LU500362B1 - Bridge Model Updating Method, System, Storage Medium and Device of Based on the Modification of Vehicle-Bridge Coupling Force - Google Patents
Bridge Model Updating Method, System, Storage Medium and Device of Based on the Modification of Vehicle-Bridge Coupling Force Download PDFInfo
- Publication number
- LU500362B1 LU500362B1 LU500362A LU500362A LU500362B1 LU 500362 B1 LU500362 B1 LU 500362B1 LU 500362 A LU500362 A LU 500362A LU 500362 A LU500362 A LU 500362A LU 500362 B1 LU500362 B1 LU 500362B1
- Authority
- LU
- Luxembourg
- Prior art keywords
- bridge
- vehicle
- model
- force
- updating
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/13—Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Bridges Or Land Bridges (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
The present invention provides a bridge model updating method, a system, a storage medium and a device of based on modification of vehicle-bridge coupling force, and belongs to the field of engineering technology. The present invention aims to address the problem that there is currently no refined updating method for a bridge model, which leads to low simulation accuracy. The present invention obtains a bridge structure dynamic response of a bridge structure under the action of heavy duty vehicle load through sensors arranged on the bridge structure; according to vertical vibration acceleration ao and vertical deflection yo of the bridge at a center of gravity o of the heavy duty vehicle and speed of the heavy duty vehicle Uvehicle, a response of a table top of a vibration table is reconstructed, and interaction force of the vehicle-bridge coupling model is obtained; a nonlinear finite element model of the bridge structure is established, and the vehicle-bridge interaction force is taken as external force, and the dynamic response of the bridge structure is taken as a structural response, and modification of the finite element model of the bridge structure is completed through a nonlinear parameter identification method. The invention is mainly used for updating a bridge model.
Description
Bridge Model Updating Method, System, Storage Medium and LU500362 Device of Based on the Modification of Vehicle-Bridge Coupling Force
TECHNICAL FIELD The present invention belongs to the technical field of engineering, and in particularly relates to a method, a system and device for finely updating a finite element model of a highway bridge.
BACKGROUND The rapid development of infrastructure represented by highway bridge is an important cornerstone of China's sustained economic growth. As an important transportation hub, highway bridges are of great significance for promoting material transportation, improving traffic conditions in remote areas and realizing regional economic development.
However, with the rapid expansion of logistics business at home and abroad, heavy-duty and super-heavy-duty load cases occur from time to timer. Such heavy-duty vehicles that exceed the design load of bridge in normal use are likely to cause irreversible damage to the bridge, seriously affecting the safety and durability of the bridge in its design life cycle.
In recent years, bridge collapse accidents caused by heavy-duty vehicles frequently occur. For example, in June 2015, the Heyuan ramp bridge of Jiangxi-Hubei Expressway collapsed, with a design load of 110t and an actual heavy load of 360 t; In October, 2019, Auxin Viaduct collapsed in Jiangsu Province, with the design load of 110t and the actual heavy-duty vehicle load of 183t. The collapse and failure of bridge structures not only cause huge economic losses, but also cause bad social impacts. Therefore, it is particularly important to focus on the safety assessment issues of heavy-duty vehicles crossing bridges. The safety assessment work of heavy-duty vehicles crossing bridges is inseparable 1 from the bridge numerical simulation calculation. Therefore, the finite LUs00362 element model that can truly describe the actual damage of structures is one of the key problems to be solved in the bridge safety assessment. However, the existing research does not take this aspect into account and update the bridge model, so the simulation accuracy is low, which leads to the potential safety hazards of the bridge.
SUMMARY OF INVENTION The present invention aims to address the problem that there is no currently refined updating method for a bridge model, which leads to low simulation accuracy.
A bridge model updating method based on modification of vehicle-bridge coupling force, comprising the following steps: obtaining a dynamic response of a bridge structure under the action of heavy duty vehicle load by sensors arranged on the bridge structure, wherein the measured obtained dynamic response of the bridge structure comprises vertical vibration acceleration and vertical deflection of a bridge; according to the vertical vibration acceleration a, and the vertical deflection y, of the bridge at the center of gravity o of the overloaded vehicle and a speed of the heavy duty vehicle Uvehicle, reconstructing the response of the table top of the vibration table, and obtaining the interaction force of the vehicle-bridge coupling model; the nonlinear finite element model of the bridge structure is established, and taking the vehicle-bridge interaction force as external force, and the dynamic response of bridge structure as structural response, and complete the modification of the finite element model of the bridge structure through the nonlinear parameter identification method.
Preferably, the sensor is arranged at a quarter point of a girder of each span of the bridge. 2
Preferably, the measured obtained dynamic response of the bridge LU500362 structure comprises the vertical vibration acceleration and vertical deflection of the bridge, during the process of the dynamic response of the bridge, the vertical deflection deformation and vertical vibration acceleration of the bridge at the center of gravity of the heavy duty vehicle in the whole process of crossing the bridge need to be obtained by interpolation method.
Preferably, the process of reconstructing the response of the table top of the vibration table and obtaining the interaction force/ of the vehicle-bridge coupling model comprises the following steps: parking heavy duty vehicles on the vibration table, arranging force plates at the bottom of each wheel, and providing the actually measured dynamic response reconstruction of bridge structure as the response quantity to the vibration table, so that the dynamic response of bridge structure generated by the vibration table is consistent with that corresponding to the center of gravity of heavy duty vehicles during the process of crossing the bridge, and obtaining the interaction force / of the vehicle-bridge coupling model through the force plates; preferably, through nonlinear parameter identification method, the modification process of finite element model of bridge structure is completed, which is implemented by energy conservation integral method and UKF method, wherein energy conservation integral method is used to solve structural dynamics problems, and UKF method is used to update bridge numerical model; a specific process of solving the structural dynamics problem by using the energy conservation integral method comprises the following steps: the time discrete form of equation of motion of bridge nonlinear system is shown in formula (1) 3
MX, +Cx, +R, (x) =LF, (1) LU500362 wherein, M, C are mass and damping matrices of bridge nonlinear system, x indicates the state variable of state space equation, Æ is time step, F, is external force of vehicle bridge at Æ time step, L is load position > matrix, &,, X,and x, are acceleration, velocity and displacement response of bridge structure at k time step, Rz(x) is nonlinear structural restoring force of bridge nonlinear system at Æ time step; extending the parameter discrete point amplitude to the state quantity, and obtaining the relationship between speed and acceleration at adjacent time steps by using the constant acceleration Newmark-B method, as shown in formula (3), and completing the parameter identification of bridge finite element model is completed by discrete motion differential equations; Xp = {xy X Ka = EC ER A © wherein At is the time step length and k is the time step; According to formula (1), the expression of system speed Xa with k+1 as time step 1s obtained: Xe =X, + AM |LF, -Cx,, —R,()] (4) xX, +X — + At k+1 k Xen =X 5 (5) wherein xm, Fm and Ry, are the average speed, average external force and average restoring force between k and k+1 time step; the system equation of motion in formula (1) is written as follows Mx, + Cx, +R, (x) = LE, m (7)
T After right multiplication (Xia =X)" of formula (1), a new equation 4 of motion is obtained: LU500362 JRL ME, RIM, +(x, —X,)" cle +(x, = X,) R (x)=—(x,,—x,)" MX, m (8) equation (8) is regarded as an energy transfer process, and the energy conservation integral method is used to solve structural dynamics problems. Preferably, the damping matrix of bridge nonlinear system is Rayleigh damping matrix: C=a,-M+a,-K wherein, a; and a, are Rayleigh damping coefficients and k is stiffness matrix.
Preferably, the average speed, average external force and average restoring force *» | F and Ry, between k and k+1 time step are as follows: x = Nea TX " 2 " 2 R, =(R,+R,)/2 a bridge model updating method based on modification of vehicle-bridge coupling force, the system 1s used for performing the bridge model updating method based on modification of vehicle-bridge coupling force.
A storage medium, wherein, at least one instruction is stored in the storage medium, and the at least one instruction 1s loaded and executed by a processor to implement the bridge model updating method based on modification of vehicle-bridge coupling force.
A device, the device comprises a processor and a memory, at least one instruction is stored in the storage medium, and the at least one 5 instruction is loaded and executed by a processor to implement the bridge LUS00362 model updating method based on modification of vehicle-bridge coupling force.
Beneficial effects: The present invention is based on the real vehicle-vibration table hybrid test, the bridge structure is simulated with multi-degree-of-freedom vibration table to accurately pick up the interaction force between the vehicle and the bridge. On this basis, combining with the measured dynamic response of the bridge, the finite element model of the bridge is accurately modified by means of nonlinear parameter identification. Considering the real situation of the bridge, the numerical model of the bridge is consistent with the real structure situation. The accurate simulation of the numerical model of the bridge provides an analytical basis for the late operation and maintenance of the bridge, especially for the safety assessment of vehicle crossing the bridge. It is of great practical significance to solve the audit problem of bulk-transport.
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a frame diagram of bridge model updating based on modification of vehicle-bridge coupling force according to the present invention; Fig. 2 is a schematic diagram of bridge field test; wherein j is the j‘* span of bridge, 1 is the number of bridge units, 1=1...4, Aji 1s the measured dynamic response of the ith unit of the jth span of bridge, Lj is the length of the j“ span of bridge; Fig. 3 is an acquisition process of dynamic response of bridge structure at the center of gravity o of heavy-duty vehicle; Fig. 4 is a schematic diagram of vehicle-vibration table test; wherein, 1 is the heavy-duty vehicle, 2 is the measured dynamic 6 response of the bridge, 3 is the pressure and shear force measuring LU500362 version, and 4 is the vibration table.
DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS EMBODIMENTS ONE: This implementation will be explained with reference to Fig. 1.
This implementation is a bridge model updating method based on modification of vehicle-bridge coupling force, comprising the following steps: obtaining a dynamic response of a bridge structure under the action of heavy duty vehicle load by sensors have arranged on the bridge structure, wherein the measured obtained dynamic response of the bridge structure comprises vertical vibration acceleration and vertical deflection of a bridge; the sensor is arranged at a quarter point of a girder of each span of the bridge.
Referring to the Definition Method of Heavy Load and Heavy Load Traffic on Cement Concrete Pavement for heavy load in heavy load vehicles, as shown in table 1: Table 1 heavy load Limit highway classification third class single-axle-double-wheel wow 140 120 100 set/KN double-axle-double-wheel 330 280 230 set/KN Fig. 2 shows the schematic diagram of bridge field test. When the heavy-duty vehicle 1 travels at a constant speed along the length of the bridge at a speed Uvehicle, the vertical vibration acceleration a, and vertical deflection y, of the bridge corresponding to the center of gravity 7 o of the heavy-duty vehicle are obtained by difference processing LUS00362 according to the data of adjacent sensors. Fig. 3 shows the acquisition process of the dynamic response of bridge structure at the center o of heavy-duty vehicle. The actual span number of bridge is j, and each span bridge is divided into four equal-length units according to the sensor position. According to the actual running position of heavy-duty vehicle, the i" unit of the j™ span of bridge where heavy-duty vehicle is located is judged, and then the dynamic response of bridge structure at the center o of heavy-duty vehicle is obtained by linear interpolation using the measured data at both ends “> and “+ of the i" unit. That is to say, the vertical deflection deformation and vertical vibration acceleration of the bridge at the center of gravity of the heavy-duty vehicle are obtained by interpolation method during the whole process of crossing the bridge.
According to the obtained bridge vertical vibration acceleration a, and vertical deflection y, at the center of gravity o of heavy-duty vehicles, as well as the heavy-duty horizontal running speed Uvehicle, reconstructing the response of the table top of the vibration table through hybrid experiments, so that the vertical displacement and table top vertical acceleration after the reconstruction of the table top are consistent with yo and a,, and the horizontal movement speed of table top is Uvehicle, and its movement direction is opposite to that of heavy-duty vehicles. The heavy-duty vehicles are simulated by vehicle-bridge relative movement. At this time, the vertical data and horizontal data of the measured forces are used to obtain the vertical and horizontal vehicle-bridge interaction forces of the vehicle-vibration table.
The reconstruction is implemented by a hybrid experiment method, wherein the experimental substructure 1s a full-scale heavy-duty vehicle and the numerical substructure is a finite element model of the bridge 8 structure. LU500362 During the implementation of hybrid experiment simulation, the bridge is divided into numerical substructures, and finite element simulation is carried out. Prototype, full-scale heavy-duty vehicle is selected as the test substructure, and the loading is simulated by vibration table array.
(D Determining the system initial value at the time when the initial time step t=0; @ calculating the movement amount of the bridge model at the initial time; © consider that smoothness of the road surface, transmitting the movement amount of the couple interface to the loading control system of the vibration table array, loading the selected heavy-duty vehicle model, and obtaining the acting force of the heavy-duty vehicle on the interface in real time through a force measuring apparatus; @ restoring the state quantity of the heavy-duty vehicle to the initial state; © Considering the vehicle speed, according to the vehicle acting force in the computer, the bridge response in step t+At is calculated by numerical integration method, and the motion state of the vehicle-bridge coupling section in this step and all previous restoring forces form a vector F, which is transmitted to the vibration table array loading system; @ The vibration table array loading system loads the heavy-duty vehicle from the initial time to the next time step, and transmits the force of the heavy-duty vehicle on the interface to the computer's multi-scale model to calculate the structural response, repeating @-© until the calculation is completed.
As shown in fig. 4, in the reconstruction process, the center of gravity of the vehicle is determined according to the type and counterweight of the heavy-duty vehicle, the heavy-duty vehicle is parked on the vibration table array, the force measuring plate is arranged at the bottom of the wheel, and the actually measured dynamic response 9 reconstruction of the bridge structure is provided to the vibration table as LUS00362 the response quantity, so that the dynamic response of the bridge structure generated by the vibration table is consistent with the dynamic response of the bridge structure when the vehicle crosses the bridge. At this time, the interaction force of the vehicle-bridge coupling model can be obtained through the force measuring plate; the process of obtaining the interaction force of the vehicle-bridge coupling model through the force measuring plate comprises the following steps: The table top of the vibration table 1s controlled so that the vertical displacement and vertical acceleration of the table top after reconstruction are consistent with the vertical displacement and vertical acceleration of the bridge at the position corresponding to the center of gravity of the vehicle. At this time, the vertical force and horizontal shear force at the contact point between the vehicle and the vibration table are measured by the force measuring plate, thus obtaining the vehicle-vibration table interaction force /”.
The nonlinear finite element model of the bridge structure 1s established, and taking the vehicle-bridge interaction force as external force, and the measured obtained dynamic response of bridge structure as structural response, and complete the modification of the finite element model of the bridge structure through the nonlinear parameter identification method, the bridge numerical model can truly reflect the actual damage of the bridge and reduce the model error.
In the specific process of modification the finite element model of bridge structure, taking the vehicle-bridge interaction force / as the external excitation of the nonlinear finite element model of bridge, and the inversion of bridge parameters in the bridge numerical model is completed by the joint application of energy conservation integral method and UKF method. The specific model updating process is as follows: 10 the time discrete form of equation of motion of bridge nonlinear LU500362 system is shown in formula (1) Mi, + Cx, +R, (x) = LF, (1) wherein, M, C are mass and damping matrices of bridge nonlinear > system, x indicates the state variable of state space equation, k is time step, F, is external force of vehicle bridge at Æ time step, L is load position matrix, X,, X,and x, are acceleration, velocity and displacement response of bridge structure at k time step, Rz(x) is nonlinear structural restoring force of bridge nonlinear system at Æ time step; the damping of bridge nonlinear system is Rayleigh damping: C=a-M+a,'K (2) wherein, a; and a, are Rayleigh damping coefficients and k is stiffness matrix; extending the parameter discrete point amplitude to the state quantity, and the constant acceleration Newmark-f method is used that can obtain the relationship between the speed and acceleration at adjacent time steps. as shown in formula (3), and completing the parameter identification of bridge finite element model by discrete differential equations of motion, the parameters mainly comprise the physical parameters of important materials of bridges, especially the constitutive parameters of concrete and steel structures.
CS CS © wherein At is the time step length and k is the time step. According to formula (1), the expression of speed Xa with k+1 as time step can be obtained: Xe =X, + AM |LF, -Cx,, —R,()] (4) 11 x eA Keo +X, LU500362 2 (5) wherein Xm, Fm and Ry, are the average speed, average external force and average restoring force between k and k+1 time step; wherein 2 x = Kr TX " 2 " 2 R,=(R.,+R)/2 (6) at this time, the equation of motion in formula (1) of the bridge nonlinear system can be written as follows ME, ,, + Cx, , +R, ,(x) = LF, , a Xm, X-mand X, are the average acceleration, average velocity and average displacement response of the bridge structure at k time, Rx, m(X) are the average restoring force of the nonlinear structure of the bridge nonlinear system at k time, and Fi... isthe average external force of the vehicle bridge at k time; After right multiplication St 7X ) of formula (1), anew equation of motion can be obtained: ZT Mi AIME, +(X,.,—X, yee Ry +(X,., —X, )T R,(x)=—(«,, — x, MX, (8) equation (8) reflects the energy transfer process in the bridge nonlinear system.
Considering the external input of the system, the system equation of motion always satisfies the principle of energy conservation.
Therefore, the energy conservation integration method can be applied to solve structural dynamics problems.
Combining the energy conservation integration method with UKF method, the fine identification of parameters in bridge nonlinear finite element model can be 12 implemented, and then the updating process of bridge finıte element LU500362 model can be completed.
The updating process of the bridge numerical model of the UKF method is as follows: discrete state space equation of bridge nonlinear system can be written as: X, =FX,_,u ,,W,)) (9) X, is the state vector of bridge nonlinear system at time Æ, ; X,=[x x] 1 are the input of bridge nonlinear system at time k-1, "1is the noise vector of system process at time k-1, and F is the nonlinear function of state vector X. Equation (9) can also be expressed as equation (13) in the state space.
Discrete observation function can be written as y, =h(X,,u,,v,) (10) wherein, V is the observation noise, and the initial value is defined as X, = E[X],P, = E (X, -X,)(X,-X, ) wherein X, represents the estimate of X, and E[X]. is the expectation; for the k-1th time step, 2n+1 sampling points can construct the estimated value of the system state vector at k-1 time step by the following formula: 2 Tr = xe HT DPR + DP] an Wherein, 1 are the parameter in UKF algorithm, wherein Ais a parameter controlling the distance from each sigma point to the mean value.
The meanx, and covariance P, of the prior estimation of 2n+1 sampling points can be obtained by the weight matrix of each point: x, = LW, (12) 13
Cara LU500362 P, =x, W[x,]"+Q,, (13) W, =(1=[W,.., W°"])x diag(W’ . Wx (I [W2,..., W°° 1)" (14) [Alm 2),i=0 W, = W. = A1 2(n+ A), i =1,---,2n (15) wherein, W, is the weight matrix with 2n weight coefficients, and > nis the number of elements in the state vector; I is an identity matrix with a dimension of 2n x 2n; Qx-1 1s the covariance matrix of process noise in step k-1 of the state equation.
The UKF filtering algorithm 1s used to recursively update the observed predicted values Yi , weighted average values of observed predicted values "* and process parameters Sy and Cy. after UT transformation as follows: Yi = h(t pu, k) (16) u, =y,W, (17) S, = yiWIy: 1" +R, (18) C, = x, Wy; 1" (19) further, the filter gain K is calculated, and the estimated value, of the mean value of the state quantity and the covariance matrix P are updated.
K, =C,S; (20) x, =x, +K ly, -n]l (21) P =P;-K,S,K; (22) wherein, * ——the observation of the k step.
Through the above steps, the cyclic recursive operation is carried out to complete the estimation of the state quantity, and the bridge structural parameters are placed in the state quantity, the nonlinear parameters of the bridge can be 14 identified by the above process, the parameters comprise the physical LU500362 parameters of the important materials of the bridge, especially the constitutive parameters of concrete and steel structures, such as modulus, Poisson's ratio and other nonlinear constitutive model parameters.
Specifically, the main parameters can be determined by sensitivity analysis of the structural response to the model parameters.
EMBODIMENTS TWO: This implementation is a bridge model updating method based on modification of vehicle-bridge coupling force, the system is used for performing the bridge model updating method based on modification of vehicle-bridge coupling force.
EMBODIMENTS THREE: This implementation is a storage medium, wherein, at least one instruction is stored in the storage medium, and the at least one instruction is loaded and executed by a processor to implement the bridge model updating method based on modification of vehicle-bridge coupling force.
EMBODIMENTS FOUR: This implementation is a device, the device comprises a processor and a memory, at least one instruction is stored in the storage medium, and the at least one instruction is loaded and executed by a processor to implement the bridge model updating method based on modification of vehicle-bridge coupling force.
There are many other embodiments of the invention.
Without departing from the spirit and essence of the invention, those skilled in the art can make various corresponding changes and modifications according to the invention, but these corresponding changes and modifications should belong to the protection scope of the appended claims of the invention. 15
Claims (10)
1. A bridge model updating method based on modification of vehicle-bridge coupling force, comprising the following steps: obtaining a dynamic response of a bridge structure under the action of heavy duty vehicle load by sensors arranged on the bridge structure, wherein the measured obtained dynamic response of the bridge structure comprises vertical vibration acceleration and vertical deflection of a bridge; according to the vertical vibration acceleration a, and the vertical deflection y, of the bridge at a center of gravity o of the overloaded vehicle and a speed of the heavy duty vehicle Uvehicle, reconstructing a response of a table top of a vibration table, and obtaining interaction force of a vehicle-bridge coupling model; establishing a nonlinear finite element model of the bridge structure, and taking the vehicle-bridge interaction force as external force and the dynamic response of bridge structure as a structural response, and completing modification of the finite element model of the bridge structure through a nonlinear parameter identification method.
2. The bridge model updating method based on modification of vehicle-bridge coupling force according to claim 1, wherein the sensors are arranged at quarter points of a girder of each span of the bridge.
3. The bridge model updating method based on modification of vehicle-bridge coupling force according to claim 2, wherein the measured obtained dynamic response of the bridge structure comprises the vertical vibration acceleration and vertical deflection of the bridge, during the process of the dynamic response of the bridge, 16 the vertical deflection deformation and vertical vibration acceleration 4500962 of the bridge at the center of gravity of the heavy duty vehicle in the whole process of crossing the bridge need to be obtained by interpolation method.
4. The bridge model updating method based on modification of vehicle-bridge coupling force according to claim 1, 2 or 3, wherein, the process of reconstructing the response of the table top of the vibration table and obtaining the interaction force / of the vehicle-bridge coupling model comprises the following steps: parking the heavy duty vehicle on the vibration table, arranging a force plate at the bottom of each wheel, and providing an actually measured dynamic response reconstruction of the bridge structure as response quantity to the vibration table, so that the dynamic response of the bridge structure generated by the vibration table is consistent with that corresponding to the center of gravity of the heavy duty vehicle during the process of crossing the bridge, and obtaining the interaction force / of the vehicle-bridge coupling model through the force plates.
5. The bridge model updating method based on modification of vehicle-bridge coupling force according to claim 4, wherein through nonlinear parameter identification method, the modification process of the finite element model of the bridge structure is completed, which is implemented by an energy conservation integral method and a UKF method, wherein the energy conservation integral method is used to solve structural dynamics problems, and the UKF method is used to update a bridge numerical model; a specific process of solving the structural dynamics problems by using the energy conservation integral method comprises the following steps: 17 a time discrete form of equation of motion of a bridge nonlinear LUS00362 system is shown in formula (1) Mi, +Cx, +R, (x) = LF, (1) wherein, M, C are mass and damping matric of the bridge > nonlinear system, x indicates a state variable of state space equation, k is a time step, F, is external force of vehicle bridge at Æ time step, L is load position matrix, X,, X,and x, are acceleration, velocity and displacement response of the bridge structure at k time step, Rı(x) is nonlinear structural restoring force of the bridge nonlinear system at Æ time step; extending parameter discrete point amplitude to the state quantity, and obtaining the relationship between speed and acceleration at adjacent time steps by using the constant acceleration Newmark-B method, as shown in formula (3), and completing parameter identification of the bridge finite element model by discrete motion differential equations; Xe = = (i KR 8, = Ze af (3) wherein At is a time step length and k is a time step; according to formula (1), obtaining an expression of system speed Xa with k+1 as a time step: Xe =X, + AM |LF, -Cx,, —R,()] (4) X,, +X Xıy =X, + A= (5) wherein Xm, Fm and Rn are average speed, average external force and average restoring force between k and k+1 time step; the system equation of motion in formula(1) is written as follows 18
MX, ,, + CX, , +R, .(x) = LF, , m LUS00362 after right multiplication GX)" of formula (1), obtaining a new equation of motion: JRL ME, RIM, +(x, , Sx) OEE +(x, — x.) R(x) = (Ars x.) MK, n (8) regarding equation (8) as an energy transfer process, and using the energy conservation integral method to solve structural dynamics problems.
6. The bridge model updating method based on modification of vehicle-bridge coupling force according to claim 5, wherein the damping matrix of the bridge nonlinear system is Rayleigh damping matrix: C=ag,-M+a,-K wherein a; and a, are Rayleigh damping coefficients and k is stiffness matrix.
7. The bridge model updating method based on modification of vehicle-bridge coupling force according to claim 5, wherein the average speed, average external force and average restoring force *» Fn and Ry, between k and k+1 time step are as follows: x = Nea TX " 2 p Fa Fe " 2 R,=(R.,+R)/2
8. A bridge model updating system based on modification of vehicle-bridge coupling force, wherein the system is used for performing the bridge model updating method based on modification of vehicle-bridge coupling force as claimed in any one of claims 1 to
7.
19
9. A storage medium, wherein at least one instruction is stored in the LUS00362 storage medium, and the at least one instruction is loaded and executed by a processor to implement the bridge model updating method based on modification of vehicle-bridge coupling force as claimed in any one of claims 1 to 7.
10. A device, wherein the device comprises a processor and a memory, at least one instruction is stored in the storage medium, and the at least one instruction 1s loaded and executed by the processor to implement the bridge model updating method based on modification of vehicle-bridge coupling force as claimed in any one of claims 1 to 7.
Patentansprüche 7500362
1. Verfahren zur Aktualisierung eines basierend auf der Fahrzeug-Brücken-Kopplungskraft korrigierten Brückenmodells, dadurch gekennzeichnet, dass das die folgenden Schritte umfasst: Erhalten der dynamischen Reaktion der Brückenstruktur unter der Einwirkung einer Belastung des schwer beladenen Fahrzeugs durch einen an der Brückenstruktur angebrachten Sensor, wobei die durch tatsächliche Messung erhaltene dynamische Reaktion der Brückenstruktur umfasst eine vertikale Schwingungsbeschleunigung und eine vertikale Durchbiegung der Brücke; Rekonstruieren der Reaktion der Tischoberfläche des Rütteltisches gemäß der vertikalen Schwingungsbeschleunigung a, und der vertikalen Durchbiegung yo der Brücke im Schwerpunkt o des schwer beladenen Fahrzeugs und die Geschwindigkeit ur des schwer beladenen Fahrzeugs und Erhalten der gegenseitigen Wirkkraft des Fahrzeug-Brücken-Kopplungsmodells; Erstellen eines nichtlinearen Finite-Elemente-Modells der Brückenstruktur und Korrigieren des Finite-Elemente-Modells der Brückenstruktur durch das nichtlineare Parameteridentifikationsverfahren, wenn die gegenseitige Wirkkraft des Fahrzeug-Brückens als externe Kraft verwendet wird und die dynamische Reaktion der Brückenstruktur als strukturelle Reaktion verwendet wird.
2. Verfahren zur Aktualisierung eines basierend auf der Fahrzeug-Brücken-Kopplungskraft korrigierten Brückenmodells nach Anspruch 1, dadurch gekennzeichnet, dass die Position, an der der Sensor angeordnet ist, an einem Viertelpunkt jedes Hauptträgers der Brücke liegt.
16
3. Verfahren zur Aktualisierung eines basierend auf der 7500362 Fahrzeug-Brücken-Kopplungskraft korrigierten Brückenmodells nach Anspruch 2, dadurch gekennzeichnet, dass es während des Prozesses, in dem die durch tatsächliche Messung erhaltene dynamische Reaktion der Brückenstruktur eine vertikale Schwingungsbeschleunigung und eine vertikale Durchbiegung der Brücke umfasst, notwendig ist, durch das Interpolationsverfahren die vertikale Durchbiegungsverformung und die vertikale Schwingungsbeschleunigung der Brücke im Schwerpunkt des schwer beladenen Fahrzeugs während des gesamten Überquerungsprozesses der Brücke zu erhalten.
4. Verfahren zur Aktualisierung eines basierend auf der Fahrzeug-Brücken-Kopplungskraft korrigierten Brückenmodells nach Anspruch 1 oder 2 oder 3, dadurch gekennzeichnet, dass die Prozesse des Rekonstruierens der Reaktion der Tischoberflache des Rutteltisches und Erhaltens der gegenseitigen Wirkkraft des Fahrzeug-Brücken-Kopplungsmodells umfassen: Abstellen des schwer beladenen Fahrzeugs auf einem Rütteltisch, Anordnung einer Kraftmessplatte am Boden des Rads, Rekonstruieren der tatsächlich gemessenen dynamische Reaktion der Brückenstruktur als ReaktionsgrôBe und Bereitstellen derselben auf den Rütteltisch, so dass die von der Schwingungstabelle erzeugte dynamische Reaktion mit der dynamischen Reaktion der Brückenstruktur, die dem Schwerpunkt des schwer beladenen Fahrzeugs beim Uberqueren der Brücke entspricht, übereinstimmt, und Erhalten der gegenseitigen Wirkkraft F des Fahrzeug-Brücken-Kopplungsmodells durch die Kraftmessplatte.
5. Verfahren zur Aktualisierung eines basierend auf der Fahrzeug-Brücken-Kopplungskraft korrigierten Brückenmodells nach Anspruch 2, dadurch gekennzeichnet, dass der Prozess des Korrigierens 17 des Finite-Elemente-Modells der Brückenstruktur durch das nichtlineare 17000068 Parameteridentifikationsverfahren durch das Energieerhaltungs-Integrationsverfahren und das UKF-Verfahren realisiert wird, wobei das Energieerhaltungs-Integrationsverfahren verwendet wird, um das Strukturdynamikproblem zu lôsen, und wobei das UKF-Verfahren verwendet wird, um das numerische Modell der Brücke zu aktualisieren; wobei der spezifische Prozess der Verwendung des Energieerhaltungs-Integrationsverfahrens zur Lôsung des Strukturdynamikproblems die folgenden Schritte umfasst: die zeitdiskrete Form der nichtlinearen Systembewegungsgleichung der Brücke ist in (1) gezeigt Mx, + Cx, +R, (x) = LF, (1) wobei M und C die nichtlineare Systemmasse und die Dampfungsmatrix der Brücke sind, und wobei x die Zustandsvariable der Zustandsraumgleichung darstellt, und k der Zeitschritt ist, und Fk die externe Wirkkraft der Fahrzeugachse zum Zeitpunkt k ist, und L die Lastpositionsmatrix ist, und x,, x, und x, die Beschleunigungs-, Geschwindigkeits- und Verschiebungsreaktionen der Brückenstruktur zum Zeitpunkt k sind, und R(x) die Rückstellkraft der nichtlinearen Struktur des nichtlinearen Systems der Brücke zum Zeitpunkt k ist; wobei die Amplitude der diskreten Punkte des Parameters auf die Zustandsgröße erweitert wird und das Newmark-B-Verfahren mit konstanter Beschleunigung verwendet wird, um die Beziehung zwischen der Geschwindigkeit und der Beschleunigung in benachbarten Zeitpunkten zu erhalten, wie in Formel (3) gezeigt, wird die Parameteridentifikation des Finite-Elemente-Brückenmodells durch die diskrete Bewegungsdifferentialgleichung erreicht; 18 eu = “es X Kr = ln X, I= xX; A (3) wobei At der Zeitschritt ist und k der Zeitschritt ist; wobei der Ausdruck der Systemgeschwindigkeit XX mit k+1 als Zeitschritt gemäß Formel (1) erhalten wird: X,, =X, +AM[LE, -Cx, -R, (x)] (4) x, =x, + AER (5) 2 wobei Xm, Fm und Rm die Durchschnittsgeschwindigkeit, die durchschnittliche externe Kraft und die durchschnittliche Rückstellkraft zwischen k und k+1 Zeitschritt sind; wobei die Systembewegungsgleichung (1) in der folgenden Form geschrieben ist: MX, m + Cx, + R, „(x) = LE (7) nachdem Formel (1) mit XX multipliziert wurde, eine neue Bewegungsgleichung erhalten wird: I. . I rar: X,, +X N KM 5 kM, + (Xp XD" CE) + (Xn —%) RX) = (x, =X)’ MX, m (8) wobei Formel (8) als ein Energieübertragungsprozess betrachtet wird und das Energieerhaltungs-Integrationsverfahren verwendet wird, um das Strukturdynamikproblem zu lösen.
6. Verfahren zur Aktualisierung eines basierend auf der Fahrzeug-Brücken-Kopplungskraft korrigierten Brückenmodells nach Anspruch 5, dadurch gekennzeichnet, dass die Dampfungsmatrix des nichtlinearen Systems der Brücke eine Rayleigh-Dampfungsmatrix ist: 19
C=-a-M+a,-K LU500362 wobei aı und az der Rayleigh-Dampfungskoeffizient sind und K das Steifigkeitmatrix ist.
7. Verfahren zur Aktualisierung eines basierend auf der Fahrzeug-Brücken-Kopplungskraft korrigierten Brückenmodells nach Anspruch 5, dadurch gekennzeichnet, dass die Durchschnittsgeschwindigkeit, die durchschnittliche externe Kraft und die durchschnittliche Rückstellkraft Xm, Fm und Rm zwischen k und k+1 Zeitschritt wie folget sind: x = Xen X " 2 F, =the 2 R,=(R, +R,)/2
8. System zur Aktualisierung eines basierend auf der Fahrzeug-Brücken-Kopplungskraft korrigierten Brückenmodells, dadurch gekennzeichnet, dass das System zur Durchfuhrung des Verfahrens zur Aktualisierung eines basierend auf der Fahrzeug-Brücken-Kopplungskraft korrigierten Brückenmodells nach einem der Ansprüche 1 bis 7 verwendet wird.
9. Speichermedium, dadurch gekennzeichnet, dass mindestens ein Befehl in dem Speichermedium gespeichert ist, wobei der mindestens ein Befehl von einem Prozessor geladen und implementiert wird, um das Verfahren zur Aktualisierung eines basierend auf der Fahrzeug-Brücken-Kopplungskraft korrigierten Brückenmodells nach einem der Ansprüche 1 bis 7 zu ermöglichen.
10. Vorrichtung, dadurch gekennzeichnet, dass die Vorrichtung einen Prozessor und einen Speicher umfasst, in dem mindestens ein Befehl 20 gespeichert ist, wobei der mindestens ein Befehl von einem Prozessor 7500362 geladen und implementiert wird, um das Verfahren zur Aktualisierung eines basierend auf der Fahrzeug-Brücken-Kopplungskraft korrigierten Brückenmodells nach einem der Ansprüche 1 bis 7 zu ermöglichen. 21
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110641202.4A CN113392451B (zh) | 2021-06-09 | 2021-06-09 | 基于车-桥梁耦合作用力修正的桥梁模型更新方法、系统、存储介质及设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
LU500362B1 true LU500362B1 (de) | 2022-01-06 |
Family
ID=77618716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
LU500362A LU500362B1 (de) | 2021-06-09 | 2021-06-30 | Bridge Model Updating Method, System, Storage Medium and Device of Based on the Modification of Vehicle-Bridge Coupling Force |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230050445A1 (de) |
CN (1) | CN113392451B (de) |
LU (1) | LU500362B1 (de) |
WO (1) | WO2022257461A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115795943A (zh) * | 2022-11-10 | 2023-03-14 | 哈尔滨工业大学 | 一种公路桥梁行车舒适性精细化评价方法 |
CN116842348A (zh) * | 2023-08-31 | 2023-10-03 | 安徽省云鹏工程项目管理有限公司 | 基于人工智能的桥梁健康监测系统 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113392451B (zh) * | 2021-06-09 | 2022-05-17 | 哈尔滨工业大学 | 基于车-桥梁耦合作用力修正的桥梁模型更新方法、系统、存储介质及设备 |
CN114186595B (zh) * | 2021-12-14 | 2023-12-01 | 哈尔滨工业大学 | 时变结构参数识别方法、存储介质及设备 |
CN114444983B (zh) * | 2022-04-08 | 2022-08-23 | 深圳市城市交通规划设计研究中心股份有限公司 | 基于车桥耦合和数字孪生的城市桥梁群状态评估方法 |
CN114913688B (zh) * | 2022-05-18 | 2023-02-14 | 太原科技大学 | 一种交通连续流作用下桥梁耦合振动响应预警方法 |
CN116484681B (zh) * | 2023-04-23 | 2023-10-03 | 哈尔滨工业大学 | 基于视频识别多变量输入有限元模型更新混合试验方法 |
CN116822024B (zh) * | 2023-06-28 | 2024-06-25 | 西南交通大学 | 一种铁路桥上多线列车最不利交会位置的确定方法 |
CN116933598B (zh) * | 2023-07-27 | 2024-04-12 | 郑州大学 | 一种基于模型修正和正交匹配追踪算法的空心板桥铰缝损伤评估方法 |
CN117077272A (zh) * | 2023-10-16 | 2023-11-17 | 宁波朗达工程科技有限公司 | 一种车桥耦合数值解预测方法 |
CN117556510B (zh) * | 2023-11-24 | 2024-08-13 | 招商局重庆交通科研设计院有限公司 | 一种考虑梁任意边界条件下的车桥耦合动力响应分析方法 |
CN117610307B (zh) * | 2023-12-15 | 2024-05-17 | 大连海事大学 | 一种移动质量作用下简支梁的数字孪生构建方法 |
CN117592382B (zh) * | 2024-01-18 | 2024-04-26 | 高速铁路建造技术国家工程研究中心 | 一种铁路车轨桥系统动态响应预测方法、系统及介质 |
CN117669389B (zh) * | 2024-01-31 | 2024-04-05 | 西华大学 | 基于深度学习的地震-车-桥系统随机振动分析方法 |
CN118036418B (zh) * | 2024-04-15 | 2024-07-05 | 中交第二公路工程局有限公司 | 基于有限感知的桥梁状态重构处理方法、装置及存储介质 |
CN118211459B (zh) * | 2024-05-20 | 2024-10-11 | 苏州大学 | 基于粒子群算法的铁路桥梁有限元模型修正方法和系统 |
CN118278093A (zh) * | 2024-05-31 | 2024-07-02 | 华东交通大学 | 一种公路旧桥承载力的目标可靠度确定方法、系统与设备 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101739816B (zh) * | 2009-11-26 | 2011-08-24 | 西北工业大学 | 交通车辆道路行驶安全分析方法 |
CN103150458B (zh) * | 2013-04-01 | 2016-05-18 | 中南大学 | 车辆-轨道-桥梁-地基基础耦合系统及其动力分析方法 |
US20150198502A1 (en) * | 2014-01-14 | 2015-07-16 | Iowa State University Research Foundation, Inc. | Methods and systems for automated bridge structural health monitoring |
CN104573274B (zh) * | 2015-01-27 | 2017-11-24 | 南京工业大学 | 车辆荷载下基于位移时程面积的结构有限元模型修正方法 |
CN105825014A (zh) * | 2016-03-17 | 2016-08-03 | 中铁大桥勘测设计院集团有限公司 | 一种基于车桥耦合分析的车桥安全健康评估系统及方法 |
CN106197910B (zh) * | 2016-07-01 | 2017-04-26 | 东南大学 | 一种基于车桥耦合振动分析的桥梁检测方法与检测系统 |
CN106097819A (zh) * | 2016-07-31 | 2016-11-09 | 重庆交通大学 | 用于实验教学的桥梁仿真检测方法及系统 |
CN106198058B (zh) * | 2016-08-03 | 2017-04-19 | 东南大学 | 一种基于胎压监测的竖向车轮冲击力实时测量方法 |
KR101938352B1 (ko) * | 2018-04-30 | 2019-01-14 | 김도빈 | 상시진동실험 데이터로 교량의 강성계수의 산출이 가능한 것을 특징으로 하는 교량의 강성계수 산출 방법 및 프로그램 |
CN110334371A (zh) * | 2019-04-18 | 2019-10-15 | 朱思宇 | 一种基于有限元模型的车-桥耦合系统振动计算方法 |
CN110132515B (zh) * | 2019-05-10 | 2021-07-16 | 哈尔滨工业大学 | 一种基于模型更新的时程级迭代实时混合试验方法 |
CN110543706B (zh) * | 2019-08-21 | 2023-03-24 | 哈尔滨工业大学 | 一种基于车辆刹车作用的在役桥梁支座损伤诊断方法 |
CN110795780B (zh) * | 2019-09-09 | 2023-02-10 | 杭州鲁尔物联科技有限公司 | 一种基于XGBoost算法的斜拉桥有限元修正方法 |
CN110909405B (zh) * | 2019-11-19 | 2023-11-14 | 广州大学 | 基于车辆载荷的桥梁结构优化方法、系统及智能设备 |
CN111027256A (zh) * | 2020-03-09 | 2020-04-17 | 杭州鲁尔物联科技有限公司 | 一种基于车辆荷载空间分布的桥梁风险预测方法及系统 |
CN111353252B (zh) * | 2020-03-25 | 2024-03-22 | 山东高速集团有限公司 | 一种基于环境激励的桥梁静载试验方法 |
CN111832099A (zh) * | 2020-05-28 | 2020-10-27 | 东南大学 | 基于fbg和有限元模型修正的桥梁结构损伤识别方法 |
CN111898304B (zh) * | 2020-08-06 | 2021-05-07 | 西南交通大学 | 风车流桥耦合振动分析方法及系统 |
CN113392451B (zh) * | 2021-06-09 | 2022-05-17 | 哈尔滨工业大学 | 基于车-桥梁耦合作用力修正的桥梁模型更新方法、系统、存储介质及设备 |
-
2021
- 2021-06-09 CN CN202110641202.4A patent/CN113392451B/zh active Active
- 2021-06-30 LU LU500362A patent/LU500362B1/de active IP Right Grant
-
2022
- 2022-01-12 WO PCT/CN2022/071663 patent/WO2022257461A1/zh active Application Filing
- 2022-09-30 US US17/936,866 patent/US20230050445A1/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115795943A (zh) * | 2022-11-10 | 2023-03-14 | 哈尔滨工业大学 | 一种公路桥梁行车舒适性精细化评价方法 |
CN115795943B (zh) * | 2022-11-10 | 2023-06-13 | 哈尔滨工业大学 | 一种公路桥梁行车舒适性精细化评价方法 |
CN116842348A (zh) * | 2023-08-31 | 2023-10-03 | 安徽省云鹏工程项目管理有限公司 | 基于人工智能的桥梁健康监测系统 |
CN116842348B (zh) * | 2023-08-31 | 2023-12-01 | 安徽省云鹏工程项目管理有限公司 | 基于人工智能的桥梁健康监测系统 |
Also Published As
Publication number | Publication date |
---|---|
US20230050445A1 (en) | 2023-02-16 |
CN113392451A (zh) | 2021-09-14 |
CN113392451B (zh) | 2022-05-17 |
WO2022257461A1 (zh) | 2022-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
LU500362B1 (de) | Bridge Model Updating Method, System, Storage Medium and Device of Based on the Modification of Vehicle-Bridge Coupling Force | |
CN104217094B (zh) | 用于计算结构的疲劳以及疲劳破坏的方法 | |
CN101592552B (zh) | 预测汽车后悬架多轴疲劳的方法 | |
Green et al. | Effects of vehicle suspension design on dynamics of highway bridges | |
Chan et al. | Moving force identification studies, I: theory | |
Subramaniam et al. | Hybrid control of structures using fuzzy logic | |
Law et al. | Study on different beam models in moving force identification | |
CN109398020A (zh) | 一种基于非线性模型的车辆液电耦合式isd悬架的预测控制方法 | |
CN117077272A (zh) | 一种车桥耦合数值解预测方法 | |
CN115577411A (zh) | 车-桥面铺装-桥耦合振动分析方法 | |
Maes et al. | The influence of out-of-band modes in system inversion | |
Xiang et al. | Three-dimensional stochastic train-bridge coupling dynamics under aftershocks | |
CN104331556A (zh) | 基于车辆平顺性非线性仿真模型的仿真试验方法 | |
Peeters et al. | Evaluation of structural damage by dynamic system identification | |
CN110321593A (zh) | 基于累积模态质量参与率的桥梁动挠度振型矩阵构造方法 | |
Mikhail et al. | Effect of vehicle-pavement interaction on pavement response | |
Ma et al. | Random vibration analysis of a vehicle–bridge interaction system subjected to traveling seismic ground motions using pseudo-excitation method | |
Zhuang et al. | Fatigue performance analysis and evaluation for steel box girder based on structural health monitoring system | |
Hwang et al. | Dynamic analysis of girder bridges | |
Herrmann et al. | A Living Lab for Structural Health Monitoring at the Nibelungen Bridge Worms for Transfer Learning of Structural Dynamics in | |
Qu et al. | Dynamic analysis of viscoelastic foundation plate with fractional Kelvin–Voigt model using shifted Bernstein polynomials | |
Li et al. | Nonlinear characteristics of damaged bridges under moving loads using parameter optimization variational mode decomposition | |
Okada et al. | A simulation of earthquake response of reinforced concrete building frames to bi-directional ground motion by IIS computer-actuator on-line system | |
Gridnev et al. | Expert modelling for evaluating dynamic impact of the motorcade on the supporting systems during braking | |
Valašková et al. | Two-span bridge under moving load–numerical and experimental approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FG | Patent granted |
Effective date: 20220106 |