WO2020019579A1 - 液冷散热装置及电机控制器 - Google Patents

液冷散热装置及电机控制器 Download PDF

Info

Publication number
WO2020019579A1
WO2020019579A1 PCT/CN2018/115035 CN2018115035W WO2020019579A1 WO 2020019579 A1 WO2020019579 A1 WO 2020019579A1 CN 2018115035 W CN2018115035 W CN 2018115035W WO 2020019579 A1 WO2020019579 A1 WO 2020019579A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
cooling
flow
cooled
plates
Prior art date
Application number
PCT/CN2018/115035
Other languages
English (en)
French (fr)
Inventor
邵兆军
Original Assignee
苏州汇川联合动力系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州汇川联合动力系统有限公司 filed Critical 苏州汇川联合动力系统有限公司
Publication of WO2020019579A1 publication Critical patent/WO2020019579A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids

Definitions

  • the utility model relates to the field of controller heat dissipation, and more particularly, to a liquid-cooled heat dissipation device and a motor controller.
  • liquid cooling has been widely used in industrial approaches, such as motors and controllers. Because liquid dissipates heat much faster than air, the heat dissipation efficiency of liquid-cooled radiators is much greater than that of air-cooled radiators, and noise can also be well controlled.
  • a plurality of power modules are usually arranged on the surface of the heat sink in a tiled manner, and the heat is transferred to the cooling liquid through the heat sink, and finally the heat is taken away by convection heat transfer.
  • a plurality of power modules can also be arranged upright on both sides of the heat dissipation plate 11, and heat is transferred to the cooling liquid through the heat dissipation plate 11, and finally heat is taken away by convection heat transfer.
  • FIG. 2 it is a schematic diagram of a straight tooth fin in a common heat dissipation plate.
  • a plurality of heat dissipation fins 22 are provided on the back of the power module mounting surface of the heat dissipation plate 21, and heat dissipation is assisted by the plate fin structure .
  • a pinfin 32 can be used on the back of the power module mounting surface of the heat sink 31, and the special pin fin structure can enhance the turbulence and enhance the convection exchange. Thermal effect.
  • FIG. 4 is a schematic diagram of the thermal analysis of the above-mentioned multi-power module vertical radiator (using straight-toothed fins).
  • the lowest temperature power module on the radiator is 108.1 ° C
  • the highest temperature The power module is 125.9 °C
  • the temperature difference between the power modules is 17.8 °C.
  • the lowest temperature power module is 105.9 ° C
  • the highest temperature power module is 116.2 ° C, that is, the temperature difference between the power modules is still 10.3 ° C.
  • the technical problem to be solved by the present utility model is to provide a new liquid-cooled heat-radiating device and a motor controller for the problems of uneven heat dissipation and weak heat-dissipation capability of the liquid-cooled radiator.
  • the technical solution to solve the above technical problem of the present utility model is to provide a liquid-cooling and heat-radiating device, which includes a first liquid-collecting part, a second liquid-collecting part, and a plurality of liquid-cooling plates; One surface of each of the liquid-cooling plates constitutes a power module mounting surface; each of the liquid-cooling plates has a cooling liquid channel therein, the first liquid-collecting portion has a first liquid-collecting cavity, and the second liquid-collecting liquid There is a second liquid collecting cavity in the part, and the first liquid collecting cavity communicates with the second liquid collecting cavity via a cooling liquid channel in the plurality of liquid cooling plates.
  • each of the liquid-cooled plates has a first flow passage and a second flow passage arranged one above the other, and the first flow passage and the second flow passage communicate with each other to form the cooling.
  • Liquid channel, and the flow direction of the cooling liquid in the first flow channel is opposite to the flow direction of the cooling liquid in the second flow channel.
  • the first flow path is disposed adjacent to the power module mounting surface, and the second flow path is disposed remote from the power module mounting surface.
  • each of the liquid-cooled plates has an arc-shaped flow channel, and the first flow channel and the second flow channel communicate through the arc-shaped flow channel.
  • the first liquid collecting portion has a cooling liquid inlet, and the first liquid collecting cavity is connected to the cooling liquid inlet;
  • the second liquid collecting portion has cooling Liquid outlet, and the second liquid collecting cavity is connected to the cooling liquid outlet;
  • the outlet of the first flow channel is connected to the second liquid collecting cavity, and the inlet of the second flow channel is connected to the first liquid collecting cavity And the outlet of the second flow channel communicates with the inlet of the first flow channel.
  • the plurality of liquid-cooled plates are disposed in parallel, and the first liquid-collecting portion and the second liquid-collecting portion are located at the same end of the liquid-cooled plate.
  • the liquid-cooled heat dissipation device includes two liquid-cooled plates, and the power module mounting surfaces of the two liquid-cooled plates are respectively located on the two liquid-cooled plates. Outside.
  • the first flow path includes a plurality of independent first sub-flow paths
  • the second flow path includes a plurality of independent second sub-flow paths
  • each The first sub-flow channel is respectively communicated with a corresponding second sub-flow channel.
  • the plurality of first sub-flow channels are arranged in a direction parallel to the mounting surface of the power module, and the flow direction of the cooling liquid in the plurality of first sub-flow channels is Same;
  • the plurality of second sub-flow channels are arranged in a direction parallel to the mounting surface of the power module, and the flow direction of the coolant in the plurality of second sub-flow channels is the same.
  • the utility model also provides a motor controller, which includes a plurality of power modules and the liquid-cooled heat dissipation device as described above, and the plurality of power modules are respectively fixed to the power module mounting surface of the liquid-cooled plate through an insulation and heat conduction plate. .
  • the liquid-cooled heat dissipation device and the motor controller of the utility model can dissipate the power module through a plurality of independent liquid-cooled plates, which can greatly improve the heat dissipation efficiency of the power module and at the same time improve the uniform temperature effect of heat dissipation.
  • FIG. 1 is a schematic diagram of an existing multi-power module vertical radiator
  • FIG. 2 is a schematic structural diagram of a straight toothed fin in a conventional radiator
  • FIG. 3 is a schematic structural diagram of a pin fin in a conventional radiator
  • FIG. 4 is a schematic diagram of thermal analysis of a conventional multi-power module vertical radiator using straight toothed fins
  • FIG. 5 is a schematic diagram of thermal analysis of a conventional multi-power module vertical radiator using pin fins
  • FIG. 6 is a schematic diagram of an embodiment of a liquid-cooled heat dissipation device of the present invention.
  • FIG. 7 is a top view of an embodiment of a liquid-cooled heat dissipation device of the present invention.
  • FIG. 8 is a schematic structural diagram of a cross section of a liquid cooling plate in an embodiment of a liquid cooling radiator of the present invention.
  • FIG. 9 is a schematic diagram of thermal analysis of an embodiment of a liquid-cooled heat dissipation device of the present invention.
  • FIG. 6 it is a schematic diagram of an embodiment of a liquid-cooled heat dissipation device of the present invention.
  • the liquid-cooled heat dissipation device can be applied to a motor controller and dissipates heat for a power module (such as a semiconductor switching tube in an inverter).
  • the liquid cooling device in this embodiment includes a first liquid collecting portion 63, a second liquid collecting portion 64, and two liquid cooling plates 61 (in practical applications, there may be more liquid cooling plates 61), and the above
  • the two liquid-cooled plates 61 are spaced apart (that is, there is a certain distance between the two liquid-cooled plates 61).
  • Each liquid-cooled plate 61 is flat (bar-shaped or plate-shaped) as a whole, and one surface of each liquid-cooled plate 61 constitutes a power module mounting surface, and a plurality of power modules 7 can be attached to each power module mounting surface.
  • Each liquid cooling plate 61 has a cooling liquid passage, a first liquid collecting portion 63 has a first liquid collecting cavity, a second liquid collecting portion 64 has a second liquid collecting cavity, and the cooling liquid of each liquid cooling plate 61
  • the channels are in communication with the first liquid collecting cavity and the second liquid collecting cavity, respectively.
  • the power module 7 can be fixed (eg, welded, crimped, etc.) to the power module mounting surface of the liquid-cooled plate 61 through an insulating and thermally conductive plate, and the first liquid collecting cavity And the second liquid collecting cavity is connected to the external cooling liquid circulation channel, so that the external cooling liquid flows in from the first liquid collecting cavity, and the cooling liquid flows through the cooling liquid channels in the two cooling plates 61 and enters the second liquid collecting cavity, And return from the second liquid collecting cavity to the external cooling liquid circulation channel.
  • the above-mentioned liquid-cooled heat dissipation device dissipates a plurality of power modules 7 (for example, eight shown in FIG. 6) through two independent liquid-cooled plates 61, which can greatly improve the heat dissipation efficiency of the power modules 7, and at the same time improve the heat dissipation uniformity. ⁇ ⁇ The effect.
  • each of the liquid cooling plates 61 has a first flow channel 611 and a second flow channel 612 arranged one above the other, and the first flow channel 611 and the second flow channel 612 communicate with each other to form a cooling liquid channel, and The flow direction of the cooling liquid in the first flow path 611 is opposite to the flow direction of the cooling liquid in the second flow path 612.
  • the first flow path 611 and the second flow path 612 are disposed perpendicular to the power module mounting surface, and the first flow path 611 is disposed immediately adjacent to the power module mounting surface, and the second flow path is away from the power.
  • the module mounting surface is set as shown in FIG. 7 (that is, the first flow channel 611 is located on one side of the power module mounting surface of the liquid cooling plate 61, and the second flow channel 612 is located on the opposite side of the power module mounting surface).
  • the cooling liquid in the first flow channel 611 can be heat-exchanged with the cooling liquid in the second flow channel 612 to achieve a uniform temperature.
  • the liquid cooling plate 61 may have an arc-shaped flow passage, and the first flow passage 611 and the second flow passage 612 flow through the arc. Road connected.
  • the first liquid collecting portion 63 may be provided with a cooling liquid inlet, and the first liquid collecting chamber in the first liquid collecting portion 63 is connected to the cooling liquid inlet; the second liquid collecting portion 64 may be provided with a cooling liquid outlet, and the first The second liquid collecting chamber in the two liquid collecting sections 64 is connected to the cooling liquid outlet; the outlet of the first flow channel is connected to the second liquid collecting chamber, and the inlet of the second flow channel is connected to the first liquid collecting chamber. The outlet communicates with the inlet of the first flow channel.
  • an internal cooling liquid circulation channel between the cooling liquid inlet of the first liquid collecting portion 63 and the cooling liquid outlet of the second liquid collecting portion 64 can be formed in the liquid cooling heat radiating device.
  • the cooling liquid flows through the first liquid collecting cavity, the second flow channel 612, the first flow channel 611, and the second liquid collecting cavity in sequence, and flows out from the cooling liquid outlet.
  • the temperature of the cooling liquid in the second flow channel 612 is relatively low, it can absorb the heat of the cooling liquid in the first flow channel 611, and the more heat is absorbed closer to the first liquid collecting cavity (distance The closer the first liquid collecting cavity is, the lower the temperature of the cooling liquid in the second flow channel); the cooling liquid in the first flow channel 611 can absorb the heat of the power module 7 on the mounting surface of the power module.
  • the power module 7 is operating, for the liquid cooling plate 61 located above in FIG.
  • the temperature of the coolant in the first flow passage 611 gradually increases from left to right due to the heat generated by the power module 7, and the second flow passage
  • the temperature of the coolant in 612 gradually increases from right to left, and the hot and cold fluids flow uniformly in the cross flow in the first flow path 611 and the second flow path 612.
  • the first flow passage 611 may include multiple independent first sub flow passages.
  • the second flow passage 612 may include a plurality of independent second sub-flow channels, and each first sub-flow channel is respectively connected to a corresponding second sub-flow channel.
  • the plurality of first sub-flow channels are arranged in a direction parallel to the mounting surface of the power module, and the coolant flows in the plurality of first sub-flow channels are the same; the plurality of second sub-flow channels are parallel to the power module mounting surface. The directions are aligned, and the flow directions of the coolant in the plurality of second sub-flow channels are the same.
  • the power module with the lowest temperature is 107.4 ° C and the power module with the highest temperature is 111.4 ° C.
  • the temperature rise of the hot spot is 14.5 ° C lower than that of the straight-fin fin multi-power module vertical radiator, compared with the pin-type fin.
  • the multi-module vertical heat sink of the chip is reduced by 4.8 ° C, and the temperature difference between the power modules 7 is only 4 ° C.
  • two liquid-cooling plates 61 may be disposed in parallel, and the first liquid-collecting portion 63 and the second liquid-collecting portion 64 are located at the same end of the liquid-cooling plate 61.
  • This structure facilitates the installation of the liquid-cooled radiator to the motor controller, and facilitates its connection with external cooling fluid lines.
  • the power module mounting surfaces on the two liquid-cooled plates 61 are located on the outer sides of the two liquid-cooled plates 61, respectively, as shown in FIG. 7.
  • This structure not only facilitates heat dissipation, but also facilitates the installation of the power module 7 (for example, connection with an external coolant circulation system).
  • the utility model also provides a motor controller, which controls the speed of the motor by changing the current frequency.
  • the motor controller includes a plurality of power modules and the liquid-cooled heat-dissipating device as described above, and the plurality of power modules are respectively fixed (eg, welded) on the power-module mounting surface of the liquid-cooled plate through an insulating and thermally conductive plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种液冷散热装置及电机控制器,所述液冷散热板包括第一集液部(63)、第二集液部(64)以及多个液冷板(61);所述多个液冷板(61)间隔设置,且每一所述液冷板(61)的其中一个表面构成功率模块(7)安装面;每一所述液冷板(61)内具有冷却液通道,所述第一集液部(63)内具有第一集液腔,所述第二集液部(64)内具有第二集液腔,且所述第一集液腔经由所述多个液冷板(61)内的冷却液通道与所述第二集液腔连通。通过多个独立的液冷板(61)对功率模块(7)进行散热,可极大提高功率模块(7)的散热效率,同时提高散热的均温效果。

Description

 液冷散热装置及电机控制器 技术领域
本实用新型涉及控制器散热领域,更具体地说,涉及一种液冷散热装置及电机控制器。
背景技术
作为一种成熟的散热技术,液冷散热方式一直以来都被广泛应用于工业途径,如电机、控制器等。由于液体的散热速度远远大于空气,因此液冷散热器散热效率远大于风冷散热器,同时在噪音方面也能得到很好的控制。
在电机控制器中,通常将多个功率模块以平铺方式布置在散热板的表面,热量通过散热板传递至冷却液,最终通过对流换热带走热量。此外,为提高功率密度,如图1所示,还可将多个功率模块以竖立方式布置在散热板11两侧,热量通过散热板11传递至冷却液,最终通过对流换热带走热量。
然而,上述无论是平铺式安装或者竖立式安装的多模块散热结构中,均存在冷却液积温导致前后位置的模块存在温差的问题,特别是高功率、低流量时,积温导致的不均温现象尤为明显。
如图2所示,为目前常见散热板内直齿式翅片示意图,在该结构中,散热板21的功率模块安装面的背面设置有多个散热翅片22,并通过板翅结构辅助散热。如图3所示,为提高换热效率,可在散热板31的功率模块安装面的背面使用针式翅片(pinfin)32,并通过特殊的针式翅片结构增强扰流,提升对流换热效果。
但上述散热翅片部分的结构散热能力普遍较弱,当模块功率密度增大时,极有可能产生较高的温升,最终导致功率模块过热。如图4,为上述多功率模块竖立式散热器(采用直齿式翅片)的热分析示意图,在功率模块正常工作时,该散热器上温度最低的功率模块为108.1℃、而温度最高的功率模块为125.9℃,功率模块之间的温差17.8℃。如图6所示,即使散热器内换成针式翅片,其温度最低的功率模块为105.9℃、温度最高的功率模块为116.2℃,即功率模块之间的温差仍有10.3℃。
技术问题
本实用新型要解决的技术问题在于,针对上述液冷散热器散热不均匀且散热能力较弱的问题,提供一种新的液冷散热装置及电机控制器。
技术解决方案
本实用新型解决上述技术问题的技术方案是,提供一种液冷散热装置,包括第一集液部、第二集液部以及多个液冷板;所述多个液冷板间隔设置,且每一所述液冷板的其中一个表面构成功率模块安装面;每一所述液冷板内具有冷却液通道,所述第一集液部内具有第一集液腔,所述第二集液部内具有第二集液腔,且所述第一集液腔经由所述多个液冷板内的冷却液通道与所述第二集液腔连通。
在本实用新型所述的液冷散热装置中,每一所述液冷板内具有相叠设置的第一流道以及第二流道,所述第一流道和第二流道连通构成所述冷却液通道,且所述第一流道内冷却液的流向与所述第二流道内冷却液的流向相反。
在本实用新型所述的液冷散热装置中,所述第一流道紧邻所述功率模块安装面设置,所述第二流道远离所述功率模块安装面设置。
在本实用新型所述的液冷散热装置中,每一所述液冷板内具有弧形流道,且所述第一流道和第二流道通过所述弧形流道连通。
在本实用新型所述的液冷散热装置中,所述第一集液部具有冷却液入口,且所述第一集液腔与所述冷却液入口相连;所述第二集液部具有冷却液出口,且所述第二集液腔与冷却液出口相连;所述第一流道的出口与所述第二集液腔连通,所述第二流道的入口与所述第一集液腔连通,所述第二流道的出口与所述第一流道的入口连通。
在本实用新型所述的液冷散热装置中,所述多个液冷板平行设置,且所述第一集液部和所述第二集液部位于所述液冷板的同一端。
在本实用新型所述的液冷散热装置中,所述液冷散热装置包括两个液冷板,且所述两个液冷板上的功率模块安装面分别位于所述两个液冷板的外侧面。
在本实用新型所述的液冷散热装置中,所述第一流道包括多个独立的第一子流道,所述第二流道包括多个独立的第二子流道,且每一所述第一子流道分别与一个对应的第二子流道连通。
在本实用新型所述的液冷散热装置中,所述多个第一子流道沿平行于所述功率模块安装面的方向排列,且所述多个第一子流道内的冷却液的流向相同;所述多个第二子流道沿平行于所述功率模块安装面的方向排列,且所述多个第二子流道内的冷却液的流向相同。
本实用新型还提供一种电机控制器,包括多个功率模块以及如上所述的液冷散热装置,且所述多个功率模块分别通过绝缘导热板固定在所述液冷板的功率模块安装面。
有益效果
本实用新型的液冷散热装置及电机控制器,通过多个独立的液冷板对功率模块进行散热,可极大提高功率模块的散热效率,同时提高散热的均温效果。
附图说明
图1是现有多功率模块竖立式散热器的示意图;
图2是现有散热器中直齿式翅片的结构示意图;
图3是现有散热器中针式翅片的结构示意图;
图4是现有采用直齿式翅片的多功率模块竖立式散热器的热分析示意图;
图5是现有采用针式翅片的多功率模块竖立式散热器的热分析示意图;
图6是本实用新型液冷散热装置实施例的示意图;
图7是本实用新型液冷散热装置实施例的俯视图;
图8是本实用新型液冷散热器实施例中液冷板断面的结构示意图;
图9是本实用新型液冷散热装置实施例的热分析示意图。
本发明的实施方式
为了使本实用新型的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本实用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。
如图6所示,是本实用新型液冷散热装置实施例的示意图,该液冷散热装置可应用于电机控制器,并为功率模块(例如逆变器中的半导体开关管)散热。本实施例中的液冷散热装置包括第一集液部63、第二集液部64以及两个液冷板61(在实际应用中,也可有更多个液冷板61),且上述两个液冷板61间隔设置(即两个液冷板61之间具有一定距离)。每一液冷板61整体为扁平状(条状或板状),且每一液冷板61的其中一个表面构成功率模块安装面,每一功率模块安装面上可贴附多个功率模块7。每一液冷板61内具有冷却液通道,第一集液部63内具有第一集液腔,第二集液部64内具有第二集液腔,且每一液冷板61的冷却液通道分别与第一集液腔和第二集液腔连通。
在使用上述液冷散热装置为功率模块7散热时,可将功率模块7通过绝缘导热板固定(例如焊接、压接等)到液冷板61的功率模块安装面,并将第一集液腔和第二集液腔接入外部冷却液循环通道,使外部冷却液从第一集液腔流入,且上述冷却液流经两个冷却板61内的冷却液通道后进入第二集液腔,并由第二集液腔返回到外部冷却液循环通道。
上述液冷散热装置通过两个独立的液冷板61,对多个功率模块7(例如图6所示的8个)进行散热,可极大提高功率模块7的散热效率,同时提高散热的均温效果。
优选地,结合图8,上述每一液冷板61内具有相叠设置的第一流道611以及第二流道612,且上述第一流道611和第二流道612连通构成冷却液通道,并且第一流道611内冷却液的流向与第二流道612内冷却液的流向相反。通过上述结构,使得每一功率模块安装面上的多个功率模块7均由两股流向相反的冷却液进行直接冷却或间接冷却,从而大大提高了各个功率模块7的均温效果。
特别地,在每一液冷板中,第一流道611和第二流道612按垂直于功率模块安装面的方式设置,且第一流道611紧邻功率模块安装面设置、第二流道远离功率模块安装面设置,如图7所示(即第一流道611位于液冷板61的功率模块安装面的一侧,第二流道612则位于功率模块安装面相反的一侧)。第一流道611内的冷却液可与第二流道612内的冷却液进行热交换,从而达到均温。
并且,为保证冷却液在第一流道611和第二流道612内的流动速度,上述液冷板61内可具有弧形流道,且第一流道611和第二流道612通过弧形流道连通。
上述第一集液部63上可设置冷却液入口,且第一集液部63内的第一集液腔与冷却液入口相连;第二集液部64上可设置冷却液出口,且该第二集液部64内的第二集液腔与冷却液出口相连;第一流道的出口与第二集液腔连通,第二流道的入口与第一集液腔连通,第二流道的出口与第一流道的入口连通。通过上述方式,可在液冷散热装置中形成位于第一集液部63的冷却液入口和第二集液部64的冷却液出口之间的内部冷却液循环流道,从冷却液入口流入的冷却液依次流经第一集液腔、第二流道612、第一流道611以及第二集液腔,并从冷却液出口流出。
在冷却液流动过程中,第二流道612内的冷却液温度较低,其可吸收第一流道611内冷却液的热量,且距离第一集液腔越近部分吸收的热量越多(距离第一集液腔越近处第二流道内的冷却液温度越低);第一流道611内的冷却液则可吸收功率模块安装面上的功率模块7的热量。具体地,在功率模块7工作时,对于图7中位于上方的液冷板61,由于功率模块7的发热,第一流道611内的冷却液温度从左往右逐渐升高,第二流道612内的冷却液温度从右往左逐渐升高,冷热流体在第一流道611和第二流道612内交叉流动均温。
如图8所示,为减小第一流道611和第二流道612内的对流,提高散热效率,第一流道611可包括多个独立的第一子流道,同样地,第二流道612可包括多个独立的第二子流道,且每一第一子流道分别与一个对应的第二子流道连通。并且上述多个第一子流道沿平行于功率模块安装面的方向排列,且多个第一子流道内的冷却液的流向相同;多个第二子流道沿平行于功率模块安装面的方向排列,且多个第二子流道内的冷却液的流向相同。
如图9所示,为与图4、5相同条件(损耗、冷却参数、功率模块数量)下,本实施例的液冷散热装置的热分析结果。从图中可知,温度最低的功率模块为107.4℃、温度最高的功率模块为111.4℃,热点温升相比直齿式翅片的多功率模块竖立式散热器降低14.5℃,相比针式翅片的多功率模块竖立式散热器降低4.8℃,且功率模块7之间的温差仅有4℃。
在上述的液冷散热装置,两个液冷板61可平行设置,且第一集液部63和第二集液部64位于液冷板61的同一端。该结构方便将液冷散热器安装到电机控制器,并便于其与外部冷却液管路连接。
为提高液冷散热器的整体散热效率,上述两个液冷板61上的功率模块安装面分别位于两个液冷板61的外侧面,如图7所示。该结构不仅利于散热,还便于功率模块7的安装(例如与外部冷却液循环系统连接)。
本实用新型还提供一种电机控制器,该电机控制器通过改变电流频率来控制电机转速。该电机控制器包括多个功率模块以及如上所述的液冷散热装置,且多个功率模块分别通过绝缘导热板固定(例如焊接)在液冷板的功率模块安装面。
工业实用性
以上所述,仅为本实用新型较佳的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本实用新型的保护范围之内。因此,本实用新型的保护范围应该以权利要求的保护范围为准。

Claims (10)

  1. 一种液冷散热装置,其特征在于,包括第一集液部、第二集液部以及多个液冷板;所述多个液冷板间隔设置,且每一所述液冷板的其中一个表面构成功率模块安装面;每一所述液冷板内具有冷却液通道,所述第一集液部内具有第一集液腔,所述第二集液部内具有第二集液腔,且所述第一集液腔经由所述多个液冷板内的冷却液通道与所述第二集液腔连通。
  2. 根据权利要求1所述的液冷散热装置,其特征在于,每一所述液冷板内具有相叠设置的第一流道以及第二流道,所述第一流道和第二流道连通构成所述冷却液通道,且所述第一流道内冷却液的流向与所述第二流道内冷却液的流向相反。
  3. 根据权利要求2所述的液冷散热装置,其特征在于,所述第一流道紧邻所述功率模块安装面设置,所述第二流道远离所述功率模块安装面设置。
  4. 根据权利要求3所述的液冷散热装置,其特征在于,每一所述液冷板内具有弧形流道,且所述第一流道和第二流道通过所述弧形流道连通。
  5. 根据权利要求3所述的液冷散热装置,其特征在于,所述第一集液部具有冷却液入口,且所述第一集液腔与所述冷却液入口相连;所述第二集液部具有冷却液出口,且所述第二集液腔与所述冷却液出口相连;所述第一流道的出口与所述第二集液腔连通,所述第二流道的入口与所述第一集液腔连通,所述第二流道的出口与所述第一流道的入口连通。
  6. 根据权利要求5所述的液冷散热装置,其特征在于,所述多个液冷板平行设置,且所述第一集液部和所述第二集液部位于所述液冷板的同一端。
  7. 根据权利要求6所述的液冷散热装置,其特征在于,所述液冷散热装置包括两个液冷板,且所述两个液冷板上的功率模块安装面分别位于所述两个液冷板的外侧面。
  8. 根据权利要求2所述的液冷散热装置,其特征在于,所述第一流道包括多个独立的第一子流道,所述第二流道包括多个独立的第二子流道,且每一所述第一子流道分别与一个对应的第二子流道连通。
  9. 根据权利要求8所述的液冷散热装置,其特征在于,所述多个第一子流道沿平行于所述功率模块安装面的方向排列,且所述多个第一子流道内的冷却液的流向相同;所述多个第二子流道沿平行于所述功率模块安装面的方向排列,且所述多个第二子流道内的冷却液的流向相同。
  10. 一种电机控制器,其特征在于,包括多个功率模块以及如权利要求1-9中任一项所述的液冷散热装置,且所述多个功率模块分别通过绝缘导热板固定在所述液冷板的功率模块安装面。
PCT/CN2018/115035 2018-07-24 2018-11-12 液冷散热装置及电机控制器 WO2020019579A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821175994.0U CN208460748U (zh) 2018-07-24 2018-07-24 液冷散热装置及电机控制器
CN201821175994.0 2018-07-24

Publications (1)

Publication Number Publication Date
WO2020019579A1 true WO2020019579A1 (zh) 2020-01-30

Family

ID=65179543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115035 WO2020019579A1 (zh) 2018-07-24 2018-11-12 液冷散热装置及电机控制器

Country Status (2)

Country Link
CN (1) CN208460748U (zh)
WO (1) WO2020019579A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108766946B (zh) * 2018-07-24 2024-03-19 苏州汇川联合动力系统股份有限公司 液冷散热装置及电机控制器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9642287B2 (en) * 2015-06-12 2017-05-02 Fujitsu Limited Cooling plate and data processing system provided with cooling plates
CN206640923U (zh) * 2017-03-06 2017-11-14 苏州汇川技术有限公司 散热器以及具有散热器的电动汽车控制器
CN206713229U (zh) * 2017-03-06 2017-12-05 苏州汇川技术有限公司 一种散热器以及具有该散热器的电动汽车控制器
CN107484387A (zh) * 2017-07-17 2017-12-15 华为技术有限公司 一种浸没式液冷装置、刀片式服务器和机架式服务器
CN108124409A (zh) * 2017-12-19 2018-06-05 厦门科华恒盛股份有限公司 一种服务器液冷系统
CN108766946A (zh) * 2018-07-24 2018-11-06 苏州汇川联合动力系统有限公司 液冷散热装置及电机控制器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9642287B2 (en) * 2015-06-12 2017-05-02 Fujitsu Limited Cooling plate and data processing system provided with cooling plates
CN206640923U (zh) * 2017-03-06 2017-11-14 苏州汇川技术有限公司 散热器以及具有散热器的电动汽车控制器
CN206713229U (zh) * 2017-03-06 2017-12-05 苏州汇川技术有限公司 一种散热器以及具有该散热器的电动汽车控制器
CN107484387A (zh) * 2017-07-17 2017-12-15 华为技术有限公司 一种浸没式液冷装置、刀片式服务器和机架式服务器
CN108124409A (zh) * 2017-12-19 2018-06-05 厦门科华恒盛股份有限公司 一种服务器液冷系统
CN108766946A (zh) * 2018-07-24 2018-11-06 苏州汇川联合动力系统有限公司 液冷散热装置及电机控制器

Also Published As

Publication number Publication date
CN208460748U (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
CN108766946B (zh) 液冷散热装置及电机控制器
US8472193B2 (en) Semiconductor device
CN112885798B (zh) 服务器用一体式相变传热元件液冷散热模组
CN108807313B (zh) 一种微电子器件散热装置
CN105180504A (zh) 一种用于循环冷却系统的半导体制冷装置
WO2018209828A1 (zh) 液冷散热装置及电机控制器
WO2019223284A1 (zh) 散热装置及其制造方法、服务器
WO2020019183A1 (zh) 控制器散热结构及控制器
CN111895519B (zh) 散热器和空调室外机
CN112928082A (zh) 液冷板及功率模组
CN113035805A (zh) 液冷板及功率模组
WO2020019579A1 (zh) 液冷散热装置及电机控制器
CN219716056U (zh) 一种芯片测试用控温及散热系统
CN108489303A (zh) 一种带隔热层的散热器装置
CN109979901A (zh) 用于电力半导体功率器件的双面水冷散热器
KR20100060756A (ko) 액냉식 열전 냉각장치
CN116301258A (zh) 一种芯片测试用控温及散热系统
CN116437626A (zh) 一种5g配网通信的安全保护装置
CN103179843B (zh) 一种高功率密度变频控制器的散热结构
CN114071955A (zh) 冷却装置及包含其的电子设备
CN108925124A (zh) 模块浸泡式冷却机构和变频器
CN110848821B (zh) 散热构件、散热器和空调器
CN113783085A (zh) 用于一体机风冷小功率固体激光器的内置循环被动冷却模组及方法
TWM589771U (zh) 具有氣流通道的致冷模組及具有致冷模組的空調裝置
CN218731226U (zh) 一种具有制冷功能的水冷板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927401

Country of ref document: EP

Kind code of ref document: A1