CN105305226A - 一种回水层设有交错排列倾斜柱状扰流脊的微通道热沉 - Google Patents

一种回水层设有交错排列倾斜柱状扰流脊的微通道热沉 Download PDF

Info

Publication number
CN105305226A
CN105305226A CN201510885997.8A CN201510885997A CN105305226A CN 105305226 A CN105305226 A CN 105305226A CN 201510885997 A CN201510885997 A CN 201510885997A CN 105305226 A CN105305226 A CN 105305226A
Authority
CN
China
Prior art keywords
layer
backwater
microchannel
ridge
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510885997.8A
Other languages
English (en)
Inventor
张冬云
李丛洋
曹玄扬
牛雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201510885997.8A priority Critical patent/CN105305226A/zh
Publication of CN105305226A publication Critical patent/CN105305226A/zh
Pending legal-status Critical Current

Links

Abstract

一种回水层设有交错排列倾斜柱状扰流脊的微通道热沉,属于半导体激光器及阵列器件,大规模集成电路的散热结构领域。此热沉包括由上至下依次设置的上盖板、回水层、中间隔板、进水层和下盖板。进水层中设置有进水微通道,中间隔板设置有返水孔,进水层的微通道脊端面呈与进水口圆弧曲面平行且与其有一定间距的弧面方向分布,脊的长度由热沉中间对称轴线向两边逐渐增加。回水层上设置有交错排列的倾斜柱状扰流脊作为扰流单元,进水通道与出水通道通过返水孔连接构成内部循环。进水层微通道脊的端面分布设计成与进水口圆弧曲面同圆心的弧面分布结构;回水层的回水通道中设有交错排列的倾斜柱状扰流脊,达到各微通道散热均匀,并降低的热阻和压降。

Description

一种回水层设有交错排列倾斜柱状扰流脊的微通道热沉
技术领域
本发明设计是半导体激光器列阵,大规模集成电路等散热冷却器件的一种回水层设有交错排列的倾斜柱状扰流脊的微通道热沉,属于半导体光电子技术领域。
背景技术
微通道冷却热沉是一种模块式微通道致冷器(ModularMicrochannelCooledHeatsinks,简称MCC)。激光器列阵的发展与这一高效的低热阻热沉的出现有密切的关系,特别是高占空比甚至CW运行的全填充激光二极管列阵。MCC可以像积木一样按二极管列阵的设计需要搭接出不同的三维结构。MCC的散热性能依赖与液体致冷剂和它通过MCC的层流(LaminarFlow)或者湍流等流体形态,其良好的热控制性能十分适合平均功率大的,因为吸收波长狭窄的线宽(<3nm)要求对列阵进行严格的温度调制的半导体激光器的二极管列阵。
美国学者Tuckerman和Pease在20世纪80年代首先提出了平行微通道热沉(MicrochannelHeatsink,MCHS),从理论上证明出了水冷却微通道可达1000W/cm2的散热能力。其加工方法是:在集成电路硅衬底的背面采取化学方法腐蚀出若干矩形沟槽,使用盖板耦合而构成封闭式的冷却剂通道,与外界密封连接从而形成为冷却剂回路。由器件产生的热通过联结层传导到热沉,然后热量被微通道中的流动冷却剂带走从而达到对于集成电路芯片良好散热的目的。
该概念的提出为进一步降低热沉热阻奠定了理论基础,它的优点在于扩大固液之间的接触面积的同时,利用非常小的水流沟道宽度最大限度的减小了热边界层的厚度,因此大大提高了热传导效率,有源热沉设计的基本原理就是要尽可能的使热沉的热导率高,以便达到最好的散热效果,同时兼顾制造的可行性及制作成本等问题。
Vafai和Zhu提出了一个两层叠加逆流式微通道热沉结构,流体在上下两层矩形微通道内逆向流动,每一层内的流体和基板温升通过两层之间的导热得到相互补偿,降低了温度梯度"其数值研究结果显示层叠逆流结构基板流体温升较单层微通道结构有显著的减少,同时,需要消耗的泵功也得到明显的降低。
Wei和Joshi对多层微通道层叠结构进行了数值研究这种微通道结构设计以增加换热面积为目的,在给定换热量条件下,多层微通道结构所需的泵功或压降相对单层结构有显著的降低,在微小空间内泵功受限的环境下具有潜在的应用优势。
交错微肋结构是应用最广泛的一种强化传热方式。Kishimoto和Sasaki将平直流道的长肋片拆分为多个流线形状菱形小肋片并错排交替分布,此方法减薄了热边界层的厚度增强了换热能力,较常规的平行直流肋片结构结点温差降低了25%。
邹江等研究了微小交错流道散热块的传热性能和热阻系数。发现在相同Re数下,交错流道结构热阻较直通流道减小约18%,且在Re数为700左右即开始发生流动转捩。
Hong和cheng对层流条件下水在交错直肋结构微通道热沉内的对流换热情况研究发现对流换热强化的原因是由于流动方向的周期性改变使得冷热流体得到充分混合。在此过程中热边界层的发展也得到了有效抑制。
单片式微通道热沉由五层形态各异的薄片组合而成,激光bar条芯片焊接在上盖层的前端,bar条芯片发出的激光的同时也产生大量的热量,在bar条下方上盖板上形成一个高热量的热源面27,此面的热量经热沉上盖板传递给流经热沉内部通道的冷却液并由其经过循环带出热沉,起到对芯片热源面散热的目的。冷却液从进水口进入进水层区,经过进水通道进入微通道区,再由返水孔进入回水层,经过回水层微通道从出水口流出,对bar条完成一次循环制冷。
在传统的微通道结构设计中,更多的是采用平行通道,原因是采用腐蚀这种制作方法是通过控制时间在平面上生成通道,大部分情况下只能得到平行通道,研究发现:在一定的流量下,矩形通道中的流体总热传导系数和通道水力的直径成反比。所以,通道直径的不断减小,系统散热面积和体积比的显著的增加,换热系数会随着增加。在减小体积的同时增加散热面积有助于散热量的增加。另外,交错微脊结构减小了热边界层的厚度,增强了边界层的换热能力,增加了内部流场湍流程度,提高了换热效率,柱状脊呈一定倾斜角度可以增加固液热交换面积,进一步提高了微通道热沉的散热性能,对半导体激光器大功率化发展研究工作具有重要意义。
本发明依据此散热机理对目前应用较为广泛的一种微通道热沉的结构做些相应的改进,将回水层常规平行直通道改为交错排列的倾斜柱状脊,减小了固体域体积同时增加了散热面积,进一步提高热沉的散热能力。
发明内容
在如今激光增材制造工艺优势下,内部复杂结构制造变为现实。根据上面研究结果,本发明提供一种新型结构的微通道热沉,以进一步提高现有平直通道热沉的换热效率,并降低热阻,减小压降;优化结构,拓宽应用范围。
基于常规微通道冷却热沉,包括由上至下依次设置的上盖板、回水层、中间隔板、进水层和下盖板。进水层上设置有进水口,进水口连接有进水通道,中间隔板上设置有返水孔,回水层上设置有出水口,出水口连接有出水通道,所述进水通道与回水通道通过返水孔连接。通过上述结构构成热沉内部循环通道。
所述进水通道设置在进水层上,回水通道设置在回水层上。进水通道和回水通道分层设置,保证了进水层和回水层能够分布较多的通道,从而提高热沉的散热能力。
所述进水层包括进水通道和进水微通道,所述进水通道主要作用是汇集进水口进的水流,进水微通道是对进水通道汇集的水流起到分流的作用,使进入返水孔的流量均匀,避免局部水的流量不均匀引起带走热量不均匀而使芯片烧坏。进水口、进水通道、进水微通道、返水口、回水微通道、回水通道、出水孔依次连接。
本发明为达到上述目的所采用的技术方案是:
1.一种微通道热沉,其特征在于:具有进水层和回水层两层结构,进水口和出水口截面都为圆弧曲面;进水层的微通道脊端面呈与进水口圆弧曲面平行且与其间距范围为1mm-3mm的弧面结构分布,脊的长度由热沉中间对称轴线向两边逐渐增加,回水层微通道脊设为柱状结构,在回水层平面上呈交错分布,柱状脊排数覆盖范围在热源面面积范围基础上多设置1-3排。
2.进一步,进水层微通道宽度范围为0.1mm-0.5mm,微通道脊宽度范围为0.1mm-0.5mm。
3.进一步,柱状脊的几何中心线与回水层平面倾斜夹角范围为30度到90度。
4.进一步,单排中两柱状脊几何中心间距范围为0.5mm-1.5mm,柱状脊组成的排与排之间的中心线间距范围为0.5mm-1.5mm。
5.进一步,回水层微通道宽度范围为0.1mm-0.3mm。
上述技术方案中,所述的回水层的回水微通道设置为交错排列的倾斜的柱状扰流脊,截面可为不同形状,分布方式是交错排列,柱状扰流结构的尺寸参数包括柱的几何中心间距,回水层微通道的尺寸,柱状结构组成的排与排之间距离。上述结构参数决定热沉回水层内柱状脊数量。高度即是通道的高度,贯穿整个通道高度空间,柱状结构倾斜呈一定角度,考虑实际激光增材制造过程中成型下限尺寸情况,柱状结构与回水层平面夹角的范围为30到90度,倾斜方向空间上垂直于热沉的设有返水孔的底端边缘直线。本发明中柱状结构截面形状不唯一,涵盖常用形状范围,为示意需要,图示将截面画为圆形。
上述技术方案中,增加此类扰流单元的目的是:其一进一步增加冷却水与热沉的热交换面积,其二增加冷却水通过通道时的水流中涡流的比例,从而增加流体中湍流的比例,减薄热边界层的厚度。如图6中所示,不加扰流单元流体类型是层流24,加了之后变成涡流26,涡流能增加一定流量的流体内参与热交换量的比例,带走热量能力要优于层流,能提高换热效率,增加换热能力。
综述,本发明基于常规微通道热沉的采用下层进水通道,上层回水通道结构方式,水流方向是沿半导体芯片热场梯度的反方向,采用逆流方式,增加热交换时间,增加壁面与流体之间的平均温度差,加大热量传递,强化传热,提高热交换效率。进水口为一段弧面,水进入热沉进水层后是呈扇形发散状,为适应此水流状态进水微通道脊的端面设计成弧面分布,其与进水口弧面同圆心的并有一定间距,脊长度由热沉中心对称轴线10向两边依次递增,这样相对于传统热沉中进水层微通道设计可以对每一个微通道起到均分水量的作用,使芯片散热均匀。回水层设有交错排列倾斜的柱状扰流脊,相对于传统平行直通道,错排分布增加内部流场湍流程度,增加热交换效率,减小热边界层影响,柱状一方面能够减小流体的阻力,另一方面增大热交换面积。倾斜方向与回水流动方向呈一定夹角,一方面进一步增加热交换面积,另一方面增加热沉金属体与内部流体的温度梯度差和热交换时间,增加热交换量,并充分利用热沉空间结构,有利于优化获得高性能微通道。本发明结构热沉可利用突破结构束缚的激光增材制造技术来制造。
附图说明
图1是本发明微通道热沉进水层半侧示意图;
图2是本发明微通道热沉进水层半侧微通道局部示意图;
图3是本发明微通道热沉回水层半侧示意图;
图4是本发明微通道热沉回水层上方芯片热源面示意图;
图5是本发明微通道热沉回水层半侧圆形柱状结构脊局部示意图;
图6是本发明微通道热沉回水层半侧圆形柱状结构脊剖面示意图;
图7是本发明微通道热沉错排柱状结构脊局部尺寸示意图;
图8是本发明微通道热沉错排柱状脊扰流效果对比图;
图9是本发明热沉与传统微通道热沉芯片热源面不同位置温升比较图。
图10是本发明微通道热沉进水层和回水层半侧示意图;其中a为进水层b为回水层。
图中:1、进水主通道;2、进水口;3、进水层通道;4、进水微通道;5、进水微通道脊;6、回水汇流通道;7、回水口;8、回水主通道;9、定位孔;10、对称线;11、进水口弧面;12、进水微通道脊分布弧面;13、进水口弧面与微通道脊分布弧面间距;14、回水层通道;15、交错排列的倾斜柱状脊通道区域;16、返水孔;17、交错排列的倾斜柱状脊;18、倾斜柱状脊微通道;19、交错排列的倾斜柱状脊剖面平面;20、倾斜柱状脊几何中心线与回水层平面夹角;21、单排中柱状脊几何中心间距;22、两排柱状脊间距;23、柱状脊边缘平均间距;24、常规热沉内部水层流状态;25、扰流单元;26、本发明热沉内部湍流状态;27、芯片热源面。
具体实施方式
为使本发明能够更加明显易懂,下面结合附图和具体热沉结构作进一步详细的说明:
实施例的微通道冷却热沉,基于常规微通道冷却热沉,包括由上至下依次设置的上盖板、回水层、中间隔板、进水层和下盖板。图1和图3分别为实施例的进水层和回水层结构平面图,进水层上设置有进水口2,进水口2连接有进水通道3,然后是起分流作用的进水微通道4,中间隔板设置返水孔16,连接进水层和回水层。回水层上设置有交错排列的倾斜柱状脊17,回水通道14连接有回水汇流通道6,回水汇流通道6与回水口7连接。所述通道依次连接构成内部循环结构。
图2所示为进水层进水微通道结构,进水孔2为一段弧面11,冷却水由其进入热沉进水层通道3后是呈扇形发散状分布,因此,本实施例为适应此水流状态设计成:进水微通道脊4的端面分布也呈与进水孔2弧面11同圆心的弧面12分布,两弧面间距范围为1mm-3mm;微通道脊4的长度由热沉对称中心线10向热沉两侧依次递增。进水微通道4的尺寸范围为0.1mm-0.5mm,进水微通道脊5的宽度尺寸范围是0.1mm-0.5mm。基本要求是进水微通道脊4的端面12呈与进水孔2弧面11同圆心分布,两弧面间距范围为1mm-3mm,微通道脊4的长度由热沉对称中心线10向热沉两侧依次递增。这样设计相对于传统热沉中进水层微通道可以适应从进水口进入热沉的冷却水分布状态,使每一个微通道起到均分水量的作用,从而使芯片散热均匀。图4所示回水层上方芯片热源面示意图,图中黑色方框内的位置为芯片热源面27,此处为由于激光bar条芯片产生激光同时释放大量的热而在其下方上盖板上形成一个高热量的热源面,此面的热量经热沉上盖板传递给流经热沉内部通道的冷却液并由冷却液经过循环带出热沉,起到对芯片热源面散热的目的。
图5所示回水层交错排列倾斜的柱状脊局部分布,柱状脊17在回水层平面上呈交错分布,所有脊都按相同角度设置,倾斜方向空间上垂直于热沉的返水孔端底端边缘直线。交错柱状脊的之间为回水层微通道18。图6为回水层交错排列倾斜的柱状脊在平面19的剖视图,柱状脊几何中心线与进水层通道14的平面夹角20的范围为30度到90度,本发明实施例的柱状脊排数根据芯片大小及热源面宽度来定,按比芯片热源面27覆盖范围多设置1-3排倾斜柱状脊的设计思路。为回水微通道14留有较大空间来降低回水流速,降低进出口压降差。
具体柱状脊的尺寸如图7所示,单排中柱状脊之间的几何中心间距21的尺寸范围为0.5mm-1.5mm,柱状脊组成的柱状脊排与排之间的中心线间距范围为0.5mm-1.5mm。回水层微通道18和柱状脊边缘间距23的范围为0.1mm-0.5mm,在这样的尺寸范围内,增加内部流场湍流程度,增加热交换率,减小热边界层影响,另一方面增大热交换面积。倾斜方向沿芯片温度梯度增加方向,与回水流动反方向呈一定夹角,一方面进一步增加热交换面积,另一方面增加热沉金属体与内部流体的温度梯度差和热交换时间,增加热交换量,有利于获得高性能微通道。
如图8所示,增加扰流柱状脊25的目的是:其一进一步增加冷却水与热沉的热交换面积,其二增加冷却水通过通道时的水流中涡流26的比例,未加之前水流为24,加了之后变成涡流26,涡流能增加一定流量的流体内参与热交换量的比例,增加流体湍流比例,提高换热效率和换热能力,带走热量要优于层流。
利用FLUENT流场温度场模拟软件对本发明实施结构进行模拟,对中间隔板设置返水孔16对应的上盖板处芯片热源面27多处位置分别编号1-11。测量不同位置的表面温升数据,如图9所示,A为常规微通道热沉芯片表面温升和B为本发明微通道热沉芯片表面温升,比较可知:一方面热源面的温度分布均匀性提升明显,说明进水层微通道4的结构设计起到很好的分流效果,通道内流量平均,从而带走热量均匀,不同位置之间温升差减小。另一方面,热源面的每一测试点的温升值平均减小9摄氏度左右,交错排列倾斜的柱状扰流脊17的结构对微通道热沉散热性能提升起到了很好的作用。
本发明通过适应水进入热沉进水层后呈扇形发散状态而将进水微通道脊的端面设计成弧面分布来达到各微通道散热均匀的目的,并增加通道内部流场湍流程度进一步提高原有平直微通道脊热沉的换热效率,降低原有热沉的热阻和压降。此类多层微通道热沉的结构主要包括由上至下依次设置的上盖板、回水层、中间隔板、进水层和下盖板。进水层中设置有进水微通道,中间隔板设置有返水孔,进水层的微通道脊端面呈与进水口圆弧曲面平行且与其有一定间距的弧面方向分布,脊的长度由热沉中间对称轴线向两边逐渐增加。回水层上设置有交错排列的倾斜柱状扰流脊作为扰流单元,进水通道与出水通道通过返水孔连接构成内部循环。此类热沉为对称结构,所以本发明的图示都展示结构的半部分,左下部分为进水层,右上部分为回水层。本发明微通道热沉的特征在于:所述进水层微通道脊的端面分布设计成与进水口圆弧曲面同圆心的弧面分布结构;所述回水层的回水通道中设有交错排列的倾斜柱状扰流脊,如摘要图中所示。
虽然这里结合具体的实施例对本发明特定某类微通道热沉进行了描述,但是对本领域技术人员来说,很多其它的类型热沉和热沉尺寸变化范围较广,对这些热沉的改进以及应用将是很明显的。因此,本发明不应当受此处特定公开的限制,而应由附加的权利要求来限定。

Claims (5)

1.一种微通道热沉,其特征在于:具有进水层和回水层两层结构,进水口和出水口截面都为圆弧曲面;进水层的微通道脊端面呈与进水口圆弧曲面平行且与其间距范围为1mm-3mm的弧面结构分布,脊的长度由热沉中间对称轴线向两边逐渐增加,回水层微通道脊设为柱状结构,在回水层平面上呈交错分布,柱状脊排数覆盖范围在热源面面积范围基础上多设置1-3排。
2.根据权利要求1所述的一种微通道热沉,其特征在于:进水层微通道宽度范围为0.1mm-0.5mm,微通道脊宽度范围为0.1mm-0.5mm。
3.根据权利要求1所述的一种微通道热沉,其特征在于:柱状脊的几何中心线与回水层平面倾斜夹角范围为30度到90度。
4.根据权利要求1所述的一种微通道热沉,其特征在于:单排中两柱状脊几何中心间距范围为0.5mm-1.5mm,柱状脊组成的排与排之间的中心线间距范围为0.5mm-1.5mm。
5.根据权利要求1所述的一种微通道热沉,其特征在于:回水层微通道宽度范围为0.1mm-0.3mm。
CN201510885997.8A 2015-12-06 2015-12-06 一种回水层设有交错排列倾斜柱状扰流脊的微通道热沉 Pending CN105305226A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510885997.8A CN105305226A (zh) 2015-12-06 2015-12-06 一种回水层设有交错排列倾斜柱状扰流脊的微通道热沉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510885997.8A CN105305226A (zh) 2015-12-06 2015-12-06 一种回水层设有交错排列倾斜柱状扰流脊的微通道热沉

Publications (1)

Publication Number Publication Date
CN105305226A true CN105305226A (zh) 2016-02-03

Family

ID=55202168

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510885997.8A Pending CN105305226A (zh) 2015-12-06 2015-12-06 一种回水层设有交错排列倾斜柱状扰流脊的微通道热沉

Country Status (1)

Country Link
CN (1) CN105305226A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104359A (zh) * 2016-02-22 2017-08-29 中国科学院半导体研究所 一种热沉、制备方法及其在半导体激光器中的应用
CN109038210A (zh) * 2018-08-13 2018-12-18 西安炬光科技股份有限公司 一种新型的液体制冷器及半导体激光器封装结构
CN109195406A (zh) * 2018-08-28 2019-01-11 中国科学院理化技术研究所 一种热沉装置
WO2021176978A1 (ja) * 2020-03-04 2021-09-10 パナソニックIpマネジメント株式会社 レーザモジュール
CN115714297A (zh) * 2023-01-06 2023-02-24 中国电子科技集团公司第十一研究所 一种非主动温控的空间固体激光器组件
DE102021131902A1 (de) 2021-12-03 2023-06-07 Rogers Germany Gmbh Trägerelement für elektrische Bauteile und Verfahren zur Herstellung eines solchen Trägerelements

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097744A (en) * 1996-11-22 2000-08-01 Fujitsu Limited Cooling device of a planar light source
US20060215715A1 (en) * 2003-02-27 2006-09-28 Hikaru Kouta Heat sink, laser module, laser device, and laser-processing device
CN102044842A (zh) * 2009-10-10 2011-05-04 中国科学院理化技术研究所 单片式激光二极管微通道相变热沉
CN202855726U (zh) * 2012-09-21 2013-04-03 上海大学 棱柱阵列微通道散热器三维堆叠封装
CN103594430A (zh) * 2013-10-25 2014-02-19 上海交通大学 用于功率电子器件散热的微通道散热器
CN104051952A (zh) * 2014-07-04 2014-09-17 成都三鼎日新激光科技有限公司 一种内微通道冷却热沉
CN104289712A (zh) * 2014-09-16 2015-01-21 北京工业大学 一种slm制造热沉成形摆放方法及支撑添加方法
CN104576573A (zh) * 2014-12-21 2015-04-29 北京工业大学 一种水滴形扰流元微通道换热器
CN104658992A (zh) * 2015-02-13 2015-05-27 西安电子科技大学 一种新型微针肋阵列热沉

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097744A (en) * 1996-11-22 2000-08-01 Fujitsu Limited Cooling device of a planar light source
US20060215715A1 (en) * 2003-02-27 2006-09-28 Hikaru Kouta Heat sink, laser module, laser device, and laser-processing device
CN102044842A (zh) * 2009-10-10 2011-05-04 中国科学院理化技术研究所 单片式激光二极管微通道相变热沉
CN202855726U (zh) * 2012-09-21 2013-04-03 上海大学 棱柱阵列微通道散热器三维堆叠封装
CN103594430A (zh) * 2013-10-25 2014-02-19 上海交通大学 用于功率电子器件散热的微通道散热器
CN104051952A (zh) * 2014-07-04 2014-09-17 成都三鼎日新激光科技有限公司 一种内微通道冷却热沉
CN104289712A (zh) * 2014-09-16 2015-01-21 北京工业大学 一种slm制造热沉成形摆放方法及支撑添加方法
CN104576573A (zh) * 2014-12-21 2015-04-29 北京工业大学 一种水滴形扰流元微通道换热器
CN104658992A (zh) * 2015-02-13 2015-05-27 西安电子科技大学 一种新型微针肋阵列热沉

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104359A (zh) * 2016-02-22 2017-08-29 中国科学院半导体研究所 一种热沉、制备方法及其在半导体激光器中的应用
CN109038210A (zh) * 2018-08-13 2018-12-18 西安炬光科技股份有限公司 一种新型的液体制冷器及半导体激光器封装结构
CN109195406A (zh) * 2018-08-28 2019-01-11 中国科学院理化技术研究所 一种热沉装置
CN109195406B (zh) * 2018-08-28 2020-04-10 中国科学院理化技术研究所 一种热沉装置
WO2021176978A1 (ja) * 2020-03-04 2021-09-10 パナソニックIpマネジメント株式会社 レーザモジュール
DE102021131902A1 (de) 2021-12-03 2023-06-07 Rogers Germany Gmbh Trägerelement für elektrische Bauteile und Verfahren zur Herstellung eines solchen Trägerelements
CN115714297A (zh) * 2023-01-06 2023-02-24 中国电子科技集团公司第十一研究所 一种非主动温控的空间固体激光器组件

Similar Documents

Publication Publication Date Title
CN105305226A (zh) 一种回水层设有交错排列倾斜柱状扰流脊的微通道热沉
He et al. Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review
CN104051952B (zh) 一种内微通道冷却热沉
US8413712B2 (en) Cooling device
CN204012181U (zh) 一种内微通道冷却热沉
CN109378303B (zh) 微针肋簇阵列微通道微型换热器
CN111052360A (zh) 散热片
CN212695142U (zh) 一种具有断续斜肋结构的微通道热沉
CN105486129A (zh) 一种微通道换热器
CN110610911A (zh) 一种新型三维均匀分流歧管式微通道
CN105526813A (zh) 一种微通道散热器
CN104776736B (zh) 高效热交换器及其成型方法
CN111415915A (zh) 一种微通道散热器散热结构
CN212695141U (zh) 一种具有瓦状肋片的微通道热沉
CN108321135B (zh) 一种组合式柱状的芯片强化沸腾换热微结构及其制造方法
CN104165538B (zh) 散热装置
CN209045535U (zh) 微针肋簇阵列微通道微型换热器
CN212810289U (zh) 一种具有特殊肋结构的微通道热沉
CN212695143U (zh) 一种具有叶脉形分流结构的微通道热沉
CN112086416A (zh) 一种微通道散热器分流集成冷却装置
CN114649284B (zh) 一种肋排仿生结构微通道散热器
CN217768362U (zh) 一种鱼鳞流道水冷散热器
CN109346444B (zh) 一种带梯形脊肋阵列的微散热器
CN112399779A (zh) 一种梯形与波形结合的混合微通道散热器
CN113446883A (zh) 一种基于弹性湍流的双流体回路错排波型微通道散热器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160203