WO2014075412A1 - 一种大坝混凝土表面抗冲磨涂料及其涂刷方法 - Google Patents

一种大坝混凝土表面抗冲磨涂料及其涂刷方法 Download PDF

Info

Publication number
WO2014075412A1
WO2014075412A1 PCT/CN2013/072851 CN2013072851W WO2014075412A1 WO 2014075412 A1 WO2014075412 A1 WO 2014075412A1 CN 2013072851 W CN2013072851 W CN 2013072851W WO 2014075412 A1 WO2014075412 A1 WO 2014075412A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
coating
weight
concrete surface
component
Prior art date
Application number
PCT/CN2013/072851
Other languages
English (en)
French (fr)
Inventor
陈亮
李珍
汪在芹
韩炜
肖承京
魏涛
邵晓妹
冯菁
廖灵敏
张健
闫小虎
Original Assignee
长江水利委员会长江科学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长江水利委员会长江科学院 filed Critical 长江水利委员会长江科学院
Publication of WO2014075412A1 publication Critical patent/WO2014075412A1/zh
Priority to US14/707,013 priority Critical patent/US10184066B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D177/04Polyamides derived from alpha-amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/14Polyepoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4853Epoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/70Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/71Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being an organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3819Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
    • C08G18/3821Carboxylic acids; Esters thereof with monohydroxyl compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified

Definitions

  • the invention belongs to the field of concrete surface coatings, and specifically relates to a dam concrete surface anti-wear coating and a coating method thereof. Background technique
  • Polyurea is one of the new environmentally-friendly and anti-wearing organic coatings developed in recent years. It has excellent weather resistance and is resistant to sunlight without aging, but its price is high and one of its main components. The isocyanate group easily reacts with moisture in the wet base to cause foaming, and the performance is remarkably lowered, resulting in poor adaptability.
  • the object of the present invention is to provide a dam concrete surface anti-wear coating for the above-mentioned deficiencies, the coating not only It is economical and practical, and has excellent anti-wear performance, as well as adaptability and weather resistance.
  • Another object of the present invention is to provide a method of applying the above-described dam concrete surface anti-wear coating.
  • a dam concrete surface anti-wear coating characterized in that: the coating consists of a concrete surface outwardly composed of three layers of a primer layer, a middle layer and a top layer, wherein the primer layer is L-3mm epoxy cement, the middle layer coating is a low viscosity epoxy resin adhesive of 0.1-0.5 mm, and the top layer coating is a 0.3-0.5 mm thick nano material modified polyaspartate polyurea
  • the low viscosity epoxy resin adhesive has a viscosity of 50-200 mPa.s.
  • the epoxy cement has an initial viscosity of 20,000 mPa.s-50,000 mPa.s, a surface dry time of 1 h to 5 h, and a curing time of the low viscosity epoxy resin adhesive for A and B two-component materials,
  • a The composition is modified bisphenol A epoxy resin, which is composed of 50-60% by weight of bisphenol A epoxy resin, 20-30% of furfural, 20-30% of acetone; B component It is a diamine or polyamine curing agent, wherein the weight ratio of the A component to the B component is 4-6:1; the low viscosity epoxy resin adhesive has a surface dry time of lh-2h, and the curing time is 0.5h-2h. .
  • the nano material-modified polyaspartic acid ester polyurea is a B bicomponent material mixed, wherein the A component is 2-10 parts by weight of the inorganic nano material by mass grafting to the weight fraction
  • the component B is obtained by adding 90-98 parts of isocyanate to 5-10 parts by weight of 0-1.2 parts by weight of iron black, 0-3 parts of titanium dioxide and 0-0.3 parts of dispersing agent. In the agent, after stirring and filtering, the filtrate is added to 70-80 parts by weight of polyaspartic acid ester.
  • the nano material modified polyaspartic acid ester polyurea is a B bicomponent material mixed, wherein the A component is 1-6 parts by weight of the inorganic nano material by mass grafting to the weight fraction 50-60 parts of isocyanate obtained, component B is 0-3 parts by weight of iron black, 0-5 parts of titanium dioxide and 0-1 parts of dispersant added to 5-15 parts of active dilution In the solution, after stirring and filtering, the filtrate is obtained by adding 20-40 parts by weight of polyaspartate.
  • the inorganic nanomaterial and the isocyanate are mixed and pressurized to a pressure of l-3 MPa and then subjected to a pressure-holding reaction for l-4 h, thereby obtaining a component A of the polyaspartic acid ester polyurea modified by the nano material.
  • the inorganic nano material is nano SiO 2 .
  • the reactive diluent is propylene carbonate, xylene, toluene or cyclohexane.
  • the above agitation process uses low-speed mechanical agitation to avoid foaming by high-speed agitation.
  • the epoxy cement may be heated in a 40-5 CTC water bath until the viscosity becomes low, and then the coating is performed.
  • the beneficial effects of the present invention are as follows: (1) The concrete coated with the anti-scouring coating of the present invention is subjected to an underwater steel ball test, and the results show that the 72-hour wear loss rate is less than 2%, so the concrete can be effectively used. Resist the external damage and protect the dam from safe operation; (2) Anti-wear coating combines the high adhesion and adaptability of the primer and concrete surface, and the middle coating has good adhesion to the bottom and top layers. It has flexibility, and the top coat has excellent anti-wear performance and strong aging resistance. (3) Anti-wear coatings also have properties not possessed by various components, such as adapting to wet base construction, strong adhesion to concrete interface, anti-wear and anti-aging, and no change in appearance after prolonged sunlight exposure. . (4) The bond strength between the anti-scour coating on the concrete surface of the dam and the concrete exceeds 3.5 MPa, which ensures that the anti-wear coating adheres firmly to the concrete surface of the dam and does not fall off.
  • the dam concrete surface anti-wear coating of the invention can resist the high-speed sandy water flow and the impact burning damage, effectively protect the safe operation of the dam, and prolong the safe service life of the dam. Moreover, the anti-abrasive coating has strong bonding ability with concrete, and will not fall off for a long time. The excellent weather resistance of the surface coating ensures that the concrete surface of the dam can be protected for a long time without fading or powdering.
  • the polyurea used for the anti-scouring coating of the dam concrete surface of the invention is modified, uses less material, is economical and practical, but can also have good anti-wear performance, and also has good adaptability and weather resistance. , to meet the requirements of the dam concrete surface anti-wearing.
  • Figure 1 is an external view of a concrete specimen that has not been painted with an anti-scouring coating after an abrasion failure test
  • Figure 2 is an external view of a concrete specimen coated with an anti-scouring coating after an abrasion failure test
  • Figure 3 is an external view of the dam before applying the anti-abrasive coating
  • Figure 4 shows the appearance of the dam after one year of painting the anti-scouring coating.
  • the primer is epoxy cement
  • the initial viscosity of the epoxy cement is 20000 mPa.
  • S the surface drying time is 5 h
  • solid The time is 20h.
  • the middle layer coating is a low viscosity epoxy resin adhesive
  • the low viscosity epoxy resin adhesive is a mixture of A and B two-component materials in a weight ratio of 4:1.
  • the component A is a modified bisphenol A epoxy resin composed of 50 parts by weight of bisphenol A epoxy resin, 25 parts of furfural, and 25 parts of acetone.
  • the B component is a diamine-based curing agent m-phenylenediamine.
  • the low viscosity epoxy resin adhesive has a viscosity of 200 mPa.s, a surface dry time of 2 hours, and a curing time of 2 hours.
  • topcoat is a nanomaterial modified polyaspartate polyurea
  • the nanomaterial modified polyaspartate polyurea is a mixture of A and B bicomponent materials.
  • the A component is a part by weight of 2 parts of nano-SiO 2 and 98 parts of isocyanate is mixed and pressurized to 1 MPa and then obtained by a pressure-holding reaction for 4 hours.
  • the component B is 1.2 parts by weight of iron black, 0.3 parts of dispersing agent is added to 10 parts of reactive diluent xylene, stirred and filtered, and the filtrate is added to 80 parts by weight of polyaspartate. .
  • the above agitation process uses low-speed mechanical agitation to avoid foaming by high-speed agitation.
  • the intermediate coating is applied to the surface of the underlying material by 0.5 m .
  • the surface coating is applied to the surface of the intermediate coating 3 times, and the thickness is 0.5 ⁇ .
  • the epoxy cement may be heated in a 40-5 CTC water bath until the viscosity becomes low, and then the coating is performed. After the surface layer is completely cured, the concrete test piece 1 coated with the anti-scouring coating is obtained.
  • the concrete test piece 1 and the unpainted anti-abrasive material were subjected to a 72h underwater steel ball method for impact failure test. The results are shown in Figs. The surface of the unpainted anti-wear material was severely damaged and the mass loss was 8.5%. The concrete specimens coated with the anti-wear material system 1 after the 72h abrasion test, the surface is basically intact, and the mass loss rate is less than 2%.
  • the primer is epoxy cement.
  • the initial viscosity of the epoxy cement is 50000 mPa ⁇ s , the surface drying time is lh, and the curing time is 5 hours.
  • the intermediate coating is a low viscosity epoxy resin adhesive, which is a 5:1 mixture of A and B bicomponent materials in a weight ratio of 5:1.
  • the component A is a modified bisphenol A epoxy resin composed of 60 parts by weight of bisphenol A epoxy resin, 20 parts of citric acid, and 30 parts of acetone.
  • the B component is a polyamine curing agent triethylamine.
  • the low viscosity epoxy resin adhesive has a viscosity of 100 mPa.s, a surface dry time of 1.5 h, and a curing time of 1 h.
  • topcoat is a nanomaterial modified polyaspartate polyurea
  • the nanomaterial modified polyaspartate polyurea is a mixture of A and B bicomponent materials.
  • a composition of 10 parts by weight of nano-SiO 2 and 90 parts of isocyanate was mixed and pressurized to 3 MPa and then obtained by a pressure-holding reaction for 1 hour.
  • the component B is obtained by adding 3 parts by weight of titanium white powder to 5 parts of reactive diluent cyclohexanide, stirring and filtering, and then adding the filtrate to 70 parts by weight of polyaspartic acid ester.
  • the above agitation process uses low-speed mechanical agitation to avoid foaming by high-speed agitation.
  • the intermediate coating is applied to the surface of the underlying material by 0.4 m m .
  • the surface coating is applied to the surface of the middle layer coating twice to a thickness of 0.4 mm.
  • the epoxy cement may be heated in a 40-50 ° C water bath until the viscosity becomes low, and then the coating is performed. After the surface layer is completely cured, the concrete test piece 2 coated with the anti-scouring coating is obtained.
  • the primer was an epoxy cement having an initial viscosity of 30,000 mPa ⁇ s, a surface dry time of 3 h, and a curing time of 15 h.
  • the middle layer coating is a low viscosity epoxy resin adhesive
  • the low viscosity epoxy resin adhesive is a mixture of A and B two-component materials in a weight ratio of 6:1.
  • the component A is a modified bisphenol A epoxy resin composed of 55 parts by weight of a bisphenol A epoxy resin, 30 parts of furfural, and 20 parts of acetone.
  • the B component is a diamine-based curing agent hexamethylenediamine.
  • the low viscosity epoxy resin adhesive has a viscosity of 50 mPa.s, a surface dry time of 1 h, and a curing time of 0.5 h.
  • the top coat is a nano material modified polyaspartate polyurea
  • the nano material modified polyaspartate polyurea is a mixture of A and B two-component materials.
  • the A component was obtained in a weight ratio of 5 parts by weight of 810 2 and 95 parts of isocyanate and pressurized to 2 MPa, and then subjected to a pressure-holding reaction for 2 hours.
  • Part B is to add 1 part by weight of iron black, 1 part of titanium dioxide and 0.1 part of dispersant to 8 parts of reactive diluent toluene, stir and filter, and then add the filtrate to 75 parts by weight of polyaspartame. Obtained in the acid ester.
  • the above agitation process uses low-speed mechanical agitation to avoid foaming by high-speed agitation.
  • the intermediate coating is applied to the surface of the underlying material by 0.1 mm. Before the surface is dried, the surface coating of the intermediate coating is applied once to a thickness of 0.3 mm.
  • the epoxy cement may be heated in a 40-5 CTC water bath until the viscosity becomes low before being applied. After the surface layer is completely cured, a concrete test piece 3 coated with the anti-scouring coating is obtained.
  • the primer is an epoxy cement having an initial viscosity of 40,000 mPa ⁇ s , a surface dry time of 3 hours, and a curing time of 18 hours.
  • the middle layer coating is a low viscosity epoxy resin adhesive
  • the low viscosity epoxy resin adhesive is a mixture of A and B two-component materials in a weight ratio of 5:1.
  • the component A is a modified bisphenol A epoxy resin composed of 60 parts by weight of bisphenol A epoxy resin, 20 parts of furfural, and 30 parts of acetone.
  • the B component is a polyamine curing agent triethylamine.
  • the low viscosity epoxy resin adhesive has a viscosity of 100 mPa.s, a surface dry time of 1.5 h, and a curing time of 1 h.
  • the top coat is a nano material modified polyaspartate polyurea, and the nano material modified polyaspartame
  • the acid ester polyurea is a mixture of A and B two-component materials.
  • a component was 6 parts by weight of nano-810 2 and 60 parts of isocyanate was mixed and pressurized to 2 MPa and then obtained by a pressure-holding reaction for 3 hours.
  • the B component is obtained by adding 5 parts by weight of titanium dioxide and 1 part by weight to 10 parts of reactive diluent propylene carbonate, stirring and filtering, and adding the filtrate to 30 parts by weight of polyaspartic acid ester. get.
  • the above agitation process uses low-speed mechanical agitation to avoid foaming by high-speed agitation.
  • the intermediate coating is applied to the surface of the underlying material by 0.4 m m .
  • the surface coating is applied to the surface of the middle layer coating twice to a thickness of 0.4 mm.
  • the epoxy cement may be heated in a 40-5 CTC water bath until the viscosity becomes low, and then the coating is performed. After the surface layer is completely cured, the concrete test piece 4 coated with the anti-scouring coating is obtained.
  • the primer is an epoxy cement having an initial viscosity of 40,000 mPa ⁇ s , a surface dry time of 3 hours, and a curing time of 18 hours.
  • the middle layer coating is a low viscosity epoxy resin adhesive
  • the low viscosity epoxy resin adhesive is a mixture of A and B two-component materials in a weight ratio of 5:1.
  • the component A is a modified bisphenol A epoxy resin composed of 60 parts by weight of bisphenol A epoxy resin, 20 parts of furfural, and 30 parts of acetone.
  • the B component is a polyamine curing agent triethylamine.
  • the low viscosity epoxy resin adhesive has a viscosity of 100 mPa.s, a surface dry time of 1.5 h, and a curing time of 1 h.
  • the top coat is a nano material modified polyaspartate polyurea
  • the nano material modified polyaspartate polyurea is a mixture of A and B two-component materials.
  • a composition of 3 parts by weight of nano-SiO 2 and 50 parts of isocyanate was mixed and pressurized to 2 MPa and then obtained by a pressure-holding reaction for 3 hours.
  • the B component is obtained by adding 3 parts by weight of iron black to 5 parts of reactive diluent toluene, stirring and filtering, and then adding the filtrate to 20 parts by weight of polyaspartate.
  • the above agitation process uses low-speed mechanical agitation to avoid foaming by high-speed agitation.
  • Brushing method Clean the surface of the concrete specimen against the surface of the test piece, and apply 2mm of the primer on the surface. After it is fully cured, the intermediate coating is applied to the surface of the underlying material by 0.4 m m . Before the surface is dried, the surface coating is applied to the surface of the middle layer coating twice to a thickness of 0.4 mm. When the ambient temperature is low, causing the viscosity of the epoxy cement to increase and the fluidity is lost, the epoxy cement may be heated in a 40-5 CTC water bath until the viscosity becomes low, and then the coating is performed. After the surface layer is completely cured, the concrete test piece 5 coated with the anti-scouring coating is obtained.
  • the primer is an epoxy cement having an initial viscosity of 40,000 mPa ⁇ s , a surface dry time of 3 hours, and a curing time of 18 hours.
  • the middle layer coating is a low viscosity epoxy resin adhesive
  • the low viscosity epoxy resin adhesive is a mixture of A and B two-component materials in a weight ratio of 5:1.
  • the component A is a modified bisphenol A epoxy resin composed of 60 parts by weight of bisphenol A epoxy resin, 20 parts of furfural, and 30 parts of acetone.
  • the B component is a polyamine curing agent triethylamine.
  • the low viscosity epoxy resin adhesive has a viscosity of 100 mPa.s, a surface dry time of 1.5 h, and a curing time of 1 h.
  • the top coat is a nano material modified polyaspartate polyurea
  • the nano material modified polyaspartate polyurea is a mixture of A and B two-component materials.
  • the A component was a part by weight of 1 part of nano-SiO 2 and 55 parts of isocyanate was mixed and pressurized to 2 MPa, and then obtained by a pressure-holding reaction for 3 hours.
  • Part B is to add 1 part by weight of iron black, 1 part of titanium dioxide and 0.5 part of dispersing agent to 15 parts of reactive diluent toluene, stir and filter, and then add the filtrate to 40 parts by weight of polyaspartame. Obtained in the acid ester.
  • the above agitation process uses low-speed mechanical agitation to avoid foaming by high-speed agitation.
  • the intermediate coating is applied to the surface of the underlying material by 0.4 mm. Before the surface is dried, the surface layer of the intermediate coating is applied twice to a thickness of 0.4 mm.
  • the epoxy cement may be heated in a 40-5 CTC water bath until the viscosity becomes low before being applied. After the surface layer is completely cured, a concrete test piece 6 coated with the anti-scouring coating is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Inorganic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

一种大坝混凝土表面抗冲磨涂料及其涂刷方法,该涂料由混凝土表面向外由底层、中层和面层三层涂料组成,其中底层涂料为1-3mm的环氧胶泥,中层涂料为0.1-0.5mm的低粘度环氧树脂胶粘剂,面层涂料为0.3-0.5mm的纳米材料改性的聚天门冬氨酸酯聚脲;该低粘度环氧树脂胶粘剂粘度为50-200mPa.s。该涂料具有良好的抗冲磨性能,较好的适应性和耐候性,满足了大坝混凝土表面抗冲磨的要求。

Description

一种大坝混凝土表面抗冲磨涂料及其涂刷方法 技术领域
本发明属于混凝土表面涂料领域, 具体是指一种大坝混凝土表面抗冲磨涂料及其涂 刷方法。 背景技术
随着水利水电工程建设的发展, 高水头、 大流量泄水建筑物日益增多, 水工泄水建 筑物如大坝的溢洪道、 消力池、 泄洪洞以及通航建筑物的间室底板、 输水廊道、 排沙底 孔等混凝土表面, 常遭受高速含沙水流和推移质冲刷、磨蚀(简称冲磨), 不仅直接或间 接影响工程的安全, 而且由此导致的大坝维修费用巨大。 据统计, 在己建的大中型水电 工程中有近 70%存在冲刷、 磨蚀破坏现象。
为解决或减缓大坝混凝土表面高速水流冲磨破坏问题, 目前国内外主要从如下两个 方面着手: 一方面, 开展高性能混凝土的应用研究; 另一方面是釆用有机复合材料作为 混凝土表面涂料提高抗冲耐磨性的应用研究。 高强度等级抗冲磨混凝土的水泥用量大, 发热量髙, 易产生干缩裂缝及温度裂缝, 再修补工程量大, 且维修后不稳定因素较多等 问题。 而有机复合材料作为混凝土表面涂料的应用技术研究方面, 以往大多集中在有机 材料砂桨类, 如环氧砂桨, 但其耐候性较差, 长期暴露在自然环境下易老化甚至粉化破 坏。 在环境气候变化较大的情况下, 水工建筑物泄水高频震动时有机砂浆易发生龟裂、 起翘和脱层, 且施工不便, 适应性较差。 聚脲是近几年发展起来的一种新型环保、 抗冲 磨的有机涂料之一, 它耐候性能优异, 能抵抗太阳光照射而不老化, 但其价格较高, 同 时其主要组分之一异氰酸酯基团易与潮湿基面中的水分发生反应产生起泡现象, 性能显 著下降, 导致其适应性较差。
因此, 发明一种经济实用的抗冲磨涂料, 具有良好的抗冲磨性能的同时具有较好的 适应性和耐候性。 发明内容
本发明的目的是针对上述不足, 提供一种大坝混凝土表面抗冲磨涂料, 该涂料不仅 经济实用, 而且抗冲磨性能优秀, 同时适应性及耐候性也很好。
本发明的另一个目的是提供上述大坝混凝土表面抗冲磨涂料的涂刷方法。
本发明是通过以下方式实现的: 一种大坝混凝土表面抗冲磨涂料, 其特征在于: 所 述涂料由混凝土表面向外由底层、中层和面层三层涂料组成,其中所述底层涂料为 l-3mm 的环氧胶泥, 所述中层涂料为 0.1-0.5mm 的低粘度环氧树脂胶粘剂, 所述面层涂料为 0.3-0.5mm厚的纳米材料改性的聚天门冬氨酸酯聚脲; 所述低粘度环氧树脂胶粘剂粘度 为 50-200mPa.s。
所述环氧胶泥的初始粘度 20,000mPa.s-50,000mPa.s,表干时间为 lh-5h, 固化时间为 所述低粘度环氧树脂胶粘剂为 A、 B双组份材料混合, A组分为改性的双酚 A环氧 树脂, 它是由重量百分数为 50-60%的双酚 A环氧树脂, 20-30%的糠醛, 20-30%的丙酮 混合组成; B组分为二元胺或多元胺类固化剂, 其中 A组分与 B组分的重量比为 4-6:1 ; 所述低粘度环氧树脂胶粘剂表干时间 lh-2h, 固化时间 0.5h-2h。
所述纳米材料改性的聚天门冬氨酸酯聚脲为 、 B双组分材料混合, 其中 A组分是 重量份数为 2-10份的无机纳米材料通过高分子嫁接到重量份数为 90-98份的异氰酸酯上 得到的, B组分是将重量份数为 0-1.2份的铁黑、 0-3份的钛白粉和 0-0.3份的分散剂加 入 5-10份的活性稀释剂中, 搅拌并过滤后将滤液加入重量份数为 70-80份聚天门冬氨酸 酯中得到。
所述纳米材料改性的聚天门冬氨酸酯聚脲为 、 B双组分材料混合, 其中 A组分是 重量份数为 1-6份的无机纳米材料通过高分子嫁接到重量份数为 50-60份的异氰酸酯上 得到的, B组分是将重量份数为 0-3份的铁黑、 0-5份的钛白粉和 0-1份的分散剂加入 5-15 份的活性稀释剂中, 搅拌并过滤后将滤液加入重量份数为 20-40份聚天门冬氨酸酯中得 到。
优选的, 所述无机纳米材料和异氰酸酯混合加压到 l-3MPa后保压反应 l-4h, 即得 到纳米材料改性的聚天门冬氨酸酯聚脲的 A组分。
优选的, 所述无机纳米材料为纳米 Si02
优选的, 所述活性稀释剂为碳酸丙烯酯、 二甲苯、 甲苯或环己烷。
上述搅拌过程都是使用低速机械搅拌, 避免高速搅拌产生起泡。 当环境温度低,造成环氧胶泥粘度增大失去流动性后,所述环氧胶泥可先在 40-5CTC 水浴中加热至粘度变低后再进行涂刷。
本发明的有益效果是: (1 ) 将涂刷了本发明所述抗冲磨涂料的混凝土进行水下钢珠 法试验, 结果表明, 72小时冲磨损失率低于 2%, 因此该混凝土能有效抵御外界冲磨破 坏, 保护大坝安全运行; (2) 抗冲磨涂料结合了底层涂料与混凝土表面的高粘接性及适 应性、 中层涂料与底层和面层两层涂料粘接性好且具有柔韧性, 面层涂料抗冲磨性能优 异, 耐老化能力强。 (3) 抗冲磨涂料还具有各组分材料所不具备的性能, 如适应在潮湿 基面施工, 与混凝土界面粘接能力强, 抗冲磨及耐老化, 经长时间阳光照射外观不变色。 (4) 大坝混凝土表面抗冲磨涂料与混凝土间的粘接强度超过 3.5MPa, 保证了抗冲磨涂 料在大坝混凝土表面粘接牢固, 不会脱落。
本发明所述大坝混凝土表面抗冲磨涂料能抵御高速含沙水流和推移质冲磨破坏, 有 效保护大坝安全运行, 延长大坝安全服役寿命。 并且抗冲磨涂料与混凝土粘接能力强, 长时间运行不会脱落, 面层涂料优异的耐候性能保证了期能长期保护大坝混凝土表面而 不会褪色或者粉化脱落。 同时, 本发明所述大坝混凝土表面抗冲磨涂料所用聚脲经过改 性, 用料较少, 经济实用, 但是也可以具有良好的抗冲磨性能, 也具有较好的适应性和 耐候性, 满足了大坝混凝土表面抗冲磨的要求。 附图说明
图 1为未涂刷抗冲磨涂料的混凝土试件经过冲磨破坏试验后的外观图;
图 2为涂刷了抗冲磨涂料的混凝土试件经过冲磨破坏试验后的外观图;
图 3为涂刷抗冲磨涂料前大坝外观图;
图 4为涂刷抗冲磨涂料一年后大坝外观图。 具体实施方式
以下就本发明的具体实施例做进一步说明:
实施例 1
底层涂料的制备:
底层涂料为环氧胶泥, 所述环氧胶泥的初始粘度为 20000mPa.S, 表干时间为 5h, 固 化时间为 20h。
中层涂料的制备:
中层涂料为低粘度环氧树脂胶粘剂, 所述低粘度环氧树脂胶粘剂为重量比为 4:1 的 A、 B双组份材料混合物。 A组分为重量份数为 50份的双酚 A环氧树脂, 25份的糠醛, 25份的丙酮混合组成的改性的双酚 A环氧树脂。 B组分为二元胺类固化剂间苯二胺。所 述低粘度环氧树脂胶粘剂的粘度为 200mPa.s, 表干时间为 2h, 固化时间为 2h。
面层涂料的制备- 面层涂料为纳米材料改性的聚天门冬氨酸酯聚脲, 所述纳米材料改性的聚天门冬氨 酸酯聚脲为 A、 B双组分材料混合物。 A组分为重量份数为 2份的纳米 Si02与 98份的异氰 酸酯混合加压到 IMPa后保压反应 4h后得到。 B组分为将重量份数为 1.2份铁黑, 0.3份 分散剂加入 10份活性稀释剂二甲苯中, 搅拌并过滤后将滤液加入重量份数为 80份的聚 天门冬氨酸酯中得到。
上述搅拌过程都是使用低速机械搅拌, 避免高速搅拌产生起泡。
涂刷方法:
清理干净混凝土试件抗冲磨试块表面浮灰, 在其表面涂刷底层涂料 lmm。待其完全 固化后于底层材料表面涂刷中层涂料 0.5mm。 待其表干前, 于中层涂料表面涂刷面层涂 料 3次, 厚度达 0.5ητιη。 当环境温度低, 造成环氧胶泥粘度增大失去流动性后, 所述环 氧胶泥可先在 40-5CTC水浴中加热至粘度变低后再进行涂刷。 待表层完全固化后即得到 涂刷有所述抗冲磨涂料的混凝土试件 1。
将混凝土试件 1和未涂刷抗冲磨材料的试件经 72h水下钢珠法冲磨破坏试验, 结果 如图 1、 2所示。 未涂刷抗冲磨材料试件表面破坏严重, 质量损失为 8.5%。 涂刷有抗冲 磨材料系统的混凝土试件 1经过 72h冲磨破坏试验后, 表面基本完好, 质量损失率低于 2%。
将某大坝混凝土表面用高压水枪冲洗干净, 待表面完全干燥后, 在其表面涂刷底层 涂料 2mm。 待其完全固化后于底层材料表面涂刷中层涂料 0.4mm。 待其表干前, 于中层 涂料表面涂刷面层涂料 2次, 厚度达 0.4mm。 待表层完全固化后即得到涂刷抗冲磨涂料 的大坝。一年后结果如图 3、 4所示,涂刷抗冲磨涂料前,大坝混凝土表面冲磨破坏严重, 涂刷抗冲磨涂料一年后, 大坝外观情况说明抗冲磨涂料能有效抵御外界对大坝混凝土表 面冲刷磨蚀破坏。
实施例 2
底层涂料的制备:
底层涂料为环氧胶泥, 所述环氧胶泥的初始粘度为 50000mPa.S, 表干时间为 lh, 固 化时间为 5h。
中层涂料的制备- 中层涂料为低粘度环氧树脂胶粘剂, 所述低粘度环氧树脂胶粘剂为重量比为 5:1 的 A、 B双组份材料混合物。 A组分为重量份数为 60份的双酚 A环氧树脂, 20份的糠酸, 30份的丙酮混合组成的改性的双酚 A环氧树脂。 B组分为多元胺类固化剂三乙胺。所述 低粘度环氧树脂胶粘剂的粘度为 100mPa.s, 表干时间为 1.5h, 固化时间为 lh。
面层涂料的制备- 面层涂料为纳米材料改性的聚天门冬氨酸酯聚脲, 所述纳米材料改性的聚天门冬氨 酸酯聚脲为 A、 B双组分材料混合物。 A组分为重量份数为 10份的纳米 Si02与 90份的异 氰酸酯混合加压到 3MPa后保压反应 lh后得到。 B组分为将重量份数为 3份钛白粉加入 5 份活性稀释剂环己垸中,搅拌并过滤后将滤液加入重量份数为 70份的聚天门冬氨酸酯中 得到。
上述搅拌过程都是使用低速机械搅拌, 避免高速搅拌产生起泡。
涂刷方法:
清理干净混凝土试件抗冲磨试块表面浮灰, 在其表面涂刷底层涂料 2mm。待其完全 固化后于底层材料表面涂刷中层涂料 0.4mm。 待其表干前, 于中层涂料表面涂刷面层涂 料 2次, 厚度达 0.4mm。 当环境温度低, 造成环氧胶泥粘度增大失去流动性后, 所述环 氧胶泥可先在 40-50°C水浴中加热至粘度变低后再进行涂刷。 待表层完全固化后即得到 涂刷有所述抗冲磨涂料的混凝土试件 2。
实施例 3
底层涂料的制备:
底层涂料为环氧胶泥, 所述环氧胶泥的初始粘度为 30000mPa.s, 表干时间为 3h, 固 化时间为 15h。
中层涂料的制备- 中层涂料为低粘度环氧树脂胶粘剂, 所述低粘度环氧树脂胶粘剂为重量比为 6:1 的 A、 B双组份材料混合物。 A组分为重量份数为 55份的双酚 A环氧树脂, 30份的糠醛, 20份的丙酮混合组成的改性的双酚 A环氧树脂。 B组分为二元胺类固化剂己二胺。所述 低粘度环氧树脂胶粘剂的粘度为 50mPa.s, 表干时间为 lh, 固化时间为 0.5h。
面层涂料的制备:
面层涂料为纳米材料改性的聚天门冬氨酸酯聚脲, 所述纳米材料改性的聚天门冬氨 酸酯聚脲为 A、 B双组分材料混合物。 A组分为重量份数为 5份的纳米 8102与 95份的异氰 酸酯混合加压到 2MPa后保压反应 2h后得到。 B组分为将重量份数为 1份铁黑、 1份钛白 粉和 0.1份分散剂加入 8份活性稀释剂甲苯中, 搅拌并过滤后将滤液加入重量份数为 75 份的聚天门冬氨酸酯中得到。
上述搅拌过程都是使用低速机械搅拌, 避免高速搅拌产生起泡。
涂刷方法:
清理干净混凝土试件抗冲磨试块表面浮灰, 在其表面涂刷底层涂料 3mm。待其完全 固化后于底层材料表面涂刷中层涂料 0.1mm。 待其表干前, 于中层涂料表面涂刷面层涂 料 1次, 厚度达 0.3mm。 当环境温度低, 造成环氧胶泥粘度增大失去流动性后, 所述环 氧胶泥可先在 40-5CTC水浴中加热至粘度变低后再进行涂刷。 待表层完全固化后即得到 涂刷有所述抗冲磨涂料的混凝土试件 3。
实施例 4
底层涂料的制备:
底层涂料为环氧胶泥, 所述环氧胶泥的初始粘度为 40000mPa.S, 表干时间为 3h, 固 化时间为 18h。
中层涂料的制备:
中层涂料为低粘度环氧树脂胶粘剂, 所述低粘度环氧树脂胶粘剂为重量比为 5:1 的 A、 B双组份材料混合物。 A组分为重量份数为 60份的双酚 A环氧树脂, 20份的糠醛, 30份的丙酮混合组成的改性的双酚 A环氧树脂。 B组分为多元胺类固化剂三乙胺。所述 低粘度环氧树脂胶粘剂的粘度为 100mPa.s, 表干时间为 1.5h, 固化时间为 lh。
面层涂料的制备:
面层涂料为纳米材料改性的聚天门冬氨酸酯聚脲, 所述纳米材料改性的聚天门冬氨 酸酯聚脲为 A、 B双组分材料混合物。 A组分为重量份数为 6份的纳米 8102与 60份的异氰 酸酯混合加压到 2MPa后保压反应 3h后得到。 B组分为将重量份数为 5份钛白粉和 1份 分散剂加入 10份活性稀释剂碳酸丙烯酯中, 搅拌并过滤后将滤液加入重量份数为 30份 的聚天门冬氨酸酯中得到。
上述搅拌过程都是使用低速机械搅拌, 避免高速搅拌产生起泡。
涂刷方法:
清理干净混凝土试件抗冲磨试块表面浮灰, 在其表面涂刷底层涂料 2mm。待其完全 固化后于底层材料表面涂刷中层涂料 0.4mm。 待其表干前, 于中层涂料表面涂刷面层涂 料 2次, 厚度达 0.4mm。 当环境温度低, 造成环氧胶泥粘度增大失去流动性后, 所述环 氧胶泥可先在 40-5CTC水浴中加热至粘度变低后再进行涂刷。 待表层完全固化后即得到 涂刷有所述抗冲磨涂料的混凝土试件 4。
实施例 5
底层涂料的制备:
底层涂料为环氧胶泥, 所述环氧胶泥的初始粘度为 40000mPa.S, 表干时间为 3h, 固 化时间为 18h。
中层涂料的制备:
中层涂料为低粘度环氧树脂胶粘剂, 所述低粘度环氧树脂胶粘剂为重量比为 5:1 的 A、 B双组份材料混合物。 A组分为重量份数为 60份的双酚 A环氧树脂, 20份的糠醛, 30份的丙酮混合组成的改性的双酚 A环氧树脂。 B组分为多元胺类固化剂三乙胺。所述 低粘度环氧树脂胶粘剂的粘度为 100mPa.s, 表干时间为 1.5h, 固化时间为 lh。
面层涂料的制备:
面层涂料为纳米材料改性的聚天门冬氨酸酯聚脲, 所述纳米材料改性的聚天门冬氨 酸酯聚脲为 A、 B双组分材料混合物。 A组分为重量份数为 3份的纳米 Si02与 50份的异氰 酸酯混合加压到 2MPa后保压反应 3h后得到。 B组分为将重量份数为 3份铁黑加入 5份 活性稀释剂甲苯中, 搅拌并过滤后将滤液加入重量份数为 20 份的聚天门冬氨酸酯中得 到。
上述搅拌过程都是使用低速机械搅拌, 避免高速搅拌产生起泡。
涂刷方法: 清理干净混凝土试件抗冲磨试块表面浮灰, 在其表面涂刷底层涂料 2mm。待其完全 固化后于底层材料表面涂刷中层涂料 0.4mm。 待其表干前, 于中层涂料表面涂刷面层涂 料 2次, 厚度达 0.4mm。 当环境温度低, 造成环氧胶泥粘度增大失去流动性后, 所述环 氧胶泥可先在 40-5CTC水浴中加热至粘度变低后再进行涂刷。 待表层完全固化后即得到 涂刷有所述抗冲磨涂料的混凝土试件 5。
实施例 6
底层涂料的制备- 底层涂料为环氧胶泥, 所述环氧胶泥的初始粘度为 40000mPa.S, 表干时间为 3h, 固 化时间为 18h。
中层涂料的制备:
中层涂料为低粘度环氧树脂胶粘剂, 所述低粘度环氧树脂胶粘剂为重量比为 5:1 的 A、 B双组份材料混合物。 A组分为重量份数为 60份的双酚 A环氧树脂, 20份的糠醛, 30份的丙酮混合组成的改性的双酚 A环氧树脂。 B组分为多元胺类固化剂三乙胺。所述 低粘度环氧树脂胶粘剂的粘度为 100mPa.s, 表干时间为 1.5h, 固化时间为 lh。
面层涂料的制备:
面层涂料为纳米材料改性的聚天门冬氨酸酯聚脲, 所述纳米材料改性的聚天门冬氨 酸酯聚脲为 A、 B双组分材料混合物。 A组分为重量份数为 1份的纳米 Si02与 55份的异氰 酸酯混合加压到 2MPa后保压反应 3h后得到。 B组分为将重量份数为 1份铁黑, 1份钛白 粉和 0.5份分散剂加入 15份活性稀释剂甲苯中,搅拌并过滤后将滤液加入重量份数为 40 份的聚天门冬氨酸酯中得到。
上述搅拌过程都是使用低速机械搅拌, 避免高速搅拌产生起泡。
涂刷方法:
清理干净混凝土试件抗冲磨试块表面浮灰, 在其表面涂刷底层涂料 2mm。待其完全 固化后于底层材料表面涂刷中层涂料 0.4mm。 待其表干前, 于中层涂料表面涂刷面层涂 料 2次, 厚度达 0.4mm。 当环境温度低, 造成环氧胶泥粘度增大失去流动性后, 所述环 氧胶泥可先在 40-5CTC水浴中加热至粘度变低后再进行涂刷。 待表层完全固化后即得到 涂刷有所述抗冲磨涂料的混凝土试件 6。

Claims

权利要求书
1.一种大坝混凝土表面抗冲磨涂料, 其特征在于: 所述涂料由混凝土表面向外由底 层、 中层和面层三层涂料组成, 其中所述底层涂料为 l-3mm的环氧胶泥, 所述中层涂料 为 0.1-0.5mm的低粘度环氧树脂胶粘剂, 所述面层涂料为 0.3-0.5mm的纳米材料改性的 聚天门冬氨酸酯聚脲; 所述低粘度环氧树脂胶粘剂粘度为 50-200mPa.s。
2.根据权利要求 1所述的大坝混凝土表面抗冲磨涂料, 其特征在于: 所述环氧胶泥 的初始粘度 20,000mPa.s-50,000mPa.s, 表干时间为 lh-5h, 固化时间为 5h-20h。
3.根据权利要求 1所述的大坝混凝土表面抗冲磨涂料, 其特征在于: 所述低粘度环 氧树脂胶粘剂为 、 B双组份材料混合, A组分为改性的双酚 A环氧树脂, 它是由重量 份数为 50-60份的双酚 A环氧树脂, 20-30份的糠醛, 20-30份的丙酮混合组成; B组分 为二元胺或多元胺类固化剂, 其中 A组分与 B组分的重量比为 4-6:1 ; 所述低粘度环氧 树脂胶粘剂表干时间 lh-2h, 固化时间 0.5h-2h。
4.根据权利要求 1所述的大坝混凝土表面抗冲磨涂料, 其特征在于: 所述纳米材料 改性的聚天门冬氨酸酯聚脲为 A、 B双组分材料混合, 其中 A组分是重量份数为 2-10 份的无机纳米材料通过高分子嫁接到重量份数为 90-98份的异氰酸酯上得到的, B组分 是将重量份数为 0-1.2份的铁黑、 0-3份的钛白粉和 0-0.3份的分散剂加入 5-10份的活性 稀释剂中, 搅拌并过滤后将滤液加入重量份数为 70-80份聚天门冬氨酸酯中得到。
5.根据权利要求 1所述的大坝混凝土表面抗冲磨涂料, 其特征在于: 所述纳米材料 改性的聚天门冬氨酸酯聚脲为 A、 B双组分材料混合, 其中 A组分是重量份数为 1-6份 的无机纳米材料通过高分子嫁接到重量份数为 50-60份的异氰酸酯上得到的, B组分是 将重量份数为 0-3份的铁黑、 0-5份的钛白粉和 0-1份的分散剂加入 5-15份的活性稀释 剂中, 搅拌并过滤后将滤液加入重量份数为 20-40份聚天门冬氨酸酯中得到。
6.根据权利要求 5或 6所述的大坝混凝土表面抗冲磨涂料, 其特征在于: 所述无机 纳米材料和异氰酸酯混合加压到 l-3MPa后保压反应 l-4h, 即得到纳米材料改性的聚天 门冬氨酸酯聚脲的 A组分。
7.根据权利要求 5或 6所述的大坝混凝土表面抗冲磨涂料, 其特征在于: 所述无机 纳米材料为纳米 Si02
8.根据权利要求 5或 6所述的大坝混凝土表面抗冲磨涂料, 其特征在于: 所述活性 稀释剂为碳酸丙烯酯、 二甲苯、 甲苯或环己烷。
9.一种权利要求 1-5 中任一项所述的大坝混凝土表面抗冲磨涂料的涂刷方法, 其步 骤包括: 在经过基面处理的大坝混凝土表面, 首先涂刷底层涂料环氧胶泥 l-3mm; 然后 待完全固化后于底层材料表面涂刷中层涂料低粘度环氧树脂胶粘剂, 厚度达 0.1-0.5nim; 最后待中层涂料表干前, 于中层涂料表面涂刷面层涂料经纳米材料纳米材料改性的聚天 门冬氨酸酯聚脲 1-3次, 厚度达 0.3-0.5mm。
PCT/CN2013/072851 2012-11-14 2013-03-19 一种大坝混凝土表面抗冲磨涂料及其涂刷方法 WO2014075412A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/707,013 US10184066B2 (en) 2012-11-14 2015-05-08 Abrasion-resistant coating material and method of using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210453370.1 2012-11-14
CN201210453370.1A CN102925032B (zh) 2012-11-14 2012-11-14 一种大坝混凝土表面抗泄水冲磨涂料及其涂刷方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/707,013 Continuation-In-Part US10184066B2 (en) 2012-11-14 2015-05-08 Abrasion-resistant coating material and method of using the same

Publications (1)

Publication Number Publication Date
WO2014075412A1 true WO2014075412A1 (zh) 2014-05-22

Family

ID=47639968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072851 WO2014075412A1 (zh) 2012-11-14 2013-03-19 一种大坝混凝土表面抗冲磨涂料及其涂刷方法

Country Status (3)

Country Link
US (1) US10184066B2 (zh)
CN (1) CN102925032B (zh)
WO (1) WO2014075412A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925032B (zh) * 2012-11-14 2015-03-18 长江水利委员会长江科学院 一种大坝混凝土表面抗泄水冲磨涂料及其涂刷方法
CN104312398B (zh) * 2014-10-22 2016-08-17 武汉长江科创科技发展有限公司 聚脲-聚硅氧烷有机无机杂化混凝土生物污染防护材料及其制备方法
CN106759113A (zh) * 2016-12-14 2017-05-31 中国电建集团贵阳勘测设计研究院有限公司 一种高速水流建筑物抗冲耐磨防护涂层的施工方法
CN107417884A (zh) * 2017-08-01 2017-12-01 福州皇家地坪有限公司 防开裂多功能结构层材料
CN107476639A (zh) * 2017-09-22 2017-12-15 中国南方电网有限责任公司超高压输电公司柳州局 一种输电杆塔主材根部长寿命防腐结构的制作方法
CN109971191A (zh) * 2019-03-22 2019-07-05 辽宁健路宝科技有限公司 道路雾封层养护用反应型稀释沥青
CN114752283B (zh) * 2022-04-06 2023-11-10 华邦建投集团股份有限公司 一种垃圾池涂层及其制备方法
CN114857409A (zh) * 2022-05-07 2022-08-05 山东非金属材料研究所 一种高危管道外壁用防护涂层体系
CN116836572B (zh) * 2023-04-26 2024-04-26 长江水利委员会长江科学院 一种复合耐酸混凝土防护涂层材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376579B1 (en) * 2000-07-18 2002-04-23 Illnois Tool Works Low temperature curing, sag-resistant epoxy primer
US20040063894A1 (en) * 2002-09-26 2004-04-01 Karsten Danielmeier Polyaspartate resins with good hardness and flexibility
JP2006348707A (ja) * 2005-06-20 2006-12-28 Mitsui Kagaku Sanshi Kk 構造物の表面構造体及びその構築方法
CN102161858A (zh) * 2010-12-22 2011-08-24 北京东方雨虹防水技术股份有限公司 喷涂聚脲用环氧树脂基层处理剂及制备方法
CN102391771A (zh) * 2011-10-14 2012-03-28 洛阳七维防腐工程材料有限公司 一种风电叶片用厚浆快干型耐候耐磨涂料及其制备方法
CN102925032A (zh) * 2012-11-14 2013-02-13 长江水利委员会长江科学院 一种大坝混凝土表面抗冲磨涂料及其涂刷方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH500946A (de) * 1968-08-02 1970-12-31 Ciba Geigy Ag Verfahren zur Herstellung von neuen Addukten aus Polyepoxiden und Diaminen
US4265957A (en) * 1979-11-08 1981-05-05 General Signal Corporation Multi-layered, fiberglass-reinforced floor covering systems
CN1137212C (zh) * 2001-05-28 2004-02-04 中国科学院广州化学研究所 一种改性糠醛丙酮环氧补强固结灌浆材料及其制法
CN101410349B (zh) * 2006-01-31 2013-02-13 威士伯采购公司 用于多孔基板的多组分涂布方法
DE102008024352A1 (de) * 2008-05-20 2009-11-26 Bayer Materialscience Ag Polyharnstoffzusammensetzung
EP2236532A1 (de) * 2009-03-31 2010-10-06 Bayer MaterialScience AG Nanopartikelmodifizierte hydrophile Polyisocyanate
CN102504670A (zh) * 2011-10-27 2012-06-20 北京东方雨虹防水技术股份有限公司 混凝土用渗透环氧树脂防水涂料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376579B1 (en) * 2000-07-18 2002-04-23 Illnois Tool Works Low temperature curing, sag-resistant epoxy primer
US20040063894A1 (en) * 2002-09-26 2004-04-01 Karsten Danielmeier Polyaspartate resins with good hardness and flexibility
JP2006348707A (ja) * 2005-06-20 2006-12-28 Mitsui Kagaku Sanshi Kk 構造物の表面構造体及びその構築方法
CN102161858A (zh) * 2010-12-22 2011-08-24 北京东方雨虹防水技术股份有限公司 喷涂聚脲用环氧树脂基层处理剂及制备方法
CN102391771A (zh) * 2011-10-14 2012-03-28 洛阳七维防腐工程材料有限公司 一种风电叶片用厚浆快干型耐候耐磨涂料及其制备方法
CN102925032A (zh) * 2012-11-14 2013-02-13 长江水利委员会长江科学院 一种大坝混凝土表面抗冲磨涂料及其涂刷方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, WEIHUA ET AL.,: "Coating protection of concrete structure", MODERN PAINT& FINISHING, vol. 10, no. 8, August 2007 (2007-08-01), pages 28 *
ZOU, TAO ET AL.,: "Study on nanocomposites of polyaspartate polyurea", JOURNAL OF YANGTZE RIVER SCIENTIFIC RESEARCH INSTITUTE, vol. 27, no. 4, April 2010 (2010-04-01), pages 53 - 57 *

Also Published As

Publication number Publication date
US20150240117A1 (en) 2015-08-27
US10184066B2 (en) 2019-01-22
CN102925032A (zh) 2013-02-13
CN102925032B (zh) 2015-03-18

Similar Documents

Publication Publication Date Title
WO2014075412A1 (zh) 一种大坝混凝土表面抗冲磨涂料及其涂刷方法
CN101619189B (zh) 一种水下无溶剂环氧防腐涂料及其制备方法
KR101717128B1 (ko) 에폭시계 방수도료 조성물 및 이를 이용한 콘크리트 구조물과 수처리 시설물의 표면 도장공법
RU2016115710A (ru) Водная грунтовочная композиция для улучшенного пленкообразования и способы ее применения
WO2022141949A1 (zh) 用于水利工程的劣化免疫仿生防护涂层及其制备方法
CN110172288A (zh) 一种水下复合防腐涂层及其制备方法
KR101766286B1 (ko) 내오존성을 가지는 콘크리트 구조물의 표면 도장공법 및 이로부터 형성된 다층도막
CN100569872C (zh) 纳米鳞片涂料的制备方法
CN102532577A (zh) 一种利用超临界co2快速膨胀法制备超疏水表面的方法
CN107142006A (zh) 一种提高金属表面聚氨酯弹性体涂层附着力的粘结底涂剂及其制备方法
CN102383619A (zh) 海洋潮差区和浪溅区混凝土构件腐蚀防护方法
CN106318053A (zh) 水工混凝土表面疏水耐污涂层及其施工方法
CN102212303A (zh) 一种常温水下无溶剂环氧厚浆复合重防腐涂料的制备
CN102352176A (zh) 聚氨酯改性环氧树脂与改性仲胺延时固化剂配合作为聚脲弹性体的底涂剂
CN204897805U (zh) 一种防腐防水涂层系统
CN105568206A (zh) 一种基于铜镍合金的超疏水防污涂层配方、涂层及其制备方法
CN105419571A (zh) 一种重防腐涂层材料
CN104845497A (zh) 一种耐老化涂料
CN107687214A (zh) 一种工业废水环境中的混凝土防护涂层的涂覆方法
WO2019052070A1 (zh) 一种钢结构表面用高固体分防腐涂料及其喷涂方法
CN111138897A (zh) 一种环保型三组份地坪修补材料及其制备方法
CN106563629B (zh) 聚三氟氯乙烯与金属基体热塑压制前处理底漆及配制方法
CN105665262A (zh) 工程机械涂装湿喷湿工艺
CN104004447A (zh) 一种高强节能的柔性桥架
CN102808744A (zh) 一种风力发电机组法兰及法兰的耐磨涂层工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13855445

Country of ref document: EP

Kind code of ref document: A1