WO2020019183A1 - 控制器散热结构及控制器 - Google Patents

控制器散热结构及控制器 Download PDF

Info

Publication number
WO2020019183A1
WO2020019183A1 PCT/CN2018/096972 CN2018096972W WO2020019183A1 WO 2020019183 A1 WO2020019183 A1 WO 2020019183A1 CN 2018096972 W CN2018096972 W CN 2018096972W WO 2020019183 A1 WO2020019183 A1 WO 2020019183A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
flow
controller
cooling
heat
Prior art date
Application number
PCT/CN2018/096972
Other languages
English (en)
French (fr)
Inventor
黄昆
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880036942.1A priority Critical patent/CN110720140A/zh
Priority to PCT/CN2018/096972 priority patent/WO2020019183A1/zh
Publication of WO2020019183A1 publication Critical patent/WO2020019183A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present application relates to the field of controller heat dissipation, and in particular, to a controller heat dissipation structure and a controller.
  • the cooling forms in controllers are diversified, but the cooling capacity is generally insufficient, which is difficult to meet the needs of application products with large power and large heat generation.
  • the power device usually used in the motor controller is IGBT (Insulated Gate Bipolar Transistor).
  • the power device in the controller is usually cooled by water.
  • the traditional cooling scheme is to design a water-cooled cooling fin structure directly on the substrate to improve the heat dissipation efficiency, but the heat exchange rate of the cooling liquid is low, which will affect the control. Cooling effect.
  • the present application provides a controller heat dissipation structure for improving heat dissipation efficiency, and a controller to which the heat dissipation structure is applied.
  • the controller heat dissipation structure described in the present application is provided in a controller housing and includes a heat dissipation plate, a plurality of heat dissipation columns, and a cooling groove provided in the housing.
  • the heat dissipation plate includes a front surface and a back surface.
  • the column is provided on the back surface, the cooling tank is connected with a circulation pipeline communicating with the outside, the heat sink plate is covered on the cooling tank, and the plurality of heat sink columns are sealed in the cooling tank;
  • At least one flow deflector is provided on the back of the heat dissipation plate, and the at least one flow deflector divides the cooling tank into at least two communicating heat dissipation areas, and each of the heat dissipation areas is distributed with the The cooling liquid in the cooling tank flows circularly between the at least two heat dissipation regions.
  • the entire cooling tank can be separated, forming a "reciprocating" flow channel, changing the single flow direction of the cooling liquid, and reducing the unidirectional flow area of the cooling liquid; Furthermore, the overall temperature gradient of the device substrate is reduced; at the same time, the flow rate of the cooling liquid between the heat dissipation columns is doubled, and the liquid cooling heat exchange efficiency is improved.
  • the deflector is inserted at least partially in a gap between the plurality of heat dissipation columns. Both ends of the deflector may be between the cooling columns, and there is a gap between the two sides and the cooling tank; or only one end has a gap between the cooling tank and the other end is connected to the side wall of the cooling tank.
  • the deflector does not occupy extra space, and the gap between the plurality of heat dissipation columns is used to separate the heat dissipation columns into at least two parts.
  • the at least two heat dissipation regions communicate with each other to form a curved circulation flow path, thereby increasing the contact area of the cooling liquid and improving the heat dissipation efficiency.
  • the deflector is a curved thin plate, which can also increase the contact area of the cooling liquid and improve the heat dissipation efficiency.
  • the cooling groove is divided into two heat dissipation regions, and the deflector is disposed horizontally or vertically compared to the extending direction of the heat dissipation plate.
  • there are multiple deflector partitions and the plurality of deflector partitions are arranged in parallel and spaced apart to form a plurality of heat dissipation areas that are communicated in sequence. Then, the area of the flow channel is reduced and the heat dissipation columns are increased.
  • the flow rate of the cooling liquid between the low-flow cooling liquid and the large-flow cooling liquid is equivalent to the heat dissipation effect, which reduces the absolute temperature of the device and makes the temperature of the device more uniform.
  • the extending direction of the plurality of flow guiding partitions intersects or is parallel to the length extending direction of the heat dissipation plate.
  • the cooling liquid flow direction can be adjusted in different directions, so that the circulation flow channels formed by multiple heat dissipation areas can be adapted to the use environment of the controller.
  • the cooling tank includes a liquid inlet and a liquid outlet, and the liquid inlet and the liquid outlet are respectively connected to the heat dissipation areas at both ends of the circulation flow path, and the liquid inlet and the other end of the liquid
  • the circulation pipes are connected respectively to the cooling pump to provide circulating power for the cooling liquid and realize the circulation heat dissipation of the heat dissipation structure.
  • the height of the heat dissipating column protruding from the back surface is less than or equal to the height of the flow guiding partition protruding from the back surface.
  • the deflector extends from the back of the heat sink to the bottom wall of the cooling tank, and fits on the bottom wall of the cooling tank, which can ensure the flow of the cooling liquid between the heat dissipation columns and improve the heat dissipation efficiency. .
  • the deflector includes a plurality of sub-dividers, which facilitates the installation of the deflector, and the plurality of sub-dividers are separated by a gap.
  • the gap can likewise allow a coolant to flow.
  • the present application also provides a controller, which includes a controller case and an IGBT module installed in the case, and further includes the controller heat dissipation structure, and the IGBT module is fixed on a front surface of the heat dissipation plate.
  • the controller has the controller heat dissipation structure, which can improve the heat dissipation rate of the IGBT module.
  • the entire cooling groove is separated between the heat dissipation columns of the heat dissipation plate by the added guide baffle, forming a "reciprocating" flow channel, which reduces the unidirectional flow area of the cooling liquid, improves the cooling liquid flow rate, and improves the liquid. Cold heat exchange efficiency.
  • FIG. 1 is a schematic plan view of a heat dissipation structure of a controller provided in the present application
  • FIG. 2 is a schematic structural view in a side view of the heat dissipation structure described in FIG. 1; FIG.
  • FIG. 3 is a schematic plan view of a specific embodiment of a heat dissipation plate of the heat dissipation structure described in FIG. 2;
  • FIG. 4 is a schematic plan view of an embodiment of a heat sink of the heat sink structure of FIG. 3;
  • FIG. 5 is a schematic plan view of a second embodiment of a heat dissipation plate of the heat dissipation structure described in FIG. 3;
  • FIG. 6 is a schematic plan view of an embodiment of a heat dissipation plate of the heat dissipation structure shown in FIG. 2;
  • FIG. 7 is a schematic plan view of another embodiment of a heat sink of the heat sink structure of FIG. 2;
  • FIG. 8 is a schematic plan view of an embodiment of a heat dissipation plate of the heat dissipation structure described in FIG. 7;
  • FIG. 9 is a schematic side view of a controller provided by the present application.
  • S controller heat dissipation structure; 10, housing; 20, heat dissipation plate; 201, front; 202, back; 21, heat dissipation column; 22, cooling tank; 221, inlet pipe; 2211, inlet Liquid port; 222, outlet pipe; 2221, liquid outlet; 25, deflector; 251, sub-separator; 252, gap; A1, A2, A3, A4, heat dissipation area; 26, gap; 30, IGBT Module.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, the meaning of "a plurality" is two or more, unless it is specifically and specifically defined otherwise.
  • the terms “installation”, “connected”, and “connected” should be understood in a broad sense unless otherwise specified and limited.
  • it may be a fixed connection or a connection.
  • the specific meanings of the above terms in the present utility model can be understood according to specific situations.
  • the "first" or “down” of the second feature may include the first and second features in direct contact, and may also include the first and second features.
  • the features are not in direct contact but are contacted by another feature between them.
  • the first feature is “above”, “above”, and “above” the second feature, including that the first feature is directly above and obliquely above the second feature, or merely indicates that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” of the second feature, including the fact that the first feature is directly below and obliquely below the second feature, or merely indicates that the first feature is less horizontal than the second feature.
  • the controller heat dissipation structure described in the present application is provided in a controller housing and includes a heat dissipation plate, a plurality of heat dissipation columns, and a cooling groove provided in the housing.
  • the heat dissipation plate includes a front surface and a back surface.
  • the column is provided on the back surface, the cooling tank is connected with a circulation pipeline communicating with the outside, the cooling plate is covered on the cooling tank, and the plurality of cooling columns are sealed in the cooling tank;
  • the rear surface of the board is provided with at least one deflector partition, the at least one deflector partition divides the cooling tank into at least two communicating heat dissipation areas, and each of the heat dissipation areas is distributed with the heat dissipation pillars.
  • the cooling liquid in the cooling tank circulates between the at least two heat dissipation regions.
  • the at least two heat radiation regions communicate with each other to form a curved circulation flow path, thereby increasing the contact area of the cooling liquid
  • the controller heat dissipation structure S is disposed in the controller housing 10 and includes a heat dissipation plate 20, a plurality of heat dissipation columns 21, and a cooling groove 22 provided in the housing 10.
  • the plurality of heat dissipation columns 21 are arranged in a matrix.
  • the heat dissipation plate 20 includes a front surface 201 and a back surface 202.
  • the plurality of heat dissipation columns 21 are disposed on the back surface 202.
  • the cooling tank 22 is connected with a circulation pipeline communicating with the outside, the heat sink 20 is covered on the cooling tank 22, and the plurality of heat dissipation columns 21 are sealed in the cooling tank 22.
  • the circulation pipeline includes an inlet pipe 221 and an outlet pipe 222.
  • a liquid inlet 2211 is provided at the connection between the inlet pipe 221 and the cooling tank 22; a liquid outlet 2221 is provided at the connection between the outlet pipe 222 and the cooling tank 22.
  • a water pump can be connected to the outside of the liquid inlet 2211 or the liquid inlet 2211 and the liquid outlet 2212 to provide circulating power for the liquid entering the heat dissipation structure.
  • a rear deflector 25 is provided on the back 202 of the heat sink 20.
  • the deflector 25 divides the cooling tank 22 into two communicating heat dissipation areas, which are respectively the heat dissipation area A1. And heat dissipation area A2.
  • a plurality of heat dissipation columns 21 are distributed in the heat dissipation area A1 and the heat dissipation area A2, and the cooling liquid in the cooling tank 22 circulates between the heat dissipation area A1 and the heat dissipation area A2.
  • the deflector 25 extends from the back surface 202 of the heat sink 20 to the bottom wall of the cooling groove 22 and is in contact with the bottom wall of the cooling groove 22. The arrangement of the deflector 25 can ensure the flow rate and flow rate of the cooling liquid in each heat dissipation area.
  • the height of the protruding back surface 202 of the heat dissipation column 21 is less than or equal to the height of the protruding back surface 202 of the flow guiding partition 25.
  • a deflector on the back surface 202 of the heat sink 20 divides the heat sink 20 into two regions.
  • the heat sink 20 is covered on the cooling groove 22 and seals the cooling groove 22.
  • the back surface 202 faces the inside of the cooling groove 22.
  • the flow deflector 25 is arranged horizontally or vertically, and the position of the flow deflector 25 is not limited, as long as it is set according to design and application needs.
  • the deflector 25 is a strip-shaped flat plate, which is disposed parallel to the extending direction of the heat dissipation plate 20 to form two relatively narrow heat dissipation regions.
  • the deflector 25 is fixed to the back surface 202, and the other side abuts against the bottom groove wall of the cooling groove 22 opposite to the back surface 202, and is further partitioned in the cooling groove 22 for the cooling fluid to flow.
  • the heat dissipation area A1 and the heat dissipation area A2 are formed so as to form two heat dissipation areas that are completely isolated from each other. It can be understood that, in other embodiments, the deflector 25 may have a gap with the bottom wall of the cooling tank 22.
  • the heat radiation area A1 and the heat radiation area A2 communicate with each other to form a circulation flow path.
  • the liquid inlet 2211 and the liquid outlet 2221 are respectively connected to the heat radiation area A1 and the heat radiation area A2.
  • the inlet pipe 221 and the outlet pipe 222 are connected to a cooling pump to provide circulation for the cooling liquid power.
  • the cooling liquid enters the cooling tank 22 from the inlet pipe 221 through the liquid inlet 2211 under the power of the water pump, flows through the heat dissipation area A1, and then passes through the baffle 25 and the plurality of heat dissipation columns in the heat dissipation area A1 to the heat dissipation area A2. , And then enter the outflow pipe 222 through the liquid outlet 2221 and flow out.
  • the interval between the deflectors 25 accelerates the flow rate of the cooling liquid in the cooling tank 22, and the temperature of the cooling liquid flowing through the heat radiation area A1 and the heat radiation area A2 will have a certain gradient and can be sufficiently cooled.
  • the temperature gradient formed by the cooling liquid circulating between the water pump and the heat dissipation structure S is also conducive to reducing the temperature gradient of the heat dissipation component itself.
  • the entire heat dissipation plate 20 and the cooling groove 22 are separated between the heat dissipation columns 21 of the heat dissipation plate 20 by the added guide plate 25, and a plurality of communicating "round-trip" flow channels are formed in the cooling groove to change the cooling
  • the single flow direction of the liquid reduces the unidirectional flow area of the cooling liquid, which improves the flow rate and heat dissipation rate of the cooling liquid.
  • the deflector 25 is at least partially inserted into a gap between the plurality of heat dissipation columns 21. Both ends of the deflector 25 may be between the cooling columns 21 with a gap between the two sides and the cooling groove 22; or only one end may have a gap between the cooling groove 22 and the other end with the side of the cooling groove 22 Wall connection. In this embodiment, one end of the deflector 25 protrudes from the array formed by the plurality of heat dissipation columns, and is connected to the side wall of the cooling tank, and the other end forms a gap 26 to connect two adjacent heat sinks. Area and for cooling fluid to circulate. The deflector 25 is inserted through a gap between the plurality of heat dissipation columns 21. The deflector 25 does not need to occupy extra space, as long as the gap between the plurality of heat dissipation columns 21 is used to separate the heat dissipation column 21 into at least two parts.
  • the flow guide partition plate 25 of the illustrated embodiment includes a plurality of sub partition plates 251, and a gap 252 is formed between the plurality of sub partition plates 251.
  • the design of the plurality of sub-partitions 251 facilitates the installation of the deflector 25.
  • the slits 252 of the sub-baffle plate can also be used for the cooling liquid to flow.
  • the heat exchange rate of the cooling liquid passing through the areas located on both sides of one sub-baffle plate 251 is greater, and heat can be dissipated for the plurality of heat dissipation columns 21 of these two parts.
  • the deflector 25 is a curved thin plate, which can increase the contact area of the cooling liquid in the heat dissipation area and improve the heat dissipation efficiency.
  • the curved baffle-shaped baffle plate 25 can be formed with different areas of the heat radiation area A1 and the heat radiation area A2 by spacing the heat radiation plate 20 according to the size of the required heat radiation area.
  • the electrical components fixed on the front surface of the heat dissipation plate 20 are located at the heat dissipation area A1, and the components located at the heat dissipation area A2 have less heat or less heat. In this way, targeted heat dissipation can further increase the heat dissipation rate.
  • FIG. 6 and FIG. 7 there are a plurality of deflector partitions 25, and the plurality of deflector partitions 25 are arranged in parallel and spaced apart to form a plurality of heat dissipation areas that communicate in sequence.
  • Decreasing and increasing the flow rate of the cooling liquid between the radiating columns 21 enables the small flow cooling liquid to achieve the equivalent heat dissipation effect of the large flow cooling liquid, reduces the absolute temperature of the device, and makes the device temperature more uniform.
  • the extending direction of the plurality of flow guiding partition plates 25 intersects or is parallel to the length extending direction of the heat dissipation plate 20.
  • the cooling liquid flow direction can be adjusted in different directions, so that the circulation flow channels formed by multiple heat dissipation areas can be adapted to the use environment of the controller.
  • the heat-dissipating plate shown in FIG. 6 is different from the heat-dissipating plate 20 shown in FIG. 3 in that the flow-guiding partition plate 25 is arranged in two parallel intervals and forms three heat-dissipating regions.
  • the heat dissipation plate 20 includes two opposite sides (labeled in the figure), and the two sides extend along this length direction.
  • the three deflectors 25 are arranged at parallel intervals, and four heat dissipation areas are formed as a heat dissipation area A1, a heat dissipation area A2, a heat dissipation area A3, and a heat dissipation area A4.
  • the ends of two deflectors 25 are close to the same side, the end of the third deflector 25 is close to the other side, and the third deflector
  • the flow partition plate 25 is located between the first two flow partition plates 25, so that the heat radiation area A1, the heat radiation area A2, the heat radiation area A3, and the heat radiation area A4 are communicated in sequence to form a curved circulation flow path.
  • the liquid inlet 2211 and the liquid outlet 2221 are respectively connected to the heat radiation area A1 and the heat radiation area A4. After the cooling liquid enters the heat radiation area A1 from the inlet pipe 221, it passes through the heat radiation area A1, the heat radiation area A2, and the heat radiation area A3. The plurality of heat dissipation columns flow to the heat dissipation area A4, and finally flow out from the outflow pipe 222.
  • the difference from the heat dissipation plate 20 in FIG. 7 is that the three flow guide partitions 25 are disposed at an inclined angle compared to the side edges to form an inclined flow channel. .
  • the liquid inlet 2211 and the liquid outlet 2221 are respectively connected to the heat radiation areas at both ends of the heat dissipation plate 20, and the cooling liquid flows out of the outflow pipe 222 through the four heat radiation areas in sequence.
  • the heat dissipation area in this embodiment is more suitable for heat dissipation in the area below the heat dissipation plate 20 shown in the figure.
  • the present application further provides a controller, which includes a controller case 10 and an IGBT module 30 installed in the case 10, and further includes a controller heat dissipation structure S, and the IGBT module 30 is fixed to the heat sink.
  • the controller has a controller heat dissipation structure, which can improve the heat dissipation rate to the IGBT module 30.
  • the controller described in this application is suitable for, but not limited to, an electric motor.
  • the electric motor when an electric motor is applied, the electric motor may be suitable for an electric device with a relatively large power, such as an electric vehicle.
  • the motor controller plays an important role in the entire system of electric vehicles.
  • the main module of the motor controller is IGBT; by using the controller heat dissipation structure of the present application, the heat exchange rate of the cooling liquid can be increased, and the heat can be targeted for heat dissipation to achieve faster heat dissipation.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, the meaning of "a plurality" is at least two, for example, two, three, etc., unless it is specifically and specifically defined otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请所述的控制器散热结构,设于控制器壳体内,包括散热板、多个散热柱及设于所述壳体内的冷却槽,所述散热板包括正面和背面,所述多个散热柱设于所述背面,所述冷却槽连接有与外界联通的循环管路,所述散热板盖于所述冷却槽上,所述多个散热柱密封于所述冷却槽内;所述散热板的背面上设有至少一个导流隔板,所述至少一个导流隔板将所述冷却槽分成至少两个连通的散热区域,每个所述散热区域内均分布有所述的散热柱,所述冷却槽内的冷却液在所述至少两个散热区域之间循环流动。

Description

控制器散热结构及控制器 技术领域
本申请涉及一种控制器散热领域,尤其涉及一种控制器散热结构及控制器。
背景技术
目前控制器,如电机控制器产品中的冷却形式多样化,但是普遍存在冷却能力不足,难以满足功率大、产热量大等的应用产品的需求。电机控制器中通常选用的功率器件是IGBT(Insulated Gate Bipolar Transistor)。控制器中的功率器件的散热通常选用水冷的方式,传统的冷却方案是直接在基板上设计了水冷的冷却翅片结构来提高散热效率,但是冷却液的换热速率较低,进而会影响控制器的散热效果。
发明内容
本申请提供一种提高散热效率的控制器散热结构,应用该散热结构的控制器。
本申请所述的控制器散热结构,设于控制器壳体内,包括散热板、多个散热柱及设于所述壳体内的冷却槽,所述散热板包括正面和背面,所述多个散热柱设于所述背面,所述冷却槽连接有与外界联通的循环管路,所述散热板盖于所述冷却槽上,所述多个散热柱密封于所述冷却槽内;
所述散热板的背面上设有至少一个导流隔板,所述至少一个导流隔板将所述冷却槽分成至少两个连通的散热区域,每个所述散热区域内均分布有所述的散热柱,所述冷却槽内的冷却液在所述至少两个散热区域之间循环流动。
本申请中通过在散热板的散热柱之间增加导流隔板能够分隔整个冷却槽,形成“往返”形式的流道,改变冷却液单一的流动方向,使冷却液的单向流通面积减少;进而减小了器件基板整体的温度梯度;同时散热柱之间的冷却液流速翻倍,提高了液冷换热效率。
其中,所述导流隔板至少部分穿插于所述多个散热柱之间的缝隙内。导流 隔板两端可以全部在所述散热柱之间,两侧与冷却槽之间都具有空隙;或者只有一端与冷却槽之间具有空隙,另一端与所述冷却槽的侧壁连接。所述导流隔板不占用多余空间,利用多个散热柱之间的缝隙将散热柱分隔至少两部分。
其中,所述至少两个散热区域连通形成曲形的循环流道,进而增加冷却液的接触面积,提高散热效率。
其中,所述导流隔板为曲形薄板,同样可以增加冷却液的接触面积,提高散热效率。
本申请一实施例中,所述导流隔板为一个,将所述冷却槽分成两个散热区域,相较于所述散热板的延伸方向所述导流隔板呈横向设置或者纵向设置。
本申请另一实施例中,所述导流隔板为多个,所述多个导流隔板平行且间隔设置,形成依次连通的多个散热区域,那么流道面积减小,增加散热柱之间的冷却液流速,使小流量冷却液达到大流量冷却液等效的散热效果,降低了器件的绝对温度,使器件温度更均匀。
其中,所述多个导流隔板的延伸方向与所述散热板的长度延伸方向相交或者平行。可以调控不同的方向的冷却液流动方向,使多个散热区域形成的循环流道适应控制器的使用环境。
其中,所述冷却槽包括进液口和出液口,所述进液口和出液口分别连接位于所述循环流道的两端的所述散热区域,所述进液口和出液另一端分别连接循环管道,循环管道连接冷却泵,为冷却液提供循环动力,实现散热结构的循环散热。
其中,所述散热柱凸出所述背面的高度小于或等于所述导流隔板凸出所述背面的高度。所述导流隔板自所述散热板的背面延伸至所述冷却槽的底壁,并于所述冷却槽的底壁贴合,可以保证冷却液在散热柱之间的流量,提高散热效率。
其中,所述导流隔板与所述冷却槽的槽侧壁之间具有间隙,以供冷却液在所述两个导流隔板散热区域之间流动。
其中,所述导流隔板包括多个子隔板,如此便于导流隔板的安装,所述多个子隔板之间通过缝隙间隔。所述间隙同样可以供冷却液流动。
本申请还提供一种控制器,包括控制器壳体及装于所述壳体内的IGBT模 组,还包括所述的控制器散热结构,所述IGBT模组固定于所述散热板的正面。所述控制器具有所述的控制器散热结构,可以提高对IGBT模组的散热速率。
本申请中通过增加的导流隔板在散热板的散热柱之间分隔整个冷却槽,形成“往返”形式的流道,使冷却液的单向流通面积减少,提升冷却液流速,提高了液冷换热效率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的控制器散热结构平面示意图;
图2是图1所述的散热结构的侧视方向的结构简图;
图3是图2所述的散热结构的散热板的具体实施例的平面示意图;
图4是图3所述的散热结构的散热板的一种实施方式平面示意图;
图5是图3所述的散热结构的散热板的第二种实施方式平面示意图;
图6是图2所述的散热结构的散热板的一实施例的平面示意图;
图7是图2所述的散热结构的散热板的又一实施例的平面示意图;
图8是图7所述的散热结构的散热板的一实施方式的平面示意图;
图9为本申请提供的控制器的侧视方向示意图。
附图标记说明如下:S、控制器散热结构;10、壳体;20、散热板;201、正面;202、背面;21、散热柱;22、冷却槽;221、进流管;2211、进液口;222、出流管;2221、出液口;25、导流隔板;251、子隔板;252、缝隙;A1、A2、A3、A4、散热区域;26、间隙;30、IGBT模组。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本实用新型的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本实用新型的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本实用新型的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
在本实用新型中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本实用新型的不同结构。为了简化本实用新型的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本实用新型。此外,本实用新型可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本实用新型提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
本申请所述的控制器散热结构,设于控制器壳体内,包括散热板、多个散热柱及设于所述壳体内的冷却槽,所述散热板包括正面和背面,所述多个散热柱设于所述背面,所述冷却槽连接有与外界联通的循环管路,所述散热板盖于所述冷却槽上,所述多个散热柱密封于所述冷却槽内;所述散热板的背面上设有至少一个导流隔板,所述至少一个导流隔板将所述冷却槽分成至少两个连通的散热区域,每个所述散热区域内均分布有所述的散热柱,所述冷却槽内的冷却液在所述至少两个散热区域之间循环流动。所述至少两个散热区域连通形成曲形的循环流道,进而增加冷却液的接触面积,提高散热效率。
以具体的实施例对本申请的控制器散热结构进行说明。请参阅图1与图2,所述控制器散热结构S设于控制器壳体10内,包括散热板20、多个散热柱21及设于所述壳体10内的冷却槽22。所述多个散热柱21成矩阵排列。所述散热板20包括正面201和背面202,所述多个散热柱21设于所述背面202。所述冷却槽22连接有与外界联通的循环管路,所述散热板20盖于所述冷却槽22上,所述多个散热柱21密封于所述冷却槽22内。所述循环管路包括进流管221和出流管222。所述进流管221与所述冷却槽22连接处设有进液口2211;出流管222与所述冷却槽22连接处设有出液口2221。可以理解的是,在进液口2211或者进液口2211和出液口2212的外部可以与水泵连接,从而为进入散热结构的液体提供循环动力。
请参阅图3,本实施例中,所述散热板20的背面202上设有一个导流隔板25,导流隔板25将冷却槽22分成两个连通的散热区域,分别为散热区域A1和散热区域A2。散热区域A1和散热区域A2内均分布有多个散热柱21,冷却槽22内的冷却液在散热区域A1和散热区域A2之间循环流动。其中,导流隔板25自散热板20的背面202延伸至冷却槽22的底壁,并与冷却槽22的底壁贴合。导流隔板25的设置,可以保证每个散热区域的冷却液的流量及流速。
在某些实施例中,散热柱21凸出背面202的高度小于或等于所述导流隔板25凸出背面202的高度。
具体的,如图3所示的实施例,散热板20的背面202上的导流隔板将散热板20分成两个区域,散热板20盖设于冷却槽22上,并密封冷却槽22,背 面202朝向所述冷却槽22内部。相较于散热板20的延伸方向导流隔板25呈横向设置或者纵向设置,不限定导流隔板25的位置,只要针对设计和应用需要设置即可。在本实施例中,导流隔板25为条形平板,平行于散热板20的延伸方向设置,形成两个较为狭长的散热区域。
导流隔板25宽度方向上一侧是固定在背面202上的,另一侧抵持在冷却槽22的与背面202相对的底槽壁上,进而在冷却槽22内分隔成供冷却液流动的所述散热区域A1和散热区域A2,以便与形成完全隔绝的两个散热区域。可以理解的是,在其他实施例中,导流隔板25也可以与冷却槽22的底壁具有缝隙。散热区域A1和散热区域A2连通形成循环流道,进液口2211和出液口2221分别连接散热区域A1和散热区域A2,进流管221和出流管222连接冷却泵,为冷却液提供循环动力。冷却液在水泵的动力下从进流管221通过进液口2211进入冷却槽22,先流经散热区域A1,后经过导流隔板25和散热区域A1内的多个散热柱流向散热区域A2,再通过出液口2221进入出流管222后流出。导流隔板25的间隔,加速了冷却液在冷却槽22内的流动速度,而流经散热区域A1和散热区域A2的冷却液的温度会有一定梯度,可以充分冷却。而循环于水泵以及散热结构S之间的冷却液形成的温度梯度也有利于缩小所要散热元器件本身的温度梯度。
本申请中通过增加的导流隔板25在散热板20的散热柱21之间分隔整个散热板20和冷却槽22,在冷却槽内形成多个连通的“往返”形式的流道,改变冷却液单一的流动方向,使冷却液的单向流通面积减少,就提升了冷却液的流速和散热速率。
其中,导流隔板25至少部分穿插于多个散热柱21之间的缝隙内。导流隔板25两端可以全部在散热柱21之间,两侧与冷却槽22之间都具有间隙;或者只有一端与冷却槽22之间具有间隙,另一端与所述冷却槽22的侧壁连接。在本实施例中,导流隔板25的一端伸出所述多个散热柱形成的阵列,并与所述冷却槽的侧壁连接,另一端形成间隙26,以连接两个相邻的散热区域并供冷却液流通。导流隔板25穿插于多个散热柱21之间的缝隙,导流隔板25不需要占用多余空间,只要利用多个散热柱21之间的缝隙将散热柱21分隔成至少两部分。
进一步的,请参阅图4,图示实施例的导流隔板25包括多个子隔板251,多个子隔板251之间形成有缝隙252间隔。多个子隔板251的设计便于导流隔板25的安装。子隔板的缝隙252也可以供冷却液流动,经过位于一个子隔板251两侧区域的冷却液换热速率更大,可以针对这两部分的多个散热柱21进行散热。
请参阅图5,一种实施方式中,导流隔板25为曲形薄板,可以增加冷却液在散热区域的接触面积,提高散热效率。同时,曲形薄板形状的导流隔板25可以根据需要散热面积的大小间隔散热板20形成不同面积的散热区域A1和散热区域A2。比如固定在所述散热板20正面的电器件位于散热区域A1位置的器件热量大,位于散热区域A2位置的器件少一些或者热量小,这样针对性的散热,可以进一步提高散热速率。
请参阅图6和图7,本申请另一实施例中,导流隔板25为多个,多个导流隔板25平行且间隔设置,形成依次连通的多个散热区域,那么流道面积减小,增加散热柱21之间的冷却液流速,使小流量冷却液达到大流量冷却液等效的散热效果,降低了器件的绝对温度,使器件温度更均匀。其中,多个导流隔板25的延伸方向与所述散热板20的长度延伸方向相交或者平行。可以调控不同的方向的冷却液流动方向,使多个散热区域形成的循环流道适应控制器的使用环境。
具体的,图6中所示的散热板与图3所示的散热板20不同的是导流隔板25为两个平行间隔设置,形三个散热区域。下面以图7所示的实施例为例详细说明。散热板20包括两个相对的侧边(图为标),该两个侧边沿着这长度方向延伸。导流隔板25为3个且平行间隔设置,形成四个散热区域分别为散热区域A1、散热区域A2、散热区域A3及散热区域A4。三个导流隔板25中有两个导流隔板25的端部靠近同一个所述侧边,第三个导流隔板25的端部靠近另一个侧边,且该第三个导流隔板25位于前两个导流隔板25之间,进而使散热区域A1、散热区域A2、散热区域A3及散热区域A4依次连通形成曲形的循环流道。
进液口2211和出液口2221分别连接散热区域A1和散热区域A4,冷却液从所述进流管221进入所述散热区域A1后,经过所述散热区域A1散热区 域A2、散热区域A3内的多个散热柱流向所述散热区域A4,最后由出流管222流出。
请参阅图8,另一种实施方式中,与图7中的散热板20不同之处在于,三个所述导流隔板25相较于所述侧边倾斜角设置,形成倾斜的流道。进液口2211和出液口2221分别连接散热板20两端的散热区域,冷却液依次经过四个散热区域由出流管222流出。本实施例中的散热区域更适用于位于图中所示的散热板20下方区域的散热。
请参阅图9,本申请还提供一种控制器,包括控制器壳体10及装于所述壳体10内的IGBT模组30,还包括控制器散热结构S,IGBT模组30固定于散热板20的正面201。控制器具有控制器散热结构,可以提高对IGBT模组30的散热速率。
本申请所述的控制器适用于但不限于电机,比如,应用电机时,电机可以适用于电动汽车等功率较大的电动装置。电动汽车的整个系统中电机控制器占有举足轻重的地位。电机控制器的主要模块是IGBT;通过使用本申请的控制器散热结构,可以提高冷却液的换热速率,而且可以针对性的进行散热,实现更快速的散热。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本实用新型的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本实用新型的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
尽管上面已经示出和描述了本实用新型的实施方式,可以理解的是,上述 实施方式是示例性的,不能理解为对本实用新型的限制,本领域的普通技术人员在本实用新型的范围内可以对上述实施方式进行变化、修改、替换和变型,本实用新型的范围由权利要求及其等同物限定。

Claims (13)

  1. 一种控制器散热结构,设于控制器壳体内,其特征在于,包括
    散热板,所述散热板包括正面和背面;
    多个散热柱,所述多个散热柱设于所述散热板的背面;以及冷却槽,设于所述壳体内,所述冷却槽连接有与外界联通的循环管路,所述散热板盖设于所述冷却槽上,所述多个散热柱密封于所述冷却槽内;
    其中,所述散热板的背面上设有至少一个导流隔板,所述至少一个导流隔板将所述冷却槽分成至少两个连通的散热区域,每个所述散热区域内均分布有所述的散热柱,所述冷却槽内的冷却液在所述至少两个散热区域之间循环流动。
  2. 根据权利要求1所述的控制器散热结构,其特征在于,所述导流隔板至少部分穿插于所述多个散热柱之间的缝隙内。
  3. 根据权利要求1所述的控制器散热结构,其特征在于,所述导流隔板自所述散热板的背面延伸至所述冷却槽的底壁,并于所述冷却槽的底壁贴合。
  4. 根据权利要求1-3任一项所述的控制器散热结构,其特征在于,所述至少两个散热区域连通形成曲形的循环流道。
  5. 根据权利要求4所述的控制器散热结构,其特征在于,所述导流隔板为曲形薄板。
  6. 根据权利要求4所述的控制器散热结构,其特征在于,所述导流隔板为一个,将所述冷却槽分成两个散热区域,相较于所述散热板的延伸方向所述导流隔板呈横向设置或者纵向设置。
  7. 根据权利要求4所述的控制器散热结构,其特征在于,所述导流隔板为多个,所述多个导流隔板平行且间隔设置,形成依次连通的多个散热区域。
  8. 根据权利要求7所述的控制器散热结构,其特征在于,所述多个导流隔板的延伸方向与所述散热板的长度延伸方向相交或者平行。
  9. 根据权利要求5-8任一项所述的控制器散热结构,其特征在于,所述冷却槽包括进液口和出液口,所述进液口和出液口分别连接位于所述循环流道的两端的所述散热区域。
  10. 根据权利要求1所述的控制器散热结构,其特征在于,所述散热柱凸出所述背面的高度小于或等于所述导流隔板凸出所述背面的高度。
  11. 根据权利要求1所述的控制器散热结构,其特征在于,所述导流隔板与所述冷却槽的槽侧壁之间具有间隙,以供冷却液在所述两个导流隔板散热区域之间流动。
  12. 根据权利要求1任一项所述的控制器散热结构,其特征在于,所述导流隔板包括多个子隔板,所述多个子隔板之间通过缝隙间隔。
  13. 一种控制器,包括控制器壳体及装于所述壳体内的IGBT模组,其特征在于,包括:如权利要求1-12任一项所述的控制器散热结构;以及所述IGBT模组固定于所述散热板的正面。
PCT/CN2018/096972 2018-07-25 2018-07-25 控制器散热结构及控制器 WO2020019183A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880036942.1A CN110720140A (zh) 2018-07-25 2018-07-25 控制器散热结构及控制器
PCT/CN2018/096972 WO2020019183A1 (zh) 2018-07-25 2018-07-25 控制器散热结构及控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/096972 WO2020019183A1 (zh) 2018-07-25 2018-07-25 控制器散热结构及控制器

Publications (1)

Publication Number Publication Date
WO2020019183A1 true WO2020019183A1 (zh) 2020-01-30

Family

ID=69181089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096972 WO2020019183A1 (zh) 2018-07-25 2018-07-25 控制器散热结构及控制器

Country Status (2)

Country Link
CN (1) CN110720140A (zh)
WO (1) WO2020019183A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021203787A1 (zh) * 2020-04-09 2021-10-14 浙江嘉熙科技股份有限公司 热超导传热板及散热器
TWI738547B (zh) * 2020-10-23 2021-09-01 朱振維 震動系統散熱結構改良
CN213403966U (zh) * 2020-11-10 2021-06-08 苏州汇川联合动力系统有限公司 散热器结构和电机控制器
CN114599215B (zh) * 2022-05-10 2022-08-23 远峰科技股份有限公司 高效散热的智能座舱域液冷主机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358270A (ja) * 2000-06-14 2001-12-26 Mitsubishi Electric Corp 冷却装置
CN201000883Y (zh) * 2006-12-22 2008-01-02 上海燃料电池汽车动力系统有限公司 车用电子控制单元及其集成系统的低阻水冷装置
KR20130089329A (ko) * 2012-02-02 2013-08-12 주식회사 효성 인버터 냉각장치
CN103413794A (zh) * 2013-08-16 2013-11-27 中国科学院深圳先进技术研究院 一种半导体功率器件的散热封装结构
CN106455456A (zh) * 2016-12-06 2017-02-22 株洲南车奇宏散热技术有限公司 一种铜铝复合水冷板及其加工制作方法、水冷散热方法
CN206250182U (zh) * 2016-12-06 2017-06-13 株洲南车奇宏散热技术有限公司 一种铜铝复合水冷板及水冷板基板
CN206584918U (zh) * 2017-03-20 2017-10-24 浙江弗斯莱电动科技有限公司 一种用于电机控制器的igbt冷却器
CN207021256U (zh) * 2017-07-06 2018-02-16 华南理工大学 一种基于液流槽串联的igbt模块液冷板
CN207652885U (zh) * 2017-12-19 2018-07-24 深圳市英威腾电气股份有限公司 一种翅片麦穗状分布的水冷板及电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205491579U (zh) * 2015-11-30 2016-08-17 比亚迪股份有限公司 Igbt散热模组以及具有其的igbt模组

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358270A (ja) * 2000-06-14 2001-12-26 Mitsubishi Electric Corp 冷却装置
CN201000883Y (zh) * 2006-12-22 2008-01-02 上海燃料电池汽车动力系统有限公司 车用电子控制单元及其集成系统的低阻水冷装置
KR20130089329A (ko) * 2012-02-02 2013-08-12 주식회사 효성 인버터 냉각장치
CN103413794A (zh) * 2013-08-16 2013-11-27 中国科学院深圳先进技术研究院 一种半导体功率器件的散热封装结构
CN106455456A (zh) * 2016-12-06 2017-02-22 株洲南车奇宏散热技术有限公司 一种铜铝复合水冷板及其加工制作方法、水冷散热方法
CN206250182U (zh) * 2016-12-06 2017-06-13 株洲南车奇宏散热技术有限公司 一种铜铝复合水冷板及水冷板基板
CN206584918U (zh) * 2017-03-20 2017-10-24 浙江弗斯莱电动科技有限公司 一种用于电机控制器的igbt冷却器
CN207021256U (zh) * 2017-07-06 2018-02-16 华南理工大学 一种基于液流槽串联的igbt模块液冷板
CN207652885U (zh) * 2017-12-19 2018-07-24 深圳市英威腾电气股份有限公司 一种翅片麦穗状分布的水冷板及电子设备

Also Published As

Publication number Publication date
CN110720140A (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
WO2020019183A1 (zh) 控制器散热结构及控制器
US20090250195A1 (en) Heat sink and cooler
US20080314559A1 (en) Heat exchange structure and heat dissipating apparatus having the same
CN108766946B (zh) 液冷散热装置及电机控制器
CN103515337A (zh) 用于功率模块的散热系统
CN103281890B (zh) 一种水冷板
TWM246988U (en) Water-cooling apparatus for electronic devices
WO2018209828A1 (zh) 液冷散热装置及电机控制器
WO2022253241A1 (zh) 换热组件、散热结构及电机控制器
CN112928082A (zh) 液冷板及功率模组
CN211406671U (zh) 高效液冷散热系统
CN209882439U (zh) 一种双面散热的高性能水冷散热器及电器设备
JP2011233688A (ja) 半導体冷却器
US10426058B2 (en) Cold plate assembly for electrical cabinet
CN109588001B (zh) 双回路液冷系统
CN113035805A (zh) 液冷板及功率模组
CN105514064A (zh) 散热器
WO2021036249A1 (zh) 一种散热器、电子设备及汽车
KR101474616B1 (ko) 전력반도체장치의 방열시스템
CN109548371A (zh) 一种电动汽车控制器结构
CN214316082U (zh) 一种适用于液冷的散热器
CN115332204A (zh) 一种低热阻低泵功稳定性好的歧管微通道散热器
CN213938723U (zh) 一种用于4g通信柜的散热器
US20220214112A1 (en) Internal circulation water cooling heat dissipation device
TWM267825U (en) Improved heat sink structure of liquid-cooling type heat sink device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927991

Country of ref document: EP

Kind code of ref document: A1