远离所述柔性介质层的表面处。
  8. 根据权利要求1所述的驱动基板,其中,所述柔性介质层的材料包括聚酰亚胺。
  9. 根据权利要求1所述的驱动基板,其中,所述柔性介质层的厚度范围为3um-6um。
  10. 根据权利要求1所述的驱动基板,其中,所述驱动基板还包括牺牲层和第三钝化层,所述牺牲层位于所述衬底和所述缓冲层之间,所述第三钝化层位于所述第一导电层和所述柔性介质层之间。
  11. 根据权利要求1-10中任一项所述的驱动基板,其中,所述第一导电层包括第一连接电极和第二连接电极,所述第一连接电极在所述缓冲层上的正投影与位于所述器件设置区的所述第二导电层在所述缓冲层上的正投影部分交叠;所述第二连接电极位于所述弯折区、且所述第二连接电极的两端分别延伸至所述器件设置区和所述绑定区。
  12. 根据权利要求11所述的驱动基板,其中,所述第二导电层包括第三连接电极、第四连接电极和第五连接电极;所述第三连接电极和所述第四连接电极均位于所述器件设置区,所述第五连接电极位于所述绑定区;
    其中,所述第三连接电极和所述第一连接电极电连接,所述第五连接电极和所述第二连接电极电连接。
  13. 根据权利要求12所述的驱动基板,其中,所述柔性介质层具有沿垂直于所述衬底方向上的第一过孔和第二过孔,所述第一过孔暴露出所述第一连接电极的部分区域,所述第二过孔暴露出所述第二连接电极位于所述绑定区的一端的部分区域;
    其中,所述第三连接电极通过所述第一过孔和所述第一连接电极电连接,所述第五连接电极通过所述第二过孔和所述第二连接电极电连接。
  14. 一种发光装置,其中,包括:发光器件、电路板以及如权利要求12或13所述的驱动基板,所述发光器件分别与所述器件设置区的第三连接电极和第四连接电极电连接,所述电路板与所述绑定区的所述第五连接电极电连接。
  15. 根据权利要求14所述的发光装置,其中,所述发光装置还包括设置在所述发光器件远离所述衬底一侧的保护层,所述保护层覆盖每个所述发光器件以及相邻两个所述发光器件之间的区域。
  16. 一种拼接显示装置,其中,包括:
    多端口转发器;
    至少一个供电设备;
    第一框体;
    第二框体;以及
    至少两个如权利要求14或15中所述的发光装置;
    其中,每个所述发光装置的出光面均位于同一平面、且每个所述发光装置均与所述第一框体固定,所述第一框体与所述第二框体固定,且所述第二框体位于所述第一框体远离所述发光装置的一侧,所述多端口转发器和所述供电设备均与所述第二框体固定;
    其中,所述多端口转发器和所述供电设备电连接,每个所述发光装置的电路板分别与所述多端口转发器电连接。
  17. 一种发光装置的制备方法,其中,所述方法包括:
    提供衬底;所述衬底被划分为器件设置区、弯折区和绑定区,所述弯折区位于所述器件设置区和所述绑定区之间;
    形成缓冲层;
    形成第一导电层;所述缓冲层位于所述衬底与所述第一导电层之间;
    形成柔性介质层;所述柔性介质层位于所述第一导电层远离所述衬底的一侧;
    形成第二导电层;所述第二导电层位于所述柔性介质层远离所述衬底的一侧,且所述第二导电层在所述衬底上的正投影区域与所述弯折区上的所述柔性介质层在所述衬底上的正投影互不交叠;
    去除所述弯折区的所述衬底。
  18. 根据权利要求17所述的制备方法,其中,在所述形成柔性介质层之后、且在所述形成第二导电层之前,所述方法还包括:
    在所述器件设置区和所述绑定区上的所述柔性介质层上形成第一钝化层。
  19. 根据权利要求17所述的制备方法,其中,在所述形成第二导电层之后,且在所述去除所述弯折区的所述衬底之前,所述方法还包括:
    在所述第二导电层上形成第二钝化层;所述第二钝化层覆盖所述第二导电层,且所述第二钝化层在所述缓冲层上的正投影与位于所述弯折区的所述柔性介质层在所述缓冲层上的正投影互不交叠;
    在所述第二钝化层上形成有机层;所述有机层至少覆盖所述第二钝化层。
  20. 根据权利要求19所述的制备方法,其中,所述在所述第二钝化层上形成有机层,所述有机层至少覆盖所述第二钝化层包括:
    在所述第二钝化层上形成有机薄膜;
    对所述有机薄膜进行图案化处理,得到所述有机层;
    其中,所述有机层覆盖所述第二钝化层,且所述有机层在所述缓冲层上的正投影与所述弯折区上的所述柔性介质层在所述缓冲层上的正投影互不交叠;或者,所述有机层覆盖所述第二钝化层,且还覆盖所述弯折区上的所述柔性介质层。
  21. 根据权利要求20所述的制备方法,其中,
    所述去除所述弯折区的所述衬底之后,所述方法还包括:
    形成隔水层;
    其中,若所述有机层覆盖所述第二钝化层,且所述有机层在所述缓冲层上的正投影与位于所述弯折区的所述柔性介质层在所述缓冲层上的正投影互不交叠,则所述隔水层覆盖所述弯折区上的所述柔性介质层,还覆盖靠近所述弯折区的所述有机层的侧面;
    若所述有机层覆盖所述第二钝化层,且还覆盖所述弯折区的所述柔性介质层,则所述隔水层覆盖所述有机层。
  22. 根据权利要求17所述的制备方法,其中,
    所述形成第一导电层,包括:
    同时形成第一连接电极和第二连接电极;
    所述形成第二导电层,包括:
    同时形成第三连接电极、第四连接电极和第五连接电极;其中,所述第三连接电极和所述第一连接电极电连接,所述第五连接电极和所述第二连接电极电连接。
  23. 根据权利要求22所述的制备方法,其中,所述形成第二导电层之后、且在所述去除所述弯折区的所述衬底之前,所述方法还包括:
    将发光器件与所述第三连接电极和所述第四连接电极电连接;其中,所述发光器件位于所述器件设置区;
    将电路板与所述第五电极电连接;其中,所述电路板位于所述绑定区。
  24. 根据权利要求23所述的制备方法,其中,
    在所述将电路板与所述第五电极电连接之后、且在所述去除所述弯折区的所述衬底之前,所述方法还包括:
    在所述发光器件上形成保护层;所述保护层覆盖每个所述发光器件以及相邻两个所述发光器件之间的区域。
  25. 根据权利要求17所述的制备方法,其中,在所述去除所述弯折区的所述衬底之后,所述方法还包括:
    在所述绑定区的所述衬底远离所述柔性介质层的表面、所述器件设置区的所述衬底远离所述柔性介质层的表面、所述弯折区的所述缓冲层远离所述柔性介质层的表面、与垂直于所述柔性介质层的方向平行且靠近所述弯折区的所述衬底的侧面上均形成粘结层;
    将所述弯折区弯折,使得所述绑定区的所述衬底远离所述柔性介质层的表面与所述器件设置区的所述衬底远离所述柔性介质层的表面固定在一起。
PCT/CN2021/102512 2021-06-25 2021-06-25 驱动基板、发光装置及其制备方法、拼接显示装置 WO2022267044A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180001648.9A CN115769293A (zh) 2021-06-25 2021-06-25 驱动基板、发光装置及其制备方法、拼接显示装置
PCT/CN2021/102512 WO2022267044A1 (zh) 2021-06-25 2021-06-25 驱动基板、发光装置及其制备方法、拼接显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/102512 WO2022267044A1 (zh) 2021-06-25 2021-06-25 驱动基板、发光装置及其制备方法、拼接显示装置

Publications (1)

Publication Number Publication Date
WO2022267044A1 true WO2022267044A1 (zh) 2022-12-29

Family

ID=84545162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102512 WO2022267044A1 (zh) 2021-06-25 2021-06-25 驱动基板、发光装置及其制备方法、拼接显示装置

Country Status (2)

Country Link
CN (1) CN115769293A (zh)
WO (1) WO2022267044A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110164901A (zh) * 2019-06-25 2019-08-23 京东方科技集团股份有限公司 阵列基板及其制备方法、显示面板和显示装置
CN110503898A (zh) * 2019-08-28 2019-11-26 京东方科技集团股份有限公司 微发光二极管显示面板及制备方法、拼接显示面板、装置
CN110993568A (zh) * 2019-10-25 2020-04-10 京东方科技集团股份有限公司 一种显示器件制造方法及显示器件
WO2020089762A1 (ja) * 2018-11-02 2020-05-07 株式会社半導体エネルギー研究所 半導体装置
US20200243782A1 (en) * 2017-10-23 2020-07-30 Japan Display Inc. Display device, and manufacturing method of display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200243782A1 (en) * 2017-10-23 2020-07-30 Japan Display Inc. Display device, and manufacturing method of display device
WO2020089762A1 (ja) * 2018-11-02 2020-05-07 株式会社半導体エネルギー研究所 半導体装置
CN110164901A (zh) * 2019-06-25 2019-08-23 京东方科技集团股份有限公司 阵列基板及其制备方法、显示面板和显示装置
CN110503898A (zh) * 2019-08-28 2019-11-26 京东方科技集团股份有限公司 微发光二极管显示面板及制备方法、拼接显示面板、装置
CN110993568A (zh) * 2019-10-25 2020-04-10 京东方科技集团股份有限公司 一种显示器件制造方法及显示器件

Also Published As

Publication number Publication date
CN115769293A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
TWI655798B (zh) 顯示裝置及其製造方法
KR102250584B1 (ko) 유기 발광 표시 장치
JP6729993B2 (ja) 表示パネル及びその製造方法
CN100405138C (zh) 上基底及具有该基底的液晶显示装置
KR102047729B1 (ko) 유기전계발광표시장치 및 그 제조방법
CN113363264B (zh) 一种阵列基板及其制备方法和显示装置
WO2020187151A1 (zh) 显示基板及其制造方法、显示装置
EP3437146B1 (en) Organic light emitting diode display panel and apparatus, driving method and fabricating method thereof
TW573199B (en) Liquid crystal display device
CN103325811A (zh) 有机发光二极管显示装置及其制造方法
JP7485467B2 (ja) 駆動基板及びその製作方法並びに表示装置
WO2021184522A1 (zh) 背光模组及其制备方法和显示装置
TW202016616A (zh) 顯示面板及其製造方法
CN113380779A (zh) 驱动基板、发光装置及其制备方法
JP2011027811A (ja) 電気光学装置および電子機器
CN113658990B (zh) 显示面板及其制备方法、显示装置
TW202215389A (zh) 顯示面板及其製作方法
WO2021022692A1 (zh) 显示面板及液晶显示器
WO2021031358A1 (zh) 一种阵列基板及其制作方法、显示面板
US20220238599A1 (en) Display device and method for manufacturing display device
US8067889B2 (en) Stacked display medium
WO2022001462A1 (zh) Led显示基板及其制备方法、显示面板
US20200321356A1 (en) Array substrate and display device
WO2022267044A1 (zh) 驱动基板、发光装置及其制备方法、拼接显示装置
WO2023005610A1 (zh) 驱动基板及其制备方法、发光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17769825

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE