WO2022262218A1 - 燃烧系统的控制方法、燃烧系统及内燃机 - Google Patents

燃烧系统的控制方法、燃烧系统及内燃机 Download PDF

Info

Publication number
WO2022262218A1
WO2022262218A1 PCT/CN2021/137391 CN2021137391W WO2022262218A1 WO 2022262218 A1 WO2022262218 A1 WO 2022262218A1 CN 2021137391 W CN2021137391 W CN 2021137391W WO 2022262218 A1 WO2022262218 A1 WO 2022262218A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
main fuel
stage
cylinder
pressure
Prior art date
Application number
PCT/CN2021/137391
Other languages
English (en)
French (fr)
Inventor
谭旭光
佟德辉
周鹏
刘晓鑫
庞斌
Original Assignee
潍柴动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司 filed Critical 潍柴动力股份有限公司
Priority to US18/276,926 priority Critical patent/US20240117780A1/en
Priority to EP21945795.9A priority patent/EP4357602A1/en
Priority to JP2023552502A priority patent/JP2024508493A/ja
Publication of WO2022262218A1 publication Critical patent/WO2022262218A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/08Safety, indicating, or supervising devices
    • F02B77/085Safety, indicating, or supervising devices with sensors measuring combustion processes, e.g. knocking, pressure, ionization, combustion flame
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2432Methods of calibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/024Fluid pressure of lubricating oil or working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections

Definitions

  • the invention relates to the technical field of internal combustion engines, in particular to a method for controlling a combustion system, a combustion system and an internal combustion engine.
  • the traditional high-pressure common rail technology can realize multiple injections, but its main injection form is a main fuel injection in the middle (injecting more than 80% of the fuel), and several small injections before and after (the injection volume accounts for about 10% to 20%) , its main purpose is to reduce combustion noise (pre-injection, that is, injection before main fuel injection) or improve smoke emission and exhaust temperature thermal management (post-injection, that is, injection after main fuel injection).
  • the peak cylinder pressure can be reduced by delaying the combustion phase, which can maintain the peak cylinder pressure within a limited range and maintain the integrity of the cylinder; but at the same time, delaying the combustion phase will lead to higher fuel consumption and higher exhaust temperature, resulting in torque of the internal combustion engine and output power limited.
  • the main fuel injection into at least two injections, wherein the first injection is earlier than the start time of the originally planned main fuel injection, and the second injection is equal to or later than the originally planned start time of the main fuel injection, which can be Advance the combustion phasing or reduce the required amount of combustion phasing delay while maintaining the cylinder pressure within the maximum pressure value, and keep the exhaust temperature below the maximum exhaust temperature while achieving the maximum torque.
  • the above method of splitting the main fuel injection multiple times is mainly aimed at generating higher torque output without increasing the exhaust gas temperature by splitting the main fuel injection when the peak cylinder pressure is reached or exceeded.
  • the interval between the first injection and the second injection in this method of dividing the main fuel injection into multiple times is too large, resulting in almost zero spatial superposition effect of the entrainment effect, low air utilization rate, low thermal efficiency, and high fuel consumption of the internal combustion engine.
  • the purpose of the present invention is to provide a control method of a combustion system, a combustion system and an internal combustion engine.
  • the control method of the combustion system makes full use of the spatial superposition strength of the entrainment effect of the high-speed oil beam injected by the main fuel successively, and improves the rate of oil-gas mixing in the cylinder , Effectively improve the combustion speed in the middle and late stages of combustion and the utilization rate of air in the cylinder, so that the combustion efficiency of the combustion system is high, and the fuel consumption of the internal combustion engine is small.
  • a method for controlling a combustion system includes a piston, an injector, and a cylinder. During the main fuel injection stage, the injector injects main fuel into the cylinder one after another to drive the piston to perform work.
  • the control methods of the combustion system include:
  • the injector controlling the injector to perform a first-stage main fuel injection in a compression stroke, the first-stage main fuel injection includes at least one injection, and lasts until a power stroke, so that the cylinder pressure in the cylinder reaches a target pressure peak;
  • the second-stage main fuel injection Before the cylinder pressure of the cylinder is at a critical drop point, the second-stage main fuel injection is performed, the second-stage main fuel injection includes at least one injection, the injected fuel of the second-stage main fuel injection and the The fuel injected by the first-stage main fuel injection is superimposed so that the cylinder pressure in the cylinder remains at the target pressure peak for a preset time.
  • the combustion system control method if there is a difference between the cylinder pressure in the cylinder and the target pressure peak value during the main fuel injection process of the first stage, by adjusting the fuel rail pressure and/or adjusting the The time interval between the main fuel injection of the second stage and the main fuel injection of the first stage is adjusted so that the cylinder pressure in the cylinder is equal to the peak value of the target pressure.
  • the difference between the cylinder pressure in the cylinder and the target pressure peak value is less than or equal to 5% during the main fuel injection process of the first stage, then adjust the fuel rail pressure to reach the target peak pressure; if the difference between the cylinder pressure in the cylinder during the first stage main fuel injection and the target pressure peak is greater than 5%, adjust the fuel rail pressure and the The time interval between the main fuel injection of the second stage and the main fuel injection of the first stage is to achieve the target pressure peak value, or the interval time between the main fuel injection of the second stage and the main fuel injection of the first stage is adjusted to achieve the The target pressure peak.
  • the time interval between the main fuel injection of the second stage and the main fuel injection of the first stage is 300 ⁇ s ⁇ 1200 ⁇ s.
  • the calibration parameter of the single main fuel injection is the single main fuel calibrated when the fuel consumption of the internal combustion engine is minimized and the emission of nitrogen oxides is minimized under the condition that the emission requirements of nitrogen oxides are met.
  • the duration of the first-stage main fuel injection is determined according to the fuel injection quantity of the first-stage main fuel injection and the injection pressure of the first-stage main fuel injection
  • the duration of the second-stage main fuel injection is determined according to the fuel injection quantity of the second-stage main fuel injection and the injection pressure of the second-stage main fuel injection.
  • the calibration parameters of the single main fuel injection also include the calibration injection pressure of the single main fuel injection, and the injection pressure of the first stage main fuel injection is higher than that of the single main fuel injection.
  • a nominal injection pressure of the secondary main fuel injection, the injection pressure of the second stage main fuel injection being higher than or equal to the injection pressure of the first stage main fuel injection.
  • the duration of the first-stage main fuel injection and the second-stage main fuel injection are both in the range of 100 ⁇ s to 1500 ⁇ s.
  • the duration of the main fuel injection in the first stage is within the range of 25° before the crank angle to 20° after the top dead center.
  • the preset time is 50%-100% of the duration of the main fuel injection in the first stage.
  • a combustion system using the method for controlling the combustion system described in any one of the above, wherein a pressure sensor is further arranged in the cylinder, and the pressure sensor is used to detect the cylinder pressure in the cylinder.
  • An internal combustion engine includes the above-mentioned combustion system.
  • the control method of the combustion system controls the fuel injector to execute the first-stage main fuel injection in the compression stroke
  • the first-stage main fuel injection includes at least one injection, and lasts until the power stroke, so that the cylinder in the cylinder
  • the second stage of main fuel injection is executed.
  • the second stage of main fuel injection includes at least one injection, and the injected fuel of the second stage of main fuel injection and the first The fuel injected by the one-stage main fuel injection is superimposed so that the cylinder pressure in the cylinder remains at the target pressure peak for a preset time.
  • the control method of the combustion system establishes the target pressure peak value in the cylinder through the first-stage main fuel injection, and executes the second-stage main fuel injection before the cylinder pressure in the cylinder falls to a critical point, which can promote the entrainment effect
  • the superposition of fuel and air further increases the mixing area of fuel and air, improves the utilization rate of air in the cylinder, thereby increasing the combustion speed in the middle and later stages of the cylinder, promoting the rapid combustion of fuel, and always keeping the heat release during the combustion process at a high value.
  • the pressure in the cylinder is constant.
  • the combustion system provided by the present invention adopts the above-mentioned control method of the combustion system, fully utilizes the space superposition strength of the high-speed oil beam entrainment effect of the first stage main fuel injection and the second stage main fuel injection, and realizes the effect of the oil beam on the internal flow of the cylinder.
  • the secondary organization of the field maximizes the turbulent flow in the cylinder, increases the rate of oil-gas mixing in the cylinder, effectively improves the combustion speed in the middle and late stages of combustion and the utilization rate of air in the cylinder, so as to improve the combustion efficiency of the combustion system.
  • the internal combustion engine provided by the present invention adopts the above-mentioned combustion system to avoid excessive concentration of fuel at one time, and utilizes the space superposition of the entrainment effect generated between the main fuel injection in the first stage and the main fuel injection in the second stage to improve the combustion efficiency.
  • the fuel consumption is reduced and the economy of the internal combustion engine is improved.
  • FIG. 1 is a flow chart of a method for controlling a combustion system provided by Embodiment 2 of the present invention
  • Fig. 2 is a schematic diagram of the relationship between the crankshaft angle of the first-stage main fuel injection and the second-stage main fuel injection provided by Embodiment 2 of the present invention, piston position, cylinder pressure and injection law;
  • Fig. 3 is a schematic diagram of the simulation of the entrainment effect after the main fuel injection in the first stage provided by Embodiment 2 of the present invention
  • Fig. 4 is a schematic diagram of the simulation of the entrainment effect after the main fuel injection in the second stage provided by Embodiment 2 of the present invention.
  • the terms “mounted”, “connected”, “connected” and “fixed” should be interpreted in a broad sense, for example, it may be a fixed connection or a detachable connection; it may be a mechanical connection, or It can be an electrical connection; it can be a direct connection, or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements.
  • the terms “mounted”, “connected”, “connected” and “fixed” should be interpreted in a broad sense, for example, it may be a fixed connection or a detachable connection; it may be a mechanical connection, or It can be an electrical connection; it can be a direct connection, or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements.
  • a first feature being "on” or “under” a second feature may include that the first feature is in direct contact with the second feature, and may also include that the first feature and the second feature are not in direct contact. Rather, through additional characteristic contacts between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • "Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the internal combustion engine includes a combustion system.
  • the combustion system mixes fuel and air, burns them in a cylinder, and releases heat energy to generate high-temperature and high-pressure gas in the cylinder.
  • the expansion of the gas pushes the piston to do work, and then the mechanical work is output through the crank connecting rod mechanism or other mechanisms to drive the driven machine to work.
  • the combustion system adopted by the internal combustion engine provided in this embodiment avoids excessive concentration of fuel at one time, and uses the space superposition of the entrainment effect generated between the main fuel injection of the first stage and the main fuel injection of the second stage to improve the combustion efficiency and reduce the Reduce fuel consumption and improve the economy of the internal combustion engine.
  • This embodiment also provides a combustion system, including a piston, a fuel injector, a cylinder and a cylinder head.
  • the piston, cylinder and cylinder head together form a combustion chamber, and the fuel injector is arranged on the cylinder head.
  • the secondary main fuel is injected into the cylinder, the fuel is burned in the combustion chamber, the piston bears the force of the fuel and transmits the power to the crankshaft through the piston pin and connecting rod to complete the working process of the internal combustion engine.
  • the fuel is fuel oil
  • the fuel oil includes gasoline, biodiesel or mixed fuel (for example, gasoline and ethanol or gasoline and methanol).
  • the piston is an ⁇ -shaped piston, and the throat of the ⁇ -shaped piston is provided with multiple arc ridges, and the throat is located between the pit and the multiple arc ridges of the ⁇ -shaped piston. After the fuel hits the throat during injection, it is injected into the pits and multi-section arc ridges, which enhances the superposition of the entrainment effect.
  • the crankshaft drives the piston to move from the top dead center to the bottom dead center, the intake valve opens, and the mixture of fuel and air is sucked into the cylinder.
  • the intake stroke ends; after the intake stroke ends, the piston has reached the bottom dead center, and the cylinder is filled with a mixture of fuel and air; the crankshaft continues to drive the piston to move from the bottom dead center to the upward dead center , both the intake valve and the exhaust valve are closed, the mixture is compressed, the pressure and temperature rise until the piston reaches the top dead center, and the compression stroke ends.
  • the high-voltage electricity provided by the ignition system acts on the spark plug, the spark plug jumps over, and ignites the mixture in the cylinder, because the piston runs extremely fast and quickly crosses the top dead center, and the mixture burns rapidly Expansion does work, pushes the piston down, drives the crankshaft to output power, reaches the bottom dead center, and the power stroke ends.
  • the piston reaches the bottom dead center, and the crankshaft drives the piston to move from the bottom dead center to the top dead center.
  • the exhaust valve is opened, and the exhaust gas after combustion is discharged through the exhaust valve.
  • the piston is at top dead center, and the next intake stroke begins. Completing the intake stroke, compression stroke, power stroke, and exhaust stroke is called a work cycle, and the crankshaft rotates two times to complete this work cycle.
  • a pressure sensor is also provided in the cylinder, and the pressure sensor is used to detect the cylinder pressure in the cylinder. In the first stage of main fuel injection, it is judged whether to enter the second stage of main fuel injection according to the cylinder pressure in the cylinder. Injection to maintain cylinder pressure within target pressure peaks, keeping exhaust temperatures below maximum exhaust temperatures while maximum torque is achieved.
  • the combustion system further includes a controller, a crank angle sensor and a temperature sensor.
  • the fuel injector controls injection through a solenoid valve. When the solenoid valve is powered on, the fuel injector starts to inject; when the solenoid valve is powered off, the fuel injector stops spraying.
  • the controller is electrically connected to the solenoid valve, crank angle sensor, temperature sensor and pressure sensor. The controller controls the injector to start injection by controlling the solenoid valve to be powered on; the controller controls the injector to stop injecting by controlling the solenoid valve to be powered off.
  • the crank angle sensor is used to detect the angle of rotation of the crankshaft when the solenoid valve is powered on and off, and sends the angle of rotation of the crankshaft to the controller.
  • the temperature sensor is used to detect the temperature in the cylinder.
  • the controller stores the maximum temperature of the exhaust gas.
  • the temperature sensor sends the detected temperature in the cylinder to the controller, and the controller calculates the received cylinder temperature value and the maximum exhaust temperature value. Compare, and control the fuel injection by comparing the result with the setting program stored in it.
  • the pressure sensor sends the detected cylinder pressure of the cylinder to the controller, and the controller stores the target pressure peak value.
  • the controller compares the received cylinder pressure with the target pressure peak value, and adjusts the fuel rail pressure and/or Or adjust the interval time between the main fuel injection of the first stage and the main fuel injection of the second stage so that the cylinder pressure in the cylinder reaches the target pressure peak value.
  • the combustion system provided by this embodiment makes full use of the spatial superposition strength of the high-speed oil beam entrainment effect of the first-stage main fuel injection and the second-stage main fuel injection, and realizes the secondary organization of the oil beam to the flow field in the cylinder to the greatest extent.
  • Strengthen the turbulence in the cylinder increase the rate of oil-gas mixing in the cylinder, effectively increase the combustion speed in the middle and late stages of combustion and the utilization rate of air in the cylinder, so as to improve the combustion efficiency of the combustion system.
  • this embodiment provides a method for controlling the combustion system, the method for controlling the combustion system includes:
  • controlling the injector to execute the first phase of main fuel injection during the compression stroke the first phase of the main fuel injection includes at least one injection, and lasts until the power stroke, so that the cylinder pressure in the cylinder reaches the target pressure peak value.
  • the main fuel injection in the first stage includes one injection, which lasts from the compression stroke of the piston to the power stroke of the piston to establish the target pressure peak in the cylinder.
  • single main injection refers to a single main fuel injection
  • double main injection refers to the first stage main fuel injection and the second stage main fuel injection
  • TDC refers to the top stop of the crankshaft movement
  • BDC refers to the bottom dead center of the crankshaft motion.
  • the fuel injected by the first-stage main fuel is burned in the combustion chamber, and the cylinder pressure in the cylinder reaches the target pressure peak value to drive The piston does work.
  • the main fuel injection in the first stage can also make the cylinder pressure in the cylinder reach the target pressure peak value through multiple injections. It should be noted that the target pressure peak value is smaller than the maximum pressure value that the cylinder can bear.
  • the cylinder pressure in the cylinder is detected by the pressure sensor, and the pressure sensor sends the detected cylinder pressure to the controller.
  • the controller compares the received cylinder pressure with the target pressure peak value in the cylinder, and adjusts according to the comparison result parameter so that the cylinder pressure in the cylinder reaches the target pressure peak.
  • the second-stage main fuel injection includes at least one injection, the fuel injected by the second-stage main fuel injection is the same as the first-stage main fuel injection The injected fuel is injected so that the cylinder pressure in the cylinder peaks at the target pressure for a preset time.
  • the second-stage main fuel injection also includes one injection, and the second-stage main fuel injection is performed before the cylinder pressure of the cylinder reaches a critical drop point.
  • the main fuel injection in the second stage can also make the cylinder pressure in the cylinder remain at the target pressure peak for a preset time through multiple injections.
  • the solenoid valve controlling the fuel injector is energized, and the time when the fuel injector receives feedback and starts injecting fuel will be delayed relative to the time when the solenoid valve starts to be energized.
  • the solenoid valve of the injector is de-energized, the time when the injector gets feedback and stops injecting fuel will also be delayed relative to the time when the solenoid valve is de-energized, assuming that the delay time is T1;
  • the time when the controller gets feedback and starts to inject fuel will also be delayed compared to the time when the solenoid valve starts to be energized, assuming that the delay time is T2, and T1>T2.
  • the interval time between the main fuel injection of the first stage and the main fuel injection of the second stage (that is, the time between the time when the solenoid valve stops energizing during the main fuel injection of the first stage and the time when the solenoid valve starts energizing during the main fuel injection of the second stage interval time) is T, then T ⁇ T2-T1. Only in this way can momentum exchange be ensured between the fuel injected in the two stages, so that the fuel injected in the first stage moves with the fuel injected in the second stage, and the entrainment effect is superimposed.
  • the time interval between the main fuel injection of the second stage and the main fuel injection of the first stage is 300 ⁇ s ⁇ 1200 ⁇ s.
  • the superposition effect of the entrainment effect is related to the interval time between two main fuel injections. If the interval time between two main fuel injections is too long, the space superposition effect of the entrainment effect will be greatly weakened, and the air utilization rate low, fuel consumption will also increase. Therefore, the main fuel injection in the second stage needs to be executed before the critical point of the target pressure peak drop, and the cylinder pressure of the cylinder is monitored in real time through the pressure sensor. After the main fuel injection in the first stage, once the cylinder pressure in the cylinder has a downward trend, execute immediately The second stage main fuel injection, so that the cylinder pressure of the cylinder is sustained at the target pressure peak.
  • the single main fuel injection is a continuous and stable jet flow process, the liquid fuel is constantly penetrating at the same rate, and there is a difference in the rate between the liquid fuel and the There is a shear force at the outer edge of the air contact, which breaks and atomizes the liquid oil droplets, and the entrainment effect produced by a single main fuel injection is single, and the high-intensity area is at the forefront of the oil beam.
  • the main fuel injection process is divided into two processes, the first stage main fuel injection and the second stage main fuel injection. While a part of the fuel has been sheared, another part of the fuel continues to be injected and the shearing effect is strengthened, and the entrainment space is superimposed on the outer edge of the oil beam junction, which maximizes the effect on the breaking and atomization of oil droplets.
  • the first phase of main fuel injection starts at the end of the compression stroke, and the fuel is injected from the nozzle of the injector into the combustion chamber at a higher speed, and the high-speed oil jet produces strong turbulence kinetic energy.
  • the entrainment area formed in the cylinder of the cylinder becomes larger and larger.
  • the first stage of the main fuel injection process due to the guided diversion by the shape of the piston, after the fuel hits the piston throat, most of the fuel diffuses into the ⁇ -shaped combustion chamber pit, and a small part of the fuel diverts to the top of the piston.
  • a strong entrainment effect is formed in the inner upper part and in the dimples, which promotes the rapid and uniform mixing of fuel and air.
  • the high-speed oil jet of the main fuel injection in the second stage is guided by the multi-section arc ridges of the piston, which further promotes the superposition of the entrainment effect and further increases the mixing area of fuel and air.
  • control method of the combustion system if there is a difference between the cylinder pressure in the cylinder and the target pressure peak value during the main fuel injection process of the first stage, by adjusting the fuel rail pressure and/or adjusting the main fuel injection and The interval between main fuel injections in the first stage so that the cylinder pressure in the cylinder is equal to the target peak pressure.
  • the difference between the cylinder pressure in the cylinder and the target pressure peak value is less than or equal to 5% during the main fuel injection process of the first stage, adjust the fuel rail pressure to reach the target pressure peak value; If the difference between the internal cylinder pressure and the target pressure peak value is greater than 5%, adjust the fuel rail pressure and the interval time between the second-stage main fuel injection and the first-stage main fuel injection.
  • the difference between the cylinder pressure in the cylinder and the target pressure peak during the first stage main fuel injection process is greater than 5%, only the second stage main fuel injection and the first stage main fuel injection can be adjusted. interval time.
  • the fuel rail pressure when the fuel rail pressure needs to be adjusted, if the cylinder pressure in the cylinder after the main fuel injection in the first stage is lower than the target pressure peak value, then increase the fuel rail pressure; if the cylinder pressure in the cylinder after the main fuel injection in the first stage If the pressure is higher than the target pressure peak, the fuel rail pressure is reduced.
  • the cylinder pressure in the cylinder after the first stage main fuel injection if the cylinder pressure in the cylinder after the first stage main fuel injection is lower than the target pressure peak value, then reduce the second stage main fuel injection and the first stage main fuel injection. Interval time between stage main fuel injection; if the cylinder pressure in the cylinder after the first stage main fuel injection is higher than the target pressure peak value, then extend the interval time between the second stage main fuel injection and the first stage main fuel injection.
  • the calibration parameter of the single main fuel injection is the single main fuel calibrated when the fuel consumption of the internal combustion engine is minimized and the emission of nitrogen oxides is minimized under the condition that the emission requirements of nitrogen oxides are met.
  • calibration parameters of a single main fuel injection are stored in the controller, and the calibration fuel injection quantity of a single main fuel injection is when the control method of the combustion system is a single main fuel injection, and the optimal injection quantity is satisfied.
  • the optimal injection strategy is obtained under the conditions of the strategy, and the optimal injection strategy refers to the minimum fuel consumption of the internal combustion engine and the minimum emission of nitrogen oxides under the premise of meeting the emission requirements of nitrogen oxides.
  • the duration of the first-stage main fuel injection is determined according to the fuel injection quantity of the first-stage main fuel injection and the injection pressure of the first-stage main fuel injection
  • the second-stage main fuel injection The duration of is determined according to the injection quantity of the second-stage main fuel injection and the injection pressure of the second-stage main fuel injection.
  • the calibration parameters of the single main fuel injection also include the calibration injection pressure of the single main fuel injection, and the injection pressure of the first stage main fuel injection is higher than the calibration of the single main fuel injection Injection pressure, the injection pressure of the main fuel injection in the second stage is higher than or equal to the injection pressure of the main fuel injection in the first stage.
  • the maximum injection pressure of the combustion system is usually 1600bar to 2500bar, and the nominal injection pressure of a single main fuel injection, the injection pressure of the first-stage main fuel injection and the injection pressure of the second-stage main fuel injection cannot exceed The maximum injection pressure of the combustion system.
  • the calibrated injection pressure of the single main fuel injection is obtained by those skilled in the art under the condition of satisfying the optimal injection strategy when the control method of the combustion system is the single main fuel injection. Then set the injection pressure of the first-stage main fuel injection according to the acquired calibration injection pressure of the single main fuel injection, and then set the injection pressure of the second-stage main fuel injection according to the injection pressure of the first-stage main fuel injection.
  • the injection pressure of the main fuel injection in the second stage is higher than or equal to the injection pressure of the main fuel injection in the first stage, so that the injection rate of the fuel in the second stage is greater than or equal to the injection rate of the fuel in the first stage, thereby accelerating the fuel injection in the second stage and the first stage.
  • the momentum exchange of the fuel injected in the first stage increases the superposition of the entrainment effect.
  • the duration of the main fuel injection of the first stage and the duration of the main fuel injection of the second stage are both in the range of 100 ⁇ s to 1500 ⁇ s.
  • the duration of the main fuel injection in the first stage is within the range of 25° before the crank angle to 20° after the top dead center.
  • the preset time is 50%-100% of the duration of the main fuel injection in the first stage.
  • the main fuel injection in the first stage is mainly used to establish the target pressure peak value in the cylinder, and the main fuel injection in the second stage can further strengthen the mixing of oil and gas in the cylinder of the cylinder, and through the main fuel injection in the second stage, Increase the mixing area, improve the utilization rate of air in the cylinder, thereby increasing the combustion speed in the middle and late stages of the cylinder, and promote the rapid combustion of fuel, so that the heat release rate of the entire combustion process is at a high value, and the cylinder pressure of the cylinder is maintained at the target
  • the pressure peaks for a certain period of time, so that the combustion is more complete, more work is done, and the fuel consumption is minimized. It is understandable that fuel consumption is equal to the ratio of fuel injection quantity to working power. When the fuel injection quantity is constant, the more work done, the lower the fuel consumption. The more fully the fuel in the combustion system
  • the control method of the combustion system by controlling the fuel injector in the compression stroke, executes the main fuel injection of the first stage, the first main fuel injection includes at least one injection, and lasts until the power stroke, so that the When the cylinder pressure reaches the peak pressure of the target, before the cylinder pressure in the cylinder is at the critical point of drop, the second stage of main fuel injection is executed.
  • the second stage of main fuel injection includes at least one injection. The fuel injected by the second stage of main fuel injection and the first The fuel injected by the one-stage main fuel injection is superimposed so that the cylinder pressure in the cylinder remains at the target pressure peak for a preset time.
  • the control method of the combustion system establishes the target pressure peak in the cylinder through the first-stage main fuel injection, and executes the second-stage main fuel injection when the cylinder pressure in the cylinder is at a critical drop point, which can promote entrainment
  • the superposition of effects further increases the mixing area of fuel and air, improves the utilization rate of air in the cylinder, thereby increasing the combustion speed in the middle and late stages of the cylinder, promotes the rapid combustion of fuel, and always keeps the heat release during the combustion process at a high value. Keep the pressure in the cylinder constant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

本发明公开了一种燃烧系统的控制方法、燃烧系统及内燃机,涉及内燃机技术领域。燃烧系统包括活塞、喷油器和气缸,主燃料喷射阶段喷油器将主燃料相继喷射至气缸内以驱动活塞做功。燃烧系统的控制方法包括:控制喷油器在压缩冲程中,执行第一阶段主燃料喷射,第一阶段主燃料喷射包括至少一次喷射,且持续至做功冲程,以使气缸内的缸压达到目标压力峰值。在气缸内的缸压处于下降临界点之前,再执行第二阶段主燃料喷射,第二阶段主燃料喷射包括至少一次喷射,第二阶段主燃料喷射所喷射的燃料和第一阶段主燃料喷射所喷射的燃料叠加,以使气缸内的缸压在目标压力峰值持续预设时间。从而促进卷吸效果的叠加,增大燃料和空气的混合面积,提高空气利用率。

Description

燃烧系统的控制方法、燃烧系统及内燃机
本申请要求于2021年06月17日提交中国专利局、申请号为202110669921.7、发明名称为“燃烧系统的控制方法、燃烧系统及内燃机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及内燃机技术领域,尤其涉及一种燃烧系统的控制方法、燃烧系统及内燃机。
背景技术
传统的高压共轨技术能够实现多次喷射,但其主要喷射形式为中间一次主燃料喷射(喷射80%以上的燃油),前后各有数次小的喷射(喷射量约占10%~20%),其主要目的是为了降低燃烧噪声(预喷,即主燃料喷射之前喷射)或者是改善烟度排放及排温热管理(后喷,即主燃料喷射之后喷射)。
为进一步改善内燃机性能,现有技术中提出分割多次喷射中的主燃料喷射,执行两次或多次主燃料喷射。通过延迟燃烧相位可以减少峰值气缸压力,可以将峰值气缸压力维持在限定范围内,维护气缸完整性;但同时延迟燃烧相位会导致较高的燃料消耗和较高的排气温度,导致内燃机的扭矩和输出功率受限。因此,又提出将主燃料喷射分为至少两次喷射,其中第一喷射比原来计划的主燃料喷射的开始时间更早,第二喷射等于或晚于原来计划的主燃料喷射的开始时间,可以提前燃烧相位或减少需要的燃烧相位延迟量,同时维持气缸压力在最大压力值内,在最大扭矩实现的同时保持排气温度低于排气最高温度。
上述主燃料喷射分割多次的方式,其主要目标在于,当达到或超过气缸压力峰值时,通过主燃料喷射分割,从而产生更高的扭矩输出而不增加排气温度。但这种主燃料喷射分割多次的方式第一次喷射和第二次喷射之间的间隔过大,导致卷吸效应空间叠加效果几乎为零,空气利用率低,热效率低,内燃机油耗高。
发明内容
本发明的目的在于提供一种燃烧系统的控制方法、燃烧系统及内燃机,该燃烧系统的控制方法充分利用主燃料相继喷射的高速油束卷吸效应的空间叠加强度,提高缸内油气混合的速率,有效提升燃烧中后期的燃烧速度和缸内空气利用率,使得燃烧系统的燃烧效率高,内燃机的油耗小。
为达此目的,本发明采用以下技术方案:
一种燃烧系统的控制方法,燃烧系统包括活塞、喷油器和气缸,在主燃料喷射阶段,所述喷油器将主燃料相继喷射至所述气缸内,以驱动所述活塞做功,所述燃烧系统的控制方法包括:
控制所述喷油器在压缩冲程中,执行第一阶段主燃料喷射,所述第一阶段主燃料喷射包括至少一次喷射,且持续至做功冲程,以使所述气缸内的缸压达到目标压力峰值;
在所述气缸的缸压处于下降临界点之前,再执行第二阶段主燃料喷射,所述第二阶段主燃料喷射包括至少一次喷射,所述第二阶段主燃料喷射所喷射的燃料和所述第一阶段主燃料喷射所喷射的燃料叠加,以使所述气缸内的缸压在所述目标压力峰值持续预设时间。
作为燃烧系统的控制方法的一个优选实施例,若所述第一阶段主燃料喷射过程中所述气缸内的缸压与所述目标压力峰值存在差值,通过调整燃油轨压力和/或调整所述第二阶段主燃料喷射与所述第一阶段主燃料喷射的间隔时间,以使所述气缸内的缸压等于所述目标压力峰值。
作为燃烧系统的控制方法的一个优选实施例,若所述第一阶段主燃料喷射过程中所述气缸内的缸压与所述目标压力峰值的差值小于等于5%,则调整所述燃油轨压力以达到所述目标压力峰值;若所述第一阶段主燃料喷射过程中所述气缸内的缸压与所述目标压力峰值的差值大于5%,则调整所述燃油轨压力和所述第二阶段主燃料喷射与所述第一阶段主燃料喷射的间隔时间以达到所述目标压力峰值,或调整所述第二阶段主燃料喷射与所述第一阶段主燃料喷射的间隔时间以达到所述目标压力峰值。
作为燃烧系统的控制方法的一个优选实施例,所述第二阶段主燃料喷射和所述第一阶段主燃料喷射之间的间隔时间为300μs~1200μs。
作为燃烧系统的控制方法的一个优选实施例,单次主燃料喷射的标定参数 为在满足氮氧化物排放要求下,使内燃机的油耗最小且氮氧化物的排放量最小时标定的单次主燃料喷射参数,所述单次主燃料喷射的标定参数包括单次主燃料喷射的标定喷油量,所述第一阶段主燃料喷射和所述第二阶段主燃料喷射的总喷油量等于所述单次主燃料喷射的标定喷油量,若第一阶段主燃料喷射的喷油量为Q1,第二阶段主燃料喷射的喷油量为Q2,则Q2=0.05Q1~0.5Q1。
作为燃烧系统的控制方法的一个优选实施例,所述第一阶段主燃料喷射的持续时间根据所述第一阶段主燃料喷射的喷油量和第一阶段主燃料喷射的喷射压力确定,所述第二阶段主燃料喷射的持续时间根据所述第二阶段主燃料喷射的喷油量和第二阶段主燃料喷射的喷射压力确定。
作为燃烧系统的控制方法的一个优选实施例,所述单次主燃料喷射的标定参数还包括单次主燃料喷射的标定喷射压力,所述第一阶段主燃料喷射的喷射压力高于所述单次主燃料喷射的标定喷射压力,所述第二阶段主燃料喷射的喷射压力高于等于所述第一阶段主燃料喷射的喷射压力。
作为燃烧系统的控制方法的一个优选实施例,所述第一阶段主燃料喷射的持续时间和所述第二阶段主燃料喷射的持续时间均在100μs至1500μs范围内。
作为燃烧系统的控制方法的一个优选实施例,所述第一阶段主燃料喷射的持续时间在曲轴转角处于上止点前25°至上止点后20°的范围内。
作为燃烧系统的控制方法的一个优选实施例,所述预设时间为所述第一阶段主燃料喷射的持续时间的50%~100%。
一种燃烧系统,采用以上任一项所述的燃烧系统的控制方法,其中,所述气缸内还设置有压力传感器,所述压力传感器用于检测所述气缸内的缸压。
一种内燃机,其包括以上所述的燃烧系统。
本发明的有益效果:
本发明提供的燃烧系统的控制方法,通过控制喷油器在压缩冲程中,执行第一阶段主燃料喷射,第一阶段主燃料喷射包括至少一次喷射,且持续至做功冲程,使得气缸内的缸压达到目标压力峰值,在气缸内的缸压处于下降临界点之前,再执行第二阶段主燃料喷射,第二阶段主燃料喷射包括至少一次喷射,第二阶段主燃料喷射所喷射的燃料和第一阶段主燃料喷射所喷射的燃料叠加, 以使气缸内的缸压在目标压力峰值持续预设时间。本发明提供的燃烧系统的控制方法,通过第一阶段主燃料喷射建立气缸内的目标压力峰值,在气缸内的缸压处于下降临界点之前,执行第二阶段主燃料喷射,能够促进卷吸效果的叠加,进一步增大燃料和空气的混合面积,提高气缸内的空气利用率,从而提升气缸内中后期的燃烧速度,促进燃料快速燃烧,始终保持燃烧过程中的放热量处于较高值,维持气缸内压力恒定。
本发明提供的燃烧系统,采用上述的燃烧系统的控制方法,充分利用第一阶段主燃料喷射和第二阶段主燃料喷射的高速油束卷吸效应的空间叠加强度,实现油束对气缸内流场的二次组织,最大程度强化气缸内湍流,提高气缸内油气混合的速率,有效提升燃烧中后期的燃烧速度和气缸内空气利用率,以提高燃烧系统的燃烧效率。
本发明提供的内燃机,采用上述的燃烧系统,避免了燃油一次过多的集中,利用第一阶段主燃料喷射和第二阶段主燃料喷射之间产生的卷吸效应空间叠加,提升了燃烧效率,降低了油耗,提升了内燃机的经济性。
附图说明
图1是本发明实施例二提供的燃烧系统的控制方法的流程图;
图2是本发明实施例二提供的第一阶段主燃料喷射和第二阶段主燃料喷射的曲轴转角与活塞位置、缸内压力和喷射规律的关系示意图;
图3是本发明实施例二提供的第一阶段主燃料喷射后的卷吸效应的模拟示意图;
图4是本发明实施例二提供的第二阶段主燃料喷射后的卷吸效应的模拟示意图。
具体实施方式
下面详细描述本发明的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。其中,术语“第一位置”和“第二位置”为两个不同的位置。
除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一特征和第二特征直接接触,也可以包括第一特征和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
实施例一
本实施例提供了一种内燃机,内燃机包括燃烧系统,燃烧系统将燃料和空气混合,在气缸内燃烧,释放出的热能使气缸内产生高温高压的燃气。燃气膨胀推动活塞做功,再通过曲柄连杆机构或其他机构将机械功输出,驱动从动机械工作。
本实施例提供的内燃机采用的燃烧系统,避免了燃油一次过多的集中,利用第一阶段主燃料喷射和第二阶段主燃料喷射之间产生的卷吸效应空间叠加,提升了燃烧效率,降低了油耗,提升了内燃机的经济性。
本实施例还提供了一种燃烧系统,包括活塞、喷油器、气缸和气缸盖,活 塞、气缸和气缸盖等共同组成燃烧室,喷油器设置于气缸盖,燃料由喷油器通过多次主燃料喷射输送至气缸内,燃料在燃烧室内燃烧,活塞承受燃料作用力并通过活塞销和连杆把动力传给曲轴,以完成内燃机的工作过程。在本实施例中,燃料为燃油,燃油包括汽油、生物柴油或含有混合燃油(例如,汽油和乙醇或汽油和甲醇)。活塞为ω型活塞,ω型活塞的喉口外设置有多段弧脊,喉口位于ω型活塞的凹坑和多段弧脊之间,ω型活塞、气缸和气缸盖共同组成ω型燃烧室,燃料喷射时燃油撞击喉口后,喷射在凹坑和多段弧脊内,增强了卷吸效应的叠加。
内燃机在整个工作过程中,包括进气冲程、压缩冲程、做功冲程和排气冲程,曲轴带动活塞由上止点向下止点运动,进气门打开,燃料和空气的混合物被吸入气缸,当活塞到达下止点,进气冲程结束;在进气冲程结束后,活塞已经到达下止点,此时气缸内已充注燃料和空气的混合物;曲轴继续带动活塞由下止点向上止点运动,进气门和排气门均关闭,混合气被压缩,压力和温度升高,至活塞到达上止点,压缩冲程结束。活塞到达上止点前的某一刻,点火系统提供的高压电作用于火花塞,火花塞跳火,点燃气缸内的混合物,因为活塞的运行速度极快而迅速的越过上止点,同时混合物迅速燃烧膨胀做功,推动活塞下行,带动曲轴输出动力,到达下止点,做功冲程结束。做功冲程结束后,活塞到达下止点,曲轴带动活塞由下止点向上止点运动,此时排气门要打开,燃烧后的废气经排气门排出。排气结束,活塞处于上止点,开始下一个进气冲程。将完成进气冲程、压缩冲程、做功冲程、排气冲程称为一个工作循环,完成这一个工作循环曲轴转两圈。
本实施例提供的燃烧系统,气缸内还设置有压力传感器,压力传感器用于检测气缸内的缸压,在第一阶段主燃料喷射中,根据气缸内的缸压判断是否进入第二阶段主燃料喷射,以维持气缸压力在目标压力峰值内,在最大扭矩实现的同时保持排气温度低于排气最高温度。
在本实施例中,燃烧系统还包括控制器、曲轴转角传感器和温度传感器,喷油器通过电磁阀控制喷射,电磁阀通电,喷油器开始喷射;电磁阀断电,喷油器停止喷射。控制器与电磁阀、曲轴转角传感器、温度传感器和压力传感器均电连接,控制器通过控制电磁阀通电,控制喷油器开始喷射;通过控制电磁 阀断电,控制喷油器停止喷射。曲轴转角传感器用于检测电磁阀通电和断电时曲轴的转角,并将曲轴的转角发送给控制器。温度传感器用于检测气缸内的温度,控制器内存储有排气最高温度,温度传感器将检测的缸内温度发送给控制器,控制器将接收到的缸内温度值与排气最高温度值作对比,并通过对比结果和其内存储的设定程序控制燃料喷射。压力传感器将检测的气缸的缸压发送给控制器,控制器内存储有目标压力峰值,控制器根据接收到的气缸的缸压与目标压力峰值作对比,并根据对比结果调整燃油轨压力和/或调整第一阶段主燃料喷射和第二阶段主燃料喷射之间的间隔时间以使缸内的缸压达到目标压力峰值。
需要说明的是,控制器与电磁阀和各个传感器的电连接方式和工作原理已是现有技术,在此不再赘述。
本实施例提供的燃烧系统,充分利用第一阶段主燃料喷射和第二阶段主燃料喷射的高速油束卷吸效应的空间叠加强度,实现油束对气缸内流场的二次组织,最大程度强化气缸内湍流,提高气缸内油气混合的速率,有效提升燃烧中后期的燃烧速度和气缸内空气利用率,以提高燃烧系统的燃烧效率。
实施例二
如图1所示,本实施例提供了一种燃烧系统的控制方法,燃烧系统的控制方法包括:
S10、控制喷油器在压缩冲程中,执行第一阶段主燃料喷射,第一阶段主燃料喷射包括至少一次喷射,且持续至做功冲程,以使气缸内的缸压达到目标压力峰值。
作为燃烧系统的控制方法的一个优选实施例,如图2所示,第一阶段主燃料喷射包括一次喷射,该一次喷射从活塞压缩冲程持续至活塞做功冲程,建立气缸内的目标压力峰值。需要说明的是,在图2中,单主喷指的是单次主燃料喷射,双主喷指的是第一阶段主燃料喷射和第二阶段主燃料喷射,TDC是指曲轴运动的上止点,BDC是指曲轴运动的下止点。
在本实施例中,通过控制第一阶段主燃料喷射的开始时间、持续时间和喷射压力,使得第一阶段主燃料喷射的燃料在燃烧室内燃烧,气缸内的缸压达到目标压力峰值,以驱动活塞做功。当然,在其他实施例中,第一阶段主燃料喷 射也可以通过多次喷射使气缸内的缸压达到目标压力峰值。需要说明的是,目标压力峰值小于气缸所能承受的最大压力值。
气缸内的缸压通过压力传感器检测,压力传感器将检测的气缸内的缸压发送给控制器,控制器根据接收到的气缸内的缸压与其内的目标压力峰值作对比,并根据对比结果调整参数,以使气缸内的缸压达到目标压力峰值。
S20、在气缸内的缸压处于下降临界点之前,再执行第二阶段主燃料喷射,第二阶段主燃料喷射包括至少一次喷射,第二阶段主燃料喷射所喷射的燃料和第一阶段主燃料喷射所喷射的燃料叠加,以使气缸内的缸压在目标压力峰值持续预设时间。
作为燃烧系统的控制方法的一个优选实施例,如图2所示,第二阶段主燃料喷射也包括一次喷射,第二阶段主燃料喷射在气缸的缸压处于下降临界点之前执行。当然,在其他实施例中,第二阶段主燃料喷射也可以通过多次喷射使气缸内的缸压在目标压力峰值持续预设时间。
需要说明的是,第一阶段主燃料喷射时,控制喷油器的电磁阀通电,喷油器得到反馈开始喷射燃油的时间相对电磁阀开始通电的时间会有一个延迟,相应地,控制喷油器的电磁阀断电,喷油器得到反馈停止喷射燃油的时间相对电磁阀停止通电的时间也会有一个延迟,假设该延迟时间为T1;同理,第二阶段主燃料喷射时,喷油器得到反馈开始喷射燃油的时间也会比电磁阀开始通电的时间有一个延迟,假设该延迟时间为T2,且T1>T2。为了使得气缸的缸压在目标压力峰值持续预设时间,需要保证燃烧室内喷射的燃油不间断。因此,第一阶段主燃料喷射和第二阶段主燃料喷射的间隔时间(即第一阶段主燃料喷射时电磁阀停止通电的时间和第二阶段主燃料喷射时电磁阀开始通电的时间之间的间隔时间)为T,则T≤T2-T1。这样才能保证两个阶段喷射的燃油之间有动量交换,使得第一阶段喷射的燃油随第二阶段喷射的燃油运动,卷吸效应叠加。
作为燃烧系统的控制方法的一个优选实施例,第二阶段主燃料喷射和第一阶段主燃料喷射之间的间隔时间为300μs~1200μs。在本实施例中,卷吸效应的叠加效果与两次主燃料喷射的间隔时间有关,如果两次主燃料喷射的间隔时间过大,则会导致卷吸效应空间叠加效果大大减弱,空气利用率低,油耗也 会增加。所以,第二阶段主燃料喷射需在目标压力峰值下降临界点之前执行,通过压力传感器实时监测气缸的缸压,在第一阶段主燃料喷射后,一旦气缸内的缸压有下降趋势,立即执行第二阶段主燃料喷射,以使气缸的缸压在目标压力峰值处持续。
相对于现有技术中单次主燃料喷射的燃烧系统的控制方法,由于单次主燃料喷射是一个连续稳定的射流过程,液态燃油一直在以同样的速率不断贯穿,存在速率差的液态燃油与空气接触的外边缘有一个剪切力,该作用力使得液态油滴破碎雾化,单次主燃料喷射所产生的卷吸作用是单一的,并且高强度区域在油束的最前端。
在本实施例中,如图3和图4所示,在燃油喷射过程中,将主燃料喷射过程进行拆分,分为第一阶段主燃料喷射和第二阶段主燃料喷射两个过程,在一部分燃油已经发生剪切作用的同时,另一部分燃油继续喷射并强化剪切作用,在油束交界外边缘产生卷吸空间叠加,将对油滴破碎雾化的作用最大化。
在本实施例中的两次主燃料喷射,在压缩行程的末期开始第一阶段主燃料喷射,燃油以较高的速度从喷油器的喷嘴向燃烧室内喷射,高速油束射流产生强烈的湍动能。随着第二阶段主燃料喷射的燃油持续进行,在气缸的缸内形成的卷吸面积越来越大。在第一阶段主燃料喷射过程中,由于活塞形状的引导分流,燃油在撞击活塞喉口后,大部分燃油向ω型燃烧室凹坑中扩散,少部分燃油向活塞顶部分流,在燃烧室空间内上部和凹坑中形成强烈的卷吸效果,促进燃油与空气快速均匀混合。随着活塞下行,第二阶段主燃料喷射的高速油束射流经过活塞多段弧脊的引导,进一步促进卷吸效果的叠加,进一步增大燃油和空气的混合面积。
作为燃烧系统的控制方法的一个优选实施例,若第一阶段主燃料喷射过程中气缸内的缸压与目标压力峰值存在差值,通过调整燃油轨压力和/或调整第二阶段主燃料喷射与第一阶段主燃料喷射的间隔时间,以使气缸内的缸压等于目标压力峰值。
具体地,若第一阶段主燃料喷射过程中气缸内的缸压与目标压力峰值的差值小于等于5%,则调整燃油轨压力以达到目标压力峰值;若第一阶段主燃料喷射过程中气缸内的缸压与目标压力峰值的差值大于5%,则调整燃油轨压力 和第二阶段主燃料喷射与第一阶段主燃料喷射的间隔时间。当然,在其他实施例中,若第一阶段主燃料喷射过程中气缸内的缸压与目标压力峰值的差值大于5%,也可以只调整第二阶段主燃料喷射与第一阶段主燃料喷射的间隔时间。
在本实施例中,当需要调整燃油轨压力时,若第一阶段主燃料喷射后气缸内的缸压低于目标压力峰值,则提高燃油轨压力;若第一阶段主燃料喷射后气缸内的缸压高于目标压力峰值,则降低燃油轨压力。当需要调整第二阶段主燃料喷射与第一阶段主燃料喷射的间隔时间时,若第一阶段主燃料喷射后气缸内的缸压低于目标压力峰值,则减少第二阶段主燃料喷射与第一阶段主燃料喷射的间隔时间;若第一阶段主燃料喷射后气缸内的缸压高于目标压力峰值,则延长第二阶段主燃料喷射与第一阶段主燃料喷射的间隔时间。
作为燃烧系统的控制方法的一个优选实施例,单次主燃料喷射的标定参数为在满足氮氧化物排放要求下,使内燃机的油耗最小且氮氧化物的排放量最小时标定的单次主燃料喷射参数。单次主燃料喷射的标定参数包括单次主燃料喷射的标定喷油量,第一阶段主燃料喷射和第二阶段主燃料喷射的总喷油量等于单次主燃料喷射的标定喷油量,若第一阶段主燃料喷射的喷油量为Q1,第二阶段主燃料喷射的喷油量为Q2,则Q2=0.05Q1~0.5Q1。
在本实施例中,控制器内存储有单次主燃料喷射的标定参数,单次主燃料喷射的标定喷油量是在燃烧系统的控制方法为单次主燃料喷射时,在满足最优喷射策略的条件下获取的,该最优喷射策略是指在满足氮氧化物排放要求的前提下,使内燃机的油耗最小且氮氧化物的排放量最小。
作为燃烧系统的控制方法的一个优选实施例,第一阶段主燃料喷射的持续时间根据第一阶段主燃料喷射的喷油量和第一阶段主燃料喷射的喷射压力确定,第二阶段主燃料喷射的持续时间根据第二阶段主燃料喷射的喷油量和第二阶段主燃料喷射的喷射压力确定。
作为燃烧系统的控制方法的一个优选实施例,单次主燃料喷射的标定参数还包括单次主燃料喷射的标定喷射压力,第一阶段主燃料喷射的喷射压力高于单次主燃料喷射的标定喷射压力,第二阶段主燃料喷射的喷射压力高于等于第一阶段主燃料喷射的喷射压力。在本实施例中,燃烧系统的最大喷射压力通常为1600bar~2500bar,单次主燃料喷射的标定喷射压力、第一阶段主燃料喷射 的喷射压力和第二阶段主燃料喷射的喷射压力都不能超过燃烧系统的最大喷射压力。单次主燃料喷射的标定喷射压力为本领域技术人员在燃烧系统的控制方法为单次主燃料喷射时,在满足最优喷射策略的条件下获取的。然后根据获取的单次主燃料喷射的标定喷射压力设定第一阶段主燃料喷射的喷射压力,再根据第一阶段主燃料喷射的喷射压力设定第二阶段主燃料喷射的喷射压力。第二阶段主燃料喷射的喷射压力高于等于第一阶段主燃料喷射的喷射压力,使得第二阶段燃油的喷射速率大于等于第一阶段燃油的喷射速率,从而加快第二阶段喷射的燃油与第一阶段喷射的燃油的动量交换,增加卷吸效应的叠加。
作为燃烧系统的控制方法的一个优选实施例,第一阶段主燃料喷射的持续时间和第二阶段主燃料喷射的持续时间均在100μs至1500μs范围内。
作为燃烧系统的控制方法的一个优选实施例,第一阶段主燃料喷射的持续时间在曲轴转角处于上止点前25°至上止点后20°范围内。
作为燃烧系统的控制方法的一个优选实施例,预设时间为第一阶段主燃料喷射的持续时间的50%~100%。在本实施例中,第一阶段主燃料喷射主要用于建立气缸的缸内目标压力峰值,第二阶段主燃料喷射能够进一步强化气缸的缸内的油气混合,且通过第二阶段主燃料喷射,增大混合面积,提高缸内的空气利用率,从而提升气缸的缸内中后期的燃烧速度,促进燃油快速燃烧,使得整个燃烧过程的放热率处于较高值,维持气缸的缸压处于目标压力峰值一定时间,使得燃烧更充分,做功更多,油耗最小。可以理解的是,油耗等于喷油量与做功功率的比值,喷油量一定时,做功越多,油耗越小。燃烧系统内的燃油燃烧越充分,做功越多,油耗也就越小。
本实施例提供的燃烧系统的控制方法,通过控制喷油器在压缩冲程中,执行第一阶段主燃料喷射,第一次主燃料喷射包括至少一次喷射,且持续至做功冲程,使得气缸内的缸压达到目标压力峰值,在气缸内缸压处于下降临界点之前,再执行第二阶段主燃料喷射,第二阶段主燃料喷射包括至少一次喷射,第二阶段主燃料喷射所喷射的燃料和第一阶段主燃料喷射所喷射的燃料叠加,以使气缸内的缸压在目标压力峰值持续预设时间。本实施例提供的燃烧系统的控制方法,通过第一阶段主燃料喷射建立气缸内的目标压力峰值,在气缸内的缸压处于下降临界点时,执行第二阶段主燃料喷射,能够促进卷吸效果的叠加, 进一步增大燃料和空气的混合面积,提高气缸内的空气利用率,从而提升气缸内中后期的燃烧速度,促进燃料快速燃烧,始终保持燃烧过程中的放热量处于较高值,维持气缸内压力恒定。
以上内容仅为本发明的较佳实施例,对于本领域的普通技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,本说明书内容不应理解为对本发明的限制。

Claims (12)

  1. 一种燃烧系统的控制方法,燃烧系统包括活塞、喷油器和气缸,其特征在于,在主燃料喷射阶段,所述喷油器将主燃料相继喷射至所述气缸内,以驱动所述活塞做功,所述燃烧系统的控制方法包括:
    控制所述喷油器在压缩冲程中,执行第一阶段主燃料喷射,所述第一阶段主燃料喷射包括至少一次喷射,且持续至做功冲程,以使所述气缸内的缸压达到目标压力峰值;
    在所述气缸内的缸压处于下降临界点之前,再执行第二阶段主燃料喷射,所述第二阶段主燃料喷射包括至少一次喷射,所述第二阶段主燃料喷射所喷射的燃料和所述第一阶段主燃料喷射所喷射的燃料叠加,以使所述气缸内的缸压在所述目标压力峰值持续预设时间。
  2. 根据权利要求1所述的燃烧系统的控制方法,其特征在于,若所述第一阶段主燃料喷射过程中所述气缸内的缸压与所述目标压力峰值存在差值,通过调整燃油轨压力和/或调整所述第二阶段主燃料喷射与所述第一阶段主燃料喷射的间隔时间,以使所述气缸内的缸压等于所述目标压力峰值。
  3. 根据权利要求2所述的燃烧系统的控制方法,其特征在于,若所述第一阶段主燃料喷射过程中所述气缸内的缸压与所述目标压力峰值的差值小于等于5%,则调整所述燃油轨压力以达到所述目标压力峰值;若所述第一阶段主燃料喷射过程中所述气缸内的缸压与所述目标压力峰值的差值大于5%,则调整所述燃油轨压力和调整所述第二阶段主燃料喷射与所述第一阶段主燃料喷射的间隔时间以达到所述目标压力峰值,或调整所述第二阶段主燃料喷射与所述第一阶段主燃料喷射的间隔时间以达到所述目标压力峰值。
  4. 根据权利要求2所述的燃烧系统的控制方法,其特征在于,所述第二阶段主燃料喷射和所述第一阶段主燃料喷射之间的间隔时间为300μs~1200μs。
  5. 根据权利要求1所述的燃烧系统的控制方法,其特征在于,单次主燃料喷射的标定参数为在满足氮氧化物排放要求下,使内燃机的油耗最小且氮氧化物的排放量最小时标定的单次主燃料喷射参数,所述单次主燃料喷射的标定 参数包括单次主燃料喷射的标定喷油量,所述第一阶段主燃料喷射和所述第二阶段主燃料喷射的总喷油量等于所述单次主燃料喷射的标定喷油量,若第一阶段主燃料喷射的喷油量为Q1,第二阶段主燃料喷射的喷油量为Q2,则Q2=0.05Q1~0.5Q1。
  6. 根据权利要求5所述的燃烧系统的控制方法,其特征在于,所述第一阶段主燃料喷射的持续时间根据所述第一阶段主燃料喷射的喷油量和第一阶段主燃料喷射的喷射压力确定,所述第二阶段主燃料喷射的持续时间根据所述第二阶段主燃料喷射的喷油量和第二阶段主燃料喷射的喷射压力确定。
  7. 根据权利要求6所述的燃烧系统的控制方法,其特征在于,所述单次主燃料喷射的标定参数还包括单次主燃料喷射的标定喷射压力,所述第一阶段主燃料喷射的喷射压力高于所述单次主燃料喷射的标定喷射压力,所述第二阶段主燃料喷射的喷射压力高于等于所述第一阶段主燃料喷射的喷射压力。
  8. 根据权利要求7所述的燃烧系统的控制方法,其特征在于,所述第一阶段主燃料喷射的持续时间和所述第二阶段主燃料喷射的持续时间均在100μs至1500μs范围内。
  9. 根据权利要求8所述的燃烧系统的控制方法,其特征在于,所述第一阶段主燃料喷射的持续时间在曲轴转角处于上止点前25°至上止点后20°的范围内。
  10. 根据权利要求9所述的燃烧系统的控制方法,其特征在于,所述预设时间为所述第一阶段主燃料喷射的持续时间的50%~100%。
  11. 一种燃烧系统,采用如权利要求1-10任一项所述的燃烧系统的控制方法,其特征在于,所述气缸内还设置有压力传感器,所述压力传感器用于检测所述气缸内的缸压。
  12. 一种内燃机,其特征在于,包括如权利要求11所述的燃烧系统。
PCT/CN2021/137391 2021-06-17 2021-12-13 燃烧系统的控制方法、燃烧系统及内燃机 WO2022262218A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/276,926 US20240117780A1 (en) 2021-06-17 2021-12-13 Method for controlling combustion system, combustion system, and internal combustion engine
EP21945795.9A EP4357602A1 (en) 2021-06-17 2021-12-13 Method for controlling combustion system, combustion system, and internal combustion engine
JP2023552502A JP2024508493A (ja) 2021-06-17 2021-12-13 燃焼システムの制御方法、燃焼システムおよび内燃機関

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110669921.7 2021-06-17
CN202110669921.7A CN113123891B (zh) 2021-06-17 2021-06-17 燃烧系统的控制方法、燃烧系统及内燃机

Publications (1)

Publication Number Publication Date
WO2022262218A1 true WO2022262218A1 (zh) 2022-12-22

Family

ID=76783001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137391 WO2022262218A1 (zh) 2021-06-17 2021-12-13 燃烧系统的控制方法、燃烧系统及内燃机

Country Status (5)

Country Link
US (1) US20240117780A1 (zh)
EP (1) EP4357602A1 (zh)
JP (1) JP2024508493A (zh)
CN (1) CN113123891B (zh)
WO (1) WO2022262218A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113123891B (zh) * 2021-06-17 2021-08-31 潍柴动力股份有限公司 燃烧系统的控制方法、燃烧系统及内燃机
CN114109636B (zh) * 2022-01-26 2022-08-30 潍柴动力股份有限公司 一种改善发动机nvh性能的燃烧控制方法和发动机
CN114233544B (zh) * 2022-02-25 2022-06-24 潍柴动力股份有限公司 一种发动机冷启动过程的标定方法
CN115234391A (zh) * 2022-06-22 2022-10-25 哈尔滨工程大学 氨内燃机定压燃烧控制方法及装置和内燃机
CN116378842B (zh) * 2023-06-07 2023-09-19 潍柴动力股份有限公司 燃料喷射方法、装置、设备和汽车
CN116696582B (zh) * 2023-08-08 2023-10-20 潍柴动力股份有限公司 发动机喷油参数的标定方法及标定装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6491016B1 (en) * 1999-03-05 2002-12-10 C. R. F. Societa Consortile Per Azioni Method of controlling combustion of a direct-injection diesel engine by performing multiple injections by means of a common-rail injection system
JP2003262146A (ja) * 2002-03-07 2003-09-19 Mazda Motor Corp 火花点火式直噴エンジンの制御装置
CN102312739A (zh) * 2010-06-30 2012-01-11 马自达汽车株式会社 具有涡轮增压器的车载柴油发动机及其控制方法
CN106414974A (zh) * 2014-05-27 2017-02-15 日产自动车株式会社 柴油发动机的控制装置以及控制方法
CN107420212A (zh) * 2016-05-24 2017-12-01 现代自动车株式会社 用于控制汽油柴油混合燃烧发动机的装置和方法
CN110360019A (zh) * 2018-04-09 2019-10-22 丰田自动车株式会社 内燃机的控制装置
CN113123891A (zh) * 2021-06-17 2021-07-16 潍柴动力股份有限公司 燃烧系统的控制方法、燃烧系统及内燃机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110180039A1 (en) * 2008-09-29 2011-07-28 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus for internal combustion engine
CN102900555B (zh) * 2012-10-10 2015-07-15 清华大学 一种低辛烷值汽油类燃料多段预混压燃方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6491016B1 (en) * 1999-03-05 2002-12-10 C. R. F. Societa Consortile Per Azioni Method of controlling combustion of a direct-injection diesel engine by performing multiple injections by means of a common-rail injection system
JP2003262146A (ja) * 2002-03-07 2003-09-19 Mazda Motor Corp 火花点火式直噴エンジンの制御装置
CN102312739A (zh) * 2010-06-30 2012-01-11 马自达汽车株式会社 具有涡轮增压器的车载柴油发动机及其控制方法
CN106414974A (zh) * 2014-05-27 2017-02-15 日产自动车株式会社 柴油发动机的控制装置以及控制方法
CN107420212A (zh) * 2016-05-24 2017-12-01 现代自动车株式会社 用于控制汽油柴油混合燃烧发动机的装置和方法
CN110360019A (zh) * 2018-04-09 2019-10-22 丰田自动车株式会社 内燃机的控制装置
CN113123891A (zh) * 2021-06-17 2021-07-16 潍柴动力股份有限公司 燃烧系统的控制方法、燃烧系统及内燃机

Also Published As

Publication number Publication date
CN113123891A (zh) 2021-07-16
EP4357602A1 (en) 2024-04-24
JP2024508493A (ja) 2024-02-27
CN113123891B (zh) 2021-08-31
US20240117780A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
WO2022262218A1 (zh) 燃烧系统的控制方法、燃烧系统及内燃机
US7128062B2 (en) Method for mid load operation of auto-ignition combustion
US20060037563A1 (en) Internal combustion engine with auto ignition
US7080613B2 (en) Method for auto-ignition combustion control
JP5158266B2 (ja) 内燃機関の燃焼制御装置
US4836161A (en) Direct fuel injection method for a diesel engine
CN112761780B (zh) 一种稀薄燃烧系统、方法和发动机
CN1985084B (zh) 用于内燃机的燃烧室
JP2012246783A (ja) 火花点火式エンジンの制御装置
CN107429625B (zh) 直喷发动机的燃料喷射控制装置
EP1471241B1 (en) Fuel injection control device
US11162448B2 (en) Fuel injection control device for engine
US11313311B2 (en) Fuel injection control device for engine
JP2010048212A (ja) 直噴ガソリンエンジン
JP5229185B2 (ja) 内燃機関の燃焼制御装置
JP2009036086A (ja) 直噴式エンジン及びその制御方法
CN101545418A (zh) 电控喷射稀燃天然气发动机燃气喷射装置及喷射控制方法
JP4046611B2 (ja) 内燃機関への流体の噴射を制御する方法
CN112555017B (zh) 稀薄燃烧系统、稀薄燃烧发动机及稀薄燃烧方法
JP3873560B2 (ja) 内燃機関の燃焼制御装置
CN114109637B (zh) 一种柴油机的燃烧控制方法、装置和柴油机
JP4274063B2 (ja) 内燃機関の制御装置
US20080098983A1 (en) Cool combustion emissions solution for auto-igniting internal combustion engine
CN112483267B (zh) 均质预混合燃烧发动机及其控制方法
JP2002097960A (ja) 内燃機関における燃焼方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945795

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18276926

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023552502

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2023123228

Country of ref document: RU

Ref document number: 2021945795

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021945795

Country of ref document: EP

Effective date: 20240117