WO2022255024A1 - α-オレフィンの製造方法 - Google Patents

α-オレフィンの製造方法 Download PDF

Info

Publication number
WO2022255024A1
WO2022255024A1 PCT/JP2022/019509 JP2022019509W WO2022255024A1 WO 2022255024 A1 WO2022255024 A1 WO 2022255024A1 JP 2022019509 W JP2022019509 W JP 2022019509W WO 2022255024 A1 WO2022255024 A1 WO 2022255024A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
olefin
reaction mixture
line mixer
base
Prior art date
Application number
PCT/JP2022/019509
Other languages
English (en)
French (fr)
Inventor
亮一 小林
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN202280039305.6A priority Critical patent/CN117412941A/zh
Priority to JP2023525673A priority patent/JPWO2022255024A1/ja
Publication of WO2022255024A1 publication Critical patent/WO2022255024A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/30Catalytic processes with hydrides or organic compounds containing metal-to-carbon bond; Metal hydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene

Definitions

  • the present invention relates to a method for producing ⁇ -olefins.
  • ⁇ -Olefins are useful substances that are widely used as raw materials for monomers of olefinic polymers, as comonomers for various high molecular weight polymers, and as raw materials for plasticizers, surfactants, and the like.
  • Various methods for producing ⁇ -olefins have been studied.
  • a Ziegler catalyst is used to polymerize ethylene (2 carbon atoms), butene (4 carbon atoms), hexene (4 carbon atoms), Number 6), octene (8 carbon atoms), etc., or a mixture of ⁇ -olefins having 4 to 20 carbon atoms or 20 or more carbon atoms, and then distilled with a plurality of distillation columns to remove components with low carbon atoms.
  • Each ⁇ -olefin is isolated in turn to obtain each ⁇ -olefin or mixture of ⁇ -olefins required for each application.
  • the manufacturing process generally consists of a polymerization reaction step, an unreacted ethylene recovery step, a catalyst deactivation step, a deashing step, and a solvent and ⁇ -olefin distillation step.
  • Ziegler catalysts and the like generally used in the production process contain halogen atoms (halide ions) in the catalyst, so when the catalyst is deactivated, the catalyst reacts with moisture to generate hydrogen halide, which is By reacting with hydrocarbon compounds in the reaction mixture, organic halogen compounds are generated as by-products. Therefore, attempts have been made to reduce such by-products.
  • Patent Document 1 discloses that ethylene is polymerized in the presence of a Ziegler catalyst for the purpose of stable operation without troubles such as clogging and suppression of by-production of organic halogen compounds, and after the polymerization reaction is completed, the reaction is carried out.
  • the resulting liquid is kept at a temperature of 90° C. or higher, and a pressure of 3 kg/cm 2 G or higher is added to the basic nitrogen compound at a concentration of 10% by weight with a molar amount of 30 times or more as much as the halogen content of the Ziegler catalyst.
  • a method for deactivating the catalyst by introducing the above solution is disclosed.
  • an object of the present invention is to provide a method for producing an ⁇ -olefin, which can efficiently deactivate the catalyst in the polymerization reaction product and suppress the by-production of organic halogen compounds.
  • the present inventors have found that when continuously introducing and mixing the reaction mixture of the polymerization reaction and the base into the line mixer, the operating conditions of the line mixer are set to a specific range. , found that the above problems can be solved by a production method including a step of deactivating the catalyst. That is, the present invention relates to the following [1] to [5]. [1] Step 1 of continuously introducing ethylene and a catalyst into a reactor and conducting a polymerization reaction to obtain a reaction mixture, and continuously introducing the reaction mixture and a base into a line mixer for mixing. 2, wherein the stirring power in the mixing is 30 to 1000 kW ⁇ sec/m 3 and the number of passes is 5 to 50.
  • [2] including a step of contacting the reaction mixture and the base before continuously introducing the reaction mixture and the base into a line mixer, and The method for producing an ⁇ -olefin according to [1] above, wherein the distance to the mixer inlet is 1 m or less.
  • the catalyst is a Ziegler catalyst.
  • the catalyst in the polymerization reaction product can be efficiently deactivated, and by-products of organic halogen compounds can be suppressed. It is possible to efficiently obtain an ⁇ -olefin that does not contain
  • the present invention comprises step 1 of continuously introducing ethylene and a catalyst into a reactor and conducting a polymerization reaction to obtain a reaction mixture, and continuously introducing and mixing the reaction mixture and a base into a line mixer.
  • a method for producing an ⁇ -olefin, comprising step 2, wherein the line mixer has a stirring power of 30 to 1000 kW ⁇ sec/m 3 and a number of passes of 5 to 50.
  • Step 1 is a step of continuously introducing ethylene and a catalyst into a reactor and conducting a polymerization reaction to obtain a reaction mixture.
  • ethylene is polymerized to obtain a reaction mixture containing an ⁇ -olefin.
  • ⁇ Catalyst> a catalyst is used to polymerize ethylene.
  • a Ziegler-based catalyst is preferred. The effects of the present invention are exhibited when using a catalyst containing a halogen atom such as a chlorine atom, a bromine atom or an iodine atom.
  • the Ziegler-based catalyst preferably comprises a combination of (A) a transition metal compound, (B) an organoaluminum, and optionally (C) a third component.
  • a transition metal compound e.g., a transition metal compound having a wide range of properties and properties.
  • C e.g., aluminum having a wide range of properties and properties.
  • compounds containing halogen atoms, particularly chlorides have simple structures, are readily available, and are inexpensive, and are suitable for industrial production. Moreover, the performance as a catalyst is also excellent. According to the production method of the present invention, even when such a catalyst is used, an ⁇ -olefin containing no organic halogen compounds can be efficiently obtained with inexpensive and compact equipment.
  • A) Transition metal compounds include compounds represented by general formula (I).
  • M represents a zirconium atom or a titanium atom
  • X represents a chlorine atom, a bromine atom or an iodine atom
  • Y represents RO-, R 2 N-, -OCOR, -OSO 3 R, R-, -Cp , or a ⁇ -diketonate represented by formula (II).
  • -Cp represents a cyclopentadienyl group
  • R represents a linear or branched alkyl group having 1 to 20 carbon atoms.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms substituted with a halogen atom. At least one of R 1 , R 2 and R 3 is a halogen-substituted alkyl group having 1 to 20 carbon atoms.).
  • M is preferably a zirconium atom.
  • X is preferably a chlorine atom.
  • x is preferably 4.
  • y is preferably 0. z is preferably zero.
  • Such compounds include ZrCl4 , ZrBr4 , ZrI4 , ZrBrCl3 , ZrBr2Cl2, TiCl4 , TiBr4 , TiI4 , TiBrCl3 , TiBr2Cl2 , Zr ( OC2H5 ) 4 , Zr(OC 2 H 5 ) 2 Cl 2 , Zr(On-C 3 H 7 ) 4 , Zr(O-n-C 3 H 7 ) 2 Cl 2 , Zr(O-iso-C 3 H 7 ) 4 , Zr(O-iso-C 3 H 7 ) 2 Cl 2 , Zr(On-C 4 H 9 ) 4 , Zr(On-C 4 H 9 ) 2 Cl 2 , Zr( O-iso- C4H9 ) 4 , Zr(O-iso- C4H9 ) 2Cl2 , Zr ( O-tert- C4H9 ) 4 , Z
  • Examples of (B) organic aluminum include compounds represented by general formula (III) and/or general formula (IV).
  • Examples of the compound represented by the general formula (III) include Al(CH 3 ) 3 , Al(C 2 H 5 ) 3 , Al(C 3 H 7 ) 3 and Al(iso-C 3 H 7 ). 3 , Al( C4H9 ) 3 , Al ( iso- C4H9 ) 3 , Al( C5H11 ) 3 , Al( C6H13 ) 3 , Al( C8H17 ) 3 , Al ( C2H5 ) 2Cl , Al( C2H5 ) 2Br , Al( C2H5 ) 2I , Al( C2H5 ) Cl2 , Al( C2H5 ) Br2 , Al ( C2H5 ) I2 , AlC2H5 ( OC2H5) 2 , AlC2H5 ( OC3H7 ) 2 , AlC2H5 ( OC4H9 ) 2 , Al( OC2H 5 ) 2Cl , Al( OC3
  • Examples of the compound represented by the general formula (IV) include Al2 ( CH3 ) 3Cl3 , Al2 ( CH3 ) 3Br3 , Al2 ( C2H5 ) 3Cl3 , Al2 ( C2H5 ) 3Br3 , Al2 ( C2H5 ) 3I3 , Al2 ( C2H5 ) 3BrCl2 , Al2 ( C3H7 ) 3Cl3 , Al2 ( iso -C3H7 ) 3Cl3 , Al2 ( C4H9 ) 3Cl3 , Al2 ( iso- C4H9 ) 3Cl3 , Al2 ( C5H11 ) 3Cl3 , Al2 ( C8H17 ) 3Cl3 , Al2( C2H5 ) 2 ( CH3 ) Cl3 , Al2 ( OC2H5 ) 3Cl3 , Al2 ( OC3H7 ) 3Cl3 , Al 2 (OC 4 H
  • Al 2 (CH 3 ) 3 Cl 3 , Al 2 (C 2 H 5 ) 3 Cl 3 and Al 2 (iso-C 4 H 9 ) 3 Cl 3 are preferred, and Al 2 (C 2 H 5 ) 3 Cl 3 is more preferred.
  • At least one compound selected from the group consisting of sulfur compounds, phosphorus compounds and nitrogen compounds can be used as the third component (C), which is used as desired.
  • This third component contributes to improving the purity of the resulting ⁇ -olefin.
  • the sulfur compound is not particularly limited as long as it is an organic sulfur compound.
  • Examples include dimethyl sulfide, diethyl sulfide, dipropyl sulfide, dihexyl sulfide, dicyclohexyl sulfide, and thioethers such as diphenylthioether; dimethyl disulfide, disulfide Dialkyl disulfide compounds such as diethyl, dipropyl disulfide, dibutyl disulfide, dihexyl disulfide, dicyclohexyl disulfide, and ethylmethyl disulfide; thiophene, 2-methylthiophene, 3-methylthiophene, 2,3-dimethylthiophene, 2 - Thiophenes such as ethylthiophene and benzothiophene, heterocyclic sulfur compounds such as tetrahydrothiophene and thiopyran; aromatic sulfur compounds such as diphenyl sulfur, diphenyl disulfide, methylphen
  • the phosphorus compound is not particularly limited as long as it is an organic phosphorus compound.
  • phosphines such as triphenylphosphine, triethylphosphine, tributylphosphine, tripropylphosphine, trioctylphosphine, and tricyclohexylphosphine are preferably used.
  • the nitrogen compound is not particularly limited as long as it is an organic nitrogen compound.
  • Organic amines such as amine, naphthylamine, dimethylamine, diethylamine, dibutylamine, diphenylamine, methylphenylamine, trimethylamine, triethylamine, tributylamine, triphenylamine, pyridine and picoline are preferably used.
  • the sulfur compound, the phosphorus compound, and the nitrogen compound for example, one or two selected from the group consisting of dimethyl disulfide, thiophene, thiourea, triphenylphosphine, tributylphosphine, trioctylphosphine, and aniline More than one species of compound can be suitably used.
  • the ethylene polymerization reaction is preferably carried out in an organic solvent.
  • the amount of the organic solvent used in the ethylene polymerization reaction is preferably 0.5 to 5 times (mass ratio) that of the ⁇ -olefin to be produced.
  • the organic solvent include alicyclic compounds such as cyclohexane and decalin; aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene, ethylbenzene, dichlorobenzene, and chlorotoluene, and halides thereof; pentane and hexane.
  • aliphatic hydrocarbon halides such as dichloroethane and dichlorobutane.
  • alicyclic compounds are preferred, and cyclohexane is more preferred.
  • the mixing ratio of (A) the transition metal compound in the catalyst to the organic solvent is preferably 0.01 to 5 millimoles, more preferably 0 millimoles of (A) the transition metal compound per 250 milliliters of the organic solvent. 0.03 to 1 millimolar.
  • the mixing ratio of (B) organic aluminum in the catalyst to the organic solvent is preferably 0.05 to 15 millimoles, more preferably 0.06 to 3 millimoles, of (B) organic aluminum per 250 milliliters of the organic solvent. be.
  • the mixing ratio of the third component (C) to the organic solvent in the catalyst is preferably 0.05 to 20 millimoles of the third component (C) per 250 milliliters of the organic solvent.
  • the amount is preferably 0.1 to 10 millimoles, and when a nitrogen compound or phosphorus compound is used as component (C), the amount is preferably 0.05 to 5 millimoles.
  • the compounding ratio of (A) the transition metal compound and (B) the organoaluminum is set within the range of 1 to 15 for Al/Zr or Ti (molar ratio).
  • the compounding ratio [Al/Zr or Ti (molar ratio)] of (A) the transition metal compound and (B) the organoaluminum is more preferably 2-10, more preferably 4-9.
  • the polymerization reaction in this step is preferably carried out at a temperature of 100 to 150° C. under a pressure of 30 to 90 kg/cm 2 ⁇ G (2.94 to 8.82 MPa).
  • the ethylene gas pressure is preferably 30-90 kg/cm 2 ⁇ G (2.94-8.82 MPa), more preferably 50-80 kg/cm 2 ⁇ G (4.90-7.84 MPa).
  • the reaction time depends on the temperature and pressure and cannot be uniformly determined, but is preferably 10 minutes or longer, more preferably 30 minutes or longer, and preferably 60 minutes or shorter, more preferably 50 minutes. minutes or less.
  • the residence time in the reactor is preferably 10 minutes or longer, more preferably 30 minutes or longer, and preferably 60 minutes or shorter, more preferably 50 minutes or shorter.
  • the reactor is preferably of the complete mixing tank type.
  • the reaction mixture after the polymerization reaction usually contains unreacted ethylene in addition to the reaction product ⁇ -olefin.
  • Ethylene and ⁇ -olefins may be separated from the reaction mixture prior to the next step 2 to recover unreacted ethylene. That is, a separation step of separating unreacted ethylene and a reaction mixture containing an ⁇ -olefin from the reaction mixture after the polymerization reaction and recovering the unreacted ethylene may be provided.
  • step 2 is provided with a reaction mixture containing the ⁇ -olefin after separation.
  • a flasher is preferably used for the separation step.
  • FIG. 1 shows a flasher 15 as an example of a device for recovering unreacted ethylene.
  • unreacted ethylene 16 is recovered from the top of the flasher.
  • the separated and recovered unreacted ethylene may be recycled for use in the polymerization reaction in step 1.
  • the unreacted ethylene recycled for the polymerization reaction in step 1 contains the ⁇ -olefin that was not completely separated in the separation step.
  • the ⁇ -olefin When the ⁇ -olefin is reused in the polymerization reaction, it induces a side reaction in the polymerization reaction and produces a by-product such as an ⁇ -olefin having a branched structure.
  • the content of ⁇ -olefin contained in the unreacted ethylene that is purified in a distillation column or the like and recycled to the polymerization reaction is 2% by mass or less.
  • the reaction mixture after the polymerization reaction may be used as it is, or the reaction mixture obtained by removing unreacted ethylene from the reaction mixture after the polymerization reaction by the above method may be used.
  • Step 2 is a step of continuously introducing the reaction mixture obtained in Step 1 and a base into a line mixer for mixing, wherein the stirring power in the mixing is 30 to 1000 kW ⁇ sec/m 3 , The number of passes is 5-50.
  • the catalyst is deactivated by mixing the reaction mixture with a base. That is, step 2 is a step of continuously introducing the reaction mixture obtained in step 1 and a base into a line mixer and mixing them to deactivate the catalyst. ⁇ 1000 kW ⁇ sec/m 3 and the number of passes is 5 to 50.
  • the reaction mixture containing the catalyst, solvent, and ⁇ -olefin obtained in reactor 1 passes through control valve 2, junction 6, line mixer inlet 7, and line mixer 5. continuously introduced into A device such as a flasher 15 may be provided to recover unreacted ethylene contained in the reaction mixture before it is supplied to the line mixer 5 .
  • a base preferably ammonia
  • a base as a deactivator is passed as an aqueous solution from a deactivator tank (ammonia water tank) 3 via a pump 4 and further through a confluence point 6 and a line mixer inlet 7 to a line mixer. 5 are continuously introduced. The reaction mixture and base introduced into the line mixer 5 are mixed to deactivate the catalyst contained in the reaction mixture.
  • the line mixer preferably includes a turbine (rotor) and a stator, and more preferably mixes by shearing force in the gap between the turbine (rotor) and the stator.
  • a line mixer By using such a line mixer, the base and the catalyst can be mixed and brought into contact in a small size and at high speed.
  • a commercially available line mixer can be used as the line mixer.
  • Commercially available line mixers include, for example, Pipeline Homomixer manufactured by Primix Corporation.
  • the stirring power in the line mixer is preferably 30 to 1000 kW ⁇ sec/m 3 , more preferably 50 to 500 kW ⁇ sec/m 3 , still more preferably 100 to 300 kW ⁇ sec/m 3 . is. 30 kW ⁇ sec/m 3 or more is preferable from the viewpoint of sufficient mixing. From the viewpoint of suppressing mechanical load and heat generation, it is preferably 1000 kW ⁇ sec/m 3 or less. From the viewpoint of sufficient mixing, it is more preferably 150 to 300 kW ⁇ sec/m 3 . On the other hand, from the viewpoint of suppressing mechanical load and heat generation, it is more preferably 100 to 150 kW ⁇ sec/m 3 .
  • reaction mixture and base to be mixed contain an organic solvent and water
  • oil-water separation after mixing can be facilitated by setting the stirring power to 1000 kW ⁇ sec/m 3 or less.
  • the number of passes is preferably 5-50, more preferably 5-30, still more preferably 5-20. 5 or more is preferable from the viewpoint of giving sufficient shear and mixing. 50 or less is preferable from the viewpoint of suppressing mechanical load and heat generation.
  • the catalyst can be efficiently deactivated, side reactions can be suppressed, and the organohalogen compound can be produced. generation can be suppressed.
  • the stirring power in this specification means the power applied per unit amount of the treatment liquid (mixture of the reaction mixture and the base), and the power (P) [kW] and the volumetric flow rate (Q) [m 3 /sec] and is calculated from the equation (1).
  • Stirring power P/Q [kW ⁇ sec/m 3 ]
  • the number of passes in this specification means the average number of shearing times that the processing fluid (mixture of the reaction mixture and the base) undergoes while passing through the line mixer, and the number of revolutions of the line mixer (n) [1 / sec ], the blade diameter (d) [m], and the volumetric flow rate Q [m 3 /sec].
  • Formula (2): Number of passes n ⁇ d 3 /Q
  • the stirring power in this embodiment is the total stirring power of each of the plurality of configurations and the number of paths is the sum of the number of paths for each of the plurality of configurations.
  • the number of configurations (the product of the number of line mixers installed in series and the number of stirring units of one line mixer) is preferably 4 or less, more preferably 3 or less, more preferably 2 or less, and 1 is further. preferable.
  • the stirring power and the number of passes in the present embodiment are each a single value.
  • ⁇ -olefins In the production of ⁇ -olefins, by using a line mixer as a mixer for deactivating the catalyst, it is possible to mix the base and the catalyst at high speed, resulting in side reactions caused by contact between the water and the catalyst. can be suppressed, and the formation of an organic halogen compound produced by the side reaction can be suppressed. Furthermore, in the present invention, it is considered that the reaction can be controlled while continuously passing the fluid by adjusting not only the power but also the number of times of shearing when using the line mixer. Thus, by using a line mixer as a mixer for deactivating the catalyst and setting the stirring power and the number of passes within the above ranges, the catalyst is deactivated continuously and sufficiently, and the organic halogen compound is generated. It is considered that the production of ⁇ -olefin can be efficiently produced while suppressing the production.
  • the reaction mixture and the base are continuously introduced into the line mixer and mixed, but brought into contact before being introduced into the line mixer. That is, the production method preferably includes the step of contacting the reaction mixture with the base before continuously introducing the reaction mixture and the base into the line mixer. Furthermore, it is preferable that the distance from the confluence point where the reaction mixture and the base come into contact with the inlet of the line mixer is 1 m or less. A detailed description will be given below with reference to FIG. In FIG. 1, the reaction mixture and base are brought into contact at junction 6 and introduced into line mixer 5 through line mixer inlet 7 .
  • the distance from the junction 6 where the reaction mixture and the base come into contact with the line mixer inlet 7 is preferably 1 m or less, more preferably 50 cm or less, and even more preferably 20 cm or less. .
  • the base and the reaction mixture are rapidly mixed and the catalyst in the reaction mixture can be deactivated. It is possible to suppress the side reaction caused by the contact between the moisture that can be contained in the catalyst and the contact of the catalyst, and to suppress the by-production of the organic halogen compound generated by the side reaction.
  • the mixture mixed in the line mixer 5 is discharged from the line mixer and then sent to the deashing machine 8 to undergo the deashing process.
  • the base in this step is preferably at least one selected from the group consisting of ammonia, amines, and alkali metal hydroxides, and at least one selected from the group consisting of ammonia and amines. is more preferred, and ammonia is even more preferred.
  • Amines include methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, cyclohexylamine, octylamine, decylamine, aniline, benzylamine, naphthylamine, dimethylamine, diethylamine, dibutylamine, diphenylamine, methylphenylamine, trimethylamine, triethylamine, tributylamine, triphenylamine, pyridine, picoline, and the like.
  • Alkali metal hydroxides include sodium hydroxide and potassium hydroxide. Ammonia and amines are readily soluble in the organic phase and can quickly contact and deactivate the catalyst.
  • ammonia since ammonia has a small molecular weight, it can be efficiently deactivated with a small amount. Further, it is more preferable to use ammonia or amines together with an alkali metal hydroxide.
  • Alkali metal hydroxide is a strong base and has the effect of increasing the pH of the aqueous phase, so it has the effect of facilitating the dissolution of aluminum salts produced by deactivation of the catalyst into the aqueous phase.
  • the amount of the base to be used is preferably 30 mol times or more, more preferably 50 mol times or more, the halogen content contained in the catalyst. Although there is no upper limit, it is preferably 150 mol times or less.
  • These bases are preferably used as aqueous solutions.
  • the base concentration of the aqueous solution is preferably 1 to 30% by mass, more preferably 10 to 30% by mass. When the concentration of the aqueous solution is within the above range, the by-production of organic halogen compounds can be further reduced.
  • the mixing ratio of the solvent contained in the reaction mixture and the aqueous solution containing the base is 1:10 to 100:1 (mass ratio). preferably 1:1 to 100:1 (mass ratio), more preferably 5:1 to 20:1 (mass ratio).
  • the temperature during mixing (the temperature of the liquid in the line mixer) is preferably 90 to 150°C, more preferably 100 to 130°C.
  • the pressure during mixing is preferably a pressure that does not generate gas in the line mixer.
  • the pressure during mixing is preferably 0.5 to 2.0 MPa (G), more preferably 0.9 to 1.5 MPa (G).
  • the production method of the present invention preferably further includes, after step 2, a deashing step 3 for removing the deactivated catalyst and a distillation step 4 for recovering the ⁇ -olefin.
  • the mixture mixed in the step 2 is discharged from the line mixer 5, sent to the deashing machine 8, and subjected to the deashing step.
  • water 9 is added to the mixture and stirred to dissolve the deactivated catalyst in the water and remove the catalyst from the mixture. Thereafter, the water containing the deactivated catalyst is separated in the oil-water separation tank 10, and the water containing the deactivated catalyst is discharged outside the system as waste water 11.
  • the amount of water added in the deashing step is preferably 1/10 to 1/3 (mass ratio) of the oil phase (the mixture).
  • the temperature during stirring is preferably 90°C to 150°C.
  • FIG. 1 shows an example of a distillation column.
  • the mixture that has undergone the deashing step is introduced into a distillation column 12, a liquid 13 mainly composed of low-molecular-weight ⁇ -olefins is obtained from the top of the column, and a high-molecular-weight ⁇ -olefin and a solvent are obtained from the bottom of the column.
  • a liquid 14 containing as a main component is obtained.
  • Each liquid can be fractionated as necessary to obtain an ⁇ -olefin having a carbon number (degree of polymerization) suitable for the application.
  • the halogen content of the obtained ⁇ -olefin is preferably 2 mass ppm or less, more preferably 1 mass ppm or less, and still more preferably 0.5 mass ppm or less.
  • the halogen content is 2 ppm by mass or less, when the ⁇ -olefin is used as a monomer or comonomer for various polyolefins, when the ⁇ -olefin is reacted with other raw materials, there is no adverse effect on the catalyst used for the reaction. Therefore, it is preferable.
  • the halogen content of the ⁇ -olefin reflects the amount of organic halogen compounds contained in the ⁇ -olefin, and when the halogen content of the ⁇ -olefin is small, the amount of organic halogen compounds contained in the ⁇ -olefin is also small. It can be said.
  • Example 1 [Preparation of catalyst] A catalyst was prepared by the following procedure. Dry cyclohexane was introduced into a stirred tank with an internal volume of 6.5 m 3 under a nitrogen atmosphere. Then triethylaluminum [(C 2 H 5 ) 3 Al] was introduced. Anhydrous zirconium tetrachloride [ZrCl 4 ] was also introduced. Ethyl aluminum sesquichloride [( C2H5 ) 3Al2Cl3 ] was then introduced. The amounts of the raw materials and solvents were introduced based on anhydrous zirconium tetrachloride as follows.
  • Step 1 Polymerization reaction
  • the reaction was carried out continuously using a complete mixing tank type reactor (inner volume: about 20 m 3 ) (Fig. 1: reactor 1).
  • the reaction solvent cyclohexane
  • the catalyst solution was fed at a rate of 25 kg/hour.
  • Average residence time was about 45 minutes based on solvent.
  • the reaction was carried out at 130° C., 70 kg/cm 2 ⁇ G (6.9 MPa), and the stirring speed was 70 rpm.
  • high-purity ethylene gas was continuously supplied so as to maintain the reaction pressure at 70 kg/cm 2 ⁇ G.
  • a reaction product liquid containing a polymerization reaction product ( ⁇ -olefin) obtained by the polymerization reaction is introduced into a flasher (flasher 15 in FIG. 1) and gas-liquid separation is performed to separate the gas component containing unreacted ethylene from the reaction product.
  • a reaction mixture was obtained, which was a liquid component containing substances. The reaction mixture was used for step 2.
  • Step 2 Deactivation step
  • the reaction mixture obtained in step 1 and 20% by mass aqueous ammonia were continuously added to a line mixer (trade name: pipe Line homomixer, manufactured by Primix Co., Ltd.) (Fig. 1: line mixer 5), and the catalyst was deactivated under the conditions of stirring power of 201 kW ⁇ sec/m 3 , number of passes of 6.9, and temperature of 110°C. .
  • the reaction mixture and the aqueous ammonia come into contact with each other, and the flow velocity in the pipe until they are introduced into the line mixer is about 1.2 m/sec. from the confluence point 6 to the line mixer inlet 7) was 15 cm.
  • Step 3 Deashing step
  • the mixed liquid discharged from the line mixer was added to a deashing machine (orifice mixer) (Fig. 1: deashing machine 8), and water was added so that the mass ratio of the reaction solvent:water was 3:1. Decalcification was performed.
  • the resulting mixture was sent to an oil-water separation tank (Fig. 1: oil-water separation tank 10), and the oil phase was sent to a distillation system.
  • Step 4 Distillation step
  • Each ⁇ -olefin having from 4 to 24 carbon atoms was recovered by appropriately adjusting the distillation conditions in a distillation apparatus (Fig. 1: distillation column 12, etc.).
  • the average halogen content of each ⁇ -olefin obtained was 0.5 mass ppm or less.
  • Example 2 ⁇ -Olefins with various carbon numbers were produced in the same manner as in Example 1 except that the stirring power was 141 kW ⁇ sec/m 3 and the number of passes was 6.1.
  • the average halogen content of each ⁇ -olefin obtained was 0.5 mass ppm or less.
  • Comparative example 1 ⁇ -Olefins with various carbon numbers are produced in the same manner as in Example 1, except that the stirring power is 46 kW ⁇ sec/m 3 and the number of passes is 4.2. Due to insufficient mixing of the reaction mixture and the base, the average halogen content of each ⁇ -olefin obtained is 3 mass ppm or more.
  • Comparative example 2 ⁇ -Olefins with various carbon numbers are produced in the same manner as in Example 1 except that the stirring power is 3 kW ⁇ sec/m 3 and the number of passes is 1.7. Due to insufficient mixing of the reaction mixture and the base, the average halogen content of each ⁇ -olefin obtained is 3 mass ppm or more.
  • Reactor 2 Control valve 3: Deactivator tank (ammonia water tank) 4: Pump 5: Line mixer 6: Junction 7: Line mixer inlet 8: Deashing machine 10: Oil-water separation tank 12: Distillation tower 15: Flasher

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

エチレン及び触媒を反応器内に連続的に導入し、重合反応して反応混合物を得る工程1、および、前記反応混合物と塩基とをラインミキサー内に連続的に導入して混合する工程2を含み、前記ラインミキサーにおける撹拌動力が30~1000kW・秒/mであり、パス数が5~50である、α-オレフィンの製造方法。

Description

α-オレフィンの製造方法
 本発明は、α-オレフィンの製造方法に関する。
 α-オレフィンは、オレフィン系重合体のモノマー原料として、また各種高分子重合体のコモノマーとして、更には可塑剤や界面活性剤等の原料として広く用いられている有用な物質である。
 α-オレフィンの製造方法に関しては、種々研究されているが、一般的には、例えば、チーグラー系触媒を用いてエチレン(炭素数2)を低重合させ、ブテン(炭素数4)、ヘキセン(炭素数6)、オクテン(炭素数8)等の炭素数4~20、又は炭素数20以上のα-オレフィンの混合物を得て、次いで、複数の蒸留塔により、蒸留し、炭素数の少ない成分から順番に、各α-オレフィンを単離し、各用途に必要とされる各α-オレフィン、あるいはα-オレフィンの混合物を得る。
 この製造プロセスは、一般に、重合反応工程、未反応エチレン回収工程、触媒の失活工程、脱灰工程、並びに、溶媒およびα-オレフィンの蒸留工程からなっている。前記製造プロセスにおいて一般的に使用されるチーグラー系触媒等は触媒中にハロゲン原子(ハロゲン化物イオン)を含むため、触媒の失活時に触媒と水分とが反応してハロゲン化水素が発生し、これが反応混合物中の炭化水素化合物と反応することで、副生成物として有機ハロゲン化合物を発生させる。そこで、このような副生成物を低減する試みもなされている。
 たとえば、特許文献1には、詰まり等のトラブルのない安定した運転や有機ハロゲン化合物の副生を抑制することを目的として、チーグラー系触媒の存在下でエチレンを重合し、重合反応終了後、反応生成液を90℃以上の温度に保持し、3kg/cm・G以上の圧力として、チーグラー系触媒のハロゲン含有量に対して30モル倍以上の塩基性窒素化合物を、その濃度を10重量%以上の溶液として導入し触媒を失活させる方法が開示されている。
特開平3-220135号公報
 α-オレフィンの製造において、副生成物の有機ハロゲン化合物を抑制しながら触媒を失活するためには、撹拌槽を用いることが考えられる。副反応を抑制するためには、迅速に触媒を失活させ、触媒を水中に希釈しなければならず、大量の水と大量の塩基性物質中に、触媒と生成物のα-オレフィンを含む反応混合物を導入する必要がある。しかし、α-オレフィンの生産量に比べ、設備が大きく、高価になるため、連続生産には不向きである。しかし、連続生産を行うために、大量の水や塩基性物質を用いずに触媒の失活を行うと有機ハロゲン化合物の副生の抑制が困難である。そのため、連続生産に適する、小型でありながらも高速で失活処理ができ、更に有機ハロゲン化合物の生成を抑えられる設備及び方法が望まれていた。
 そこで、本発明の目的は、重合反応物中の触媒を効率的に失活させ、有機ハロゲン化合物の副生を抑制することのできる、α-オレフィンの製造方法を提供することである。
 本発明者は、上記状況に鑑みて鋭意検討を重ねた結果、重合反応の反応混合物と塩基とをラインミキサー内に連続的に導入して混合するに際し、ラインミキサーの運転条件を特定の範囲として、触媒を失活させる工程を含む製造方法によって、前記課題を解決できることを見出した。
 すなわち、本発明は、下記[1]~[5]に関する。
[1]エチレン及び触媒を反応器内に連続的に導入し、重合反応して反応混合物を得る工程1、および、前記反応混合物と塩基とをラインミキサー内に連続的に導入して混合する工程2を含み、前記混合における撹拌動力が30~1000kW・秒/mであり、パス数が5~50である、α-オレフィンの製造方法。
[2]前記反応混合物と塩基とをラインミキサー内に連続的に導入する前に、前記反応混合物と前記塩基とを接触させる工程を含み、前記反応混合物と前記塩基とが接触する合流点からラインミキサー入口までの距離が1m以下である、上記[1]に記載のα-オレフィンの製造方法。
[3]前記触媒がチーグラー系触媒である、上記[1]又は[2]に記載のα-オレフィンの製造方法。
[4]前記塩基がアンモニアである、上記[1]~[3]のいずれか1つに記載のα-オレフィンの製造方法。
[5]工程2の後に、失活した触媒を除去する脱灰工程3、及びα-オレフィンを回収する蒸留工程4を更に含む、上記[1]~[4]のいずれか1つに記載のα-オレフィンの製造方法。
 本発明のα-オレフィンの製造方法によれば、重合反応物中の触媒を効率的に失活させ、有機ハロゲン化合物の副生を抑制することができ、安価かつコンパクトな設備で、副生成物を含まないα-オレフィンを効率的に得ることができる。
本発明を実施するための工程の一例を示す概略工程図である。
 本発明は、エチレン及び触媒を反応器内に連続的に導入し、重合反応して反応混合物を得る工程1、および、前記反応混合物と塩基とをラインミキサー内に連続的に導入して混合する工程2を含み、前記ラインミキサーにおける撹拌動力が30~1000kW・秒/mであり、パス数が5~50である、α-オレフィンの製造方法である。
 以下に本発明の各工程について説明する。
[工程1]
 工程1は、エチレン及び触媒を反応器内に連続的に導入し、重合反応して反応混合物を得る工程である。本工程でエチレンを重合反応し、α-オレフィンを含む反応混合物を得る。
<触媒>
 工程1では、エチレンを重合するために、触媒を使用する。触媒としては、チーグラー系触媒が好ましい。塩素原子、臭素原子又はヨウ素原子であるハロゲン原子を含む触媒を用いる場合に本発明の効果が発揮される。
 前記チーグラー系触媒は、好ましくは、(A)遷移金属化合物、(B)有機アルミニウム、及び所望に応じて用いられる(C)第三成分の組み合わせからなる。
 これらのうち、ハロゲン原子を含む化合物、特に塩化物は構造が簡単であり、入手性に優れ、安価であるため、工業生産に適している。また、触媒としての性能も優れている。本発明の製造方法によれば、そうした触媒を用いた場合にも、安価かつコンパクトな設備で、有機ハロゲン化合物を含まないα-オレフィンを効率的に得ることができる。
 (A)遷移金属化合物としては、一般式(I)で表される化合物が挙げられる。
   MX (I)
〔式中、Mはジルコニウム原子又はチタン原子を表し、Xは塩素原子、臭素原子又はヨウ素原子を表し、YはRO-、RN-、-OCOR、-OSOR、R-、-Cp、又は、式(II)で表されるβ-ジケトナートを表す。-Cpはシクロペンタジエニル基を表し、Rは炭素数1~20の直鎖又は分岐アルキル基を表す。
Figure JPOXMLDOC01-appb-C000001

(式(II)中、R、R及びRはそれぞれ独立して、水素原子、炭素数1~20のアルキル基又はハロゲン原子で置換された炭素数1~20のアルキル基を表す。R、R及びRのうち少なくとも一つはハロゲン原子で置換された炭素数1~20のアルキル基である。)。x,y,およびzはそれぞれ独立して0~4の整数を表し、x+y+z=4である。〕
 Mとしてはジルコニウム原子が好ましい。Xは塩素原子が好ましい。xは4が好ましい。yは0が好ましい。zは0が好ましい。
 このような化合物の具体例としては、ZrCl,ZrBr,ZrI,ZrBrCl,ZrBrCl,TiCl,TiBr,TiI,TiBrCl,TiBrCl,Zr(OC,Zr(OCCl,Zr(O-n-C,Zr(O-n-CCl,Zr(O-iso-C,Zr(O-iso-CCl,Zr(O-n-C,Zr(O-n-CCl,Zr(O-iso-C,Zr(O-iso-CCl,Zr(O-tert-C,Zr(O-tert-CCl,Zr((CHN),Zr((CN),Zr((n-CN),Zr((iso-CN),Zr((n-CN),Zr((tert-CN),Zr(OSOCH,Zr(OSO,Zr(OSO,Zr(OSO,ZrCpCl,ZrCpClBr,Ti(OC,Ti(OCCl,Ti(O-n-C,Ti(O-n-CCl,Ti(O-iso-C,Ti(O-iso-CCl,Ti(O-n-C,Ti(O-n-CCl,Ti(O-iso-C,Ti(O-iso-CCl,Ti(O-tert-C,Ti(O-tert-CCl,Ti((CHN),Ti((CN),Ti((n-CN),Ti((iso-CN),Ti((n-CN),Ti((tert-CN),Ti(OSOCH,Ti(OSO,Ti(OSO,Ti(OSO,TiCpCl,TiCpClBr,Zr(OCOC,Zr(OCOCCl,Zr(OCOC,Zr(OCOCCl,Zr(OCOC,Zr(OCOCCl,Ti(OCOC,Ti(OCOCCl,Ti(OCOC,Ti(OCOCCl,Ti(OCOC,Ti(OCOCCl,ZrCl(HCOCFCOF),およびZrCl(CHCOCFCOCH等を挙げることができる。これらのなかでも、ZrCl、Zr(O-n-C、Zr(O-n-Cが好ましく、ZrClがより好ましい。
 (B)有機アルミニウムとしては、一般式(III)及び/又は一般式(IV)で表される化合物を挙げることができる。
   AlY (III)
〔式中、Xは塩素原子、臭素原子又はヨウ素原子を表し、YはRO-、RN-、-OCOR、またはR-を表す。Rは炭素数1~20の直鎖又は分岐アルキル基を表す。a、b、c、およびdはそれぞれ独立して0~3の整数を表し、a+b+c+d=3である。〕
   Ala’b’c’d’ (IV)
〔式中、Xは塩素原子、臭素原子又はヨウ素原子を表し、YはRO-、RN-、-OCOR、-RCOCR’COR”、またはR-を表す。R、R’、およびR”はそれぞれ独立して炭素数1~20の直鎖又は分岐アルキル基を表す。a’、b’、c’、およびd’はそれぞれ独立して0~6の整数を表し、a’+b’+c’+d’=6である。〕
 前記一般式(III)で表される化合物としては、例えば、Al(CH,Al(C,Al(C,Al(iso-C,Al(C,Al(iso-C,Al(C11,Al(C13,Al(C17,Al(CCl,Al(CBr,Al(CI,Al(C)Cl,Al(C)Br,Al(C)I,AlC(OC,AlC(OC,AlC(OC,Al(OCCl,Al(OCCl,Al(OCCl,Al(OC)Cl,Al(OC)Cl,Al(OC)Cl,AlC(OCOC,AlC(OCOC,AlC(OCOC,Al(OCOCCl,Al(OCOCCl,およびAl(OCOCCl,Al(OCOC)Cl,Al(OCOC)Cl,Al(OCOC)Cl,Al(COC,Al(COC,Al(COC,Al(C(N(C),Al(C(N(C),Al(CN(C等が挙げられる。これらのなかでも、Al(C、Al(iso-C、Al(C17が好ましく、Al(Cがより好ましい。
 前記一般式(IV)で表される化合物としては、例えば、Al(CHCl,Al(CHBr,Al(CCl,Al(CBr,Al(C,Al(CBrCl,Al(CCl,Al(iso-CCl,Al(CCl,Al(iso-CCl,Al(C11Cl,Al(C17Cl,Al(C(CH)Cl,Al(OCCl,Al(OCCl,Al(OCCl,Al(OCOCCl,Al(OCOCCl,およびAl(OCOCCl等が挙げられる。これらのなかでも、Al(CHCl、Al(CCl、Al(iso-CClが好ましく、Al(CClがより好ましい。
 所望に応じて用いられる(C)第三成分としては、イオウ化合物、リン化合物及び窒素化合物からなる群から選ばれる少なくとも1種の化合物が使用できる。この第三成分は、得られるα-オレフィンの純度向上に寄与する。
 イオウ化合物としては、有機イオウ化合物であればよく、特に制限はないが、例えば、硫化ジメチル、硫化ジエチル、硫化ジプロピル、硫化ジヘキシル、硫化ジシクロヘキシル、およびジフェニルチオエーテル等のチオエーテル類;二硫化ジメチル、二硫化ジエチル、二硫化ジプロピル、二硫化ジブチル、二硫化ジヘキシル、二硫化ジシクロヘキシル、および二硫化エチルメチル等の二硫化ジアルキル化合物;チオフェン、2-メチルチオフェン、3-メチルチオフェン、2,3-ジメチルチオフェン、2-エチルチオフェン、およびベンゾチオフェン等のチオフェン類、テトラヒドロチオフェン、および、チオピラン等のヘテロ環イオウ化合物;ジフェニルイオウ、二硫化ジフェニル、二硫化メチルフェニル、およびメチルフェニルイオウ等の芳香族イオウ化合物:チオ尿素;並びに;メチルスルフィド、エチルスルフィド、およびブチルスルフィド等のスルフィド類等が好ましく用いられる。
 リン化合物としては、有機リン化合物であればよく特に制限はないが、例えば、トリフェニルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリプロピルホスフィン、トリオクチルホスフィン、およびトリシクロヘキシルホスフィン等のホスフィン類が好ましく用いられる。また、窒素化合物としては、有機窒素化合物であればよく、特に制限はないが、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、オクチルアミン、デシルアミン、アニリン、ベンジルアミン、ナフチルアミン、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジフェニルアミン、メチルフェニルアミン、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリフェニルアミン、ピリジン、およびピコリン等の有機アミン類が好ましく用いられる。
 前記イオウ化合物、前記リン化合物、および、前記窒素化合物の中でも、例えば、二硫化ジメチル、チオフェン、チオ尿素、トリフェニルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、およびアニリンからなる群から選ばれる1種又は2種以上の化合物を好適に使用することができる。
<重合反応の条件等>
 エチレンの重合反応は、有機溶媒中において行われることが好ましい。エチレンの重合反応に用いられる有機溶媒の量は、生成するα-オレフィンの0.5倍から5倍(質量比)が好ましい。前記有機溶媒としては、シクロヘキサンおよびデカリン等の脂環式化合物類;ベンゼン、トルエン、キシレン、クロロベンゼン、エチルベンゼン、ジクロロベンゼン、およびクロロトルエン等の芳香族炭化水素類、および、そのハロゲン化物;ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、およびデカン等の脂肪族炭化水素類;並びに;ジクロロエタン、およびジクロロブタン等の脂肪族炭化水素のハロゲン化物等を使用することができる。これらのなかでも、脂環式化合物類が好ましく、シクロヘキサンがより好ましい。
 本工程における、前記触媒中の(A)遷移金属化合物の前記有機溶媒に対する配合割合は、有機溶媒250ミリリットル当たり、(A)遷移金属化合物が、好ましくは0.01~5ミリモル、より好ましくは0.03~1ミリモルである。前記触媒中の(B)有機アルミニウムの前記有機溶媒に対する配合割合は、有機溶媒250ミリリットル当たり、(B)有機アルミニウムが、好ましくは0.05~15ミリモル、より好ましくは0.06~3ミリモルである。前記触媒中の(C)第三成分の前記有機溶媒に対する配合割合は、有機溶媒250ミリリットル当たり、(C)第三成分が、好ましくは0.05~20ミリモルであり、(C)第三成分として前記イオウ化合物を用いる場合には、好ましくは0.1~10ミリモルであり、(C)成分として窒素化合物又はリン化合物を用いる場合には、好ましくは0.05~5ミリモルである。また、前記(A)遷移金属化合物と(B)有機アルミニウムとの配合比は、Al/Zr又はTi(モル比)を1~15の範囲に設定することが好ましい。前記(A)遷移金属化合物と(B)有機アルミニウムとの配合比[Al/Zr又はTi(モル比)]はより好ましくは2~10であり、更に好ましくは4~9である。
 本工程における重合反応は、好ましくは100~150℃の温度において、30~90kg/cm・G(2.94~8.82MPa)の加圧下で行われる。エチレンガス圧は、30~90kg/cm・G(2.94~8.82MPa)が好ましく、50~80kg/cm・G(4.90~7.84MPa)がより好ましい。また反応時間は、温度や圧力によって左右され一律に決めることができないが、好ましくは10分以上であり、より好ましくは30分以上であり、また、好ましくは60分以下であり、より好ましくは50分以下である。連続反応装置を用いる場合、反応装置における滞留時間は、好ましくは10分以上であり、より好ましくは30分以上であり、また、好ましくは60分以下であり、より好ましくは50分以下である。反応器は完全混合槽タイプが好ましい。
 重合反応後の反応混合物には、通常、反応生成物であるα-オレフィンに加えて未反応エチレンが含まれる。次の工程2の前に反応混合物からエチレンとα-オレフィンとを分離して、未反応エチレンを回収してもよい。すなわち、重合反応後の反応混合物から未反応エチレンとα-オレフィンを含む反応混合物とを分離して、未反応エチレンを回収する分離工程を設けてもよい。当該分離工程を設ける場合、工程2には、分離後の前記α-オレフィンを含む反応混合物を供する。当該分離工程には、好ましくはフラッシャーが用いられる。図1に未反応エチレンを回収する装置の一例として、フラッシャー15を示す。フラッシャー15において、未反応エチレン16はフラッシャー上部より回収される。
 また、分離回収された未反応エチレンは工程1の重合反応にリサイクルして用いてもよい。工程1の重合反応にリサイクルして用いられる未反応エチレンには、前記分離工程において完全には分離されなかったα-オレフィンが含まれる。当該α-オレフィンが重合反応に再利用されると、重合反応において副反応を誘発し、分岐構造を有するα-オレフィンなどの副生成物を生じる。そのため、蒸留塔などで精製を行い、重合反応にリサイクルされる未反応エチレンに含まれる、α-オレフィンの含有量は2質量%以下とするのが好ましい。
 工程2には、重合反応後の反応混合物をそのまま用いてもよく、前記の方法によって、重合反応後の反応混合物から未反応エチレンを除去した反応混合物を用いてもよい。
[工程2]
 工程2は、工程1で得られた前記反応混合物と塩基とをラインミキサー内に連続的に導入して混合する工程であり、前記混合における撹拌動力が30~1000kW・秒/mであり、パス数が5~50である。
 前記反応混合物と塩基とを混合することで、触媒を失活させる。すなわち、工程2は、工程1で得られた前記反応混合物と塩基とをラインミキサー内に連続的に導入して混合することで、触媒を失活させる工程であり、前記混合における撹拌動力が30~1000kW・秒/mであり、パス数が5~50である。
 図1において、反応器1で得られた、触媒、溶媒、α-オレフィンを含有する反応混合物は、制御弁2を介して、更に合流点6、ラインミキサー入口7を通過して、ラインミキサー5内に連続的に導入される。なお、ラインミキサー5に供給される前に、反応混合物に含まれる未反応エチレンを回収するためにフラッシャー15等の装置を設けてもよい。また、失活剤である塩基(好ましくはアンモニア)は水溶液として、失活剤槽(アンモニア水槽)3より、ポンプ4を介して、更に合流点6、ラインミキサー入口7を通過して、ラインミキサー5内に連続的に導入される。
 ラインミキサー5内に導入された反応混合物と塩基は混合され、反応混合物に含まれる触媒を失活させる。
 前記ラインミキサーは、タービン(ローター)とステーターを備えるものが好ましく、タービン(ローター)とステーターの間隙でのせん断力によって、混合するものがより好ましい。このようなラインミキサーを使用することによって、小型かつ高速で塩基と触媒とを混合し、接触させることができる。
 ラインミキサーには市販のラインミキサーを用いることができる。市販のラインミキサーとしては、例えば、プライミクス株式会社製のパイプラインホモミクサーが挙げられる。
 本工程において、前記ラインミキサーにおける撹拌動力は、好ましくは30~1000kW・秒/mであり、より好ましくは50~500kW・秒/mであり、更に好ましくは100~300kW・秒/mである。十分に混合する観点で30kW・秒/m以上が好ましい。機械的な負荷や発熱を抑える観点で1000kW・秒/m以下が好ましい。十分に混合する観点からは、より更に好ましくは150~300kW・秒/mである。一方、機械的な負荷や発熱を抑える観点からは、より更に好ましくは100~150kW・秒/mである。また、混合される反応混合物と塩基とが有機溶媒と水とを含む場合は、撹拌動力を1000kW・秒/m以下とすることで、混合後の油水分離を容易にすることができる。
 また、パス数は、好ましくは5~50であり、より好ましくは5~30であり、更に好ましくは5~20である。十分なせん断を与え、混合する観点で5以上が好ましい。機械的な負荷や発熱を抑える観点で50以下が好ましい。
 上記撹拌動力とパス数とを備えることで、十分に触媒を失活しながら、触媒失活処理に要する時間も短くすることができる。つまり、ラインミキサーを用い、上記条件の撹拌動力とパス数とで反応混合物と塩基とを混合することで、効率的に触媒の失活処理ができ、また、副反応を抑制して有機ハロゲン化合物の生成を抑えることができる。
 本明細書における撹拌動力とは、処理液(反応混合物と塩基との混合物)の単位量あたりにかかる動力を意味し、撹拌空間での動力(P)[kW]と体積流量(Q)[m/秒]に基づき、式(1)から算出される。
   式(1): 撹拌動力=P/Q[kW・秒/m
 また、本明細書におけるパス数とは、処理流体(反応混合物と塩基との混合物)がラインミキサーを通過する間に受ける平均せん断回数を意味し、ラインミキサーの回転数(n)[1/秒]および羽径(d)[m]と、体積流量Q[m/秒]に基づき、式(2)から算出される。
   式(2): パス数=n・d/Q
 複数のラインミキサーが直列に設置される場合、または、1台のラインミキサーが複数の撹拌部を直列に備える場合には、本実施形態における撹拌動力は、それら複数の構成それぞれの撹拌動力の合計値とし、パス数は、それら複数の構成それぞれのパス数の合計値とする。当該構成数(直列に設置された、ラインミキサーの数と、1台のラインミキサーの撹拌部の数の積)は4以下が好ましく、3以下がより好ましく、2以下がより好ましく、1が更に好ましい。なお、並列に前記構成が備えられる場合には、本実施形態における撹拌動力およびパス数は、それぞれ単体の値とする。
 α-オレフィンの製造において、触媒を失活するための混合機としてラインミキサーを用いることで、高速で塩基と触媒とを混合することができるため、水分と触媒とが接触することで生じる副反応を抑制することができ、該副反応によって生成する有機ハロゲン化合物の生成を抑制することができるものと考えられる。
 更に本発明においては、ラインミキサーを使用する際の動力のみならずせん断回数を調節することで、流体を連続的に通過させながら反応をコントロールすることができるものと考えられる。このように、触媒を失活するための混合機としてラインミキサーを用い、更に撹拌動力とパス数を前記範囲にすることで、連続的かつ十分に触媒を失活し、有機ハロゲン化合物の生成を抑制しつつ、効率的にα-オレフィンの製造を製造することができるものと考えられる。
 本工程では、前記反応混合物と塩基とをラインミキサー内に連続的に導入して混合するが、ラインミキサーに導入する前にこれらを接触させる。すなわち、本製造方法では、好ましくは前記反応混合物と塩基とをラインミキサー内に連続的に導入する前に、前記反応混合物と前記塩基とを接触させる工程を含む。
 更に前記反応混合物と前記塩基とが接触する合流点からラインミキサー入口までの距離が1m以下であることが好ましい。
 以下に図1によって具体的に説明する。
 図1において、反応混合物と塩基は、合流点6で接触し、ラインミキサー入口7を通過して、ラインミキサー5内に導入される。ここで、前記反応混合物と前記塩基とが接触する合流点6からラインミキサー入口7までの距離が1m以下であることが好ましく、50cm以下であることがより好ましく、20cm以下であることが更に好ましい。反応混合物と塩基が接触する合流点からラインミキサー入口までの距離が前記範囲であると、塩基と反応混合物との混合が速やかに行われ反応混合物中の触媒を失活することができるため、塩基に含まれ得る水分と触媒とが接触することで生じる副反応を抑制することができ、該副反応によって生成する有機ハロゲン化合物の副生を抑制することができる。
 ラインミキサー5内で混合された混合物は、ラインミキサーから排出された後に、脱灰機8に送られ脱灰工程に供される。
 本工程における塩基としては、アンモニア、アミン類、アルカリ金属の水酸化物からなる群より選択される少なくとも1つであることが好ましく、アンモニア及びアミン類からなる群より選択される少なくとも1つであることがより好ましく、アンモニアが更に好ましい。
 アミン類としては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、オクチルアミン、デシルアミン、アニリン、ベンジルアミン、ナフチルアミン、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジフェニルアミン、メチルフェニルアミン、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリフェニルアミン、ピリジン、および、ピコリン等が挙げられる。
 アルカリ金属の水酸化物としては、水酸化ナトリウム及び水酸化カリウム等が挙げられる。
 アンモニア及びアミン類は有機相へ溶解しやすく、触媒とすばやく接触して失活させることができる。なかでも、アンモニアは分子量が小さいため、少量で効率的に失活を行うことができる。
 また、アンモニア又はアミン類と、アルカリ金属の水酸化物を併用することが更に好ましい。アルカリ金属の水酸化物は強塩基であり、水相のpHをより高くする効果があるため、触媒の失活によって生じるアルミニウム塩を水相に溶解しやすくする効果がある。
 塩基の使用量は触媒に含まれるハロゲンの含有量に対し、30モル倍以上であることが好ましく、50モル倍以上であることがより好ましい。上限に制限はないが、150モル倍以下であることが好ましい。
 これら塩基は水溶液として用いることが好ましい。水溶液の塩基濃度は1~30質量%であることが好ましく、10~30質量%がより好ましい。水溶液の濃度が前記範囲であると、有機ハロゲン化合物の副生をより低減させることができる。
 ラインミキサーにおいて反応混合物と塩基とを混合する際における、反応混合物に含まれる溶媒と塩基を含む水溶液の混合比[溶媒:塩基を含む水溶液]は、1:10~100:1(質量比)であることが好ましく、1:1~100:1(質量比)がより好ましく、5:1~20:1(質量比)がより好ましい。
 混合時の温度(ラインミキサー内の液の温度)は、好ましくは90~150℃であり、より好ましくは100~130℃である。
 また、混合時の圧力は、ラインミキサーで気体が発生しない圧力とするのが好ましい。混合時の圧力は、好ましくは0.5~2.0MPa(G)であり、より好ましくは0.9~1.5MPa(G)である。
[工程3及び工程4]
 本発明の製造方法は、工程2の後に、失活した触媒を除去する脱灰工程3、及びα-オレフィンを回収する蒸留工程4を更に含むことが好ましい。
 以下に図1によって具体的に説明する。
 工程2で混合された混合物は、ラインミキサー5から排出された後に、脱灰機8に送られ脱灰工程に供される。脱灰工程では、前記混合物に水9を添加し撹拌することで、失活した触媒を水中に溶解させ、混合物から触媒を除去する。その後、油水分離槽10において失活した触媒を含む水を分離し、失活した触媒を含む水を排水11として系外に廃棄する。
 脱灰工程において添加する水の量は、好ましくは油相(前記混合物)の1/10~1/3(質量比)である。
 撹拌時の温度は、好ましくは90℃~150℃である。
 脱灰工程を経た混合物は、蒸留系に送られ蒸留工程4に供される。蒸留系では、混合物が有機溶媒を含む場合は溶媒が除去され、目的物であるα-オレフィンが回収される。
 図1に、蒸留塔の一例を示す。脱灰工程を経た混合物は、蒸留塔12に導入され、塔頂からは、低分子量のα-オレフィンを主成分とする液13が得られ、塔底からは、高分子量のα-オレフィンと溶媒を主成分とする液14が得られる。それぞれの液は、必要に応じ、分留することで、用途に適した炭素数(重合度)のα-オレフィンを得ることができる。
 得られるα-オレフィンのハロゲン含有量は、好ましくは2質量ppm以下であり、より好ましくは1質量ppm以下であり、更に好ましくは0.5質量ppm以下である。ハロゲン含有量が2質量ppm以下であると、α-オレフィンを各種ポリオレフィンのモノマーまたはコモノマーとして使用する場合において、α-オレフィンを他の原料と反応させる際、その反応に用いる触媒への悪影響がなくなるため好ましい。
 なお、α-オレフィンのハロゲン含有量は、α-オレフィンに含まれる有機ハロゲン化合物の量を反映し、α-オレフィンのハロゲン含有量が少ない場合、α-オレフィンに含まれる有機ハロゲン化合物の量も少ないといえる。
 以下、本発明を実施例により更に詳しく説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
実施例1
[触媒の調製]
 以下の手順で触媒の調製を行った。内容積6.5mの撹拌槽に、窒素雰囲気下で、乾燥シクロヘキサンを導入した。次に、トリエチルアルミニウム[(CAl]を導入した。更に無水四塩化ジルコニウム[ZrCl]を導入した。次にエチルアルミニウムセスキクロライド[(CAlCl]を導入した。
 なお、前記原料および溶媒の量は次のように無水四塩化ジルコニウムを基準として導入した。トリエチルアルミニウムとエチルアルミニウムセスキクロライドは、(CAlCl/(CAl=3.5(モル比)、および[(CAlCl+(CAl]/ZrCl=7(モル比)となるように導入し、シクロヘキサンは、無水四塩化ジルコニウムの濃度が、シクロヘキサン1Lに対し、80ミリモルとなるように導入した。
 全て加え終わったら窒素雰囲気下で70℃、2時間加熱、撹拌し、錯体を形成させ触媒液を調製した。
[工程1:重合反応]
 反応は完全混合槽タイプの反応器(内容積:約20m)(図1:反応器1)を用いて連続的に行った。反応溶媒(シクロヘキサン)を30トン/時の速度でフィードし、触媒液は、25kg/時の速度でフィードした。平均滞留時間は溶媒基準で約45分とした。反応は130℃、70kg/cm・G(6.9MPa)で行い、70rpmの撹拌回転数とした。また、高純度のエチレンガスを反応圧力70kg/cm・Gに維持するように連続的に供給した。
 重合反応で得られた重合反応生成物(α-オレフィン)を含む反応生成液をフラッシャー(図1:フラッシャー15)に導入し、気液分離を行い、未反応エチレンを含む気体成分と、反応生成物を含む液体成分である反応混合物とを得た。該反応混合物を工程2に用いた。
[工程2:失活工程]
 工程1において得られた反応混合物と、20質量%濃度のアンモニア水を、反応混合物に含まれる反応溶媒:アンモニア水=10:1の質量比となるように連続的にラインミキサー(商品名:パイプラインホモミクサー、プライミクス株式会社製)(図1:ラインミキサー5)に供給し、撹拌動力201kW・秒/m、パス数6.9、温度110℃の条件で触媒の失活処理を行った。なお、前記反応混合物と前記アンモニア水が接触して、ラインミキサー内に導入されるまでの配管内の流速は約1.2m/秒であり、ラインミキサー内に導入されるまでの距離(図1における合流点6からラインミキサー入口7までの距離)は15cmであった。
[工程3:脱灰工程]
 前記ラインミキサーから排出された混合液を脱灰機(オリフィスミキサー)(図1:脱灰機8)に、反応溶媒:水=3:1の質量比となるように水を加え、110℃で脱灰を行った。得られた混合液を油水分離槽(図1:油水分離槽10)に送り、油相を蒸留系に送った。
[工程4:蒸留工程]
 蒸留装置(図1:蒸留塔12など)において、適宜蒸留条件を調節することによって、炭素数4から炭素数24までの各α-オレフィンを回収した。
 得られた各α-オレフィンのハロゲンの平均含有量は0.5質量ppm以下であった。
実施例2
 撹拌動力を141kW・秒/m、パス数を6.1とする以外は実施例1と同様に、各種炭素数のα-オレフィンを製造した。得られた各α-オレフィンのハロゲンの平均含有量は0.5質量ppm以下であった。
比較例1
 撹拌動力を46kW・秒/m、パス数を4.2とする以外は実施例1と同様に、各種炭素数のα-オレフィンを製造する。反応混合物と塩基との混合が十分でないため、得られる各α-オレフィンのハロゲンの平均含有量は3質量ppm以上になる。
比較例2
 撹拌動力を3kW・秒/m、パス数を1.7とする以外は実施例1と同様に、各種炭素数のα-オレフィンを製造する。反応混合物と塩基との混合が十分でないため、得られる各α-オレフィンのハロゲンの平均含有量は3質量ppm以上になる。
1:反応器
2:制御弁
3:失活剤槽(アンモニア水槽)
4:ポンプ
5:ラインミキサー
6:合流点
7:ラインミキサー入口
8:脱灰機
10:油水分離槽
12:蒸留塔
15:フラッシャー

Claims (5)

  1.  エチレン及び触媒を反応器内に連続的に導入し、重合反応して反応混合物を得る工程1、および、
     前記反応混合物と塩基とをラインミキサー内に連続的に導入して混合する工程2を含み、
     前記ラインミキサーにおける撹拌動力が30~1000kW・秒/mであり、パス数が5~50である、α-オレフィンの製造方法。
  2.  前記反応混合物と塩基とをラインミキサー内に連続的に導入する前に、前記反応混合物と前記塩基とを接触させる工程を含み、前記反応混合物と前記塩基とが接触する合流点からラインミキサー入口までの距離が1m以下である、請求項1に記載のα-オレフィンの製造方法。
  3.  前記触媒がチーグラー系触媒である、請求項1又は2に記載のα-オレフィンの製造方法。
  4.  前記塩基がアンモニアである、請求項1~3のいずれか1つに記載のα-オレフィンの製造方法。
  5.  工程2の後に、失活した触媒を除去する脱灰工程3、及びα-オレフィンを回収する蒸留工程4を更に含む、請求項1~4のいずれか1つに記載のα-オレフィンの製造方法。
PCT/JP2022/019509 2021-06-03 2022-05-02 α-オレフィンの製造方法 WO2022255024A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280039305.6A CN117412941A (zh) 2021-06-03 2022-05-02 α-烯烃的制造方法
JP2023525673A JPWO2022255024A1 (ja) 2021-06-03 2022-05-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021093786 2021-06-03
JP2021-093786 2021-06-03

Publications (1)

Publication Number Publication Date
WO2022255024A1 true WO2022255024A1 (ja) 2022-12-08

Family

ID=84324204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019509 WO2022255024A1 (ja) 2021-06-03 2022-05-02 α-オレフィンの製造方法

Country Status (3)

Country Link
JP (1) JPWO2022255024A1 (ja)
CN (1) CN117412941A (ja)
WO (1) WO2022255024A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220135A (ja) * 1990-01-24 1991-09-27 Idemitsu Petrochem Co Ltd α―オレフィンの製造方法
JPH107593A (ja) * 1996-06-17 1998-01-13 Tosoh Corp 1−ヘキセンの製造方法
WO2002051777A1 (fr) * 2000-12-26 2002-07-04 Idemitsu Petrochemical Co., Ltd. Procédé de préparation d'un polymère inférieur d'éthylène
WO2002068365A1 (en) * 2001-02-23 2002-09-06 Idemitsu Petrochemical Co., Ltd. PROCESS FOR PRODUCING LOW POLYMER OF α-OLEFIN
WO2018092803A1 (ja) * 2016-11-18 2018-05-24 出光興産株式会社 α-オレフィン低重合体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220135A (ja) * 1990-01-24 1991-09-27 Idemitsu Petrochem Co Ltd α―オレフィンの製造方法
JPH107593A (ja) * 1996-06-17 1998-01-13 Tosoh Corp 1−ヘキセンの製造方法
WO2002051777A1 (fr) * 2000-12-26 2002-07-04 Idemitsu Petrochemical Co., Ltd. Procédé de préparation d'un polymère inférieur d'éthylène
WO2002068365A1 (en) * 2001-02-23 2002-09-06 Idemitsu Petrochemical Co., Ltd. PROCESS FOR PRODUCING LOW POLYMER OF α-OLEFIN
WO2018092803A1 (ja) * 2016-11-18 2018-05-24 出光興産株式会社 α-オレフィン低重合体の製造方法

Also Published As

Publication number Publication date
CN117412941A (zh) 2024-01-16
JPWO2022255024A1 (ja) 2022-12-08

Similar Documents

Publication Publication Date Title
US10975001B2 (en) Method for producing alpha-olefin oligomer
US6576721B2 (en) Process for producing low polymer of ethylene
JP4870269B2 (ja) α−オレフィン低重合体の製造方法
JP5022546B2 (ja) α−オレフィン低重合体の製造方法
WO2020171730A1 (en) A method for separating olefin oligomerization products (variants)
WO2022255024A1 (ja) α-オレフィンの製造方法
CA2036473C (en) Process of producing linear .alpha.-olefins
NO119278B (ja)
WO2022264852A1 (ja) α-オレフィンの製造方法
JPH01161002A (ja) α−オレフィンの製造方法
JPH0717529B2 (ja) α―オレフィンの製造方法
NO162520B (no) Kontinuerlig fremgte for fremstilling av homo- eller kopolymerer av etylen.
JP4681773B2 (ja) エチレン低重合体の製造方法
JPH0853374A (ja) 線状α−オレフィンの製造方法
BR112021015069B1 (pt) Método para separar produtos de oligomerização de olefinas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815779

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525673

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18562433

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280039305.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815779

Country of ref document: EP

Kind code of ref document: A1