CN111832099A - 基于fbg和有限元模型修正的桥梁结构损伤识别方法 - Google Patents

基于fbg和有限元模型修正的桥梁结构损伤识别方法 Download PDF

Info

Publication number
CN111832099A
CN111832099A CN202010471295.6A CN202010471295A CN111832099A CN 111832099 A CN111832099 A CN 111832099A CN 202010471295 A CN202010471295 A CN 202010471295A CN 111832099 A CN111832099 A CN 111832099A
Authority
CN
China
Prior art keywords
bridge
finite element
element model
fbg
damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010471295.6A
Other languages
English (en)
Inventor
程霄翔
吴刚
陈金桥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongqu Intelligent Transportation Infrastructure Technology Jiangsu Co ltd
Jiangsu Dongyin Intelligent Engineering Technology Research Institute Co ltd
Southeast University
Original Assignee
Dongqu Intelligent Transportation Infrastructure Technology Jiangsu Co ltd
Jiangsu Dongyin Intelligent Engineering Technology Research Institute Co ltd
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongqu Intelligent Transportation Infrastructure Technology Jiangsu Co ltd, Jiangsu Dongyin Intelligent Engineering Technology Research Institute Co ltd, Southeast University filed Critical Dongqu Intelligent Transportation Infrastructure Technology Jiangsu Co ltd
Priority to CN202010471295.6A priority Critical patent/CN111832099A/zh
Publication of CN111832099A publication Critical patent/CN111832099A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Computational Mathematics (AREA)
  • Civil Engineering (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Architecture (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开了一种基于FBG和有限元模型修正的桥梁结构损伤识别方法,包括如下步骤:(1)建立桥梁的精细化有限元模型;(2)在桥梁主要构件上安装FBG应变传感器,并获取车辆荷载作用下结构的应变响应时程;(3)利用分形维数方法处理实测应变响应时程,对结构的损伤进行定位;(4)利用加速度传感器获取在役桥梁的动力特性;(5)修正精细化高保真动态有限元模型,定量识别桥梁结构损伤。本发明将FBG传感技术与动力有限元模型修正技术相结合,形成一种两阶段的在役桥梁结构损伤识别方法,可以在桥梁结构失效发生前准确地预测其损伤位置和损伤程度,以避免重大事故的发生。

Description

基于FBG和有限元模型修正的桥梁结构损伤识别方法
技术领域
本发明涉及结构损伤识别方法,特别涉及基于FBG和有限元模型修正的桥梁结构损伤识别方法。
背景技术
桥梁结构是交通运输线路上的重要设施,然而,不幸的是,有关桥梁破坏甚至垮塌的事故常常出现,为了避免悲剧发生,国内外许多大桥都安装了结构健康监测系统,工程人员希望通过对桥梁力学状态的在线监测,对结构损伤的准确识别,以及对结构安全状况的实时评估,保障桥梁结构的安全性。当前在役的桥梁结构健康监测系统通常由数量众多、类型各异的传感器构成(如加速度传感器、FBG传感器等),若对结构进行连续在线监测,结构健康监测系统每日都会获得海量的实测数据。这些实测数据中既包含了能够反映结构健康状况的有效信息,又混杂了大量无用的信息。
大量科学研究和工程实践证明,利用FBG传感器可获取连续分布于结构表面的应变时程信息,进而判定结构损伤出现位置,但很难定量识别结构损伤的大小;利用动力有限元模型修正的方法可以定量识别结构损伤,但由于计算成本等问题,难以同时识别大量不确定性参数。
发明内容
发明目的:本发明目的是提供基于FBG和有限元模型修正的桥梁结构损伤识别方法。
技术方案:本发明提供一种基于FBG和有限元模型修正的桥梁结构损伤识别方法,包括如下步骤:
(1)建立桥梁的精细化有限元模型;
(2)在桥梁主要构件上安装FBG应变传感器,并获取车辆荷载作用下结构的应变响应时程;
(3)利用分形维数方法处理实测应变响应时程,对结构的损伤进行定位;
(4)利用加速度传感器获取在役桥梁的动力特性;
(5)修正精细化高保真动态有限元模型,定量识别桥梁结构损伤。
进一步地,所述步骤(1)中建立桥梁的精细化有限元模型的方法为:
a、使用实体单元和壳体单元建立桥梁的精细化初始有限元模型;
b、根据桥梁竣工时的实测动力特性对初始有限元模型进行修正,获得高保真动态精细化有限元模型。
进一步地,所述步骤(2)应变响应时程获取方法为:
a、在各纵梁底面沿纵向连续布设FBG应变传感器;
b、利用FBG应变传感器获取桥梁竣工时无损状态下单车过桥引起的纵梁底部各处应变响应时程;
c、利用FBG应变传感器获取桥梁服役时有损状态下单车过桥引起的纵梁底部各处应变响应时程。
进一步地,所述步骤(3)对结构的损伤进行定位的方法为:
a、利用分形维数方法处理无损状态下的实测桥梁应变响应时程,获得分形维数曲线;
b、利用分形维数方法处理服役状态下的实测桥梁应变响应时程,获得分形维数曲线;
c、对比无损状态下与服役状态下的分形维数曲线,确定结构损伤出现的位置。
进一步地,无损状态下的分形维数曲线计算方法如下:
Figure BDA0002512274370000021
式中,x1,x2,...,xn为应变响应时程样本,n为样本点数,Δt为采样时间间隔,D为分形维数。
进一步地,所述步骤(4)利用加速度传感器获取在役桥梁的动力特性的方法为:
a、将加速度传感器沿纵向均布于桥梁主梁上表面上下游两侧;
b、利用加速度传感器测量在役桥梁环境激励下的振动响应;
c、采用EFDD、SSI等模态识别方法识别出在役桥梁的动力特性。
进一步地,所述步骤(5)定量识别桥梁结构损伤的方法为:
a、将基于分型维数法判定的损伤构件的材料参数或几何参数视为不确定性参数,基于试验设计方法利用高保真动态有限元模型采样,计算获得各样本点处有限元模型的低阶模态频率;
b、将不确定性参数视为自变量,将结构低阶动力特性视为系统响应,利用采样数据建立回归模型,回归模型可替代精细化有限元模型开展模型修正;
c、将实测在役桥梁的动力特性视为优化目标,基于回归模型开展优化,识别出不确定性参数,定量给出结构损伤。
有益效果:本发明将FBG传感技术与动力有限元模型修正技术相结合,对两种结构健康监测技术各取所长,实现在桥梁结构失效发生前准确地预测其损伤位置和损伤程度,从而建立有效的桥梁结构健康监测系统。可以在桥梁结构失效发生前准确地预测其损伤位置和损伤程度,以避免重大事故的发生。
附图说明
图1为本发明实施例中异形拱桥钢箱梁损伤部位示意图;
图2为本发明实施例中异形拱桥精细化有限元模型;
图3为本发明实施例中异形拱桥桥面加速度传感器及主梁梁体底部FBG传感器分布示意图;
图4为本发明实施例中基于数值仿真获得的5号FBG传感器给出的无损结构和有损结构的顺桥向应变响应时程;
图5为本发明实施例中无损工况下和有损工况下的分形维数曲线;
图6为本发明实施例中基于数值仿真获得的1号和8号加速度传感器给出的有损结构的竖向加速度响应时程。
具体实施方式
以某主跨120m的异形钢拱桥为例,假定该桥钢箱梁跨中节段弹性模量折减50%(异形拱桥钢箱梁损伤部位以图形显示为图1),采用本发明的方法对其进行损伤识别。通过数值仿真模拟该桥在无损和损伤两种状态下一辆重300kN的汽车以90km/h速度过桥引起的结构动力响应,提取不同状态下钢箱梁底部的顺桥向应变响应时程和桥面竖向加速度响应时程作为实施例的原始数据。具体实施步骤如下:
(1)建立桥梁的精细化有限元模型,具体方法如下:
首先,建立精细化初始有限元模型,采用混合单元方案建模:使用梁单元模拟异形空间拱肋体系,使用杆单元模拟吊杆,使用实体单元模拟大体积混凝土,使用壳体单元模拟钢箱梁,初始有限元模型以图形显示为图2。对初始有限元模型进行模态分析,结果见表1。
表1初始有限元模型的模态频率及误差
Figure BDA0002512274370000031
其次,以该桥竣工时的实测模态频率为依据,开展模型修正。精细化有限元模型复杂,采用传统基于灵敏度分析的模型修正方法计算成本高,因此,利用回归模型替代有限元模型开展模型修正。表2是修正后有限元模型的模态频率及误差。由表2,修正后有限元模型1-4阶模态频率相对误差被控制在[0,20%]范围,可视为高保真动态精细化有限元模型。
表2修正后有限元模型的模态频率及误差
Figure BDA0002512274370000041
(2)利用桥梁主梁底部顺桥向连续安装的分布式FBG应变传感器获取车辆荷载作用下无损结构和有损结构的应变响应时程,具体方法如下:
首先,在主梁底部沿纵向中线连续安装15个顺桥向分布式FBG应变传感器,FBG传感器分布以图形显示为图3。
其次,利用FBG应变传感器获取桥梁竣工时无损状态下单车过桥引起的纵梁底部各处顺桥向应变响应时程,基于数值仿真获得15个FBG传感器的时程样本,其中,5号FBG传感器的时程样本以图形显示为图4。
再其次,利用FBG应变传感器获取桥梁服役时有损状态下单车过桥引起的纵梁底部各处顺桥向应变响应时程,基于数值仿真获得15个FBG传感器的时程样本,其中,5号FBG传感器的时程样本以图形显示为图4。
(3)利用分形维数方法处理实测应变响应时程,对结构的损伤进行定位,具体方法如下:
首先,利用式(1)处理无损状态下15个FBG传感器给出的桥梁应变响应时程样本,获得无损工况下的分形维数曲线:
Figure BDA0002512274370000042
式中,x1,x2,...,xn为应变响应时程样本,n为样本点数,Δt为采样时间间隔,D为分形维数。无损工况下的分形维数曲线以图形显示为图5。
其次,利用式(1)处理有损状态下15个FBG传感器给出的桥梁应变响应时程样本,获得有损工况下的分形维数曲线,有损工况下的分形维数曲线以图形显示为图5。
最终,对比无损状态下与有损状态下的分形维数曲线,发现二者在8、9号FBG传感器位置(跨中处)差异显著。因此,确定结构损伤出现的位置为主梁跨中节段,无损工况下和有损工况下的分形维数曲线对比以图形显示为图5。
(4)利用加速度传感器获取在役(有损)桥梁的动力特性,具体方法如下:
首先,将10个加速度传感器沿纵向均布于桥面上下游两侧,每侧各布设5个传感器,加速度传感器分布以图形显示为图3。
其次,利用加速度传感器获取单车过桥引起的有损结构的桥面竖向加速度响应时程,基于数值仿真获得10个加速度传感器的时程样本,其中,1号和8号传感器测得的加速度响应时程样本以图形显示为图6。
最终,采用EFDD法分析结构有损状态下的加速度响应时程样本,获得结构动力特性。表3是采用EFDD法获得的有损结构的模态频率及误差。
表3采用EFDD法获得的有损结构的模态频率及误差
Figure BDA0002512274370000051
(5)修正精细化高保真动态有限元模型,定量识别桥梁结构损伤,具体方法如下:首先,将主梁跨中节段的弹性模量视为不确定性参数,基于单因素试验设计方法利用高保真动态有限元模型采样,获得的5个样本点处有限元模型的1-4阶模态频率由表4给出。
表4基于单因素试验设计的有限元模型采样结果
Figure BDA0002512274370000052
其次,利用表4给出的采样数据建立各阶模态频率的回归模型,其中,一阶模态频率的回归模型由式(2)给出:
f1=1.41+0.033A-0.013A2+0.004667A3 (2)
式中,f1代表一阶模态频率,A代表主梁跨中节段弹性模量。F值检验发现所建立的各回归模型显著,失拟项不显著;R2检验发现所建立的各回归模型拟合程度较好,试验误差小;充分精度检验发现所建立的各回归模型具有足够的信号,模型拟合在整个设计空间范围有效。这些表明回归模型可替代精细化有限元模型开展模型修正。
最终,将表3给出的有损结构动力特性视为优化目标,基于各阶回归模型开展优化,识别出主梁跨中节段弹性模量为8.2e10N/m2,与数值仿真中预设的损伤部位弹性模量(10.3e10N/m2)接近,二者误差为19.96%。

Claims (7)

1.一种基于FBG和有限元模型修正的桥梁结构损伤识别方法,其特征在于:包括如下步骤:
(1)建立桥梁的精细化有限元模型;
(2)在桥梁主要构件上安装FBG应变传感器,并获取车辆荷载作用下结构的应变响应时程;
(3)利用分形维数方法处理实测应变响应时程,对结构的损伤进行定位;
(4)利用加速度传感器获取在役桥梁的动力特性;
(5)修正精细化高保真动态有限元模型,定量识别桥梁结构损伤。
2.根据权利要求1所述的基于FBG和有限元模型修正的桥梁结构损伤识别方法,其特征在于:所述步骤(1)中建立桥梁的精细化有限元模型的方法为:
a、使用实体单元和壳体单元建立桥梁的精细化初始有限元模型;
b、根据桥梁竣工时的实测动力特性对初始有限元模型进行修正,获得高保真动态精细化有限元模型。
3.根据权利要求1所述的基于FBG和有限元模型修正的桥梁结构损伤识别方法,其特征在于:所述步骤(2)应变响应时程获取方法为:
a、在各纵梁底面沿纵向连续布设FBG应变传感器;
b、利用FBG应变传感器获取桥梁竣工时无损状态下单车过桥引起的纵梁底部各处应变响应时程;
c、利用FBG应变传感器获取桥梁服役时有损状态下单车过桥引起的纵梁底部各处应变响应时程。
4.根据权利要求1所述的基于FBG和有限元模型修正的桥梁结构损伤识别方法,其特征在于:所述步骤(3)对结构的损伤进行定位的方法为:
a、利用分形维数方法处理无损状态下的实测桥梁应变响应时程,获得分形维数曲线;
b、利用分形维数方法处理服役状态下的实测桥梁应变响应时程,获得分形维数曲线;
c、对比无损状态下与服役状态下的分形维数曲线,确定结构损伤出现的位置。
5.根据权利要求4所述的基于FBG和有限元模型修正的桥梁结构损伤识别方法,其特征在于:无损状态下的分形维数曲线计算方法如下:
Figure FDA0002512274360000011
式中,x1,x2,...,xn为应变响应时程样本,n为样本点数,Δt为采样时间间隔,D为分形维数。
6.根据权利要求1所述的基于FBG和有限元模型修正的桥梁结构损伤识别方法,其特征在于:所述步骤(4)利用加速度传感器获取在役桥梁的动力特性的方法为:
a、将加速度传感器沿纵向均布于桥梁主梁上表面上下游两侧;
b、利用加速度传感器测量在役桥梁环境激励下的振动响应;
c、采用EFDD、SSI等模态识别方法识别出在役桥梁的动力特性。
7.根据权利要求6所述的基于FBG和有限元模型修正的桥梁结构损伤识别方法,其特征在于:所述步骤(5)定量识别桥梁结构损伤的方法为:
a、将基于分型维数法判定的损伤构件的材料参数或几何参数视为不确定性参数,基于试验设计方法利用高保真动态有限元模型采样,计算获得各样本点处有限元模型的低阶模态频率;
b、将不确定性参数视为自变量,将结构低阶动力特性视为系统响应,利用采样数据建立回归模型,回归模型可替代精细化有限元模型开展模型修正;
c、将实测在役桥梁的动力特性视为优化目标,基于回归模型开展优化,识别出不确定性参数,定量给出结构损伤。
CN202010471295.6A 2020-05-28 2020-05-28 基于fbg和有限元模型修正的桥梁结构损伤识别方法 Pending CN111832099A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010471295.6A CN111832099A (zh) 2020-05-28 2020-05-28 基于fbg和有限元模型修正的桥梁结构损伤识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010471295.6A CN111832099A (zh) 2020-05-28 2020-05-28 基于fbg和有限元模型修正的桥梁结构损伤识别方法

Publications (1)

Publication Number Publication Date
CN111832099A true CN111832099A (zh) 2020-10-27

Family

ID=72913762

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010471295.6A Pending CN111832099A (zh) 2020-05-28 2020-05-28 基于fbg和有限元模型修正的桥梁结构损伤识别方法

Country Status (1)

Country Link
CN (1) CN111832099A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112414648A (zh) * 2020-11-05 2021-02-26 长安大学 基于宏应变二阶差分的桥梁损伤及车辆荷载同时识别方法
CN112989656A (zh) * 2021-03-04 2021-06-18 交通运输部公路科学研究所 用于桥梁结构可靠度评估的基准模型构建方法
CN113392451A (zh) * 2021-06-09 2021-09-14 哈尔滨工业大学 基于车-桥梁耦合作用力修正的桥梁模型更新方法、系统、存储介质及设备
CN114777910A (zh) * 2022-04-02 2022-07-22 东衢智慧交通基础设施科技(江苏)有限公司 一种拉索多模态涡激振动监测方法
CN115859708A (zh) * 2022-11-16 2023-03-28 大连理工大学 一种基于分布式光纤测量的蜂窝夹层结构损伤模型修正方法
CN117291072A (zh) * 2023-09-20 2023-12-26 宁波朗达工程科技有限公司 一种桥梁损伤识别方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221104A (zh) * 2007-10-16 2008-07-16 吴智深 基于分布式应变动态测试的结构健康监测方法
CN101782475A (zh) * 2010-02-08 2010-07-21 天津工业大学 基于风力发电机组振动的叶片故障诊断方法
CN103940905A (zh) * 2014-04-16 2014-07-23 山东农业大学 基于平稳小波变换和分形分析的梁结构损伤检测方法
CN104517036A (zh) * 2014-12-22 2015-04-15 华中科技大学 一种基于应变统计矩的简支件损伤识别方法
CN110561195A (zh) * 2019-09-04 2019-12-13 清华大学深圳研究生院 一种机械加工过程中颤振的监测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221104A (zh) * 2007-10-16 2008-07-16 吴智深 基于分布式应变动态测试的结构健康监测方法
CN101782475A (zh) * 2010-02-08 2010-07-21 天津工业大学 基于风力发电机组振动的叶片故障诊断方法
CN103940905A (zh) * 2014-04-16 2014-07-23 山东农业大学 基于平稳小波变换和分形分析的梁结构损伤检测方法
CN104517036A (zh) * 2014-12-22 2015-04-15 华中科技大学 一种基于应变统计矩的简支件损伤识别方法
CN110561195A (zh) * 2019-09-04 2019-12-13 清华大学深圳研究生院 一种机械加工过程中颤振的监测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
姚昌荣: "基于小波与分形理论的斜拉桥健康监测系统研究", 《中国博士学位论文全文数据库(电子期刊)信息科技辑》, vol. 138, 15 December 2008 (2008-12-15), pages 24 *
王步宇: "基于分形的结构损伤检测方法", 《振动与冲击》, vol. 24, no. 2, 30 April 2005 (2005-04-30), pages 1 *
秦全乐等: "基于振动测试和有限元法的泵站厂房模态识别", 《应用力学学报》, vol. 36, no. 3, 15 June 2019 (2019-06-15), pages 1 *
程霄翔等: "基于响应面的大型输电塔结构有限元模型动力修正", 《振动与冲击》, vol. 30, no. 5, 25 February 2011 (2011-02-25), pages 1 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112414648A (zh) * 2020-11-05 2021-02-26 长安大学 基于宏应变二阶差分的桥梁损伤及车辆荷载同时识别方法
CN112989656A (zh) * 2021-03-04 2021-06-18 交通运输部公路科学研究所 用于桥梁结构可靠度评估的基准模型构建方法
CN112989656B (zh) * 2021-03-04 2023-10-13 交通运输部公路科学研究所 用于桥梁结构可靠度评估的基准模型构建方法
CN113392451A (zh) * 2021-06-09 2021-09-14 哈尔滨工业大学 基于车-桥梁耦合作用力修正的桥梁模型更新方法、系统、存储介质及设备
CN114777910A (zh) * 2022-04-02 2022-07-22 东衢智慧交通基础设施科技(江苏)有限公司 一种拉索多模态涡激振动监测方法
CN115859708A (zh) * 2022-11-16 2023-03-28 大连理工大学 一种基于分布式光纤测量的蜂窝夹层结构损伤模型修正方法
CN115859708B (zh) * 2022-11-16 2024-03-19 大连理工大学 一种基于分布式光纤测量的蜂窝夹层结构损伤模型修正方法
CN117291072A (zh) * 2023-09-20 2023-12-26 宁波朗达工程科技有限公司 一种桥梁损伤识别方法
CN117291072B (zh) * 2023-09-20 2024-03-15 宁波朗达工程科技有限公司 一种桥梁损伤识别方法

Similar Documents

Publication Publication Date Title
CN111832099A (zh) 基于fbg和有限元模型修正的桥梁结构损伤识别方法
US10139306B2 (en) Method and system for bridge damage detection
Marques et al. Analysis of dynamic and fatigue effects in an old metallic riveted bridge
CN110487496B (zh) 基于长标距应变的改进弯矩面积法识别桥梁挠度方法
CN109839441A (zh) 一种桥梁模态参数识别方法
CN101782472B (zh) 有支座沉降时的基于角度监测的索系统的健康监测方法
RU2699918C1 (ru) Способ диагностики технического состояния зданий и строительных сооружений
CN111783326A (zh) 基于风速和动响应测试的输电塔结构风致安全性评估方法
Chowdhury et al. Design-related reassessment of structures integrating Bayesian updating of model safety factors
CN101793620B (zh) 有支座沉降时的基于索力监测的索系统的健康监测方法
CN114241266A (zh) 一种光缆智能预警的处理方法及系统
Titscher et al. Bayesian model calibration and damage detection for a digital twin of a bridge demonstrator
Phares et al. Evolution of a bridge damage-detection algorithm
Wang et al. A novel bridge damage detection method based on the equivalent influence lines–theoretical basis and field validation
CN114266006A (zh) 一种加速退化试验测量不确定度的评定方法
Milan et al. Evaluation of performance indicator of railway bridges using updated finite element model
CN101789054A (zh) 有支座沉降时的基于空间坐标监测的索系统的健康监测方法
CN107192448B (zh) 一种识别柔性绳索振动频率的宽带搜峰法
Whelan et al. Effect of measurement uncertainties on strain-based damage diagnostics for highway bridges
CN114997010B (zh) 一种评估桥墩刚度的无损检测方法
Heine et al. Simplified terrain identification and component fatigue damage estimation model for use in a health and usage monitoring system
Plude Implementing a long-term bridge monitoring strategy for a composite steel girder bridge
Jakubczyk-Gałczyńska et al. Application of support vector machine for determination of impact of traffic-induced vibrations on buildings
CN117664484B (zh) 一种智慧城市桥梁安全监测预警方法及系统
Sadeghi Structural health monitoring of composite bridges by integrating model-based and data-driven methods

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination