WO2022257461A1 - Procédé et système de mise à jour d'un modèle de pont sur la base d'une correction de la force de couplage véhicule-pont, support de stockage, et dispositif - Google Patents

Procédé et système de mise à jour d'un modèle de pont sur la base d'une correction de la force de couplage véhicule-pont, support de stockage, et dispositif Download PDF

Info

Publication number
WO2022257461A1
WO2022257461A1 PCT/CN2022/071663 CN2022071663W WO2022257461A1 WO 2022257461 A1 WO2022257461 A1 WO 2022257461A1 CN 2022071663 W CN2022071663 W CN 2022071663W WO 2022257461 A1 WO2022257461 A1 WO 2022257461A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge
vehicle
model
heavy
force
Prior art date
Application number
PCT/CN2022/071663
Other languages
English (en)
Chinese (zh)
Inventor
丁勇
张志强
刘剑
周彤
贾献卓
常英
朱斌
陈�光
曾聪
Original Assignee
哈尔滨工业大学
中电建冀交高速公路投资发展有限公司
哈工大(北京)工业技术创新研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学, 中电建冀交高速公路投资发展有限公司, 哈工大(北京)工业技术创新研究院有限公司 filed Critical 哈尔滨工业大学
Priority to US17/936,866 priority Critical patent/US20230050445A1/en
Publication of WO2022257461A1 publication Critical patent/WO2022257461A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the invention belongs to the technical field of engineering, in particular to a refined update method, system and equipment for a finite element model of a highway bridge
  • the purpose of the present invention is to solve the problem that there is no refined update method for the bridge model at present, resulting in low simulation accuracy.
  • a bridge model update method based on vehicle-bridge coupling force correction comprising the following steps:
  • the dynamic response of the bridge structure under the load of heavy-duty vehicles is obtained through the sensors arranged on the bridge structure;
  • the dynamic response of the bridge structure obtained by the actual measurement includes the vertical vibration acceleration and vertical deflection of the bridge;
  • a nonlinear finite element model of the bridge structure is established, the vehicle-bridge interaction force is taken as the external force, the dynamic response of the bridge structure is taken as the structural response, and the correction of the finite element model of the bridge structure is completed through the nonlinear parameter identification method.
  • the senor is arranged at a quarter point of each span of the bridge main girder.
  • the measured dynamic response of the bridge structure includes the vertical vibration acceleration and vertical deflection of the bridge. It is necessary to use an interpolation method to obtain the vertical deflection and deformation of the bridge at the center of gravity of the heavy-duty vehicle during the whole process of crossing the bridge. Vertical vibration acceleration.
  • the process of reconstructing the table response of the shaking table and obtaining the interaction force F of the vehicle-bridge coupling model includes the following steps:
  • the correction process of the finite element model of the bridge structure is completed through the nonlinear parameter identification method, and the energy conservation integral method and the UKF method are used to realize, wherein the energy conservation integral method is used to solve the structural dynamics problem, and the UKF method is used to carry out the bridge numerical model renew;
  • the specific process of using the energy conservation integral method to solve the structural dynamics problem includes the following steps:
  • M and C are the mass and damping matrix of the bridge nonlinear system
  • x is the state variable of the state space equation
  • k is the time step
  • F k is the external force of the bridge at time k
  • L is the load position matrix
  • x k are the acceleration, velocity and displacement responses of the bridge structure at time k
  • R k (x) is the nonlinear structural restoring force of the bridge nonlinear system at time k;
  • ⁇ t is the time step
  • k is the time step
  • the system speed of k+1 is the time step expression for:
  • x m , F m and R m are the mean velocity, mean external force and mean restoring force between k and k+1 time steps;
  • Formula (8) is regarded as an energy transfer process, and the energy conservation integral method is used to solve the structural dynamics problem.
  • the bridge nonlinear system damping matrix is a Rayleigh damping matrix:
  • a 1 and a 2 are the Rayleigh damping coefficients, and K is the stiffness matrix.
  • the average velocity, average external force and average restoring force x m , F m and R m between the k and k+1 time steps are as follows:
  • R m (R k+1 +R k )/2
  • a bridge model update system based on vehicle-bridge coupling force correction the system is used to implement a bridge model update method based on vehicle-bridge coupling force correction.
  • a storage medium at least one instruction is stored in the storage medium, and the at least one instruction is loaded and executed by a processor to implement a bridge model update method based on vehicle-bridge coupling force correction.
  • a device the device includes a processor and a memory, at least one instruction is stored in the storage medium, and the at least one instruction is loaded and executed by the processor to implement a bridge model based on vehicle-bridge coupling force correction update method.
  • the present invention is based on the real vehicle-shaking table hybrid test, simulates the bridge structure with a multi-degree-of-freedom shaking table, accurately picks up the vehicle-bridge interaction force, and combines the measured dynamic response of the bridge on this basis, through nonlinear parameter identification means, to complete
  • the basis of analysis is of great practical significance to solve the problem of large-scale transportation audit.
  • Fig. 1 is the updated frame diagram of the bridge model based on vehicle-bridge coupling force correction according to the present invention
  • Fig. 4 is the schematic diagram of vehicle-shaking table test
  • 1 is the heavy-duty vehicle
  • 2 is the measured dynamic response of the bridge
  • 3 is the pressure and shear force measurement version
  • 4 is the vibration table.
  • This embodiment is a bridge model update method based on vehicle-bridge coupling force correction, including the following steps:
  • the dynamic response of the bridge structure under the load of heavy-duty vehicles is obtained through the sensors that have been deployed on the bridge structure.
  • the measured dynamic response of the bridge structure includes the vertical vibration acceleration and deflection of the bridge.
  • the sensor layout position is the main girder of each span of the bridge quarter point.
  • the heavy load in heavy-duty vehicles refers to the "Definition Method for Heavy-Duty and Heavy-Duty Traffic on Cement Concrete Pavement", as shown in Table 1:
  • Figure 2 shows the schematic diagram of the bridge field test.
  • the vertical vibration acceleration a o and vertical deflection y o of the bridge corresponding to the center of gravity o of the heavy-duty vehicle are obtained by difference processing based on adjacent sensor data.
  • Attached Figure 3 shows the acquisition process of the dynamic response of the bridge structure at the center o of the heavy-duty vehicle.
  • the actual number of spans of the bridge is j, and each bridge is divided into 4 units of equal length according to the position of the sensor.
  • the interpolation method obtains the vertical deflection deformation and vertical vibration acceleration of the bridge at the center of gravity of the heavy-duty vehicle during the whole process of the heavy-duty vehicle crossing the bridge.
  • the table response of the shaking table is reconstructed through mixed experiments, so that the reconstructed table surface
  • the vertical displacement and the vertical acceleration of the platform are consistent with y o and a o
  • the horizontal movement speed of the platform is u vehicle
  • its moving direction is opposite to that of the heavy-duty vehicle.
  • the movement of the heavy-duty vehicle is simulated through the relative motion of the vehicle-bridge.
  • the reconstruction is achieved by a hybrid experimental approach in which the experimental substructure is a full-scale heavy-duty vehicle and the numerical substructure is a finite element model of the bridge structure.
  • the bridge is divided into numerical substructures for finite element simulation.
  • the prototype and full-scale heavy-duty vehicle are selected as the test substructure, and the loading is simulated by the shaking table array.
  • the center of gravity of the vehicle is determined according to the type of the heavy-duty vehicle and the counterweight.
  • Response reconstruction is provided to the shaking table as the response quantity, so that the vibration table produces the same dynamic response of the bridge structure as the vehicle passes the bridge.
  • the interaction force of the vehicle-bridge coupling model can be obtained through the force plate; the process of obtaining the interaction force of the vehicle-bridge coupling model through the force plate includes the following steps:
  • the nonlinear finite element model of the bridge structure is established, the vehicle-bridge interaction force is taken as the external force, and the dynamic response of the bridge structure obtained from the actual measurement is taken as the structural response.
  • the correction of the finite element model of the bridge structure is completed, so that the numerical model of the bridge It can truly reflect the actual damage of the bridge and reduce the model error.
  • the vehicle-bridge interaction force F is used as the external excitation of the nonlinear finite element model of the bridge.
  • the specific model update process is as follows:
  • M and C are the mass and damping matrix of the bridge nonlinear system
  • x is the state variable of the state space equation
  • k is the time step
  • F k is the external force of the bridge at time k
  • L is the load position matrix
  • x k are the acceleration, velocity and displacement responses of the bridge structure at time k
  • R k (x) is the restoring force of the nonlinear structure of the bridge nonlinear system at time k
  • the damping of the bridge nonlinear system is Rayleigh damping:
  • a 1 and a 2 are the Rayleigh damping coefficients, and K is the stiffness matrix;
  • the parameters mainly include the physical parameters of important materials of the bridge, especially the constitutive parameters of concrete and steel structures.
  • ⁇ t is the time step length
  • k is the time step.
  • the speed of k+1 time step can be obtained expression for:
  • x m , F m and R m are the mean velocity, mean external force and mean restoring force between k and k+1 time steps;
  • R m (R k+1 +R k )/2
  • x k,m are the average acceleration, average velocity and average displacement response of the bridge structure at time k
  • R k,m (x) is the average restoring force of the nonlinear structure of the bridge nonlinear system at time k
  • F k,m is the The average external force of the axle
  • Formula (8) embodies the energy transfer process in the bridge nonlinear system.
  • the system motion equation always satisfies the principle of energy conservation. Therefore, the energy conservation integral method can be applied to solve structural dynamics problems.
  • the energy conservation integral method can be applied to solve structural dynamics problems.
  • the refined identification of parameters in the nonlinear finite element model of the bridge can be realized, and then the update process of the bridge finite element model can be completed.
  • Equation (9) can also be expressed as Equation (13) in the state space.
  • the discrete observation function can be written as
  • V is the observation noise
  • E[X] is the expectation
  • 2n+1 sampling points can be used to construct the estimated value of the system state vector at k-1 time by the following formula:
  • i and ⁇ are the parameters in the UKF algorithm, and ⁇ is the parameter controlling the distance from each sigma point to the mean.
  • W m is the weight matrix, and there are 2n weight coefficients in total, and n is the number of elements in the state vector; I is the identity matrix, and the dimension is 2n ⁇ 2n; Q k-1 is the k-1 step process of the state equation The covariance matrix of the noise.
  • y k the observation quantity of the kth step.
  • the cyclic recursion operation is carried out to complete the estimation of the state quantity, and the bridge structural parameters are placed in the state quantity.
  • the identification of the nonlinear parameters of the bridge can be realized.
  • the parameters include the physical parameters of the important materials of the bridge, especially Constitutive parameters of concrete and steel structures, such as modulus, Poisson's ratio and other nonlinear constitutive model parameters.
  • the main parameters can be determined through the sensitivity analysis of structural response to model parameters.
  • This embodiment is a bridge model update system based on vehicle-bridge coupling force correction, and the system is used to implement a bridge model update method based on vehicle-bridge coupling force correction.
  • This embodiment is a storage medium, and at least one instruction is stored in the storage medium, and the at least one instruction is loaded and executed by a processor to implement a bridge model update method based on vehicle-bridge coupling force correction.
  • This embodiment is a device, the device includes a processor and a memory, at least one instruction is stored in the storage medium, and the at least one instruction is loaded and executed by the processor to realize a vehicle-bridge coupling force Revised bridge model update method.
  • the present invention can also have other various embodiments, without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and deformations according to the present invention, but these corresponding changes and deformations are all Should belong to the scope of protection of the appended claims of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Bridges Or Land Bridges (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

L'invention concerne un procédé et un système de mise à jour d'un modèle de pont sur la base d'une correction de la force de couplage véhicule-pont, un support de stockage et un dispositif, qui font partie du domaine technique de l'ingénierie. Le but de la présente invention est de résoudre le problème de faible précision de simulation en raison du fait qu'il n'existe actuellement pas de procédé affiné pour mettre à jour un modèle de pont. Le procédé selon la présente invention comprend les étapes suivantes : obtention, au moyen d'un capteur disposé sur une structure de pont, d'une réponse dynamique (2) de la structure de pont sous la charge d'un véhicule lourd (1) ; en fonction de l'accélération vibratoire verticale ao et de la déviation verticale yo du pont au centre de gravité o du véhicule lourd (1) ainsi que de la vitesse uvéhicule du véhicule lourd (1), reconstitution d'une réponse d'une table vibrante (4) et obtention de la force d'interaction d'un modèle de couplage véhicule-pont ; et établissement d'un modèle d'éléments finis non linéaires de la structure du pont, en utilisant la force d'interaction véhicule-pont comme force externe, en utilisant la réponse dynamique de la structure du pont (2) comme réponse structurelle et en corrigeant le modèle d'éléments finis de la structure du pont en utilisant une méthode d'identification des paramètres non linéaires. La présente invention est principalement utilisée pour la mise à jour d'un modèle de pont.
PCT/CN2022/071663 2021-06-09 2022-01-12 Procédé et système de mise à jour d'un modèle de pont sur la base d'une correction de la force de couplage véhicule-pont, support de stockage, et dispositif WO2022257461A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/936,866 US20230050445A1 (en) 2021-06-09 2022-09-30 Bridge model updating method, system, storage medium and device of based on the modification of vehicle-bridge coupling force

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110641202.4A CN113392451B (zh) 2021-06-09 2021-06-09 基于车-桥梁耦合作用力修正的桥梁模型更新方法、系统、存储介质及设备
CN202110641202.4 2021-06-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/936,866 Continuation US20230050445A1 (en) 2021-06-09 2022-09-30 Bridge model updating method, system, storage medium and device of based on the modification of vehicle-bridge coupling force

Publications (1)

Publication Number Publication Date
WO2022257461A1 true WO2022257461A1 (fr) 2022-12-15

Family

ID=77618716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071663 WO2022257461A1 (fr) 2021-06-09 2022-01-12 Procédé et système de mise à jour d'un modèle de pont sur la base d'une correction de la force de couplage véhicule-pont, support de stockage, et dispositif

Country Status (4)

Country Link
US (1) US20230050445A1 (fr)
CN (1) CN113392451B (fr)
LU (1) LU500362B1 (fr)
WO (1) WO2022257461A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117610307A (zh) * 2023-12-15 2024-02-27 大连海事大学 一种移动质量作用下简支梁的数字孪生构建方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113392451B (zh) * 2021-06-09 2022-05-17 哈尔滨工业大学 基于车-桥梁耦合作用力修正的桥梁模型更新方法、系统、存储介质及设备
CN114186595B (zh) * 2021-12-14 2023-12-01 哈尔滨工业大学 时变结构参数识别方法、存储介质及设备
CN114444983B (zh) * 2022-04-08 2022-08-23 深圳市城市交通规划设计研究中心股份有限公司 基于车桥耦合和数字孪生的城市桥梁群状态评估方法
CN114913688B (zh) * 2022-05-18 2023-02-14 太原科技大学 一种交通连续流作用下桥梁耦合振动响应预警方法
CN115795943B (zh) * 2022-11-10 2023-06-13 哈尔滨工业大学 一种公路桥梁行车舒适性精细化评价方法
CN116484681B (zh) * 2023-04-23 2023-10-03 哈尔滨工业大学 基于视频识别多变量输入有限元模型更新混合试验方法
CN116822024B (zh) * 2023-06-28 2024-06-25 西南交通大学 一种铁路桥上多线列车最不利交会位置的确定方法
CN116933598B (zh) * 2023-07-27 2024-04-12 郑州大学 一种基于模型修正和正交匹配追踪算法的空心板桥铰缝损伤评估方法
CN116842348B (zh) * 2023-08-31 2023-12-01 安徽省云鹏工程项目管理有限公司 基于人工智能的桥梁健康监测系统
CN117077272A (zh) * 2023-10-16 2023-11-17 宁波朗达工程科技有限公司 一种车桥耦合数值解预测方法
CN117592382B (zh) * 2024-01-18 2024-04-26 高速铁路建造技术国家工程研究中心 一种铁路车轨桥系统动态响应预测方法、系统及介质
CN117669389B (zh) * 2024-01-31 2024-04-05 西华大学 基于深度学习的地震-车-桥系统随机振动分析方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103150458A (zh) * 2013-04-01 2013-06-12 中南大学 车辆-轨道-桥梁-地基基础耦合系统及其动力分析方法
CN104573274A (zh) * 2015-01-27 2015-04-29 南京工业大学 车辆荷载下基于位移时程面积的结构有限元模型修正方法
US20150198502A1 (en) * 2014-01-14 2015-07-16 Iowa State University Research Foundation, Inc. Methods and systems for automated bridge structural health monitoring
US20190234834A1 (en) * 2016-08-03 2019-08-01 Southeast University Method and system for measuring vertical wheel impact force in real-time based on tire pressure monitoring
CN110132515A (zh) * 2019-05-10 2019-08-16 哈尔滨工业大学 一种基于模型更新的时程级迭代实时混合试验方法
CN111027256A (zh) * 2020-03-09 2020-04-17 杭州鲁尔物联科技有限公司 一种基于车辆荷载空间分布的桥梁风险预测方法及系统
CN113392451A (zh) * 2021-06-09 2021-09-14 哈尔滨工业大学 基于车-桥梁耦合作用力修正的桥梁模型更新方法、系统、存储介质及设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101739816B (zh) * 2009-11-26 2011-08-24 西北工业大学 交通车辆道路行驶安全分析方法
CN105825014A (zh) * 2016-03-17 2016-08-03 中铁大桥勘测设计院集团有限公司 一种基于车桥耦合分析的车桥安全健康评估系统及方法
CN106197910B (zh) * 2016-07-01 2017-04-26 东南大学 一种基于车桥耦合振动分析的桥梁检测方法与检测系统
CN106097819A (zh) * 2016-07-31 2016-11-09 重庆交通大学 用于实验教学的桥梁仿真检测方法及系统
KR101938352B1 (ko) * 2018-04-30 2019-01-14 김도빈 상시진동실험 데이터로 교량의 강성계수의 산출이 가능한 것을 특징으로 하는 교량의 강성계수 산출 방법 및 프로그램
CN110334371A (zh) * 2019-04-18 2019-10-15 朱思宇 一种基于有限元模型的车-桥耦合系统振动计算方法
CN110543706B (zh) * 2019-08-21 2023-03-24 哈尔滨工业大学 一种基于车辆刹车作用的在役桥梁支座损伤诊断方法
CN110795780B (zh) * 2019-09-09 2023-02-10 杭州鲁尔物联科技有限公司 一种基于XGBoost算法的斜拉桥有限元修正方法
CN110909405B (zh) * 2019-11-19 2023-11-14 广州大学 基于车辆载荷的桥梁结构优化方法、系统及智能设备
CN111353252B (zh) * 2020-03-25 2024-03-22 山东高速集团有限公司 一种基于环境激励的桥梁静载试验方法
CN111832099A (zh) * 2020-05-28 2020-10-27 东南大学 基于fbg和有限元模型修正的桥梁结构损伤识别方法
CN111898304B (zh) * 2020-08-06 2021-05-07 西南交通大学 风车流桥耦合振动分析方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103150458A (zh) * 2013-04-01 2013-06-12 中南大学 车辆-轨道-桥梁-地基基础耦合系统及其动力分析方法
US20150198502A1 (en) * 2014-01-14 2015-07-16 Iowa State University Research Foundation, Inc. Methods and systems for automated bridge structural health monitoring
CN104573274A (zh) * 2015-01-27 2015-04-29 南京工业大学 车辆荷载下基于位移时程面积的结构有限元模型修正方法
US20190234834A1 (en) * 2016-08-03 2019-08-01 Southeast University Method and system for measuring vertical wheel impact force in real-time based on tire pressure monitoring
CN110132515A (zh) * 2019-05-10 2019-08-16 哈尔滨工业大学 一种基于模型更新的时程级迭代实时混合试验方法
CN111027256A (zh) * 2020-03-09 2020-04-17 杭州鲁尔物联科技有限公司 一种基于车辆荷载空间分布的桥梁风险预测方法及系统
CN113392451A (zh) * 2021-06-09 2021-09-14 哈尔滨工业大学 基于车-桥梁耦合作用力修正的桥梁模型更新方法、系统、存储介质及设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117610307A (zh) * 2023-12-15 2024-02-27 大连海事大学 一种移动质量作用下简支梁的数字孪生构建方法
CN117610307B (zh) * 2023-12-15 2024-05-17 大连海事大学 一种移动质量作用下简支梁的数字孪生构建方法

Also Published As

Publication number Publication date
CN113392451A (zh) 2021-09-14
LU500362B1 (de) 2022-01-06
US20230050445A1 (en) 2023-02-16
CN113392451B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2022257461A1 (fr) Procédé et système de mise à jour d'un modèle de pont sur la base d'une correction de la force de couplage véhicule-pont, support de stockage, et dispositif
Zhu et al. Dynamic load on continuous multi-lane bridge deck from moving vehicles
Law et al. Vehicle axle loads identification using finite element method
Green et al. Dynamic response of highway bridges to heavy vehicle loads: theory and experimental validation
Law et al. Time-varying wind load identification from structural responses
Green et al. Effects of vehicle suspension design on dynamics of highway bridges
González et al. A general solution to the identification of moving vehicle forces on a bridge
Cai et al. Effect of approach span condition on vehicle-induced dynamic response of slab-on-girder road bridges
Xu et al. Buffeting-induced fatigue damage assessment of a long suspension bridge
CN107132011A (zh) 一种基于影响线的桥梁快速检测方法
Wang et al. Number of stress cycles for fatigue design of simply-supported steel I-girder bridges considering the dynamic effect of vehicle loading
Yu et al. Influence of slab arch imperfection of double-block ballastless track system on vibration response of high-speed train
CN116484510B (zh) 动力学行为分析方法、装置、计算机设备和存储介质
Gou et al. In-situ testing and model updating of a long-span cable-stayed railway bridge with hybrid girders subjected to a running train
CN109398020A (zh) 一种基于非线性模型的车辆液电耦合式isd悬架的预测控制方法
Rahimi et al. A simplified beam model for the numerical analysis of masonry arch bridges–A case study of the Veresk railway bridge
Xu et al. Numerical simulation for train–track–bridge dynamic interaction considering damage constitutive relation of concrete tracks
Qin et al. Investigation on the dynamic impact factor of a concrete filled steel tube butterfly arch bridge
Zhang et al. Development of the dynamic response of curved bridge deck pavement under vehicle–bridge interactions
Zhao et al. Safety analysis of high-speed trains on bridges under earthquakes using a LSTM-RNN-based surrogate model
Li et al. Assessment of prestress force in bridges using structural dynamic responses under moving vehicles
Nassif et al. Model validation for bridge-road-vehicle dynamic interaction system
Benčat et al. Bridges subjected to dynamic loading
Ma et al. Numerical investigation of the vibration performance of elastically supported bridges under a moving vehicle load based on impact factor
CN116227262B (zh) 一种高速铁路无砟轨道宽频动力学精细化仿真方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22819069

Country of ref document: EP

Kind code of ref document: A1