WO2022253100A1 - 一种MXene增强硅酸盐胶黏陶瓷涂层及其制备方法 - Google Patents

一种MXene增强硅酸盐胶黏陶瓷涂层及其制备方法 Download PDF

Info

Publication number
WO2022253100A1
WO2022253100A1 PCT/CN2022/095263 CN2022095263W WO2022253100A1 WO 2022253100 A1 WO2022253100 A1 WO 2022253100A1 CN 2022095263 W CN2022095263 W CN 2022095263W WO 2022253100 A1 WO2022253100 A1 WO 2022253100A1
Authority
WO
WIPO (PCT)
Prior art keywords
mxene
silicate adhesive
ceramic coating
preparation
adhesive ceramic
Prior art date
Application number
PCT/CN2022/095263
Other languages
English (en)
French (fr)
Inventor
王永光
管怀俊
杨网
赵栋
齐菲
王传洋
卞达
倪自丰
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2022253100A1 publication Critical patent/WO2022253100A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • C09D1/02Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention relates to the technical field of metal surface materials, in particular to an MXene-enhanced silicate adhesive ceramic coating and a preparation method thereof.
  • Inorganic adhesive ceramic coating is the product of sol-gel technology, which mainly includes adhesive, aggregate, curing agent and functional additives, etc., and is usually applied by brushing, scraping and room temperature spraying. Since the preparation process is relatively simple and does not require complex structures, sophisticated coating equipment has been widely used in the industrial field. At present, most of the adhesives used are inorganic binder aluminum dihydrogen phosphate, but the curing temperature is high, the curing time is long, and the wear resistance in harsh real environments needs to be improved. Patent CN 106866122 A uses dihydrogen phosphate Aluminum is used as an adhesive to prepare the coating, and its curing temperature reaches 300 °C. Potassium silicate, an inorganic binder, has low curing temperature and short curing time.
  • MXene has many excellent properties since they were first reported in 2011, and have great research significance in various fields, but their applications in the field of tribology are less.
  • chemical etching preparation process there will be some chemical groups on the surface of MXene, such as –OH, –O, –F.
  • MXene has low shear strength, self-lubricating ability, high mechanical strength, and layer stacked structure, which is bonded by weak van der Waals force and can self-peel and delaminate under the action of small shear force.
  • MXene can be used as a coating reinforcement material that can be used on any substrate surface, it will be of great significance to promote the industrialization of MXene in the field of friction reduction and wear resistance.
  • the present invention solves the high curing temperature, long curing time and insufficient wear resistance of the inorganic phosphate adhesive ceramic coating in the prior art. Although people add different lubricating materials to improve its friction and wear performance, the friction and wear performance still cannot be satisfied.
  • a MXene-enhanced silicate adhesive ceramic coating and its preparation method are provided, which have low shear strength, self-lubricating ability, high mechanical strength and layer stacked structure .
  • the MXene reinforced silicate adhesive ceramic coating includes the following components: alumina, silicon phosphate, MXene and silicate adhesive, and the chemical formula of MXene is Ti 3 C 2 .
  • the mass fraction of alumina is 20-60
  • the mass fraction of silicon phosphate is 1-10
  • the mass fraction of MXene is 0.1-2.5
  • the mass fraction of silicate adhesive is 40- 80.
  • the silicate adhesive is obtained by mixing an aqueous solution of potassium silicate and an aqueous solution of silica sol.
  • the concentration of the solute in the silicate adhesive is 35-40% by mass.
  • the silicate adhesive can be obtained by mixing an aqueous solution of potassium silicate (concentration of 40% by mass) with an aqueous solution of silica sol (concentration of 30% by mass) at a mass ratio of 2:1-2.
  • the surface chemical group of the MXene is at least one of -OH, -O and -F.
  • the particle size of the alumina is 1 ⁇ m-20 ⁇ m. If the particle size is too small, the coating is easy to crack, and if the particle size is too large, the pores of the coating will become larger and the bonding with the substrate will be poor.
  • Another scheme of the present invention also provides a kind of preparation method of MXene reinforced silicate adhesive ceramic coating, comprises the following steps,
  • step S3 coating the slurry obtained in step S2 on the pretreated substrate, and obtaining the MXene-reinforced silicate adhesive ceramic coating after curing.
  • step S1 the specific operation of step S1 is as follows: weigh 20-60 parts by mass of alumina and 0.1-2.5 parts by mass of MXene and mix them, after mixing, ultrasonically disperse for 20 minutes with an ultrasonic cell disruptor, and finally put them into vacuum drying.
  • the preparation method of the silicate adhesive in step S2 is as follows: Weigh the potassium silicate aqueous solution and the silica sol aqueous solution, mix and stir to obtain the silicate adhesive, and the mass fraction of the silicate adhesive is 40- 80; the mass fraction of the curing agent silicon phosphate in step S3 is 1-10.
  • the dispersion solvent in the step S1 is water, specifically, the dispersion can be performed in deionized water.
  • the substrate in the step S4 is 304 stainless steel.
  • the pretreatment in the step S4 includes the following steps: firstly grinding to remove rust marks on the surface of the substrate, then cleaning to remove stains on the surface of the substrate, and performing sandblasting on the surface of the substrate after drying.
  • the curing treatment in step S4 is: firstly solidify at room temperature (20-30°C, the same below), then raise the temperature to 150-170°C in 3-6 times, solidify after each temperature rise, and finally cool to room temperature .
  • it can be: first solidify at room temperature; then heat up to 80-100°C to solidify; heat up to 110-130°C to solidify; heat up to 130-150°C; heat up to 150-170°C to solidify, and finally cool to room temperature.
  • the maximum curing temperature is set at 150-170°C. Gradient heating is used to prevent rapid heating from causing uneven internal thermal stress and affecting coating performance.
  • the present invention adopts the slurry method to prepare the adhesive ceramic coating, and the preparation process is relatively simple, and does not require complicated structure and sophisticated coating equipment; and the curing temperature of the silicate adhesive ceramic coating is relatively low and the time is relatively short. It is very suitable for some industrial production equipment and places that are not resistant to high temperature;
  • the MXene-enhanced silicate adhesive ceramic coating of the present invention has a low friction coefficient and a long wear-resistant life, and can achieve good wear-resistant and anti-friction effects, reduce the wear of metal materials, and slow down the wear and tear of mechanical equipment and parts , prolong the service life of the substrate;
  • the MXene-enhanced silicate adhesive ceramic coating of the present invention has low energy consumption in the preparation process, is green and pollution-free, and has a wide coverage of applicable materials.
  • Fig. 1 is the process flow chart of preparation method of the present invention.
  • Fig. 2 is a graph of the wear morphology of the coating in Comparative Example 1.
  • FIG. 3 is a graph showing the wear profile of the coating in Example 1.
  • silicate adhesive by mixing potassium silicate aqueous solution with a concentration of 40% by mass and aqueous silica sol solution with a concentration of 30% by mass at a mass ratio of 2:1.
  • a kind of preparation method of MXene strengthened silicate adhesive ceramic coating as shown in Figure 1, comprises the following steps,
  • Substrate pretreatment the 304 steel substrate was polished with sandpaper, ultrasonically cleaned in absolute ethanol for 15 minutes to remove surface stains, washed with deionized water, dried, and finally the surface was sandblasted.
  • a kind of preparation method of MXene strengthened silicate adhesive ceramic coating as shown in Figure 1, comprises the following steps,
  • Substrate pretreatment the 304 steel substrate was polished with sandpaper, ultrasonically cleaned in absolute ethanol for 15 minutes to remove surface stains, washed with deionized water, dried, and finally the surface was sandblasted.
  • a kind of preparation method of MXene strengthened silicate adhesive ceramic coating as shown in Figure 1, comprises the following steps,
  • Substrate pretreatment the 304 steel substrate was polished with sandpaper, ultrasonically cleaned in absolute ethanol for 15 minutes to remove surface stains, washed with deionized water, dried, and finally the surface was sandblasted.
  • a kind of preparation method of MXene strengthened silicate adhesive ceramic coating as shown in Figure 1, comprises the following steps,
  • Substrate pretreatment the 304 steel substrate was polished with sandpaper, ultrasonically cleaned in absolute ethanol for 15 minutes to remove surface stains, washed with deionized water, dried, and finally the surface was sandblasted.
  • Example 3 On the basis of Example 3, the mass of alumina was adjusted to 7.5 g, the mass of the silicate adhesive to 10 g, and the mass of the curing agent silicon phosphate to 1.25 g.
  • Example 3 On the basis of Example 3, the mass of alumina was adjusted to 2.5 g, the mass of the silicate adhesive to 5 g, and the mass of the curing agent silicon phosphate to 0.625 g.
  • a method for preparing a silicate adhesive ceramic coating comprising the following steps,
  • Substrate pretreatment polish the 304 steel substrate with sandpaper, ultrasonically clean it in absolute ethanol for 15 minutes, remove surface stains, clean and dry with deionized water, and finally perform sandblasting on the surface;
  • the coating with MXene has a small friction coefficient, and when the MXene content is 1.2wt%, the friction coefficient is the smallest. It can be seen that MXene has a very good anti-friction effect. Friction, the layers and wear debris produced by the stacked structure form a lubricating film, which reduces the friction coefficient between the friction pairs and slows down the wear of the friction parts, preventing the direct contact between the adhesive ceramic coating and other objects. The role of solid lubricants, so it can effectively reduce the friction coefficient of the ceramic coating, improve the wear resistance and anti-friction performance of the coating, so as to ensure that the adhesive ceramic coating has good strength and toughness. This phenomenon can also be verified from the comparison of the wear morphology of the coatings of Comparative Example 1 and Example 1 in Fig. 2 and Fig. 1 . When the MXene content reaches above 1.6wt%, the coefficient of friction increases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

本发明涉及金属表面材料技术领域,具体涉及一种MXene增强硅酸盐胶黏陶瓷涂层及其制备方法,所述MXene增强硅酸盐胶黏陶瓷涂层,包括以下组分:氧化铝、磷酸硅、MXene和硅酸盐胶黏剂;所述MXene的化学式为Ti 3C 2。本发明涂层兼具较低的剪切强度、自润滑能力、较高的机械强度以及层层堆叠结构;制备工艺较为简单,固化温度较低,时间较短,非常适合一些不耐高温的工业生产设备和场所;制备过程能耗低,不需要结构复杂、精密的涂敷设备,绿色无污染。

Description

一种MXene增强硅酸盐胶黏陶瓷涂层及其制备方法 技术领域
本发明涉及金属表面材料技术领域,具体涉及一种MXene增强硅酸盐胶黏陶瓷涂层及其制备方法。
背景技术
在工业技术的飞速发展之下,工程设备及其构件的工作环境条件愈加恶劣和严苛。相互作用的机器部件在经历摩擦和磨损后,最终会导致功率损失和服役寿命的减少。目前,使机械部件在滑动状态下进行可靠工作的同时,减少摩擦磨损引起的材料损耗仍然是节约能源消耗的挑战之一。对工程设备及其零部件表面涂敷涂层已成为保护上述工程机械及设备和节约能源消耗行之有效的办法之一。
无机胶黏陶瓷涂层为溶胶凝胶技术的产物,它主要包含胶黏剂、骨料、固化剂和功能性添加剂等,通常采用刷涂、刮涂和常温喷涂的涂覆方法。由于制备工艺较为简单,不需要结构复杂,精密的涂敷设备在工业领域展现出广泛应用。目前所用胶黏剂多为无机粘结剂磷酸二氢铝,但其固化温度较高,固化时间长,在严苛的真实环境下的耐磨性还有待提高,专利CN 106866122 A采用磷酸二氢铝做为胶黏剂制备涂层,其固化温度达到300℃。无机粘结剂硅酸钾固化温度低、时间短,因其环保、成本低、耐候性强、取材丰富等优点,在富锌底漆、建筑涂料、无机胶黏剂等方面应用广泛,近年来一直成为世界各国研究的热点。目前硅酸钾粘结剂在制备耐磨减摩涂层的应用上还鲜有报道。
在摩擦学领域中,人们普遍是利用一种或多种有机或无机填料作为润滑材料,来改善涂层材料的摩擦磨损性能和机械性能。二维MXene材料自2011年首次被报道以来具有许多优良特性,在各个领域有重大的研究意义,但在摩擦学领域的应用较少。MXene在化学刻蚀制备过程中表面会有一些化学基团,如 –OH、–O、–F。MXene具有较低的剪切强度、自润滑能力、较高的机械强度以及层层堆叠结构,该结构由较弱的范德华力键合,能够在较小的剪切力的作用下自我剥离分层形成较薄且稳定性良好的片层。在摩擦过程中,这些片层和磨屑易于形成润滑薄膜,减小摩擦副之间的摩擦系数以及减缓摩擦件的磨损,是一种理想的自润滑材料,在摩擦学领域显示出巨大的潜力。若能将MXene作为一种可用于任何基材表面的涂层增强材料,这对推动MXene在减摩耐磨领域中的产业化具有重大的意义。
发明内容
本发明为了解决现有技术中无机磷酸盐胶黏陶瓷涂层固化温度高,固化时间长,耐磨性不足,尽管人们添加不同的润滑材料改善其摩擦磨损性能,但摩擦磨损性能还是不能满足于目前工程设备的应用的问题,提供了一种MXene增强硅酸盐胶黏陶瓷涂层及其制备方法,兼具较低的剪切强度、自润滑能力、较高的机械强度以及层层堆叠结构。
按照本发明的技术方案,所述MXene增强硅酸盐胶黏陶瓷涂层,包括以下组分:氧化铝、磷酸硅、MXene和硅酸盐胶黏剂,所述MXene的化学式为Ti 3C 2
进一步的,所述氧化铝的质量份数为20-60,磷酸硅的质量份数为1-10,MXene的质量份数为0.1-2.5,硅酸盐胶黏剂的质量份数为40-80。
进一步的,所述硅酸盐胶黏剂由硅酸钾水溶液与硅溶胶水溶液混合所得。
进一步的,所述硅酸盐胶黏剂中溶质的质量百分比浓度为35-40%。
具体的,所述硅酸盐胶黏剂可以由质量比为2:1-2的硅酸钾水溶液(质量百分比浓度40%)配比硅溶胶水溶液(质量百分比浓度30%)所得。
进一步的,所述MXene的表面化学基团为–OH、–O和–F中的至少一种。
进一步的,所述氧化铝的粒度为1μm-20μm,若粒度太小涂层容易开裂,若粒度太大涂层孔隙会变大且与基体的结合较差。
本发明的另一方案还提供了一种MXene增强硅酸盐胶黏陶瓷涂层的制备方法,包括以下步骤,
S1、将氧化铝和MXene混合、分散后干燥,所述MXene的化学式为Ti 3C 2
S2、向S1干燥所得粉末中加入硅酸盐胶黏剂和固化剂磷酸硅,搅拌均匀得到浆料;
S3、将步骤S2所得的浆料涂覆在预处理的基体上,经固化处理后得到所述MXene增强硅酸盐胶黏陶瓷涂层。
其中,步骤S1的具体操作为:称取质量份数为20-60的氧化铝和质量份数为0.1-2.5的MXene混合,混合后用超声细胞破碎仪超声分散20min,最后放入真空干燥。
步骤步骤S2中硅酸盐胶黏剂的制备方法如下:称取硅酸钾水溶液和硅溶胶水溶液,混合搅拌,得到硅酸盐胶黏剂,硅酸盐胶黏剂的质量份数为40-80;步骤S3固化剂磷酸硅的质量份数为1-10。
进一步的,所述步骤S1中的分散的溶剂为水,具体的,分散可以在去离子水中进行。
进一步的,所述步骤S4中的基体为304不锈钢。
进一步的,所述步骤S4中预处理包括以下步骤:先打磨去除基体表面的锈痕,接着清洗去除基体表面的污渍,烘干后在基体表面进行喷砂处理。
进一步的,所述步骤S4中固化处理为:首先于室温(20-30℃,下同)下固化,然后分3-6次升温至150-170℃,每次升温后固化,最后冷却至室温。具体可以为:首先于室温下固化;然后升温至80-100℃,固化;升温至110-130℃,固化;升温至130-150℃;升温至150-170℃,固化,最后冷却至室温。为确保涂层能在较低的温度下制备并保证其性能,将其固化最高温度定在150-170℃。采用梯度升温,能够防止快速加热造成内部热应力不均匀,影响涂层性能。
本发明的技术方案相比现有技术具有以下优点:
1、本发明采用料浆法制备胶黏陶瓷涂层,制备工艺较为简单,不需要结构复杂,精密的涂敷设备;并且硅酸盐胶黏陶瓷涂层的固化温度较低,时间较短,非常适合一些不耐高温的工业生产设备和场所;
2、本发明的MXene增强硅酸盐胶黏陶瓷涂层,具有摩擦系数低、耐磨寿命长,能够实现良好的耐磨减摩效果,减少金属材料磨损,减缓机械设备及零部件的磨损破坏,延长基体的使用寿命;
3、本发明的MXene增强硅酸盐胶黏陶瓷涂层,制备过程能耗低、绿色无污染,且适用材料覆盖面广。
附图说明
图1为本发明制备方法的工艺流程图。
图2为对比例1涂层磨损形貌图。
图3为实施例1涂层磨损形貌图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
将质量百分比浓度为40%的硅酸钾水溶液与质量百分比浓度为30%的硅溶胶水溶液按质量比为2:1配得硅酸盐胶黏剂。
实施例1
一种MXene增强硅酸盐胶黏陶瓷涂层的制备方法,如图1所示,包括以下步骤,
(1)基体预处理:将304钢基体用砂纸打磨,在无水乙醇中超声清洗15min,去除表面污渍,用去离子水清洗、烘干,最后表面进行喷砂处理。
(2)浆料配制:按照制备步骤依次称取4.825g(38.6wt%)的骨料氧化铝、0.05g(0.4wt%)的MXene(Ti 3C 2),随后倒入烧杯内用超声细胞破碎仪在去离子水中进行超声分散20min;量取7.5g(60wt%)的配得的硅酸盐胶黏剂,加入到超声分散后的混料中,添加0.125g(1wt%)的固化剂磷酸硅并进行超声搅拌5min;最后,将已混合均匀的料浆均匀涂敷在已预处理过的304钢基体表面。
(3)固化处理:首先于室温下固化20min,然后升温至100℃,固化1h,接着升温至125℃,固化1h,再升温到135℃,固化1h,最后升温到150℃,固化 1h。此时完成整个固化工艺,停止加热,使涂层自然冷却到室温,即为MXene增强硅酸盐胶黏陶瓷涂层。
实施例2
一种MXene增强硅酸盐胶黏陶瓷涂层的制备方法,如图1所示,包括以下步骤,
(1)基体预处理:将304钢基体用砂纸打磨,在无水乙醇中超声清洗15min,去除表面污渍,用去离子水清洗、烘干,最后表面进行喷砂处理。
(2)浆料配制:按照制备步骤依次称取4.775g(38.2wt%)的骨料氧化铝、0.1g(0.8wt%)的MXene(Ti 3C 2),随后倒入烧杯内用超声细胞破碎仪在去离子水中进行超声分散20min;量取7.5g(60wt%)的配得的硅酸盐胶黏剂,加入到超声分散后的混料中,添加0.125g(1wt%)的固化剂磷酸硅并进行超声搅拌5min;最后,将已混合均匀的料浆均匀涂敷在已预处理过的304钢基体表面。
(3)固化处理:首先于室温下固化20min,然后升温至100℃,固化1h,接着升温至125℃,固化1h,再升温到135℃,固化1h,最后升温到150℃,固化1h。此时完成整个固化工艺,停止加热,使涂层自然冷却到室温,即为MXene增强硅酸盐胶黏陶瓷涂层。
实施例3
一种MXene增强硅酸盐胶黏陶瓷涂层的制备方法,如图1所示,包括以下步骤,
(1)基体预处理:将304钢基体用砂纸打磨,在无水乙醇中超声清洗15min,去除表面污渍,用去离子水清洗、烘干,最后表面进行喷砂处理。
(2)浆料配制:按照制备步骤依次称取4.725g(37.8wt%)的骨料氧化铝、0.15g(1.2wt%)的MXene(Ti 3C 2),随后倒入烧杯内用超声细胞破碎仪在去离子水中进行超声分散20min;量取7.5g(60wt%)的配得的硅酸盐胶黏剂,加入到超声分散后的混料中,添加0.125g(1wt%)的固化剂磷酸硅并进行超声搅拌5min;最后,将已混合均匀的料浆均匀涂敷在已预处理过的304钢基体表面。
(3)固化处理:首先于室温下固化20min,然后升温至100℃,固化1h,接着升温至125℃,固化1h,再升温到135℃,固化1h,最后升温到150℃,固化1h。此时完成整个固化工艺,停止加热,使涂层自然冷却到室温,即为MXene增强硅酸盐胶黏陶瓷涂层。
实施例4
一种MXene增强硅酸盐胶黏陶瓷涂层的制备方法,如图1所示,包括以下步骤,
(1)基体预处理:将304钢基体用砂纸打磨,在无水乙醇中超声清洗15min,去除表面污渍,用去离子水清洗、烘干,最后表面进行喷砂处理。
(2)浆料配制:按照制备步骤依次称取4.675g(37.4wt%)的骨料氧化铝、0.2g(1.6wt%)的MXene(Ti 3C 2),随后倒入烧杯内用超声细胞破碎仪在去离子水中进行超声分散20min;量取7.5g(60wt%)的配得的硅酸盐胶黏剂,加入到超声分散后的混料中,添加0.125g(1wt%)的固化剂磷酸硅并进行超声搅拌5min;最后,将已混合均匀的料浆均匀涂敷在已预处理过的304钢基体表面。
(3)固化处理:首先于室温下固化20min,然后升温至100℃,固化1h,接着升温至125℃,固化1h,再升温到135℃,固化1h,最后升温到150℃,固化1h。此时完成整个固化工艺,停止加热,使涂层自然冷却到室温,即为MXene增强硅酸盐胶黏陶瓷涂层。
实施例5
在实施例3的基础上调整氧化铝的质量为7.5g,硅酸盐胶黏剂的质量为10g,固化剂磷酸硅的质量为1.25g。
实施例6
在实施例3的基础上调整氧化铝的质量为2.5g,硅酸盐胶黏剂的质量为5g,固化剂磷酸硅的质量为0.625g。
对比例1
一种硅酸盐胶黏陶瓷涂层的制备方法,包括以下步骤,
(1)基体预处理:将304钢基体用砂纸打磨,在无水乙醇中超声清洗15min,去除表面污渍,用去离子水清洗、烘干,最后表面进行喷砂处理;
(2)浆料配制:称取4.875g(39wt%)的骨料氧化铝,倒入烧杯内用超声细胞破碎仪在去离子水中进行超声分散20min;量取7.5g(60wt%)的配得的硅酸盐胶黏剂,加入到超声分散后的混料中,添加0.125g(1wt%)的固化剂磷酸硅并进行超声搅拌5min;最后,将已混合均匀的料浆均匀涂敷在已预处理过的304钢基体表面;
(3)固化处理:首先于室温下固化20min,然后升温至100℃,固化1h,接着升温至125℃,固化1h,再升温到135℃,固化1h,最后升温到150℃,固化1h,此时完成整个固化工艺,停止加热,使涂层自然冷却到室温,即为MXene增强硅酸盐胶黏陶瓷涂层。
对实施例1-4和对比例1所得涂层进行摩擦系数测试,其结果如表1所示:
表1 MXene增强硅酸盐胶黏陶瓷涂层的摩擦系数
Figure PCTCN2022095263-appb-000001
由表1可以看出,加入MXene的涂层摩擦系数小,MXene含量在1.2wt%时,摩擦系数最小,可知,MXene具有非常优良的减摩作用,在涂层后的基体使用过程中一旦产生摩擦,层层堆叠的结构产生的片层和磨屑形成润滑薄膜,减小摩擦副之间的摩擦系数以及减缓摩擦件的磨损,阻止了胶黏陶瓷涂层和其他物体的直接接触,起到固体润滑剂的作用,故能够有效降低陶瓷涂层的摩擦系数,提高涂层的耐磨减摩性能,以保证胶黏陶瓷涂层具有良好的强度和韧性。该现象从图2、图1中对比例1和实施例1涂层的磨损形貌对比也可以得到验证。 当MXene含量达到1.6wt%以上时,摩擦系数会上升。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种MXene增强硅酸盐胶黏陶瓷涂层,其特征在于,包括以下组分:氧化铝、磷酸硅、MXene和硅酸盐胶黏剂;所述MXene的化学式为Ti 3C 2
  2. 如权利要求1所述的MXene增强硅酸盐胶黏陶瓷涂层,其特征在于,所述氧化铝的质量份数为20-60,磷酸硅的质量份数为1-10,MXene的质量份数为0.1-2.5,硅酸盐胶黏剂的质量份数为40-80。
  3. 如权利要求1所述的MXene增强硅酸盐胶黏陶瓷涂层,其特征在于,所述硅酸盐胶黏剂由硅酸钾水溶液与硅溶胶水溶液混合所得。
  4. 如权利要求3所述的MXene增强硅酸盐胶黏陶瓷涂层,其特征在于,所述硅酸盐胶黏剂中溶质的质量百分比浓度为35-40%。
  5. 如权利要求1所述的MXene增强硅酸盐胶黏陶瓷涂层,其特征在于,所述MXene的表面化学基团为–OH、–O和–F中的至少一种。
  6. 如权利要求1所述的MXene增强硅酸盐胶黏陶瓷涂层,其特征在于,所述氧化铝的粒度为1μm-20μm。
  7. 一种MXene增强硅酸盐胶黏陶瓷涂层的制备方法,其特征在于,包括以下步骤,
    S1、将氧化铝和MXene混合、分散后干燥,所述MXene的化学式为Ti 3C 2
    S2、向S1干燥所得粉末中加入硅酸盐胶黏剂和固化剂磷酸硅,搅拌均匀得到浆料;
    S3、将步骤S2所得的浆料涂覆在预处理的基体上,经固化处理后得到所述MXene增强硅酸盐胶黏陶瓷涂层。
  8. 如权利要求7所述MXene增强硅酸盐胶黏陶瓷涂层的制备方法,其特征在于,所述步骤S1中的分散的溶剂为水。
  9. 如权利要求7所述MXene增强硅酸盐胶黏陶瓷涂层的制备方法,其特征在于,所述步骤S4中固化处理为:首先于室温下固化,然后分3-6次升温至150-170℃,每次升温后固化,最后冷却至室温。
  10. 如权利要求7所述MXene增强硅酸盐胶黏陶瓷涂层的制备方法,其特征在于,所述步骤S4中固化处理为:首先于室温下固化;然后升温至80-100℃,固化;升温至110-130℃,固化;升温至130-150℃;升温至150-170℃,固化,最后冷却至室温。
PCT/CN2022/095263 2021-06-03 2022-05-26 一种MXene增强硅酸盐胶黏陶瓷涂层及其制备方法 WO2022253100A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110621570.2 2021-06-03
CN202110621570.2A CN113337145B (zh) 2021-06-03 2021-06-03 一种MXene增强硅酸盐胶黏陶瓷涂层及其制备方法

Publications (1)

Publication Number Publication Date
WO2022253100A1 true WO2022253100A1 (zh) 2022-12-08

Family

ID=77473459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095263 WO2022253100A1 (zh) 2021-06-03 2022-05-26 一种MXene增强硅酸盐胶黏陶瓷涂层及其制备方法

Country Status (2)

Country Link
CN (1) CN113337145B (zh)
WO (1) WO2022253100A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337145B (zh) * 2021-06-03 2022-03-01 苏州大学 一种MXene增强硅酸盐胶黏陶瓷涂层及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1740253A (zh) * 2005-09-16 2006-03-01 湖南华迪电力环保工程技术有限公司 一种烟道防腐涂料
CN106007678A (zh) * 2016-05-18 2016-10-12 南京可赛新新型材料有限公司 一种高温耐磨陶瓷涂料及其制备方法
CN110357666A (zh) * 2018-10-08 2019-10-22 湖南德智新材料有限公司 一种陶瓷复合涂层及其制备方法
CN113337145A (zh) * 2021-06-03 2021-09-03 苏州大学 一种MXene增强硅酸盐胶黏陶瓷涂层及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018616A (en) * 1974-09-13 1977-04-19 Mizusawa Kagaku Kogyo Kabushiki Kaisha Water glass composition
CN106810916A (zh) * 2015-11-30 2017-06-09 中国科学院金属研究所 一种水性环保型无机耐高温自润滑涂料及制备方法与应用
CN110105711B (zh) * 2019-05-23 2021-03-26 大连理工大学 一种环氧树脂摩擦学性能改善方法
CN110218470A (zh) * 2019-06-10 2019-09-10 常州烯源纳米科技有限公司 水性耐高温石墨烯无机散热涂料、其制备方法及其用途
CN110918108A (zh) * 2019-12-02 2020-03-27 镇江市高等专科学校 一种MXene复合纳米材料及其制备方法和应用
CN112142449A (zh) * 2020-09-12 2020-12-29 宿迁德特材料科技有限公司 二维过渡金属碳化钛材料增强陶瓷复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1740253A (zh) * 2005-09-16 2006-03-01 湖南华迪电力环保工程技术有限公司 一种烟道防腐涂料
CN106007678A (zh) * 2016-05-18 2016-10-12 南京可赛新新型材料有限公司 一种高温耐磨陶瓷涂料及其制备方法
CN110357666A (zh) * 2018-10-08 2019-10-22 湖南德智新材料有限公司 一种陶瓷复合涂层及其制备方法
CN113337145A (zh) * 2021-06-03 2021-09-03 苏州大学 一种MXene增强硅酸盐胶黏陶瓷涂层及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIAN, WEIQI: "Preparation and Tribological Behavior of MXene Based Coating as Solid Lubricant and Multi-phase Reinforced Copper Matrix Composites", MASTER'S THESES, no. 2, 15 February 2021 (2021-02-15), pages 1 - 136, XP093011022, ISSN: 1674-022X *

Also Published As

Publication number Publication date
CN113337145A (zh) 2021-09-03
CN113337145B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
CN106866122A (zh) 一种植入石墨烯的耐腐蚀无机陶瓷涂层及其制备方法
CN104176781B (zh) 片状纳米二硫化钼材料和纳米复合金属防腐涂层材料及其制备方法
CN111068997B (zh) 一种实现冷凝换热管超疏水的涂层的制备方法及冷凝换热管
WO2022253100A1 (zh) 一种MXene增强硅酸盐胶黏陶瓷涂层及其制备方法
CN102586775A (zh) 用于航空铝合金材料的表面防腐处理方法
CN1931795A (zh) 一种封孔防潮防腐复合涂层材料及其制备
CN102417780B (zh) 一种低粘度管道用减阻耐磨无溶剂涂料
CN108329739B (zh) 一种富锌超疏水复合防腐涂层及其制备方法
CN110183934A (zh) 一种耐磨型双组分石墨烯防腐涂料
CN105199497A (zh) 一种防腐、防垢涂层材料的制备及涂覆方法
CN107325686A (zh) 三元聚合石墨烯纳米防腐涂料及制备技术
CN101880485A (zh) 稀土溶胶改性复合锌铝低温烧结涂层浆料
CN104984889A (zh) 一种微纳尺寸颗粒增强型锌铝涂层及其生产方法
CN108914187A (zh) 一种钛合金表面高硬度耐磨抗氧化复合梯度陶瓷涂层及其制备方法
WO2014075412A1 (zh) 一种大坝混凝土表面抗冲磨涂料及其涂刷方法
CN110157225A (zh) 一种金属表面石墨烯-抗菌防污防腐蚀复合涂层的制备方法
CN109988440A (zh) 一种耐高温防腐耐磨涂层及其制备方法
CN103274617A (zh) 一种磷酸二氢铝纳微粘结剂及其制备方法
CN109627815A (zh) 一种耐腐蚀纳米涂料及其制备方法
CN111019413A (zh) 一种MoSi2和SiC微颗粒增强的达克罗涂料及其涂覆方法
CN110951289A (zh) 一种耐磨疏水性铝合金板材及其制备方法
CN110451920A (zh) 聚四氟乙烯增强胶黏陶瓷涂层及其制备方法
CN105086558A (zh) 一种电网架空导线防腐涂料
CN115232492A (zh) 一种水性磷酸盐陶瓷涂料及其制备方法
KR101725256B1 (ko) 고열전도성 세라믹 코팅제 및 이의 시공방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815146

Country of ref document: EP

Kind code of ref document: A1