WO2022257736A1 - KMn 3+[Fe 2+(CN) 6]的制备方法 - Google Patents

KMn 3+[Fe 2+(CN) 6]的制备方法 Download PDF

Info

Publication number
WO2022257736A1
WO2022257736A1 PCT/CN2022/094209 CN2022094209W WO2022257736A1 WO 2022257736 A1 WO2022257736 A1 WO 2022257736A1 CN 2022094209 W CN2022094209 W CN 2022094209W WO 2022257736 A1 WO2022257736 A1 WO 2022257736A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
kmn
manganese
iii
mannitol
Prior art date
Application number
PCT/CN2022/094209
Other languages
English (en)
French (fr)
Inventor
吴学文
吴界
何品刚
王文宝
张峰
Original Assignee
吴学文
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吴学文 filed Critical 吴学文
Priority to DE112022002978.1T priority Critical patent/DE112022002978T5/de
Publication of WO2022257736A1 publication Critical patent/WO2022257736A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals
    • C01C3/12Simple or complex iron cyanides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to a molecular structure formula of KMn(III)[Fe(II)(CN) 6 ] (for the sake of intuition, KMn 3+ [Fe 2+ (CN) 6 ] represents KMn(III)[Fe(II) ) (CN) 6 ] to describe) the preparation method of the new compound manganese ferrocyanide (III) potassium crystal.
  • the XRD of potassium manganese cyanide is also different from the XRD of dipotassium manganese ferrocyanide whose molecular structure is K 2 Mn 2+ [Fe 2+ (CN) 6 ], which is different from that of molecular structure KFe 3+ [Fe 2+ ( CN) 6 ] the XRD of potassium ferrocyanide (Prussian blue) is similar; Described a kind of molecular structure formula is KMn 3+ [Fe 2+ (CN) 6 ] manganese (III) potassium ferrocyanide crystallization can be Prepared as nanoparticles, the nanoparticles can be used to prepare T1 nuclear magnetic resonance contrast agent materials and T2 nuclear magnetic resonance contrast agent materials, or prepare nuclear
  • the present invention relates to a preparation method of a new compound manganese (III) potassium ferrocyanide crystal whose molecular structure is KMn 3+ [Fe 2+ (CN) 6 ], the crystal synthesized by this method can be prepared into nanoparticles
  • the invention can be used for preparing T1 nuclear magnetic resonance contrast agent material and T2 nuclear magnetic resonance contrast agent material or preparing T1 and T2 dual-function nuclear magnetic resonance contrast agent material.
  • the molecular formula is Mn 2+ 3 [Fe 3+ (CN) 6 ] 2 ⁇ 13H 2 O-based manganese ferricyanide brown crystals; if the above-mentioned process changes the reaction conditions and carries out distillation at 100°C for 72 hours, the molecular structure can be obtained as KMn 2+ [Fe 3+ (CN) 6 ] ⁇ 2H 2 Manganese potassium ferricyanide brown crystals of O; if the K + salt solution of [Fe 3+ (CN) 6 ] 3- is changed to the K + salt solution of [Fe 2+ (CN) 6 ] 4- in the above reaction, Then the reaction product is white crystal of dipotassium manganese ferrocyanide whose molecular structure is K 2 Mn 2+ [Fe 2+ (CN) 6 ], and its XRD pattern and molecular structure are KMn 2+ [
  • the method of the present invention can be used to prepare manganese (III) potassium ferrocyanide crystals whose molecular structure is KMn 3+ [Fe 2+ (CN) 6 ], the color of the crystals is light blue, and the molecular structure is KMn 2+ [ Fe 3+ (CN) 6 ] ⁇ 2H 2 O has different XRD patterns and colors, which are similar to the XRD of the molecular structure KFe 3+ [Fe 2+ (CN) 6 ] of potassium ferrocyanide (Prussian blue) , Elemental analysis shows that the element ratio of Fe:Mn:K is 1:1:1, and the XPS spectrum of Fe 2p proves that Fe is Fe 2+ .
  • the molecular structure synthesized by the method of the present invention is KMn 3+ [Fe 2+ (CN) 6 ]
  • the nanoparticles prepared by manganese ferrocyanide (III) potassium light blue crystal have good chemical stability and appearance Stability
  • the relaxation rate test of its nanoparticle solution shows that the nanoparticle solution of the light blue crystal of manganese ferrocyanide (III) potassium ferrocyanide with molecular structure KMn 3+ [Fe 2+ (CN) 6 ] can be used as T1 Or T2 single-function nuclear magnetic resonance contrast agent material, can also be used as T1 and T2 dual-function nuclear magnetic resonance contrast agent material;
  • the molecular structure is KMn 3+ [Fe 2+ (CN) 6 ] ferrous
  • the light blue crystals of potassium manganese(III) cyanide or its nanoparticles can also be used as potential Mn 3+ catalyst materials and high-performance chemical battery materials.
  • the invention relates to a method for preparing light blue crystals with the molecular formula of KMn 3+ [Fe 2+ (CN) 6 ].
  • the nanoparticles synthesized by this method can be used to prepare T1 nuclear magnetic resonance contrast agent materials and T2 nuclear magnetic resonance contrast agents Material.
  • the molecular formula synthesized by the method of the present invention is KMn 3+ [Fe 2+ (CN) 6 ] manganese ferrocyanide (III) potassium light blue crystal has the feature of difficult dissociation and stability in water at the same time, thus has It is beneficial to prepare the nanoparticle material with the molecular formula KMn 3+ [Fe 2+ (CN) 6 ] manganese (III) potassium ferricyanide light blue crystal as a precursor, and can be used to prepare the molecular formula KMn 3+ [Fe 2+ ( CN) 6 ] manganese (III) potassium ferricyanide light blue crystal nano-solution T1 NMR contrast agent material and molecular formula is KMn 3+ [Fe 2+ (CN) 6 ] manganese (III) ferricyanide potassium light blue Color crystal nano-solution T2 NMR contrast agent material, or molecular formula KMn 3+ [Fe 2+ (CN) 6 ] manganese ferricyanide (III) potassium ferricyanide nano-
  • the present invention relates to a kind of molecular formula is KMn 3+ [Fe 2+ (CN) 6 ] the preparation method of manganese ferricyanide (III) potassium light blue crystal, mainly comprises the following steps:
  • the molecular formula is KMn 3+ [Fe 2+ (CN) 6 ] manganese ferrocyanide (III) potassium light blue crystal, its XRD pattern is shown in Figure 1, and the molecular structure of Prussian blue KFe 3+ [Fe 2+ (CN) ) 6 ] The XRD patterns are similar.
  • the molecular formula is KMn 3+ [Fe 2+ (CN) 6 ] manganese ferrocyanide (III) potassium ferrocyanide light blue crystal, the Fe 2p spectrum in the XPS test is shown in Figure 2, the absorption peak is at 708.5eV, single peak, left There is no shoulder peak, which proves that Fe is positive divalent, that is, Fe in the structure is Fe 2+ .
  • the molecular formula is KMn 3+ [Fe 2+ (CN) 6 ] manganese (III) potassium ferrocyanide light blue crystal, the Mn 2p spectrum in the XPS test is shown in Figure 3, and the absorption peak is at 641.24eV, which proves that Mn is Positive trivalent (the absorption peak of divalent manganese is generally at 640.80eV), that is, the manganese in the structure is Mn 3+ .
  • the molecular formula is KMn 3+ [Fe 2+ (CN) 6 ] manganese ferrocyanide (III) potassium ferrocyanide light blue crystal, the element ratio of K, Mn and Fe in the XPS test is about 1:1:1.
  • the molecular structure is KMn 3+ [Fe 2+ (CN) 6 ] manganese (III) potassium ferrocyanide light blue crystal.
  • Fe:Mn:K is 1:1:1.
  • the molecular formula is KMn 3+ [Fe 2+ (CN) 6 ] manganese ferrocyanide (III) potassium light blue crystalline nanoparticles and the preparation of the solution mainly includes the following steps:
  • Polysaccharide can be substituted, or can be substituted by carboxymethyl dextran, or can be substituted by polyethylene glycol, and the consumption of each component is 2-20% (weight) of mannitol, and 2%-20% (weight) of meglumine, Niacin is 0.01-5.0% (weight), edetate disodium is 0.01-5.0% (weight), cysteine is 0.01%-5.0% (weight), polyvinylpyrrolidone is 2%-20% (weight) ), chitosan is 1.0%-15% (weight), dextran is 1.0%-15% (weight), carboxy dextran is 1.0%-15% (weight), dextran is 1.0%-15% (weight) , carboxymethyl dextran is 1.0%-15 % (weight), polyethylene glycol is 1.0%-20% (weight), in the above process, after each component is completely dissolved or eroded, continue stirring for 0.5-36 hours to form a stable molecular formula of KMn 3+ [Fe 2 + (CN) 6
  • the nanoparticle size is between 10nm and 300nm, and the nanoparticle image of the transmission electron microscope is shown in Figure 4; the nanoparticle energy spectrum of the transmission electron microscope is determined to contain K:Mn:Fe The ratio is about 1:1:1, as shown in Figure 5;
  • the manganese content of the nanoparticle solution is between 0.1-40mM;
  • Nanoparticles are stable at pH between 3.5-12.5;
  • Fig. 1 is a powder X-ray diffraction pattern of the light blue crystal of manganese(III) ferrocyanide with the molecular formula KMn 3+ [Fe 2+ (CN) 6 ] prepared in Example 1 of the present invention.
  • Fig. 2 is the XPS spectrum of powder Fe 2+ 2p prepared in Example 1 of the present invention with the molecular formula KMn 3+ [Fe 2+ (CN) 6 ] manganese(III) potassium ferrocyanide light blue crystal powder.
  • Fig. 3 is the XPS spectrum of light blue crystal powder Mn 3+ 2p prepared in Example 1 of the present invention with the molecular formula KMn 3+ [Fe 2+ (CN) 6 ] manganese(III) ferrocyanide potassium.
  • Fig. 4 is the transmission electron microscope picture of the light blue crystalline particle solution of potassium ferrocyanide manganese (III) with the molecular formula KMn 3+ [Fe 2+ (CN) 6 ] prepared in Example 2 of the present invention. Between -300nm.
  • Fig. 5 is the transmission electron microscope elemental analysis energy spectrum of the solution of the light blue crystalline particle solution of KMn 3+ [Fe 2+ (CN) 6 ] manganese ferrocyanide (III) potassium ferrocyanide prepared in Example 2 of the present invention, measured The ratio of K:Mn:Fe is about 1:1:1.
  • sample A weigh 5.68 g (NH 4 ) 4 [Fe(CN) 6 ] and 1.70 g KCl into a 100 ml beaker, add 40 ml of water to dissolve completely, referred to as sample A; weigh 7.040 g of manganese triacetate (III) into 250 ml In the flask, add 100ml of concentrated phosphoric acid and stir until it is completely dissolved, the solution is transparent, referred to as sample B; slowly drop sample A into the beaker of sample B while stirring, seal the mouth of the beaker with sealing glue, and keep it at room temperature in the dark.
  • the XPS collection of collections of manganese is Mn 3+ 2P collection of collections of collection of collections Figure 3
  • the element ratio K:Mn:Fe measured by XPS is about 1:1:1
  • the element ratio K:Mn:Fe measured by ICP of the crystalline powder sample is 1:1:1.
  • the above data prove that the molecular structure of the compound obtained from the above reaction is KMn 3+ [Fe 2+ (CN) 6 ], called manganese(III) potassium ferrocyanide compound, and the crystal color is light blue.
  • sample a Weigh 8.00g of mannitol, 4.00g of meglumine, 0.0311g of nicotinic acid, 0.0411g of edetate disodium, and 0.0511g of cysteine into a 100ml beaker, add water to 70ml, stir magnetically until completely dissolved, referred to as sample a.
  • sample B Then weigh 8.5 g of polyvinylpyrrolidone and add it to sample A, and keep stirring until the polyvinylpyrrolidone is completely dissolved, and the solution is light yellow and transparent, and then cooled to room temperature, referred to as sample B.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Nanotechnology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明涉及一种分子式为KMn 3+[Fe 2+(CN) 6]的淡蓝色结晶的制备方法,这种方法合成的纳米粒子可用于制备T1核磁共振造影剂材料和T2核磁共振造影剂材料。按通常方法,[Fe(CN) 6] 4-的K +盐与三价锰盐混合后,仅能得到分子式为K 2Mn 2+[Fe 2+(CN) 6]的白色结晶,不能得到预期的分子式为KMn 3+[Fe 2+(CN) 6]的淡蓝色结晶;本发明方法可以得到分子结构为KMn 3+[Fe 2+(CN) 6]的淡蓝色亚铁氰化锰(III)钾结晶。将分子式为KMn 3+[Fe 2+(CN) 6]亚铁氰化锰(III)钾淡蓝色结晶为前体制备其纳米粒子材料,可用于制备分子式为KMn 3+[Fe 2+(CN) 6]亚铁氰化锰(III)钾淡蓝色结晶的纳米溶液的T1或T2或T1和T2双功能核磁共振造影剂材料。

Description

KMn 3+[Fe 2+(CN) 6]的制备方法 技术领域
本发明涉及一种分子结构式为KMn(III)[Fe(II)(CN) 6](为直观起见,以下用KMn 3+[Fe 2+(CN) 6]代表KMn(III)[Fe(II)(CN) 6]进行叙述)的新化合物亚铁氰化锰(III)钾结晶的制备方法。所述一种分子结构式为KMn 3+[Fe 2+(CN) 6]的亚铁氰化锰(III)钾结晶的XRD与分子结构为KMn 2+[Fe 3+(CN) 6]的铁氰化锰钾的XRD不同,也与分子结构为K 2Mn 2+[Fe 2+(CN) 6]的亚铁氰化锰二钾的XRD不同,与分子结构KFe 3+[Fe 2+(CN) 6]亚铁氰化铁钾(普鲁士蓝)的XRD类同;所述一种分子结构式为KMn 3+[Fe 2+(CN) 6]的亚铁氰化锰(III)钾结晶可被制备成纳米粒子,这种纳米粒子可用于制备T1核磁共振造影剂材料和T2核磁共振造影剂材料,或制备具有T1和T2双功能核磁共振造影剂材料。
背景技术
本发明涉及一种分子结构为KMn 3+[Fe 2+(CN) 6]的新化合物亚铁氰化锰(III)钾结晶的的制备方法,这种方法合成的结晶可被制备成纳米粒子,可用于制备T1核磁共振造影剂材料和T2核磁共振造影剂材料或制备T1和T2双功能核磁共振造影剂材料。
按通常方法,[Fe 3+(CN) 6] 3-的K +盐水溶液与Mn 2+盐的水溶液简单混合后,能得到分子式为Mn 2+ 3[Fe 3+(CN) 6] 2·13H 2O为主的铁氰化锰棕色结晶;如果上述过程改变反应条件,在100℃蒸馏72小时条件下进行,可得到分子结构为KMn 2+[Fe 3+(CN) 6]·2H 2O的铁氰化锰钾棕色结晶;如果上述反应中将[Fe 3+(CN) 6] 3-的K +盐水溶液改为[Fe 2+(CN) 6] 4-的K +盐水溶液,则反应产物以分子结构为K 2Mn 2+[Fe 2+(CN) 6]为主的亚铁氰化锰二钾白色结晶,其XRD图谱与分子结构为KMn 2+[Fe 3+(CN) 6]·2H 2O的铁氰化锰钾棕色结晶XRD图谱类同,即XRD图谱不能区分分子结构为KMn 2+[Fe 3+(CN) 6]·2H 2O的铁氰化锰钾棕色结晶与分子结构为K 2Mn 2+[Fe 2+(CN) 6]·nH 2O的白色结晶,但它们的颜色和Fe 2p的XPS图谱不同,可以区分;值得注意的是,上述反应中将[Fe 3+(CN) 6] 3-的K +盐水溶液改为[Fe 2+(CN) 6] 4-的K +盐水溶液,将Mn 2+盐改为稳定的Mn 3+盐,则反应产物的XRD图谱与分子结构为K 2Mn 2+[Fe 2+(CN) 6]仍然相同,产物元素分析表明反应产物Fe:Mn:K的元素比为1:1:≤2,反应产物的Fe 2p的XPS图谱证明其中Fe保持为Fe 2+,反应产物分子结构仍然主要为K 2Mn 2+[Fe 2+(CN) 6],得不到预期的分子结构为KFe 3+[Fe 2+(CN) 6]的Fe:Mn:K的元素比为1:1:1产物。用本发明的方法可以制备分子结构式为KMn 3+[Fe 2+(CN) 6]的亚铁氰化锰(III)钾结晶,结晶的颜色为淡蓝色,与分子结构为KMn 2+[Fe 3+(CN) 6]·2H 2O具有不同的XRD图谱和颜色,与亚铁氰化铁钾(普鲁士蓝)的分子结构KFe 3+[Fe 2+(CN) 6]的XRD类同,元素分析表明,Fe:Mn:K的元素比为1:1:1,Fe 2p的XPS图谱证明其中Fe为Fe 2+,按分 子化合价为零的原则,Mn为Mn 3+,与Mn 3+ 2p的XPS测试分析结果一致,证明所得产物的分子结构为KMn 3+[Fe 2+(CN) 6],与亚铁氰化铁钾(普鲁士蓝)的分子结构KFe 3+[Fe 2+(CN) 6]相比,Mn 3+取代了Fe 3+,其余不变,根据XRD测试原理,两者具有类同的XRD。
由于本发明的方法合成的分子结构为KMn 3+[Fe 2+(CN) 6]的亚铁氰化锰(III)钾淡蓝色结晶制备的纳米粒子具有很好的化学稳定性和形貌稳定性,其纳米粒子溶液的弛豫率测试表明,分子结构为KMn 3+[Fe 2+(CN) 6]的亚铁氰化锰(III)钾淡蓝色结晶的纳米粒子溶液可作为T1或T2单功能核磁共振造影剂材料,也可用作T1和T2双功能核磁共振造影剂材料;根据已有研究资料分析,分子结构为KMn 3+[Fe 2+(CN) 6]的亚铁氰化锰(III)钾淡蓝色结晶或其纳米粒子亦可作为潜在的Mn 3+催化剂材料及高性能化学电池材料。
发明内容
本发明涉及一种分子式为KMn 3+[Fe 2+(CN) 6]的淡蓝色结晶的制备方法,这种方法合成的纳米粒子可用于制备T1核磁共振造影剂材料和T2核磁共振造影剂材料。按通常方法,亚铁氰酸盐([Fe(CN) 6] 4-的K +盐)与三价锰盐混合后,仅能得到分子式为K 2Mn 2+[Fe 2+(CN) 6]的白色结晶,不能得到预期的分子式为KMn 3+[Fe 2+(CN) 6]的淡蓝色结晶;用本发明的方法,可以确切得到分子结构为KMn 3+[Fe 2+(CN) 6]的淡蓝色亚铁氰化锰(III)钾结晶。由于本发明的方法合成的分子式为KMn 3+[Fe 2+(CN) 6]亚铁氰化锰(III)钾淡蓝色结晶同时具有在水中不易解离和稳定的形貌特征,从而有利于以分子式为KMn 3+[Fe 2+(CN) 6]铁氰化锰(III)钾淡蓝色结晶为前体制备其纳米粒子材料,可用于制备分子式为KMn 3+[Fe 2+(CN) 6]铁氰化锰(III)钾淡蓝色结晶的纳米溶液T1核磁共振造影剂材料和分子式为KMn 3+[Fe 2+(CN) 6]铁氰化锰(III)钾淡蓝色结晶的纳米溶液T2核磁共振造影剂材料,或分子式为KMn 3+[Fe 2+(CN) 6]铁氰化锰(III)钾淡蓝色结晶的纳米溶液T1和T2双功能核磁共振造影剂材料。
1.本发明涉及一种分子式为KMn 3+[Fe 2+(CN) 6]的铁氰化锰(III)钾淡蓝色结晶的制备方法,主要包括以下步骤:
以可溶于水溶液的分子结构为(NH 4) 4[Fe 2+(CN) 6]的亚铁氰酸铵,在加入1-2倍等摩尔的KCl,与等摩尔的可溶于浓磷酸的三价锰盐通过混合反应,得到分子式为KMn 3+[Fe 2+(CN) 6]亚铁氰化锰(III)钾淡蓝色结晶。
分子式为KMn 3+[Fe 2+(CN) 6]亚铁氰化锰(III)钾淡蓝色结晶,其XRD图谱为图1,与普鲁士蓝的分子结构KFe 3+[Fe 2+(CN) 6]的XRD图谱类同。
分子式为KMn 3+[Fe 2+(CN) 6]亚铁氰化锰(III)钾淡蓝色结晶,其XPS测试中Fe 2p的图谱为图2,吸收峰在708.5eV,单峰,左边无肩峰,证明Fe为正二价,即结构中的Fe为Fe 2+
分子式为KMn 3+[Fe 2+(CN) 6]的亚铁氰化锰(III)钾淡蓝色结晶,其XPS测试中Mn 2p的图谱为图3,吸收峰在641.24eV,证明Mn为正三价(二价锰的吸收峰一般在640.80eV),即结构中的锰为Mn 3+
分子式为KMn 3+[Fe 2+(CN) 6]亚铁氰化锰(III)钾淡蓝色结晶,其XPS测试中K、Mn、Fe三元素的元素比约为1:1:1。
分子结构为KMn 3+[Fe 2+(CN) 6]亚铁氰化锰(III)钾淡蓝色结晶,其ICP测试中Fe:Mn:K为1:1:1,考虑到Fe的价态为Fe 2+,K的价态为K +,再结合图1,其XRD图谱与普鲁士蓝的分子结构KFe 3+[Fe 2+(CN) 6]的XRD图谱类同,普鲁士蓝分子结构KFe 3+[Fe 2+(CN) 6]中Fe 3+被Mn 3+取代,组成化合物各元素化合价为零的原则,证明所制备的产物分子结构为KMn[Fe 2+(CN) 6]中Mn为Mn 3+,所制备的产物分子结构为KMn 3+[Fe 2+(CN) 6],称为亚铁氰化锰(III)钾。
2.分子式为KMn 3+[Fe 2+(CN) 6]亚铁氰化锰(III)钾淡蓝色结晶纳米粒子及其溶液的制备主要包括以下步骤:
将分子式为KMn 3+[Fe 2+(CN) 6]亚铁氰化锰(III)钾淡蓝色结晶溶蚀在配方为甘露醇、葡甲胺、聚乙烯吡咯烷酮、烟酸、依地酸二钠、半胱氨酸的水溶液中;或溶蚀在配方为甘露醇、葡甲胺、聚乙烯吡咯烷酮、烟酸、依地酸二钠的水溶液中;或溶蚀在配方为甘露醇、葡甲胺、聚乙烯吡咯烷酮、烟酸、半胱氨酸的水溶液中;或溶蚀在配方为甘露醇、葡甲胺、聚乙烯吡咯烷酮、依地酸二钠、半胱氨酸的水溶液中;或溶蚀在配方为甘露醇、葡甲胺、聚乙烯吡咯烷酮、烟酸的水溶液中;或溶蚀在配方为甘露醇、葡甲胺、聚乙烯吡咯烷酮、依地酸二钠的水溶液中;或溶蚀在配方为甘露醇、葡甲胺、聚乙烯吡咯烷酮、半胱氨酸的水溶液中;或溶蚀在配方为甘露醇、葡甲胺、聚乙烯吡咯烷酮的水溶液中;或溶蚀在配方为甘露醇、葡甲胺、烟酸、依地酸二钠、半胱氨酸的水溶液中,搅拌至溶液透明后,再加入聚乙烯吡咯烷酮后继续搅拌至溶液透明;或溶蚀在配方为甘露醇、葡甲胺、烟酸、依地酸二钠、的水溶液中,搅拌至溶液透明后,再加入聚乙烯吡咯烷酮后继续搅拌至溶液透明;或溶蚀在配方为甘露醇、葡甲胺、烟酸、半胱氨酸的水溶液中,搅拌至溶液透明后,再加入聚乙烯吡咯烷酮后继续搅拌至溶液透明;或溶蚀在配方为甘露醇、葡甲胺、依地酸二钠、半胱氨酸的水溶液中,搅拌至溶液透明后,再加入聚乙烯吡咯烷酮后继续搅拌至溶液透明;或溶蚀在配方为甘露醇、葡甲胺、烟酸的水溶液中,搅拌至溶液透明后,再加入聚乙烯吡咯烷酮后继续搅拌至溶液透明;或溶蚀在配方为甘露醇、葡甲胺、依地酸二钠的水溶液中,搅拌至溶液透明后,再加入聚乙烯吡咯烷酮后继续搅拌至溶液透明;或溶蚀在配方为甘露醇、葡甲胺、半胱氨酸的水溶液中,搅拌至溶液透明后,再加入聚乙烯吡咯烷酮后继续搅拌至溶液透明;上述过程中,聚乙烯吡咯烷酮可用壳聚糖替代,或可用右旋糖酐替代,或可用羧基右旋糖酐替代,或可用葡聚糖替 代,或可用羧甲基葡聚糖替代,或可用聚乙二醇替代,各成分用量为甘露醇为2-20%(重量),葡甲胺为2%-20%(重量),烟酸为0.01-5.0%(重量),依地酸二钠为0.01-5.0%(重量),半胱氨酸为0.01%-5.0%(重量),聚乙烯吡咯烷酮为2%-20%(重量),壳聚糖为1.0%-15%(重量),右旋糖酐为1.0%-15%(重量),羧基右旋糖酐为1.0%-15%(重量),葡聚糖为1.0%-15%(重量),羧甲基葡聚糖为1.0%-15%(重量),聚乙二醇为1.0%-20%(重量),上述过程中,各成分全部溶解或溶蚀后继续搅拌0.5-36小时,形成稳定的分子式为分子式为KMn 3+[Fe 2+(CN) 6]·nH 2O亚铁氰化锰(III)钾淡蓝色结晶纳米粒子及其纳米粒子溶液。其中:
纳米粒子大小在10nm-300nm之间,其透射电电镜纳米粒子图像见图4;其透射电镜纳米粒子能谱测定含K:Mn:Fe的比例约为为1:1:1,见图5;
纳米粒子溶液锰含量在0.1-40mM之间;
纳米粒子在PH在3.5-12.5之间稳定;
纳米粒子溶液在0.5T磁场下的弛豫率测试值,r 1=1.47mmol -1s -1,r 2=1.79mmol -1s -1表明纳米粒子溶液可用作T1或T2磁共振造影剂材料,或T1和T2双功能磁共振造影剂材料。
附图说明
图1是本发明实施例1所制备的分子式为KMn 3+[Fe 2+(CN) 6]亚铁氰化锰(III)钾淡蓝色结晶的粉末X射线衍射图。
图2是本发明实施例1所制备的分子式为KMn 3+[Fe 2+(CN) 6]亚铁氰化锰(III)钾淡蓝色结晶的粉末Fe 2+ 2p的XPS光谱图。
图3是本发明实施例1所制备的分子式为KMn 3+[Fe 2+(CN) 6]亚铁氰化锰(III)钾淡蓝色结晶的粉末Mn 3+ 2p的XPS光谱图。
图4是本发明实施例2所制备的分子式为KMn 3+[Fe 2+(CN) 6]亚铁氰化锰(III)钾淡蓝色结晶粒子溶液透射电镜图,纳米粒子粒径在10-300nm之间。
图5是本发明实施例2所制备的分子式为KMn 3+[Fe 2+(CN) 6]亚铁氰化锰(III)钾淡蓝色结晶粒子溶液透射电子显微镜元素分析能谱图,测得K:Mn:Fe的比例约为1:1:1。
具体实施方式
实施例1:
分子式为KMn 3+[Fe 2+(CN) 6]·nH 2O亚铁氰化锰(III)钾淡蓝色结晶的制备1
称取5.68克(NH 4) 4[Fe(CN) 6]和1.70gKCl放入100毫升烧杯中,加水40ml完全溶解,简称样A;称取7.040克三乙酸丙酮锰(III)放入250毫升烧瓶中,加入浓磷酸100ml搅拌至完全溶 解,溶液透明,简称样B;将A样在搅拌的情况缓慢滴加到B样的烧杯中,用封口胶封住烧杯口,在避光下室温静置6小时后得到分子式为KMn 3+[Fe 2+(CN) 6]的亚铁氰化锰(III)钾淡蓝色结晶,经用高纯水反复抽洗结晶;所得结晶经34℃真空干燥24小时,得到干燥的结晶,其结晶粉末XRD图见图1;其结晶粉末XPS图谱中,铁的XPS图谱为Fe 2+ 2P谱图见图2,锰的XPS图谱为Mn 3+ 2P的图谱见图3,XPS所测元素比K:Mn:Fe约为1:1:1;其结晶粉末样品的ICP测定元素比K:Mn:Fe为1:1:1。以上数据证明上述反应所得化合物的分子结构为KMn 3+[Fe 2+(CN) 6],称为亚铁氰化锰(III)钾化合物,结晶颜色为淡蓝色。考虑到普鲁士蓝类似物结构中普遍存在结晶水,以及最接近的类似化合物结构的结晶水情况,我们估计该化合物分子结构为KMn 3+[Fe 2+(CN) 6]·nH 2O,其中n=0,1,1.5,2。
实施例2:
分子式为KMn 3+[Fe 2+(CN) 6]亚铁氰化锰(III)钾淡蓝色结晶纳米粒子的制备
称取8.00g甘露醇、葡甲胺4.00g、烟酸0.0311g、依地酸二钠0.0411g、半胱氨酸0.0511g于100ml烧杯中,加水至70ml,磁力搅拌,至完全溶解,简称样A。
再称取聚乙烯吡咯烷酮8.5g加入样A中,不断搅拌,至聚乙烯吡咯烷酮完全溶解,溶液呈微黄透明,然后再冷却至室温,简称样B。
称取分子式为KMn 3+[Fe 2+(CN) 6]亚铁氰化锰(III)钾淡蓝色结晶0.4769g加入到样B中,不断搅拌,至该结晶完全溶蚀,继续搅拌12小时,得分子式为KMn 3+[Fe 2+(CN) 6]亚铁氰化锰(III)钾淡蓝色结晶纳米粒子溶液,再用10%盐酸溶液调PH值为8.5简称样C;透射电子显微镜观察到样C纳米粒子在溶液中纳米粒子的粒径在10-300nm,见图4;透射电子显微镜元素分析能谱测得样C中纳米粒子的K:Mn:Fe的比例约为1:1:1,见图5。
实施例3:
将实施例2中所制备的分子式为KMn 3+[Fe 2+(CN) 6]亚铁氰化锰(III)钾淡蓝色结晶纳米粒子溶液样C测试T1和T2弛豫率,在0.5T磁场中测试结果:r 1=1.47mmol -1s -1,r 2=1.79mmol -1s -1,表明分子式为KMn 3+[Fe 2+(CN) 6]亚铁氰化锰(III)钾淡蓝色结晶纳米粒子溶液可作为T1或T2磁共振造影剂材料,也可作为T1和T2双功能磁共振造影剂材料。

Claims (6)

  1. 一种分子式为KMn 3+[Fe 2+(CN) 6]的亚铁氰化锰(III)钾淡蓝色结晶。
  2. 根据权利要求1所述分子式为KMn 3+[Fe 2+(CN) 6]的亚铁氰化锰(III)钾淡蓝色结晶,其特征在于,其制备方法是:将可溶于水溶液的(NH 4) 4[Fe 2+(CN) 6]加等摩尔到二倍等摩尔的KCl溶液与等摩尔的可溶于浓磷酸的三价锰盐通过混合反应,得到分子式为KMn 3+[Fe 2+(CN) 6]的亚铁氰化锰(III)钾淡蓝色结晶。
  3. 根据权利要求1所述分子式为KMn 3+[Fe 2+(CN) 6]的亚铁氰化锰(III)钾淡蓝色结晶,其特征在于,将其溶蚀在配方为甘露醇、葡甲胺、聚乙烯吡咯烷酮、烟酸、依地酸二钠、半胱氨酸的水溶液中;或溶蚀在配方为甘露醇、葡甲胺、聚乙烯吡咯烷酮、烟酸、依地酸二钠的水溶液中;或溶蚀在配方为甘露醇、葡甲胺、聚乙烯吡咯烷酮、烟酸、半胱氨酸的水溶液中;或溶蚀在配方为甘露醇、葡甲胺、聚乙烯吡咯烷酮、依地酸二钠、半胱氨酸的水溶液中;或溶蚀在配方为甘露醇、葡甲胺、聚乙烯吡咯烷酮、烟酸的水溶液中;或溶蚀在配方为甘露醇、葡甲胺、聚乙烯吡咯烷酮、依地酸二钠的水溶液中;或溶蚀在配方为甘露醇、葡甲胺、聚乙烯吡咯烷酮、半胱氨酸的水溶液中;或溶蚀在配方为甘露醇、葡甲胺、聚乙烯吡咯烷酮的水溶液中;或溶蚀在配方为甘露醇、葡甲胺、烟酸、依地酸二钠、半胱氨酸的水溶液中,搅拌至溶液透明后,再加入聚乙烯吡咯烷酮后继续搅拌至溶液透明;或溶蚀在配方为甘露醇、葡甲胺、烟酸、依地酸二钠、的水溶液中,搅拌至溶液透明后,再加入聚乙烯吡咯烷酮后继续搅拌至溶液透明;或溶蚀在配方为甘露醇、葡甲胺、烟酸、半胱氨酸的水溶液中,搅拌至溶液透明后,再加入聚乙烯吡咯烷酮后继续搅拌至溶液透明;或溶蚀在配方为甘露醇、葡甲胺、依地酸二钠、半胱氨酸的水溶液中,搅拌至溶液透明后,再加入聚乙烯吡咯烷酮后继续搅拌至溶液透明;或溶蚀在配方为甘露醇、葡甲胺、烟酸的水溶液中,搅拌至溶液透明后,再加入聚乙烯吡咯烷酮后继续搅拌至溶液透明;或溶蚀在配方为甘露醇、葡甲胺、依地酸二钠的水溶液中,搅拌至溶液透明后,再加入聚乙烯吡咯烷酮后继续搅拌至溶液透明;或溶蚀在配方为甘露醇、葡甲胺、半胱氨酸的水溶液中,搅拌至溶液透明后,再加入聚乙烯吡咯烷酮后继续搅拌至溶液透明;上述过程中,聚乙烯吡咯烷酮可用壳聚糖替代,或可用右旋糖酐替代,或可用羧基右旋糖酐替代,或可用葡聚糖替代,或可用羧甲基葡聚糖替代,或可用聚乙二醇替代,各成分用量为甘露醇为2-20%(重量),葡甲胺为2%-20%(重量),烟酸为0.01-5.0%(重量),依地酸二钠为0.01-5.0%(重量),半胱氨酸为0.01%-5.0%(重量),聚乙烯吡咯烷酮为2%-20%(重量),壳聚糖为1.0%-15%(重量),右旋糖酐为1.0%-15%(重量),羧基右旋糖酐为1.0%-15%(重量),葡聚糖为1.0%-15%(重量),羧甲基葡聚糖为1.0%-15%(重量),聚乙二醇为1.0%-20%(重量),上述过程中,各成分全部溶解或溶蚀后继续搅拌0.5-36小时,形成稳定的分子式为KMn 3+[Fe 2+(CN) 6]的亚铁氰化锰(III)钾淡蓝色结晶纳米粒子及其纳米粒子 溶液。
  4. 根据权利要求3所述分子式为KMn 3+[Fe 2+(CN) 6]的亚铁氰化锰(III)钾淡蓝色结晶,其特征在于,所述KMn 3+[Fe 2+(CN) 6]的亚铁氰化锰(III)钾淡蓝色结晶纳米粒子及其纳米粒子溶液用作T1磁共振造影剂材料。
  5. 根据权利要求3所述分子式为KMn 3+[Fe 2+(CN) 6]的亚铁氰化锰(III)钾淡蓝色结晶,其特征在于,所述KMn 3+[Fe 2+(CN) 6]的亚铁氰化锰(III)钾淡蓝色结晶纳米粒子及其纳米粒子溶液用作T2磁共振造影剂材料。
  6. 根据权利要求3所述分子式为KMn 3+[Fe 2+(CN) 6]的亚铁氰化锰(III)钾淡蓝色结晶,其特征在于,所述KMn 3+[Fe 2+(CN) 6]的亚铁氰化锰(III)钾淡蓝色结晶纳米粒子及其纳米粒子溶液用作T1和T2双功能磁共振造影剂材料。
PCT/CN2022/094209 2021-06-09 2022-05-20 KMn 3+[Fe 2+(CN) 6]的制备方法 WO2022257736A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112022002978.1T DE112022002978T5 (de) 2021-06-09 2022-05-20 Verfahren zur Herstellung von KMn3+[Fe2+(CN)6]

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110640059.7 2021-06-09
CN202110640059.7A CN114804152A (zh) 2021-06-09 2021-06-09 KMn3+[Fe2+(CN)6]的制备方法

Publications (1)

Publication Number Publication Date
WO2022257736A1 true WO2022257736A1 (zh) 2022-12-15

Family

ID=82525912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094209 WO2022257736A1 (zh) 2021-06-09 2022-05-20 KMn 3+[Fe 2+(CN) 6]的制备方法

Country Status (3)

Country Link
CN (1) CN114804152A (zh)
DE (1) DE112022002978T5 (zh)
WO (1) WO2022257736A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130302256A1 (en) * 2011-02-08 2013-11-14 Kent State University Nanoparticulate manganese mri contrast agents
US20140220392A1 (en) * 2013-02-04 2014-08-07 Alveo Energy, Inc. Prussian Blue Analogue Anodes for Aqueous Electrolyte Batteries
CN104512910A (zh) * 2013-09-30 2015-04-15 吴学文 一种铁氰化锰结晶及其纳米粒子的制备方法
CN105981211A (zh) * 2014-02-06 2016-09-28 夏普株式会社 氰合金属酸盐阴极电池和制造方法
CN107226475A (zh) * 2017-06-08 2017-10-03 西安交通大学 一种钾离子电池正极材料及其制备方法和钾离子电池
CN107827125A (zh) * 2017-12-18 2018-03-23 吴学文 铁氰化锰钾黑色结晶的合成
CN108017070A (zh) * 2017-12-18 2018-05-11 吴学文 铁氰化锰钾白色结晶的合成

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES421512A1 (es) * 1973-02-19 1976-05-01 Degussa Procedimiento para la preparacion de azul de prusia.
DE2453014A1 (de) * 1974-11-08 1976-05-13 Degussa Verfahren zur herstellung von ferrocyanblau
JP2015129757A (ja) * 2013-12-02 2015-07-16 国立大学法人東京工業大学 セシウム吸着剤及びその製造方法並びにセシウム吸着剤を使用したセシウムの除去方法
CN105000577A (zh) * 2014-04-23 2015-10-28 吴学文 一种铁氰化锰结晶纳米及其核磁共振造影剂的制备方法
CN105776249A (zh) * 2016-05-09 2016-07-20 上海第二工业大学 一种铁氰化锰纳米立方块及其制备方法
CN109095477A (zh) * 2017-06-21 2018-12-28 吴学文 铁氰化锰钾结晶的合成
CN109507137B (zh) * 2018-11-20 2021-02-09 常州工学院 亚铁氰化锰钾中亚铁氰根离子及锰含量的测定及鉴定方法
RU2728286C1 (ru) * 2019-12-09 2020-07-29 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" Способ приготовления и сборки аккумуляторной ячейки, состоящей из цианокомплексов переходных металлов в качестве катода, неграфитизируемого углерода в качестве анода и безводного электролита, для калий-ионных аккумуляторов

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130302256A1 (en) * 2011-02-08 2013-11-14 Kent State University Nanoparticulate manganese mri contrast agents
US20140220392A1 (en) * 2013-02-04 2014-08-07 Alveo Energy, Inc. Prussian Blue Analogue Anodes for Aqueous Electrolyte Batteries
CN104512910A (zh) * 2013-09-30 2015-04-15 吴学文 一种铁氰化锰结晶及其纳米粒子的制备方法
CN105981211A (zh) * 2014-02-06 2016-09-28 夏普株式会社 氰合金属酸盐阴极电池和制造方法
CN107226475A (zh) * 2017-06-08 2017-10-03 西安交通大学 一种钾离子电池正极材料及其制备方法和钾离子电池
CN107827125A (zh) * 2017-12-18 2018-03-23 吴学文 铁氰化锰钾黑色结晶的合成
CN108017070A (zh) * 2017-12-18 2018-05-11 吴学文 铁氰化锰钾白色结晶的合成

Also Published As

Publication number Publication date
DE112022002978T5 (de) 2024-03-28
CN114804152A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
Stavila et al. Bismuth (III) complexes with aminopolycarboxylate and polyaminopolycarboxylate ligands: Chemistry and structure
EP1873117B1 (en) Methods for producing ultrafine particle of prussian blue-type metal complex and of a dispersion liquid thereof
Qi et al. A highly sensitive and selective turn-off fluorescence sensor for Fe3+ detection based on a terbium metal-organic framework
UA123512C2 (uk) Сольвотермальний метод отримання вуглецевих матеріалів з прищепленими трифторметильними групами
JPH0469625B2 (zh)
Ning et al. Four new lanthanide–organic frameworks: selective luminescent sensing and magnetic properties
US3916004A (en) Process for producing dopa preparation
CN102424570A (zh) NiFe2O4磁性材料的制备方法
WO2022257736A1 (zh) KMn 3+[Fe 2+(CN) 6]的制备方法
Shukla et al. Magnetic materials based on heterometallic Cr II/III–Ln III complexes
Ge et al. Fast synthesis of fluorescent SiO 2@ CdTe nanoparticles with reusability in detection of H 2 O 2
Peng et al. Bifunctional Fe3O4@ Gd2O3: Eu3+ nanocomposites obtained by the homogeneous precipitation method
Korenev et al. Structural features of selenate based {Mo 132} keplerate capsules
Qu et al. Octahedral lanthanide clusters containing a central PO 4 3− anion: structural, luminescent, magnetic and relaxometric properties
Wang et al. Synthesis and crystal structure of the potassium lanthanum complex with triethylenetetra-aminehexaacetic acid (H6TTHA): K [KLa (HTTHA)(H2O)]· 8H2O
Moser et al. Nitrosodisulphonates. Part I. Fremy's salt (potassium nitrosodisulphonate)
Tong et al. Three new super water-stable lanthanide–organic frameworks for luminescence sensing and magnetic properties
Zeng et al. Fabrication of two-phase Ca 2+-doped LaVO 4: Eu 3+ structures: morphology modification, tunable optical performance and detection of Fe 3+ ions with high sensitivity
CN104512912A (zh) 一种铁氰化锰结晶及其纳米粒子的制备方法
Manickas et al. Crystal structures of two heterotrimetallic dysprosium–manganese–sodium 12-metallacrown-4 complexes with the bridging ligands 3-hydroxybenzoate and 4-hydroxybenzoate
Davies et al. Synthesis of the hexaphenoxotungstate (V) ion; The x-ray crystal structures of the tetraethylammonium and lithium salts
Mentasti et al. Complex formation between nickel (II) and cobalt (II) with salicylic acids. Equilibriums and reaction mechanisms
CN105017294B (zh) 一种噻二唑基二羧酸铽配合物及其制备方法和应用
CN109095477A (zh) 铁氰化锰钾结晶的合成
Ojima et al. Syntheses of a New Series of Transition Metal Chelates of Diphenylphosphinothioylthiourea Anion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819334

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022002978

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22819334

Country of ref document: EP

Kind code of ref document: A1