WO2022253241A1 - 换热组件、散热结构及电机控制器 - Google Patents

换热组件、散热结构及电机控制器 Download PDF

Info

Publication number
WO2022253241A1
WO2022253241A1 PCT/CN2022/096362 CN2022096362W WO2022253241A1 WO 2022253241 A1 WO2022253241 A1 WO 2022253241A1 CN 2022096362 W CN2022096362 W CN 2022096362W WO 2022253241 A1 WO2022253241 A1 WO 2022253241A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat sink
holes
heat dissipation
hole
Prior art date
Application number
PCT/CN2022/096362
Other languages
English (en)
French (fr)
Inventor
邵兆军
顾以进
王帮伟
Original Assignee
苏州汇川联合动力系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州汇川联合动力系统有限公司 filed Critical 苏州汇川联合动力系统有限公司
Publication of WO2022253241A1 publication Critical patent/WO2022253241A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure

Definitions

  • the present application relates to the technical field of semiconductor heat dissipation, in particular to a heat exchange component, a heat dissipation structure and a motor controller.
  • chip modules of electric vehicle controllers such as IGBT (Insulated Gate Bipolar Transisto, Insulated Gate Bipolar Transistor)
  • IGBT Insulated Gate Bipolar Transisto, Insulated Gate Bipolar Transistor
  • the cold plate of the module has a variety of structural forms, such as flat plate, hobbing, forged Pinfin (nail) and so on.
  • the gaps between the fins of the above cold plate structures are relatively large, and the fins are relatively independent.
  • the flow of coolant is carried out in the same plane, the effect of convective heat transfer is general, and the technical problem of heat dissipation is poor.
  • the main purpose of this application is to propose a heat exchange component, aiming to enhance the convective heat transfer effect of the cooling liquid in the heat exchange component, so as to improve the heat exchange efficiency.
  • the heat exchange assembly proposed by the present application includes at least two layers of stacked cooling fins, the cooling fins have a plurality of through holes arranged at intervals, and one side of a layer of cooling fins is formed with a cooling liquid inlet. The other side of the adjacent heat sink is formed with a liquid outlet for cooling liquid;
  • the orthographic projections of the two through holes located at the relative positions of the two adjacent layers of heat sinks on the plane where the heat sinks are located are intersected to form a flow channel for the cooling liquid to circulate from the liquid inlet to the liquid outlet .
  • the projections of the two through holes at opposite positions on the heat sinks of two adjacent layers on the substrate are connected end to end.
  • two adjacent layers of heat sinks are attached to each other.
  • the through hole is a strip-shaped hole; define the direction of the heat exchange component from the side where the liquid inlet is set to the side where the liquid outlet is set as the first direction, The extending direction of the through hole is inclined relative to the first direction.
  • the through hole is a strip-shaped hole; define the direction of the heat exchange component from the side where the liquid inlet is set to the side where the liquid outlet is set as the first direction, wherein, the extending direction of the through holes on one heat sink is parallel to the first direction, and the extending direction of the through holes on the other adjacent heat sink is perpendicular to the first direction.
  • the two adjacent layers of heat sinks have the same shape and are arranged in a staggered stack; the stagger angle of the two adjacent layers of heat sinks is 180°.
  • the heat exchanging component includes the heat dissipation fins stacked in multiple layers, and it is defined that two adjacent layers of heat dissipation fins are respectively the first heat dissipation fin and the second heat dissipation fin, and the first heat dissipation fin
  • the orthographic projection of the through hole on the sheet on the plane where the second heat sink is located crosses the through hole at the opposite position on the second heat sink;
  • the sheet is the fourth heat sink
  • the orthographic projection of the through hole on the third heat sink on the plane where the first heat sink is located coincides with the through hole at the opposite position on the first heat sink, and/or, the fourth heat sink
  • the orthographic projection of the through hole on the sheet on the plane where the second heat sink is located coincides with the through hole at the opposite position on the second heat sink.
  • the present application further provides a heat dissipation structure, including a substrate and the above-mentioned heat exchanging component, and the heat exchanging component is arranged on the substrate.
  • the substrate includes a multi-layer stacked substrate layer, and at least part of the substrate layer has a plurality of heat dissipation holes; at least one of the heat dissipation holes communicates with at least one of the through holes.
  • the heat dissipation holes of the substrate layers of two adjacent layers are arranged alternately, and at least partially overlap to form flow channels.
  • a groove is provided on the surface of the substrate, and the heat exchange component is installed in the groove.
  • the present application also provides a motor controller, including a power module and the above-mentioned heat dissipation structure; The side of the substrate away from the heat exchange assembly is fixedly connected to the power module.
  • the heat exchange component includes at least two layers of heat sinks stacked, and the heat exchange area is increased by forming a plurality of spaced through holes on the heat sink;
  • the orthographic projection of the two through holes on the heat sink is set as a cross structure, so that the two through holes on the adjacent two layers of heat sink can communicate, forming a flow channel for the cooling liquid from the liquid inlet to the liquid outlet, so that when When the coolant is injected into the heat exchange component, the coolant can flow horizontally and vertically on the two adjacent heat sinks at the same time, which increases the flow direction and flow range of the coolant, and improves the heat exchange efficiency and heat dissipation of the heat exchange component efficiency.
  • Fig. 1 is a schematic structural diagram of an embodiment of a motor controller of the present application
  • Fig. 2 is a schematic diagram of an explosion structure of an embodiment of the motor controller of the present application
  • Fig. 3 is a structural schematic diagram of the coolant flow channel in the heat dissipation structure embodiment of the present application.
  • Fig. 4 is another structural schematic diagram of the coolant flow channel in the heat dissipation structure embodiment of the present application.
  • FIG. 5 is a structural schematic diagram of an embodiment of the heat dissipation structure of the present application.
  • FIG. 6 is a schematic diagram of an explosion structure of an embodiment of a heat dissipation structure of the present application.
  • FIG. 7 is a schematic structural diagram of another embodiment of the motor controller of the present application.
  • FIG. 8 is a schematic diagram of a heat exchanger and a substrate with grooves in the heat dissipation structure of the present application.
  • the directional indications are only used to explain the position in a certain posture (as shown in the attached figure). If the specific posture changes, the directional indication will also change accordingly.
  • This application proposes a heat exchange component, aiming at improving the structure of the heat exchange component using coolant for heat exchange, enhancing the turbulence effect when the coolant circulates in it, so as to further improve the overall heat exchange effect and heat dissipation of the heat exchange component Effect.
  • the heat exchange assembly proposed in this application can be applied to any occasion that requires the use of coolant flow to exchange heat and dissipate heat, and is not limited to a specific heat dissipation occasion, nor is it limited to a heat exchange assembly with a specific shape and structure .
  • the heat exchange assembly 200 includes at least two layers of heat sinks 210 stacked on each other.
  • a plurality of spaced through holes 201 are formed on the heat sinks 210 .
  • a cooling liquid inlet 210a is formed on one side of the cooling fin 210, and a cooling liquid outlet 210b is formed on the other side of the adjacent heat sink 210;
  • the projections of the two through holes 201 on the heat sink 210 at the opposite positions of two adjacent layers of the heat sink 210 are arranged to cross, so as to form a flow channel for the cooling liquid from the liquid inlet 210a to the liquid outlet 210b.
  • the heat exchange component 200 can be directly installed on a certain installation platform, for example, installed on a heat generating device (such as a power module), or indirectly installed on a heat generating device through the substrate 100, so as to exchange heat with the heat generating device to realize Heat exchange and heat dissipation functions of heating devices.
  • the heat exchanging assembly 200 includes at least two layers of stacked heat sinks 210, and each heat sink 210 is formed with a plurality of spaced through holes 201, the multiple through holes 201 play a role in increasing the heat exchange area, and also increase the The path of longitudinal conduction of heat is enlarged, and the heat dissipation efficiency of heat-generating devices is accelerated.
  • the orthographic projections of the two through holes 201 on the heat sink 210 at the opposite positions of the adjacent two layers of heat sinks 210 are intersected, and the two through holes at the opposite positions on the adjacent two layers of heat sinks 210 201 communicate with each other, so that in the stacking direction of the two heat sinks 210, heat can be transferred from the through hole 201 of one heat sink 210 to the through hole 201 of the other heat sink 210, further increasing the efficiency of heat transfer. path.
  • the through-holes 201 on two adjacent layers of cooling fins 210 are intersected.
  • the through-holes 201 communicating with each other form a channel for the cooling liquid to flow from the inlet 210a to the outlet.
  • the flow channel of the liquid port 210b enables the cooling liquid to flow longitudinally from one cooling fin 210 to the other cooling fin 210, and also to flow laterally on the same cooling fin 210, which increases the flow direction of the cooling liquid and improves the heat exchange efficiency .
  • the heat dissipation column in the prior art can conduct the temperature of the heat-generating device to the heat exchange component, the temperature along the length direction of the heat dissipation column is not uniform when conducting heat, and there are gaps between different heat dissipation columns.
  • the body of the heat dissipation column The temperature with the outer periphery is also uneven, resulting in uneven heat transfer when the coolant flows through the heat dissipation column.
  • this application improves the heat dissipation column into a heat sink and uses surface contact for heat conduction, which greatly enhances the heat transfer performance of the heat exchange component. Make the heat dissipate quickly on the heat sink.
  • the cooling fins are arranged in a stacked manner, the distance between different cooling fins and the heat source is different.
  • By intersecting the through holes on two adjacent layers of cooling fins it is possible to ensure that the cooling liquid can be exchanged between different cooling fins.
  • the heat can also flow laterally on the same heat sink.
  • the three-dimensional flow path of the coolant makes the temperature uniformity of the heat exchange components better.
  • a plurality of through holes 201 arranged at intervals are formed on the heat sink 210.
  • the arrangement and shape of the plurality of through holes 210 can be determined according to the actual situation.
  • the plurality of through holes 210 can be distributed in a regular array, or May be irregularly scattered.
  • the cross-sectional shape of the through hole 201 may be circular, triangular, square or other irregular shapes.
  • the two through-holes 201 at opposite positions on adjacent two heat sinks 210 are intersected. It can be understood that a through-hole 201 on one heat sink 210 is in cross-communication with a through-hole 201 on another heat sink 210, that is, two adjacent layers
  • the through-holes 201 on the cooling fins 210 correspond one by one. This way has a stronger diversion effect on the cooling liquid, reduces the flow resistance of the cooling liquid, and reduces energy loss. It can also be understood that a through hole 201 on one heat sink 210 communicates with two or more through holes 201 on another heat sink 210 at the same time. For the multi-corresponding mode, in this mode, the flow path of the cooling liquid is increased, a strong turbulence effect is produced on the cooling liquid, the contact time between the cooling liquid and the cooling fin 210 is prolonged, and the heat exchange efficiency is improved.
  • the way of passing cooling liquid to the heat exchange assembly 200 can be determined according to the actual situation, such as entering the liquid from one side of the heat exchange assembly 200 and discharging the liquid from the other side; or from the heat exchange assembly 200 The liquid enters and exits from the same side; or the heat exchange assembly 200 can be placed directly in a liquid tank with flowing cooling liquid.
  • the cooling liquid flows from one side of the heat exchange assembly 200 to the other side, the side of the cooling fin 210 facing the liquid inlet and the liquid outlet is provided with a through hole 201 penetrating the side of the cooling fin 210, so that the cooling liquid flows from one side to the other side.
  • the through hole 201 (corresponding to the liquid inlet 210a) enters and flows out from the other side of the through hole 201 (corresponding to the liquid outlet 210b).
  • the through hole 201 inside the heat exchange component 200 forms a cooling liquid flow channel
  • the coolant can flow horizontally and vertically inside the heat exchange assembly 200 at the same time, ensuring the flow area and improving the heat dissipation effect.
  • the cooling fin 210 is provided with at least two through holes 201 penetrating the side of the cooling fin 210 towards the liquid inlet side, so as to allow the cooling liquid to enter and flow out respectively.
  • the internal through hole 201 forms the flow channel of the cooling liquid.
  • the cooling fins 210 are immersed in the cooling liquid, and the through holes 201 can be arranged on the side or top surface of the cooling fins 210, as long as the through holes inside the heat exchanging assembly 200 are ensured 201 only needs to be able to form a cooling liquid flow channel.
  • the stacking method between two adjacent layers of cooling fins 210 may be adhering to each other or stacking at intervals.
  • the through hole 201 on one heat sink 210 and the plate surface of the other heat sink 210 enclose to form a coolant flow channel extending parallel to the plate surface of the heat sink 210, that is, in this way, the coolant In the heat exchange component 200, the flow flows in the through hole 201, and the through hole 201 can play a role of guiding flow; when stacked at intervals, an intermediate flow channel for the cooling liquid to flow is formed between two adjacent layers of cooling fins 210, at this time
  • the through holes 201 located on the two layers of heat sinks 210 can both communicate with the middle channel, and the through holes 201 can be used to divert the cooling liquid from one middle flow channel to the other, and at the same time, the original flow direction of the cooling liquid can be changed. , played the role of turbulence on the coolant.
  • the heat sink 210 can be made of a metal material with strong thermal conductivity, such as copper, aluminum and the like.
  • the through hole 201 on the heat sink 210 can be formed by a stamping process.
  • the heat exchange component 200 includes at least two layers of stacked heat sinks 210, and by forming a plurality of spaced through holes 201 on the heat sinks 210, the heat exchange area is increased;
  • the orthographic projection of the two through holes 201 at the relative positions of the heat sink 210 on the heat sink 210 is arranged as a cross structure, so that the two through holes 201 on the adjacent two layers of heat sink 210 are cross-connected, forming a channel for the cooling liquid to enter from the liquid.
  • the specific flow direction and flow range enhance the turbulence effect of the coolant, thereby improving the heat exchange efficiency and heat dissipation efficiency.
  • the two through holes 201 opposite to each other on the heat sink 210 of two adjacent layers are on the plane where a heat sink 210 is located
  • the orthographic projections of are connected end to end.
  • the vertical Flowing into the through hole 201 of another heat sink 210 prolongs the circulation path of the cooling liquid, and further prolongs the residence time of the cooling liquid in the heat exchange component 200 to achieve the purpose of sufficient heat exchange.
  • the multiple through holes 201 on the heat sink 210 of two adjacent layers are connected end to end, which can be understood as the through holes of the heat sink 210 on the upper layer.
  • the tail end of 201 communicates with the head end of the through hole 201 corresponding to the lower heat sink 210, and the tail end of the through hole 201 of the lower heat sink 210 communicates with the head end of another through hole 201 on the upper heat sink 210.
  • the tail end of the through hole 201 of the lower heat sink 210 can also communicate with the head end of the through hole 201 on the lower heat sink 210, and so on, so that the coolant can be exchanged
  • the horizontal and vertical flow in the thermal component 200 is sufficient, which improves the convective heat transfer effect of the cooling liquid.
  • the plurality of through holes 201 on the heat sink 210 on two adjacent layers when the plurality of through holes 201 on the heat sink 210 on two adjacent layers is projected on the plane where the heat sink 210 is located, the plurality of through holes 201 can form a cooling liquid flow channel connected end to end, such as a zigzag , timing diagram, wave shape or linear shape.
  • a cooling liquid flow channel connected end to end such as a zigzag , timing diagram, wave shape or linear shape.
  • the plurality of through holes 201 on the heat sinks 210 on two adjacent layers are projected toward a plane perpendicular to the heat sinks 210 , they can also form end-to-end cooling liquid flow channels.
  • cooling fins 210 are attached to each other.
  • two adjacent layers of cooling fins 210 are attached together, and the through hole 201 on one cooling fin 210 is surrounded by the plate surface of the other cooling fin 210 to form a flow channel for cooling liquid, which is located in the flow channel
  • the coolant can absorb the heat on the heat sink 210 through the plate surface of the heat sink 210 and the wall of the through hole 201 .
  • At least one through hole 201 is pierced through the side of a cooling fin 210 to form a liquid inlet 210a for cooling liquid
  • at least another through hole 201 is pierced through the side of another heat sink 210 to form a liquid outlet 210b
  • the ports 210b are respectively provided on opposite sides of the heat exchange assembly 200.
  • the cooling liquid enters the interior of the heat exchange assembly 200 from one side of a cooling fin 210, and flows out of the heat exchange assembly 200 from the other side of the other cooling fin 210. , so that the cooling liquid flows out from the other side after circulating in the multi-layer heat sink 210 , ensuring the length and time of the cooling liquid circulating inside the heat exchange assembly 200 .
  • a plurality of through-holes 201 in the heat sinks 210 of two adjacent layers are connected end to end, then when the cooling liquid is passed into the liquid inlet 210a of a heat sink 210, the cooling liquid will first flow through the cooling fins 210. After the through-holes 201 on the side of the heat sink 210 circulate horizontally, they enter into the through-holes 201 of the adjacent heat sink 210 vertically, then flow horizontally to the tail end of the through-hole 201, and then flow longitudinally to the heat sink 210 on the previous layer.
  • the heat exchange assembly 200 includes multi-layer stacked cooling fins 210. In order to ensure the residence time and heat exchange area of the cooling liquid in the heat exchange assembly 200, it can be installed on one side of the uppermost cooling fin 210.
  • the liquid inlet 210a is provided with a liquid outlet 210b on the other side of the lowermost heat sink 210 to achieve the purpose of extending the cooling liquid path.
  • the liquid inlet 210a and the liquid outlet 210b can also be respectively provided on the adjacent two layers of cooling fins 210, that is, the liquid inlet 210a and the liquid outlet 210b are arranged alternately.
  • the heat exchange assembly 200 has multiple liquid inlets 210a to simultaneously introduce cooling liquid, and multiple liquid outlets 210b to flow out simultaneously, which increases the flow rate of the cooling liquid and reduces the flow resistance of the cooling liquid.
  • the through hole 201 is a strip-shaped hole; the direction from the side where the liquid inlet 210a is set toward the side where the liquid outlet 210b is set for the heat exchange assembly 200 is defined as the second One direction (see FIG. 3 ), the extending direction of the through hole 201 (see FIG. 3 ) is set obliquely relative to the first direction, wherein the extending direction of the through hole 201 refers to the length direction of the through hole 201 on the plane where the heat sink 210 is located ( See Figure 3).
  • the extension direction of the obliquely arranged through holes 201 forms an included angle with the first direction, which is defined as the inclination angle A, and the inclination angle affects the change of the flow direction of the cooling liquid in two adjacent through holes 210, and the inclination
  • the angle should not be too large or too small. If it is too large, the cooling liquid will have a larger reversing range, which will easily cause greater resistance; Small.
  • the inclination angle of the through hole 210 relative to the first direction may be 15°-75°, such as 15°, 30°, 45°, 60°, 75° and so on.
  • the liquid inlet 210a and the liquid outlet 210b are respectively located on both sides of the heat exchange assembly 200, and the direction from the liquid inlet 210a toward the liquid outlet 210b is defined as the first direction, and the extending direction of the through hole 201 is the same as the second direction. If one direction is inclined, the flow direction of the cooling liquid in the through hole 210 is inclined relative to the first direction, which increases the flow length of the cooling liquid.
  • the flow direction of the cooling liquid in the two connected through holes 201 is different.
  • the direction in which the liquid inlet 210a flows to the liquid outlet 210b, the flow path of the cooling liquid is in a zigzag shape, and the flow direction of the cooling liquid is changed several times to achieve turbulence and enhance the effect of the turbulent flow of the cooling liquid.
  • a plurality of through holes 201 located on the same heat sink 210 are distributed in an array.
  • the array distribution of the plurality of through holes 201 may be a circular array or a rectangular array.
  • two adjacent layers of heat sinks 210 have the same shape and are stacked alternately; the staggered angle of two adjacent layers of heat sinks 210 is 180°.
  • the multilayer cooling fins 210 in the heat exchange assembly 200 have the same shape, and a plurality of spaced through holes 201 are opened on the cooling fins 210, and the cooling fins 210 of two adjacent layers are staggered to ensure that the corresponding positions
  • the two through-holes 201 are arranged crosswise to partially overlap each other to form interconnected coolant channels.
  • the multi-layer heat sink 210 adopts the same structure, which reduces the manufacturing difficulty and cost, and only needs to design a set of molds for common use, and it is also easy to replace.
  • the stacking fixing method of the multi-layer cooling fins 210 may be welding, welding and other fixed connection methods.
  • the through hole 201 is a strip-shaped hole; define the direction of the heat exchange assembly 200 from the side where the liquid inlet 210a is set toward the side where the liquid outlet 210b is set as the first direction, wherein, the extending direction of the through hole 201 on one heat sink 210 is parallel to the first direction, and the extending direction of the through hole 201 on the other adjacent heat sink 210 is perpendicular to the first direction.
  • the structures of the two adjacent heat sinks 210 are different, and the arrangement of the through holes 201 thereon is also different.
  • a plurality of through-holes 201 on one heat sink 210 are arranged in parallel and at intervals along the first direction, and a plurality of through-holes 201 on the other heat sink 210 are arranged along a direction perpendicular to the first direction, and the plurality of two-layer heat sinks 210
  • the through holes 201 are connected end to end, and the extension direction of the two connected through holes 201 is vertical, and the formed cooling liquid channel is projected in the shape of a timing diagram on the substrate 100 to increase the convective heat transfer effect of the cooling liquid.
  • the heat exchange assembly 200 includes multi-layer stacked cooling fins 210, and it is defined that the adjacent two layers of cooling fins 210 are respectively the first cooling fin and the second cooling fin, and the through holes on the first cooling fin
  • the orthographic projection of the hole 201 on the plane where the second heat sink is located crosses the through hole 201 at the opposite position on the second heat sink;
  • the heat sink adjacent to the side away from the second heat sink from the first heat sink is the third heat sink, and the heat sink adjacent to the side away from the first heat sink from the second heat sink is the fourth heat sink;
  • the orthographic projection of the through hole 201 on the third heat sink on the plane where the first heat sink is located coincides with the through hole 201 at the opposite position on the first heat sink, and/or, the through hole 201 on the fourth heat sink is on the second heat sink.
  • the orthographic projection of the plane coincides with the through hole 201 at the opposite position on the second heat sink.
  • the heat exchange assembly 200 includes multi-layer stacked heat sinks 210, wherein at least two adjacent layers of heat sinks 210 (the first heat sink and the second heat sink) have through-holes 201 in opposite positions that cross each other. If set, the two through holes 201 at the relative positions of the first heat sink and the second heat sink communicate with each other, so that heat can be transferred from the through hole 201 of the first heat sink to the through hole 201 of the second heat sink, Further increases the path of heat transfer.
  • the structure of the third heat sink adjacent to the other side of the first heat sink can be the same as that of the first heat sink, that is, the through holes 201 on the third heat sink are the same as those on the first heat sink.
  • the orthographic projections of the through holes 201 overlap, which increases the longitudinal flow efficiency of the cooling liquid;
  • the structure of the third heat sink can also be the same as that of the second heat sink, and now the through holes 201 of the third heat sink are the same as the first
  • the through holes 201 of the cooling fins are arranged crosswise, which ensures the longitudinal and lateral flow of the cooling liquid.
  • the structure of the fourth heat sink adjacent to the other side of the second heat sink can be the same as that of the second heat sink, that is, the orthographic projection of the through hole 201 on the fourth heat sink and the through hole 201 on the second heat sink Overlapped, this time increased the longitudinal flow efficiency of the cooling liquid;
  • the structure of the fourth heat sink can also be identical with the first heat sink, now the through hole 201 of the fourth heat sink is the same as the through hole 201 of the second heat sink.
  • the cross setting ensures the longitudinal and lateral flow of coolant.
  • the present application also proposes a heat dissipation structure.
  • a heat dissipation structure Referring to FIG. 1, FIG. 2 and FIG. All the technical solutions of all the above-mentioned embodiments at least have all the beneficial effects brought by the technical solutions of the above-mentioned embodiments, and will not be repeated here.
  • the heat exchange component 200 is disposed on the substrate 100 .
  • the base plate 100 serves to provide a platform for installing the heat exchange component 200, which is used to install the heat exchange component 200 on a heat generating device (such as a power module), and transfer the temperature of the heat generating device to the base plate 100, the heat exchange component 200, and heat generation
  • the device performs contact heat exchange to realize the function of dissipating heat from the heating device.
  • the heat exchanging assembly 200 includes at least two layers of heat sinks 210 stacked.
  • the heat exchange area is increased;
  • the orthographic projection of the two through-holes 201 on the substrate 100 is arranged as a cross structure, so that the two through-holes 201 on two adjacent layers of heat sinks 210 are cross-communicated, forming a channel for cooling liquid from the liquid inlet 210a to the liquid outlet 210b.
  • the circulating flow channel so that when the cooling liquid is passed into the heat exchange assembly 200, the cooling liquid can realize the horizontal and vertical flow on the adjacent two layers of cooling fins 210 at the same time, increasing the flow direction and flow range of the cooling liquid , the turbulence effect of the cooling liquid is enhanced, and the heat exchange efficiency of the heat exchange assembly 200 is improved, so as to improve the heat dissipation efficiency of the heat dissipation structure.
  • the substrate 100 may use copper or aluminum with strong thermal conductivity, so as to speed up the rate of heat transfer from the heat generating device to the heat exchange component 200 .
  • a groove 101 is formed on the surface of the substrate 100 , and the heat exchange component 200 is installed in the groove 101 .
  • the groove 101 plays the role of limiting and fixing the heat exchange assembly 200, which simplifies the installation difficulty of the heat exchange assembly 200 and the substrate 100, and improves the assembly accuracy of the two; on the other hand, reduces the The distance between the heating element and the heat exchange component improves the heat dissipation effect.
  • the substrate 100 includes a multilayer stacked substrate layer 110 , wherein at least part of the substrate layer 110 is formed with a plurality of heat dissipation holes 111 .
  • the remaining substrate layers 110 also have heat dissipation holes 111 to ensure that there is cooling liquid in the heat dissipation holes 111; when the heat dissipation device contacts the substrate layer When there is no heat dissipation hole 111 on 110 , at least some of the other substrate layers 110 have heat dissipation holes 111 , and the heat dissipation holes 111 provided on the rest of the substrate layers 110 are satisfied to have coolant flow.
  • the stacking direction of the multilayer substrate layers 110 is consistent with the stacking direction of at least two layers of heat sinks 210 .
  • the substrate 100 is formed by stacking multiple substrate layers 110 , and a plurality of cooling holes 111 are provided on the substrate layer 110 to increase the heat exchange area and improve the heat exchange efficiency.
  • the substrate layers 110 of two adjacent layers may be arranged in close contact or at intervals, and are fixedly connected by welding.
  • the stacking direction of the multilayer substrate layers 110 is consistent with the stacking direction of the multilayer heat sinks 210 , so that the substrate 100 has a sufficient installation area for installing the heat sinks 210 , ensuring the stability of the overall structure.
  • cooling liquid when cooling liquid is passed through, when the cooling liquid flows through the through holes 201 in the heat sink 210, it will also flow into the heat dissipation holes 111 of the substrate layer 110 to simultaneously absorb the substrate layer 110 and dissipate heat.
  • the heat of the sheet 210 further accelerates the heat dissipation efficiency.
  • the heat dissipation holes 111 of two adjacent substrate layers 110 are arranged alternately, and at least partially overlap to form a flow channel;
  • the coolant channel in the thermal component 200 can be connected, so that the coolant can flow into the cooling holes 111 of the substrate layer 110 for cooling, thereby improving the heat exchange effect.
  • At least one cooling hole 111 communicates with at least one through hole 201 .
  • the two cooling holes 111 at the opposite positions of the two adjacent substrate layers 110 are arranged alternately and overlap at least partially, so that when the cooling liquid is passed through, the cooling liquid can not only flow laterally along the plane of the substrate layer 110 , can also flow longitudinally along the thickness direction of the substrate layer 110 , increasing the flow direction of the cooling liquid, enhancing the turbulence effect of the cooling liquid, and improving the heat exchange efficiency of the cooling liquid in the substrate 100 .
  • the multilayer cooling fins 210 of the heat exchange assembly 200 are formed with cooling liquid channels capable of both horizontal and vertical circulation, and the multilayer substrate layers 110 of the substrate 100 are formed with cooling fluid channels capable of simultaneous horizontal and vertical circulation.
  • the cooling liquid channel enhances the convective heat transfer effect of the cooling liquid through both the heat exchanging component 200 and the substrate 100, further improving the heat exchanging efficiency of the heat dissipation structure.
  • At least one heat dissipation hole 111 on the substrate 100 communicates with at least one through hole 201 of the heat exchange component 200, so that the coolant flow channel inside the substrate 100 communicates with the coolant flow channel inside the heat exchange component 200, enhancing The cooling liquid convection effect between the substrate 100 and the heat exchanging component 200 is improved, the heat exchange in the substrate 100 and the heat exchanging component 200 is more uniform, and the overall reliability of the heat dissipation structure is improved.
  • the present application also proposes a motor controller.
  • the motor controller includes a power module 300 and a heat dissipation structure. All the technical solutions of all the embodiments therefore at least have all the beneficial effects brought by the technical solutions of the above embodiments, and will not be repeated here.
  • the side of the substrate 100 away from the heat exchange assembly 200 is fixedly connected to the power module 300 .
  • the heat dissipation structure is fixedly connected with the power module 300 to form a motor controller with heat dissipation function and improve the performance of the motor controller.
  • the heat dissipation structure includes a substrate 100 and a heat exchange assembly 200 disposed on the substrate 100 , one side of the substrate 100 is fixedly connected to the power module 300 , and the other side is fixedly connected to the heat exchange assembly 200 .
  • the heat exchange assembly 200 when the substrate 100 is a plate-like structure, includes at least two layers of stacked heat sinks 210, and a plurality of through holes 201 arranged at intervals are formed on the heat sinks 210, which are located on adjacent two layers of heat dissipation. Orthographic projections of the two through holes 201 opposite to each other on the substrate 100 are arranged to cross each other, so as to form a flow channel for the cooling liquid to circulate.
  • the coolant When the coolant is passed into the heat exchange assembly 200, the coolant can flow horizontally and vertically on the adjacent two layers of fins 210 at the same time, so that the horizontal and vertical flow inside the heat exchange assembly 200 can be realized, and the cooling liquid can be enhanced.
  • the turbulence effect improves the heat dissipation efficiency of the chip body 300 .
  • the substrate 100 is configured as a multi-layer stacked substrate layer 110, the substrate layer 110 is provided with a plurality of heat dissipation holes 111, and the heat dissipation holes 111 of two adjacent substrate layers 110 are arranged alternately, thus forming a
  • the coolant channel inside the base plate 100 combined with the coolant channel inside the heat exchange component 200 , realizes the double function of enhancing convective heat transfer of the coolant, and further improves the heat dissipation efficiency of the power module 300 .
  • the motor controller with heat dissipation function formed by the power module 300 and the heat dissipation structure can be combined or split according to the type of the motor controller and the module.
  • the power module 300 is an IGBT (Insulated Gate Bipolar Transisto, insulated gate bipolar transistor) module
  • the overall power module with heat dissipation structure can be applied to the motor controller to enhance the performance of the motor controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请公开一种换热组件、散热结构以及电机控制器。其中,换热组件包括至少两层堆叠设置的散热片,散热片上有多个间隔设置的通孔,一层散热片的一侧面形成有冷却液的入液口,相邻的另一层散热片的另一侧面形成有冷却液的出液口;其中,位于相邻两层散热片相对位置的两个通孔在散热片所在平面上的正投影呈交叉设置,以形成供冷却液从入液口到出液口流通的流道。本申请技术方案当往换热组件内部通入冷却液时,冷却液能够在相邻的两层散热片上同时实现横向和纵向流动,增加了冷却液的流动方向和流动范围,增强了冷却液的湍流效果,从而提高散热效率。

Description

换热组件、散热结构及电机控制器
本申请要求于2021年6月3日提交中国专利局、申请号为202110620503.9、申请名称为“换热组件、散热结构及电机控制器”的中国专利申请的优先权,其全部内容通过引用结合在申请中。
技术领域
本申请涉及半导体散热技术领域,特别涉及一种换热组件、散热结构以及电机控制器。
背景技术
目前,电动汽车控制器的芯片模块如IGBT(Insulated Gate Bipolar Transisto,绝缘栅双极型晶体管)模块的冷板有多种结构形式,如平板、滚齿、锻压Pinfin(钉)等。但是,上述几种冷板结构翅片间隙较大,翅片与翅片之间相对独立,热量无法在不同翅片之间传递,不同位置翅片散热量差异较大,并且当通入冷却液时,冷却液的流动都是在同一平面内进行,对流换热效果一般,散热效果较差的技术问题。
技术问题
本申请的主要目的是提出一种换热组件,旨在增强换热组件中冷却液对流换热效果,以提高换热效率。
技术解决方案
为实现上述目的,本申请提出的换热组件,包括至少两层堆叠设置的散热片,所述散热片上有多个间隔设置的通孔,一层散热片的一侧面形成有冷却液的入液口,相邻的另一层散热片的另一侧面形成有冷却液的出液口;
其中,位于相邻两层散热片相对位置的两个所述通孔在所述散热片所在平面上的正投影呈交叉设置,以形成供冷却液从入液口到出液口流通的流道。
在本申请一实施例中,相邻两层的所述散热片上相对位置的两个通孔在所述基板上的投影首尾相连。
在本申请一实施例中,相邻的两层散热片贴合设置。
在本申请一实施例中,所述通孔为条形孔;定义所述换热组件自设置所述入液口的一侧朝向设置所述出液口的一侧的方向为第一方向,所述通孔的延伸方向相对于所述第一方向倾斜设置。
在本申请一实施例中,所述通孔为条形孔;定义所述换热组件自设置所述入液口的一侧朝向设置所述出液口的一侧的方向为第一方向,其中,一所述散热片上的所述通孔的延伸方向与第一方向平行,相邻的另一所述散热片上的所述通孔的延伸方向与第一方向垂直。
在本申请一实施例中,相邻的两层所述散热片形状相同,并交错堆叠设置;相邻的两层散热片的交错角为180°。
在本申请一实施例中,所述换热组件包括多层堆叠设置的所述散热片,定义其中相邻的两层散热片分别为第一散热片和第二散热片,所述第一散热片上的所述通孔在所述第二散热片所在平面的正投影与所述第二散热片上相对位置的所述通孔呈交叉设置;
定义与所述第一散热片背离所述第二散热片的一侧相邻的散热片为第三散热片,与所述第二散热片背离所述第一散热片的一侧相邻的散热片为第四散热片;
其中,所述第三散热片上的所述通孔在所述第一散热片所在平面的正投影与所述第一散热片上相对位置的所述通孔重合,和/或,所述第四散热片上的所述通孔在所述第二散热片所在平面的正投影与所述第二散热片上相对位置的所述通孔重合。
为实现上述目的,本申请还提供一种散热结构,包括基板以及上述的换热组件,所述换热组件设于所述基板上。
在本申请一实施例中,所述基板包括多层堆叠设置的基板层,至少部分所述基板层上有多个散热孔;至少一所述散热孔与至少一所述通孔连通。
在本申请一实施例中,相邻两层的所述基板层的散热孔交错设置,并至少部分重合以形成流道。
在本申请一实施例中,所述基板的表面设有凹槽,所述换热组件安装于所述凹槽。
为实现上述目的,本申请还提供一种电机控制器,包括功率模块和上述的散热结构;所述散热结构包括基板以及上述的换热组件,所述换热组件设于所述基板上,所述基板背离所述换热组件的一侧与所述功率模块固定连接。
有益效果
本申请技术方案中,换热组件包括至少两层堆叠设置的散热片,通过在散热片上形成多个间隔设置的通孔,增大换热面积;同时将位于相邻两层散热片相对位置的两个通孔在散热片上的正投影设置为交叉结构,使得相邻两层散热片上的两个通孔能够连通,形成了供冷却液从入液口到出液口的流道,从而使得当向换热组件内部注入冷却液时,冷却液能够在相邻的两层散热片上同时实现横向和纵向流动,增加了冷却液的流动方向和流动范围,提高了换热组件的换热效率和散热效率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请电机控制器一实施例的结构示意图;
图2为本申请电机控制器一实施例的爆炸结构示意图;
图3为本申请散热结构实施例中冷却液流道的一结构示意图;
图4为本申请散热结构实施例中冷却液流道的另一结构示意图;
图5为本申请散热结构一实施例的结构示意图;
图6为本申请散热结构实施例的爆炸结构示意图;
图7 为本申请电机控制器另一实施例的结构示意图;
图8 为本申请散热结构的换热器与带有凹槽基板的示意图。
附图标号说明:
标号 名称 标号 名称
100 基板 210 散热片
110 基板层 201 通孔
111 散热孔 210a 入液口
101 凹槽 210b 出液口
200 换热组件 300 功率模块
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种换热组件,旨在针对利用冷却液换热的换热组件的结构改进,增强冷却液在其内流通时的湍流效果,以进一步提高换热组件的整体换热效果和散热效果。可以理解的,本申请提出的换热组件可以适用于任何需要利用冷却液流动换热和散热的场合,不限制于某一特定散热的场合,也不限制于某一特定形状结构的换热组件。
在本申请实施例中,如图1至图4所示,换热组件200包括至少两层堆叠设置的散热片210,散热片210上形成有多个间隔设置的通孔201,一层散热片210的一侧面形成有冷却液的入液口210a,相邻的另一层散热片210的另一侧面形成有冷却液的出液口210b;
位于相邻两层散热片210相对位置的两个通孔201在散热片210上的投影呈交叉设置,以形成供冷却液从入液口210a到出液口210b的流道。
换热组件200在应用时,可以直接安装在某一安装平台上,例如安装在发热器件(如功率模块),或者通过基板100间接安装于发热器件上,以与发热器件接触换热,实现对发热器件的换热和散热功能。换热组件200包括至少两层堆叠设置的散热片210,每个散热片210上形成有多个间隔设置的通孔201,多个通孔201起到了增大换热面积的作用,同时也增大了热量纵向传导的路径,加快了对发热器件的散热效率。在此基础上,位于相邻两层散热片210相对位置的两个通孔201在散热片210上的正投影呈交叉设置,则相邻两层散热片210上的相对位置的两个通孔201之间相互连通,使得在两层散热片210的堆叠方向上,热量能够从一散热片210的通孔201传到至另一散热片210的通孔201内,进一步增大了热量传输的路径。可以理解的,相邻两层散热片210上的通孔201交叉设置,当向换热组件200内注入冷却液时,相互连通的通孔201形成了供冷却液从入液口210a流通至出液口210b的流道,使得冷却液能够从一散热片210纵向流动到另一散热片210,同时也能够在同一散热片210上横向流动,增多了冷却液的流动方向,提高了换热效率。
可以理解为,现有技术中散热柱虽然能够将发热器件的温度传导至换热组件,但是散热柱导热时沿其长度方向上温度不均匀,不同的散热柱之间具有间隙,散热柱的本体与外周的温度也不均匀,导致冷却液流过散热柱时换热不均匀,而本申请通过将散热柱改进为散热片,采用面接触进行导热,大大加强了换热组件的导热性能,能够使热量在散热片上快速扩散。另一方面,由于散热片采用堆叠方式设置,不同的散热片距离热源的远近不同,通过将相邻两层散热片上的通孔交叉设置,既能够保证冷却液在不同的散热片之间进行换热,还能在同一散热片上横向流动,这种冷却液的三维流动路径使换热组件的均温性更佳。
此外,散热片210上形成多个间隔设置的通孔201,该多个通孔210的排列方式以及形状可根据实际情况而定,如多个通孔210可以呈规则性的阵列式分布,也可以是不规则的散乱式分布。通孔201的截面形状可以是圆形、三角形、方形或者其他异型等。
相邻两层散热片210上相对位置的两个通孔201交叉设置,可以理解为一散热片210上的一通孔201与另一散热片210上的一通孔201交叉连通,即相邻两层的散热片210上的通孔201一一对应,此种方式对冷却液的导流作用较强,降低了冷却液的流动阻力,减小能量损失。也可以理解为一散热片210上的一通孔201同时与另一散热片210上的两个或多个通孔201交叉连通,此时相邻两层的散热片210上的通孔201处于一对多的对应方式,此种方式下增多了冷却液的流动途径,对冷却液产生较强的扰流效果,延长了冷却液与散热片210的接触时间,提高了换热效率。
在实际应用过程中,对换热组件200通入冷却液的方式可根据实际情况而定,如可以是从换热组件200的一侧入液,另一侧出液;或者从换热组件200的同一侧入液和出液;或者可以将换热组件200直接放置在具有流动冷却液的液槽内。当冷却液从换热组件200的一侧流向另一侧时,散热片210朝向进液和出液的一侧均设有穿透散热片210侧面的通孔201,使得冷却液从一侧的通孔201(相当于入液口210a)进入,从另一侧的通孔201(相当于出液口210b)流出,此时换热组件200内部的通孔201形成了冷却液的流道,使得冷却液在换热组件200内部可以同时横向和纵向流动,保证流动面积,提高散热效果。当冷却液从换热组件200的一侧进入,从同一侧流出时,散热片210朝向进液的一侧设置至少两个穿透散热片210侧面的通孔201,以分别供冷却液进入和流出,其内部的通孔201形成了冷却液的的流道。当换热组件200直接放置在具有冷却液槽内时,散热片210浸泡在冷却液内部,则通孔201可设置在散热片210的侧面或顶面,只要保证换热组件200内部的通孔201能够形成冷却液的流道即可。
需要说明的是,相邻两层散热片210之间的堆叠方式可以是贴合堆叠,也可以是间隔堆叠。贴合堆叠时,一散热片210上的通孔201与另一散热片210的板面围合形成了沿散热片210的板面平行延伸的冷却液流道,即此种方式下,冷却液在换热组件200内是在通孔201内流动,通孔201可起到导流作用;间隔堆叠时,相邻两层散热片210之间形成有供冷却液流动的中间流道,此时位于两层散热片210上的通孔201可均与中间流道连通,利用通孔201实现将冷却液从一中间流道导流到另一中间流道内,同时能够改变冷却液原本的流动方向,起到了对冷却液的扰流作用。
在实际应用过程中,为了保证散热效果,散热片210可采用导热性较强的金属材料,如铜、铝等。散热片210上的通孔201可采用冲压工艺成型。
本申请技术方案中,换热组件200包括至少两层堆叠设置的散热片210,通过在散热片210上形成多个间隔设置的通孔201,增大换热面积;同时将位于相邻两层散热片210相对位置的两个通孔201在散热片210上的正投影设置为交叉结构,使得相邻两层散热片210上的两个通孔201交叉连通,形成了供冷却液从入液口210a到出液口210b的流道,从而使得当往换热组件200内部通入冷却液时,冷却液能够在相邻的两层散热片210上同时实现横向和纵向流动,增多了冷却液的流动方向和流动范围,增强了冷却液的湍流效果,进而提高了换热效率和散热效率。
为了进一步增强冷却液的换热效果,参照图1至图4,在本申请一实施例中,相邻两层的散热片210上相对位置的两个通孔201在一散热片210所在平面上的正投影首尾相连。
本实施例中,通过将相邻两层散热片210上相对应的两个通孔201设置为首尾相连,使得冷却液在一散热片210上的通孔201内横向流通一定的路径之后,纵向流动到另一散热片210的通孔201内,延长了冷却液的流通路径,进而延长了冷却液在换热组件200内的停留时间,以达到充分换热的目的。
基于每层散热片210上均设有间隔设置的多个通孔201,则相邻两层的散热片210上的多个通孔201首尾相连,可以理解为位于上层的散热片210的通孔201的尾端与下层的散热片210对应的通孔201的首端连通,同时位于下层的散热片210的该通孔201的尾端与上层散热片210上的另一通孔201的首端连通,或者,位于下层的散热片210的该通孔201的尾端也可与位于更下一层的散热片210上的通孔201的首端连通,以此类推,从而使得冷却液能够在换热组件200内横向纵向充分流动,提高了冷却液的对流换热效果。
可选地,相邻两层的散热片210上的多个通孔201在一散热片210所在平面上正投影时,多个通孔201可以形成首尾相连的冷却液的流道,如锯齿状、时序图状、波形状或者直线状。相邻两层的散热片210上的多个通孔201在朝向垂直于散热片210的平面上投影时,也可以形成首尾相连的冷却液的流道。
在本申请一实施例中,参照图1至图4,相邻的两层散热片210贴合设置。
本实施例中,相邻两层散热片210贴合设置,则一散热片210上的通孔201与另一散热片210的板面围合形成了供冷却液的流道,位于该流道内的冷却液能够通过散热片210的板面和通孔201孔壁吸收散热片210上的热量。至少一通孔201穿设于一散热片210的侧面形成冷却液的入液口210a,至少另一通孔201穿设另一散热片210的侧面形成出液口210b,且入液口210a与出液口210b分别设置在换热组件200相对的两侧,可以理解的,冷却液从一散热片210的一侧进入换热组件200内部,从另一散热片210的另一侧流出换热组件200,从而使得冷却液在多层散热片210中流通之后才从另一侧流出,保证了冷却液在换热组件200内部流通的长度和时间。
在前述实施例的基础上,相邻两层的散热片210中的多个通孔201首尾相连,则当从一散热片210的入液口210a通入冷却液时,冷却液会先在该散热片210侧部的通孔201横向流通之后,纵向进入到相邻散热片210的通孔201内,然后横向流至通孔201的尾端后,再纵向流向前一层散热片210上的通孔201内或者纵向流向后一层散热片210上的通孔201内,如此往复,直至将多层散热片210内的通孔201均充满,从另一散热片210的出液口210b流出,保证了冷却液与多层散热片210的充分接触,提高了换热效果。
在实际应用过程中,换热组件200包括多层堆叠设置的散热片210,为了保证冷却液在换热组件200内的停留时间和换热面积,可在最上层的散热片210的一侧设置入液口210a,在最下层的散热片210的另一侧设置出液口210b,以达到延长冷却液路径的目的。当然,在其他实施例中,也可以是在相邻的两层散热片210上分别设置入液口210a与出液口210b,即入液口210a与出液口210b交替设置,此种实施方式下,换热组件200具有多个入液口210a同时引入冷却液,多个出液口210b同时流出,增大了冷却液的流量,减小了冷却液的流动阻力。
在本申请一实施例中,参照图1至图3,通孔201为条形孔;定义换热组件200自设置入液口210a的一侧朝向设置出液口210b的一侧的方向为第一方向(参见图3),通孔201的延伸方向(参见图3)相对于第一方向倾斜设置,其中通孔201的延伸方向是指通孔201在散热片210所在平面上的长度方向(参见图3)。具体的,倾斜设置的通孔201的延伸方向与第一方向形成一个夹角,定义为倾斜角A,该倾斜角度影响到冷却液在相邻两个通孔210内部的流动方向的改变,倾斜角度不能过大也不能过小,过大的话,导致冷却液的换向幅度较大,容易造成较大的阻力;过小的话,冷却液的换向幅度较小,所达到的扰流效果较小。可选地,通孔210相对于第一方向的倾斜角度可选为15°~75°,如15°、30°、45°、60°、75°等。
可以理解的,入液口210a与出液口210b分别位于换热组件200的两侧,将从入液口210a朝向出液口210b的方向定义为第一方向,通孔201的延伸方向与第一方向倾斜设置,则通孔210内冷却液的流动方向相对于第一方向倾斜设置,增大了冷却液的流动长度。
基于相邻两层散热片210上的多个通孔201首尾连通,且相对应的两个通孔201交叉设置,则相互连通的两个通孔201内的冷却液的流动方向不同,在从入液口210a流动至出液口210b的方向上,冷却液的流动路径为锯齿形状,通过多次改变冷却液的流动方向,达到扰流,增强冷却液湍流的效果。
为了使得冷却液在换热组件200内的换热效果更加均匀,参照图1至图3,在本申请一实施例中,位于同一散热片210上的多个通孔201呈阵列式分布。
本实施例中,通过将多个通孔201阵列式分布于散热片210上,保证了冷却液在换热组件200内的流动分布均匀性,从而防止换热组件200内部换热不均的情况发生。
可选地,多个通孔201阵列式分布可以是环形阵列或者矩形阵列。
在本申请一实施例中,参照图1至图3,相邻的两层散热片210形状相同,并交错堆叠设置;相邻的两层散热片210的交错角为180°。
可以理解的,换热组件200内的多层散热片210的形状相同,在散热片210上开设多个间隔设置的通孔201,将相邻两层的散热片210交错堆叠,以保证对应位置的两个通孔201交叉设置实现部分重合,形成相互连通的冷却液流道。
本实施例中,将多层散热片210采用相同的结构,降低了制造难度和制造成本,只需设计一套模具即可通用,同时也便于更换。
在实际应用过程中,多层散热片210堆叠的固定方式可以是焊接、熔接等固定连接方式。
在本申请其他实施例中,参照图4,通孔201为条形孔;定义换热组件200自设置入液口210a的一侧朝向设置出液口210b的一侧的方向为第一方向,其中,一散热片210上的通孔201的延伸方向与第一方向平行,相邻的另一散热片210上的通孔201的延伸方向与第一方向垂直。
本实施例中,相邻的两层散热片210的结构不同,其上的多个通孔201的排布方式也不同。一散热片210上的多个通孔201沿第一方向平行间隔设置,另一散热片210上的多个通孔201沿垂直于第一方向的方向设置,且两层散热片210的多个通孔201首尾相连,相连的两个通孔201的延伸方向垂直,所形成的冷却液流道在基板100上的投影形状为时序图形状,以达到增大冷却液对流换热的效果。
在本申请其他实施例中,换热组件200包括多层堆叠设置的散热片210,定义其中相邻的两层散热片210分别为第一散热片和第二散热片,第一散热片上的通孔201在第二散热片所在平面的正投影与第二散热片上相对位置的通孔201呈交叉设置;
定义与第一散热片背离第二散热片的一侧相邻的散热片为第三散热片,与第二散热片背离第一散热片的一侧相邻的散热片为第四散热片;
其中,第三散热片上的通孔201在第一散热片所在平面的正投影与第一散热片上相对位置的通孔201重合,和/或,第四散热片上的通孔201在第二散热片所在平面的正投影与第二散热片上相对位置的通孔201重合。
本实施例中,换热组件200包括多层堆叠设置的散热片210,其中至少有相邻的两层散热片210(第一散热片和第二散热片)上相对位置的通孔201呈交叉设置,则第一散热片和第二散热片相对位置的两个通孔201之间相互连通,使得热量能够从第一散热片的通孔201传到至第二散热片的通孔201内,进一步增大了热量传输的路径。
可以理解的,在此基础上,与第一散热片的另一侧相邻的第三散热片的结构可以与第一散热片相同,即第三散热片上的通孔201与第一散热片上的通孔201的正投影重合,此时增大了冷却液的纵向流动效率;当然,第三散热片的结构也可以与第二散热片相同,此时第三散热片的通孔201与第一散热片的通孔201交叉设置,保证了冷却液纵向和横向流动。
同理,与第二散热片的另一侧相邻的第四散热片的结构可以与第二散热片相同,即第四散热片上的通孔201与第二散热片上的通孔201的正投影重合,此时增大了冷却液的纵向流动效率;当然,第四散热片的结构也可以与第一散热片相同,此时第四散热片的通孔201与第二散热片的通孔201交叉设置,保证了冷却液纵向和横向流动。
本申请还提出一种散热结构,参照图1、图2以及图8,该散热结构包括基板100和换热组件200,该换热组件200的具体结构参照上述实施例,由于本散热结构采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。其中,换热组件200设于基板100。
基板100起到提供换热组件200安装平台的作用,以用于将换热组件200安装在发热器件(如功率模块)上,将发热器件的温度传递至基板100、换热组件200,与发热器件进行接触换热,实现对发热器件散热的功能。换热组件200包括至少两层堆叠设置的散热片210,通过在散热片210上形成多个间隔设置的通孔201,增大换热面积;同时将位于相邻两层散热片210相对位置的两个通孔201在基板100上的正投影设置为交叉结构,使得相邻两层散热片210上的两个通孔201交叉连通,形成了供冷却液从入液口210a到出液口210b流通的流道,从而使得当往换热组件200内部通入冷却液时,冷却液能够在相邻的两层散热片210上同时实现横向和纵向流动,增多了冷却液的流动方向和流动范围,增强了冷却液的湍流效果,进而提高了换热组件200的换热效率,达到提高散热结构的散热效率。
在实际应用过程中,基板100可采用导热性较强的铜或铝等,以加快将发热器件的热量传导至换热组件200上的速率。
在一实施例中,基板100的表面设有凹槽101,换热组件200安装于凹槽101。本实施例中,凹槽101一方面起到对换热组件200限位固定的作用,简化了换热组件200与基板100的安装难度,提高了两者的装配精度;另一方面,减少了发热器件与换热组件的距离,提高了散热效果。
为了进一步提高散热结构的散热效果,参照图5至图8,在本申请一实施例中,基板100包括多层堆叠设置的基板层110,其中至少部分基板层110上形成有多个散热孔111。
可以理解为,当与发热器件接触的基板层110上设有散热孔111时,其余基板层110也具有散热孔111,以保证散热孔111内均有冷却液流通;当发热器件接触的基板层110上不具有散热孔111时,其余基板层110至少部分有散热孔111,且满足其余基板层110设置的散热孔111有冷却液流通。
多层基板层110的堆叠方向与至少两层散热片210的堆叠方向一致。
本实施例中,将基板100设置为由多层基板层110堆叠而成,同时在基板层110上开设多个散热孔111,以增大换热面积,提高换热效率。可以理解的,相邻两层的基板层110之间可贴合设置也可间隔设置,通过焊接的方式固定连接。
多层基板层110的堆叠方向与多层散热片210的堆叠方向一致,以使得基板100具有足够的安装面积安装散热片210,保证了整体结构的稳定性。
在前述实施例的基础上,当通入冷却液时,冷却液在流经散热片210内通孔201时,也会流入到基板层110的散热孔111处,以同时吸收基板层110和散热片210的热量,进一步加快了散热效率。
为了进一步提高散热效率,参照图5至图8,在本申请一实施例中,相邻两层的基板层110的散热孔111交错设置,并至少部分重合以形成流道;该流道与换热组件200内的冷却液的流道能够导通,使得冷却液能够流入到基板层110的散热孔111中进行冷却,提高换热效果。
至少一散热孔111与至少一通孔201连通。
可以理解的,相邻两层的基板层110的相对位置的两个散热孔111交错设置,并至少部分重合,使得当通入冷却液时,冷却液不仅能够沿着基板层110的平面横向流动,也可以沿着基板层110的厚度方向纵向流动,增多了冷却液的流动方向,增强了冷却液的湍流效果,提高了冷却液在基板100内的换热效率。
结合前述实施例可知,换热组件200的多层散热片210内形成有能够同时横向和纵向流通的冷却液流道,基板100内的多层基板层110内形成有能够同时横向和纵向流通的冷却液流道,通过换热组件200和基板100两者同时增强冷却液的对流换热效果,进一步提高了散热结构的换热效率。
在一实施例中,基板100上的至少一散热孔111与换热组件200的至少一通孔201连通,使得基板100内部的冷却液流道与换热组件200内部的冷却液流道连通,增强了基板100与换热组件200之间的冷却液对流效果,使得基板100与换热组件200内的换热更加均匀,提高了散热结构整体的可靠性。
本申请还提出一种电机控制器,参照图1、图2以及图7,该电机控制器包括功率模块300和散热结构,该散热结构的具体结构参照上述实施例,由于本功率模块采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。其中,基板100背离换热组件200的一侧与功率模块300固定连接。
散热结构与功率模块300固定连接,以形成具有散热功能的电机控制器,提高电机控制器的性能。散热结构包括基板100和设置在基板100上的换热组件200,基板100的一侧与功率模块300固定连接,另一侧与换热组件200固定连接。
在一实施例中,基板100为板状结构时,换热组件200包括至少两层堆叠设置的散热片210,散热片210上形成有多个间隔设置的通孔201,位于相邻两层散热片210相对位置的两个通孔201在基板100上的正投影呈交叉设置,以形成供冷却液流通的流道。当往换热组件200内部通入冷却液时,冷却液能够在相邻的两层散热片210上同时实现横向和纵向流动,从而能够实现在换热组件200内部横向纵向流动,增强了冷却液的湍流效果,提高了对芯片本体300的散热效率。
在一实施例中,基板100设置为多层堆叠设置的基板层110,基板层110上设有多个散热孔111,相邻两层的基板层110的散热孔111交错设置,从而形成了在基板100内部的冷却液流道,结合换热组件200内部的冷却液流道,实现了增强冷却液对流换热的双重作用,达到进一步提高对功率模块300的散热效率。
可以理解的,在实际应用过程中,功率模块300和散热结构形成的带散热功能的电机控制器可以根据电机控制器类型与模块组合应用或者拆分应用。如功率模块300为IGBT(Insulated Gate Bipolar Transisto,绝缘栅双极型晶体管)模块时,可以将整体的带散热结构的功率模块应用于电机控制器内,以增强电机控制器的性能。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (12)

  1. 一种换热组件,其中,包括:
    至少两层堆叠设置的散热片,所述散热片上有多个间隔设置的通孔,一层散热片的一侧面形成有冷却液的入液口,相邻的另一层散热片的另一侧面形成有冷却液的出液口;
    其中,位于相邻两层散热片相对位置的两个所述通孔在所述散热片所在平面上的正投影呈交叉设置,以形成供冷却液从入液口到出液口流通的流道。
  2. 如权利要求1所述的换热组件,其中,相邻两层的所述散热片上相对位置的两个通孔在一所述散热片所在平面上的正投影首尾相连。
  3. 如权利要求2所述的换热组件,其中,相邻的两层散热片贴合设置。
  4. 如权利要求3所述的换热组件,其中,所述通孔为条形孔;定义所述换热组件自设置所述入液口的一侧朝向设置所述出液口的一侧的方向为第一方向,所述通孔的延伸方向相对于所述第一方向倾斜设置。
  5. 如权利要求3所述的换热组件,其中,所述通孔为条形孔;定义所述换热组件自设置所述入液口的一侧朝向设置所述出液口的一侧的方向为第一方向,其中,一所述散热片上的所述通孔的延伸方向与第一方向平行,相邻的另一所述散热片上的所述通孔的延伸方向与第一方向垂直。
  6. 如权利要求1至4任意一项所述的换热组件,其中,相邻的两层所述散热片形状相同,并交错设置;相邻的两层散热片的交错角为180°。
  7. 如权利要求1至5任意一项所述的换热组件,其中,所述换热组件包括多层堆叠设置的所述散热片,定义其中相邻的两层散热片分别为第一散热片和第二散热片,所述第一散热片上的所述通孔在所述第二散热片所在平面的正投影与所述第二散热片上相对位置的所述通孔呈交叉设置;
    定义与所述第一散热片背离所述第二散热片的一侧相邻的散热片为第三散热片,与所述第二散热片背离所述第一散热片的一侧相邻的散热片为第四散热片;
    其中,所述第三散热片上的所述通孔在所述第一散热片所在平面的正投影与所述第一散热片上相对位置的所述通孔重合,和/或,所述第四散热片上的所述通孔在所述第二散热片所在平面的正投影与所述第二散热片上相对位置的所述通孔重合。
  8. 一种散热结构,其中,包括:
    基板;
    以及如权利要求1至7任意一项所述的换热组件,所述换热组件设于所述基板上。
  9. 如权利要求8所述的散热结构,其中,所述基板由多层堆叠设置的基板层组成,至少部分所述基板层上有多个散热孔;至少一所述散热孔与至少一所述通孔连通。
  10. 如权利要求9所述的散热结构,其中,相邻两层的所述基板层的散热孔交错设置,并至少部分重合以形成流道。
  11. 如权利要求8至10任意一项所述的散热结构,其中,所述基板的表面设有凹槽,所述换热组件安装于所述凹槽。
  12. 一种电机控制器,其中,包括功率模块和如权利要求8至11任意一项所述的散热结构;所述基板背离所述换热组件的一侧与所述功率模块固定连接。
PCT/CN2022/096362 2021-06-03 2022-05-31 换热组件、散热结构及电机控制器 WO2022253241A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110620503.9 2021-06-03
CN202110620503.9A CN113316370A (zh) 2021-06-03 2021-06-03 换热组件、散热结构及电机控制器

Publications (1)

Publication Number Publication Date
WO2022253241A1 true WO2022253241A1 (zh) 2022-12-08

Family

ID=77377226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096362 WO2022253241A1 (zh) 2021-06-03 2022-05-31 换热组件、散热结构及电机控制器

Country Status (2)

Country Link
CN (1) CN113316370A (zh)
WO (1) WO2022253241A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115825499A (zh) * 2022-12-26 2023-03-21 北京工业大学 一种用于双面散热器件功率循环测试夹具
CN117769219A (zh) * 2024-01-02 2024-03-26 江苏神州半导体科技有限公司 一种散热翅片结构

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113316370A (zh) * 2021-06-03 2021-08-27 苏州汇川联合动力系统有限公司 换热组件、散热结构及电机控制器
CN220274101U (zh) * 2022-12-22 2023-12-29 华为数字能源技术有限公司 散热装置、功率模组、电源系统、车辆及光伏系统
CN116864467A (zh) * 2023-08-04 2023-10-10 毫厘机电(苏州)有限公司 一种芯片散热装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200741433A (en) * 2006-04-28 2007-11-01 Foxconn Tech Co Ltd Liquid-cooling heat sink
JP2010249439A (ja) * 2009-04-17 2010-11-04 Panasonic Corp 液体熱交換装置および熱交換システム
CN201892439U (zh) * 2010-11-19 2011-07-06 武汉热诺金属科技有限公司 层叠片式水冷散热器
CN103489838A (zh) * 2013-10-15 2014-01-01 北京大学 一种强化散热三维封装结构及其封装方法
CN109387096A (zh) * 2018-11-12 2019-02-26 东莞运宏模具有限公司 积层式水冷散热器
CN113316370A (zh) * 2021-06-03 2021-08-27 苏州汇川联合动力系统有限公司 换热组件、散热结构及电机控制器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200741433A (en) * 2006-04-28 2007-11-01 Foxconn Tech Co Ltd Liquid-cooling heat sink
JP2010249439A (ja) * 2009-04-17 2010-11-04 Panasonic Corp 液体熱交換装置および熱交換システム
CN201892439U (zh) * 2010-11-19 2011-07-06 武汉热诺金属科技有限公司 层叠片式水冷散热器
CN103489838A (zh) * 2013-10-15 2014-01-01 北京大学 一种强化散热三维封装结构及其封装方法
CN109387096A (zh) * 2018-11-12 2019-02-26 东莞运宏模具有限公司 积层式水冷散热器
CN113316370A (zh) * 2021-06-03 2021-08-27 苏州汇川联合动力系统有限公司 换热组件、散热结构及电机控制器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115825499A (zh) * 2022-12-26 2023-03-21 北京工业大学 一种用于双面散热器件功率循环测试夹具
CN117769219A (zh) * 2024-01-02 2024-03-26 江苏神州半导体科技有限公司 一种散热翅片结构

Also Published As

Publication number Publication date
CN113316370A (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
WO2022253241A1 (zh) 换热组件、散热结构及电机控制器
JP6183426B2 (ja) 半導体モジュール用冷却器
US10475724B2 (en) Heat exchangers for dual-sided cooling
US20240203828A1 (en) Heat sink
US9693487B2 (en) Heat management and removal assemblies for semiconductor devices
CN107452699B (zh) 一种基于液流槽并联的igbt模块液冷板及其制造方法
US20090250195A1 (en) Heat sink and cooler
US20100002399A1 (en) Semiconductor device
WO2023015835A1 (zh) 液冷板散热器
TW201116793A (en) Pulsating heat pipe
CN105305226A (zh) 一种回水层设有交错排列倾斜柱状扰流脊的微通道热沉
WO2021036249A1 (zh) 一种散热器、电子设备及汽车
CN116864467A (zh) 一种芯片散热装置
CN113035805A (zh) 液冷板及功率模组
CN104165538A (zh) 散热装置
CN215345601U (zh) 换热组件、散热结构及电机控制器
CN217444376U (zh) 一种散热底板、功率模块、电子设备以及车辆
KR20220165054A (ko) 반도체 소자 열관리 모듈 및 이의 제조 방법
CN104768356B (zh) 一种应用3d打印技术的新型水冷板结构
CN111306970A (zh) 热交换器
CN113365469B (zh) 一种液冷板
CN219693969U (zh) 散热板和散热器
CN212227815U (zh) 热交换器
KR102605791B1 (ko) 반도체 소자 열관리 모듈 및 이의 제조 방법
WO2020019579A1 (zh) 液冷散热装置及电机控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815285

Country of ref document: EP

Kind code of ref document: A1