WO2022252999A1 - 一种车辆安全控制方法、装置、设备及存储介质 - Google Patents

一种车辆安全控制方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022252999A1
WO2022252999A1 PCT/CN2022/093846 CN2022093846W WO2022252999A1 WO 2022252999 A1 WO2022252999 A1 WO 2022252999A1 CN 2022093846 W CN2022093846 W CN 2022093846W WO 2022252999 A1 WO2022252999 A1 WO 2022252999A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
position information
information
collision buffer
obstacle
Prior art date
Application number
PCT/CN2022/093846
Other languages
English (en)
French (fr)
Inventor
叶剑
赵成
张铁监
吴松
薛文骞
杨宏伟
Original Assignee
多伦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 多伦科技股份有限公司 filed Critical 多伦科技股份有限公司
Publication of WO2022252999A1 publication Critical patent/WO2022252999A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00

Definitions

  • the invention relates to a vehicle safety control method, device, equipment and storage medium, belonging to the technical field of vehicle safety control.
  • the on-board safety protection systems of many driver test vehicles on the existing market use the millimeter-wave radar to obtain the obstacle distance to judge the braking conditions.
  • Vehicle driving, etc. cannot accurately judge safety braking, which may easily lead to false braking and affect normal driving, further affecting the normal progress of vehicle driving tests and training.
  • the present invention provides a vehicle safety control method applied in driving test and driving training to solve the problem that the on-board safety protection system of the driving test vehicle in the prior art only passes millimeter wave radar or ultrasonic waves.
  • the radar obtains the on-site obstacle information to judge the braking condition of the vehicle is inaccurate, which may easily lead to problems affecting the normal driving of the vehicle.
  • the present invention provides a vehicle safety control method, the steps are as follows:
  • the position information of the obstacle and the edge position information of the collision buffer zone calculate whether the obstacle is located in the collision buffer zone; when the obstacle is located in the collision buffer zone, the The vehicle applies the brakes.
  • the step of obtaining the location information of the vehicle in real time specifically includes:
  • the position coordinates of the GPS main antenna installed on the top of the vehicle are obtained in real time through the dual GPS antennas installed on the top of the vehicle and the differential positioning reference station installed on the site, and the position coordinates of the vehicle are obtained.
  • the step of calculating and obtaining the edge position information of the collision buffer zone on the traveling route of the vehicle according to the vehicle position information, vehicle speed, and steering wheel angle information specifically includes:
  • the edge position information of the collision buffer zone is calculated according to the vehicle head position information and the steering wheel angle information.
  • the step of calculating and obtaining the edge position information of the collision buffer zone on the traveling route of the vehicle according to the vehicle position information, vehicle speed, and steering wheel angle information further includes:
  • the edge position information of the collision buffer zone is calculated according to the position information of the rear of the vehicle and the steering wheel angle information.
  • the step of calculating whether the obstacle is located in the collision buffer zone according to the position information of the obstacle and the edge position information of the collision buffer zone includes:
  • the step of obtaining the location information of the vehicle in real time specifically includes:
  • R is the radius of the earth
  • the step of obtaining the position information of the obstacle specifically includes: analyzing the obstacle coordinates according to the millimeter wave radar protocol, that is, the coordinates of the millimeter wave radar Cartesian coordinate system, and then according to the installation position of the millimeter wave radar on the vehicle body, the Obstacles are converted from the coordinates of the millimeter-wave radar rectangular coordinate system to the coordinates of the site rectangular coordinate system:
  • the present invention provides a vehicle safety control device, comprising:
  • the first acquisition module is used to acquire the location information of the vehicle in real time
  • the second acquisition module is used to acquire the speed information and steering wheel angle information of the vehicle in real time
  • the first calculation module is used to calculate the edge position information of the collision buffer zone of the vehicle according to the position information of the vehicle, the speed information speed and the steering wheel angle information;
  • the third acquisition module is used to acquire the position information of the obstacle
  • the second calculation module is used to calculate whether the obstacle is located in the collision buffer zone according to the position information of the obstacle and the edge position information of the collision buffer zone; when the obstacle is located in the collision buffer zone When in the zone, take braking action on the vehicle.
  • the present invention provides an electronic device, which is characterized in that it includes: a memory and a processor, and the memory and the processor are connected to each other in communication, and computer instructions are stored in the memory, and the processing The device implements the vehicle safety control method described in the first aspect above by executing the computer instructions.
  • the present invention provides an electronic device, the computer-readable storage medium stores computer instructions, and the computer instructions are used to make the computer execute the vehicle safety control method described in the first aspect above.
  • the vehicle safety control method provided by the present invention calculates the precise area of the collision buffer zone on the vehicle’s travel route based on the vehicle position information, vehicle speed and steering wheel angle information acquired in real time, thereby accurately calculating the braking conditions in combination with obstacle information , to avoid the false braking caused by judging the braking conditions only based on the obtained obstacle distance, thereby effectively reducing the probability of false braking of the driving test and training vehicles, avoiding many invalid braking, and ensuring that the driving test and training vehicles can be used in complex environments. Normal driving improves the efficiency of driving test and training, and also avoids unnecessary safety hazards caused by wrong braking.
  • the position coordinates of the GPS main antenna installed on the top of the vehicle are obtained in real time through the dual GPS antennas and the differential positioning reference station provided on the site, and the accurate real-time position coordinates of the vehicle are obtained, so that the vehicle position information is within It can achieve centimeter-level accuracy, further avoiding false braking caused by positioning errors or false braking caused by millimeter-wave radar detection only.
  • FIG. 1 is a flow chart of the steps of a vehicle safety control method provided in Embodiment 1 of the present invention
  • Fig. 2 is the specific step flowchart of step S103 in Fig. 1;
  • Fig. 3 is a schematic diagram of coordinate conversion of obstacles detected by millimeter-wave radar
  • Fig. 4 is a schematic diagram of a collision buffer zone in a forward straight state of a vehicle.
  • Fig. 5 is a schematic diagram of the collision buffer zone in the forward turning left state of the vehicle.
  • FIG. 6 is a functional block diagram of a vehicle safety control device provided by Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram of a hardware structure of an electronic device provided by Embodiment 2 of the present invention.
  • Fig. 1 shows the flowchart of the vehicle security control method of the embodiment of the present invention, as shown in Fig. 1, this method may comprise the following steps:
  • the location information of the vehicle acquired in this step includes the coordinates of each point of the vehicle body, and the obtained body is a polygon.
  • the position coordinates of the GPS main antenna installed on the top of the vehicle can be obtained in real time through the dual GPS antennas and the differential positioning reference station set up in the field, and then the position coordinates of the vehicle can be obtained. location coordinates.
  • S102 Obtain vehicle speed and steering wheel angle information in real time.
  • the vehicle speed and steering wheel angle information are read in real time through the vehicle-mounted OBD interface.
  • an external encoder can also be installed on the vehicle steering wheel linkage to obtain steering wheel handover information through the external encoder when the steering wheel angle information cannot be read through the vehicle OBD interface. Specifically, turning the steering wheel will drive the encoder Therefore, the read rotation angle of the encoder is the steering wheel angle information.
  • S103 Calculate and obtain edge position information of the collision buffer zone on the traveling route of the vehicle according to the vehicle position information, vehicle speed, and steering wheel angle information.
  • the collision buffer is also an irregular polygon
  • the edge position information of the collision buffer calculated in this step includes coordinates of multiple points on the collision buffer polygon.
  • the same coordinate system can be the GPS set on the vehicle Antenna Cartesian coordinate system (the position information of the vehicle is obtained through the GPS antenna installed on the vehicle), or a radar Cartesian coordinate system (obstacle information is obtained through the radar), or the site Cartesian coordinates of the site where the vehicle is located Department, etc., without limitation here.
  • step S101 may include the following specific steps:
  • Step A Select a reference point in the site where the vehicle is located to measure its position coordinates (lon0, lat0), and use this reference point as the origin of the Cartesian coordinate system of the site.
  • Step B Calculate the coordinates (x ,y), the calculation formula is as follows:
  • R is the radius of the earth.
  • Step C select a static reference vehicle in the field, obtain the position coordinates of each point of the reference vehicle body and the position coordinates of the reference GPS main antenna of the vehicle, and use the position coordinates of the reference GPS main antenna as the origin of the GPS main antenna Cartesian coordinate system, Then calculate the coordinates of each point of the reference vehicle body in the Cartesian coordinate system of the GPS main antenna.
  • the reference vehicle should be of the same model as the above-mentioned vehicle, and those skilled in the art should understand that the reference vehicle and the above-mentioned vehicle can be the same vehicle or different vehicles, that is, the reference vehicle can be in The aforementioned vehicle at rest.
  • Step D Calculate the coordinates of each point of the car body in the field Cartesian coordinate system according to the coordinates of each point of the reference vehicle body in the GPS main antenna Cartesian coordinate system and the coordinates of the GPS main antenna in the field Cartesian coordinate system, and obtain the body is a polygon.
  • step S104 may include the following specific steps:
  • Step a Analyze the obstacle coordinates according to the millimeter wave radar protocol.
  • the resolved obstacles are used as the coordinates of the millimeter-wave radar Cartesian coordinate system.
  • Step b According to the installation position of the millimeter-wave radar on the vehicle body, the coordinates of the obstacle based on the millimeter-wave radar Cartesian coordinate system are converted into the coordinates of the field Cartesian coordinate system.
  • the installation position of the millimeter-wave radar can be located in the Cartesian coordinates of the site
  • the coordinates (x1, y1) of the coordinate system, the angle a1 between the direction of the vehicle head and the Y-axis of the field Cartesian coordinate system, and the azimuth a2 of the obstacle located in the field plane coordinate system, the final coordinates of the obstacle after conversion are: (x1+ r0*sin(a2), y1+r0*cos(a2)).
  • the calculation method of the included angle a1 between the direction of the vehicle head and the Y-axis of the field Cartesian coordinate system is as follows:
  • the coordinates of the center point of the front of the car in the rectangular coordinate system of the field are (x3, y3) and the coordinates of the central point of the rear of the car in the rectangular coordinate system of the field are (x4, y4);
  • S105 Calculate whether the obstacle is located in the collision buffer zone according to the position information of the obstacle and the edge position information of the collision buffer zone. In this embodiment, when the obstacle is located in the collision zone, a braking action is taken on the vehicle.
  • step S105 specifically includes the following steps:
  • Step 1 Take a point far outside the field and connect any obstacle point to form a line segment, calculate the cross product of the line segment and each side of the collision buffer polygon in turn, and obtain each of the line segment and the collision buffer edge. Whether the edges intersect.
  • the calculation method of the cross product of the line segment and each side of the collision buffer polygon is:
  • line segment A (Point s1,Point e1)
  • line segment B (Point s2,Point e2)
  • d1 (e1.x-s1.x)*(s2.y-s1.y)-(s2.x-s1.x)*(e1.y-s1.y);
  • d2 (e1.x-s1.x)*(e2.y-s1.y)-(e2.x-s1.x)*(e1.y-s1.y);
  • r1 (e2.x-s2.x)*(e1.y-s2.y)-(e1.x-s2.x)*(e2.y-s2.y);
  • r2 (e2.x-s2.x)*(s1.y-s2.y)-(s1.x-s2.x)*(e2.y-s2.y);
  • e1.x is the x-axis coordinate of point e1, e1.y is the y-axis coordinate of point e1, s1.x is the x-axis coordinate of point s1, s1.y is the y-axis coordinate of point s1, e2.x is the x-axis coordinate of point e2, e2.y is the y-axis coordinate of point e2, s2.x is the x-axis coordinate of point s2, and s2.y is the y-axis coordinate of point s2.
  • Step 2 judging whether the number of sides intersecting the line segment is an even number. Specifically, when the number of sides intersecting the line segment is an even number, step three is performed; when the number of sides intersecting the line segment is an odd number, step four is performed.
  • Step 3 Obtain a calculation result that the obstacle is located outside the collision buffer zone. At this time, there is no need to issue a brake command.
  • Step 4 Obtain the calculation result that the obstacle is located in the collision buffer zone. At this point, a braking command needs to be issued.
  • the vehicle safety control method in the embodiment of the present invention calculates the precise area of the collision buffer zone on the vehicle's travel route according to the vehicle position information, vehicle speed and steering wheel angle information acquired in real time, so that the braking can be accurately calculated in combination with obstacle information.
  • Conditions to avoid false braking caused by judging the braking conditions only based on the obtained obstacle distance, thereby effectively reducing the probability of false braking in driving tests and training vehicles, avoiding many invalid brakings, and ensuring driving tests and training vehicles in complex environments It can drive normally, improves driving test and training efficiency, and avoids unnecessary safety hazards caused by wrong braking.
  • step S103 may specifically include the following steps:
  • step S201 Determine whether the vehicle is in a forward driving state according to the speed information. Specifically, step S202 is performed when the vehicle is in a forward driving state.
  • S202 Use the vehicle head position information as the starting point information of the edge position information of the collision buffer zone.
  • step S203 Determine whether the vehicle is in a straight-line driving state according to the steering wheel angle information. Specifically, when the vehicle is in a straight-line driving state, step S204 is performed; when the vehicle is not in a straight-line driving state (that is, when the vehicle is in a turning state), step S205 is performed.
  • the vehicle may be considered to be in a straight-line driving state when the steering wheel's rotation angle is within 10 degrees, and the vehicle may be considered to be in a turning state when the steering wheel's rotation angle is greater than 10 degrees.
  • S204 Calculate edge position information of the collision buffer zone according to the vehicle head position information and the speed information.
  • the collision buffer zone is a rectangle, and the collision buffer zone takes two points on the left and right of the front of the vehicle as the starting points of the trajectory, and the rectangle consists of the above two trajectory starting points and Composed of two trajectory endpoints; calculate the length of each side of the rectangle according to the vehicle speed: the length of the short side of the rectangle is the distance between two points on the left and right of the front of the vehicle, the length of the long side is v*t, v is the real-time speed of the vehicle, and t is the distance from the beginning of the vehicle The time from braking to complete stop; according to the length of the long side of the rectangle, calculate the coordinates of the starting points of the two trajectories after they are still, so as to obtain the coordinates of the four points of the rectangle, so as to obtain the edge position information of the collision buffer zone.
  • S205 Calculate edge position information of the collision buffer zone according to the vehicle head position information and the steering wheel angle information.
  • the starting point of the trajectory of the collision buffer zone is two points on the left and right sides of the front of the vehicle, and the left front wheel is the turning inner wheel; when the vehicle is moving forward and turning to the right, the collision buffer zone The starting point of the track in the zone is two points on the left and right of the front of the car, but the right front wheel is the inside wheel of the turn.
  • the trajectory calculation method of the inner wheel is: calculate the angle of rotation of the inner wheel according to the angle of rotation of the steering wheel (the relationship between the angle of rotation of the inner wheel and the angle of rotation of the steering wheel is fixed for each type of vehicle, and can be obtained by direct conversion); Then calculate the turning radius and turning circle center of the inner wheel according to the turning angle of the inner wheel (the turning circle center is: the intersection of the vertical line of the driving direction of the left front wheel and the perpendicular line of the driving direction of the left rear wheel; the turning radius is: the turning circle center to the left The length of the connecting line of the front wheel); the track of the inner wheel is a circle when turning, and the circular curve is calculated from the front point near the inner wheel of the turn, and a point is selected at a fixed angle from the front point to calculate the selected point coordinates; the calculation
  • the number of points selected on the circular curve of the inner wheel and the outer wheel (that is, the size of a fixed angle selected in a point at each fixed angle) is judged according to the current vehicle speed, and the higher the vehicle speed, the higher the vehicle speed needs to be selected.
  • step S103 may also specifically include the following steps:
  • step S206 is executed.
  • S206 Use the vehicle rear position information as the starting point information of the edge position information of the collision buffer zone.
  • step S207 Determine whether the vehicle is in a straight-line driving state according to the steering wheel angle information. Specifically, when the vehicle is running straight, step S208 is executed; when the vehicle is not driving straight (that is, when the vehicle is turning), step S209 is executed.
  • S208 Calculate edge position information of the collision buffer zone according to the vehicle rear position information and the speed information.
  • the collision buffer zone is a rectangle
  • the collision buffer zone takes two points on the left and right sides of the rear of the vehicle as the starting point of the trajectory
  • the rectangle is composed of the above two trajectory starting points and two trajectory ending points
  • S209 Calculate edge position information of the collision buffer zone according to the position information of the rear of the vehicle and the steering wheel angle information.
  • the starting point of the trajectory of the collision buffer zone is two points on the left and right of the rear of the vehicle, and the left front wheel is the inside wheel of the turn;
  • the starting point of the trajectory of the collision buffer zone is two points on the left and right of the rear of the vehicle, but the right front wheel is the turning inside wheel.
  • the inside wheel turns at a greater angle than the outside wheel.
  • the calculation method of the trajectory of the inner wheel is: calculate the rotation angle of the inner wheel according to the rotation angle of the steering wheel, and then calculate the minimum turning radius according to the rotation angle of the inner wheel; calculate the turning center according to the minimum turning radius, and the trajectory of the wheel is a circle when turning.
  • the circular curve is calculated from the rear point on the inner wheel side of the turn, and a point is selected at a fixed angle interval from the rear point to calculate the coordinates of the selected point;
  • the trajectory calculation method of the outer wheel is: calculate according to the current steering wheel angle Ackerman rotation angle, and then subtract the Ackerman rotation angle from the inner wheel rotation angle to get the outer wheel rotation angle, calculate the circular curve from the rear point on the side of the outer wheel side of the turn, and select one at a fixed angle from the rear point Point, calculate the coordinates of the selected point; connect the calculated wheel track points on both sides and the two starting points of the rear of the vehicle in sequence to obtain the collision buffer polygon and the coordinates of each point on the polygon.
  • Fig. 6 shows a functional block diagram of a vehicle safety control device according to an embodiment of the present invention, which can be used to implement the vehicle safety control method described in Embodiment 1 or any optional implementation thereof.
  • the device includes: a first acquisition module 10 , a second acquisition module 20 , a first calculation module 30 , a third acquisition module 40 and a second calculation module 50 . in,
  • the first obtaining module 10 is used for obtaining the location information of the vehicle in real time.
  • the second obtaining module 20 is used for obtaining the speed information and steering wheel angle information of the vehicle in real time.
  • the first calculation module 30 is used to calculate edge position information of the collision buffer zone of the vehicle according to the position information of the vehicle, the speed information and the steering wheel angle information.
  • the third acquiring module 40 is used for acquiring position information of obstacles.
  • the second calculation module 50 is used to calculate whether the obstacle is located in the collision buffer zone according to the position information of the obstacle and the edge position information of the collision buffer zone; when the obstacle is located in the collision buffer zone When in the zone, take braking action on the vehicle.
  • the embodiment of the present invention also provides an electronic device.
  • the electronic device may include a processor 71 and a memory 72, wherein the processor 71 and the memory 72 may be connected through a bus or in other ways.
  • the bus connection Take the bus connection as an example.
  • the processor 71 may be a central processing unit (Central Processing Unit, CPU).
  • Processor 71 can also be other general processors, digital signal processor (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC), field programmable gate array (Field-Programmable GateArray, FPGA) or other Chips such as programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or combinations of the above-mentioned types of chips.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable GateArray
  • the memory 72 can be used to store non-transitory software programs, non-transitory computer-executable programs and modules, such as program instructions/modules corresponding to the vehicle safety control method in the embodiment of the present invention (the first acquisition module 10 , the second acquisition module 20 , the first calculation module 30 , the third acquisition module 40 and the second calculation module 50 as shown in FIG. 6 ).
  • the processor 71 executes various functional applications and data processing of the processor by running the non-transitory software programs, instructions and modules stored in the memory 72, that is, implements the vehicle safety control method in the above method embodiments.
  • the memory 72 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created by the processor 71 and the like.
  • the memory 72 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 72 may optionally include a memory that is remotely located relative to the processor 71, and these remote memories may be connected to the processor 71 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the one or more modules are stored in the memory 72 , and when executed by the processor 71 , execute the vehicle safety control method in the embodiment shown in FIGS. 1-5 .
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a flash memory (Flash Memory), a hard disk (Hard Disk) Disk Drive, abbreviation: HDD) or solid-state hard drive (Solid-State Drive, SSD) etc.;
  • the storage medium can also include the combination of above-mentioned types of memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种车辆安全控制方法,包括如下步骤:实时获取车辆所处的位置信息;实时获取车辆速度及方向盘转角信息;根据车辆位置信息和车辆速度、方向盘转角信息计算得到车辆行进路线上的碰撞缓冲区的边缘位置信息;获取障碍物的位置信息;根据障碍物的位置信息和碰撞缓冲区的边缘位置信息,计算障碍物是否位于碰撞缓冲区内;当障碍物位于碰撞缓冲区内时,对车辆采取刹车动作。该车辆安全控制方法通过计算车辆行进路线上的碰撞缓冲区的精确区域,并结合障碍物信息准确计算刹车条件,避免仅根据障碍物距离来判断刹车条件所导致的误刹车,从而有效降低驾驶考试、训练车辆的误刹车的概率。还提供了一种实现该车辆安全控制方法的装置、设备及存储介质。

Description

一种车辆安全控制方法、装置、设备及存储介质 技术领域
本发明涉及一种车辆安全控制方法、装置、设备及存储介质,属于车辆安全控制技术领域。
背景技术
随着人们生活水平的不断提高,便捷的交通出行是人们的一大需求,而出行的安全更是重中之重。机动车驾驶技能越来越受到人们的关注,每年都会有数以万计的学员考取驾驶证,通过驾驶专业技能的培训并最终考核达标后方能驾驶车辆上路,从而尽量避免汽车在行驶的过程中发生交通事故,事故的发生不仅仅会对车辆本身造成一定影响,对人们的安全和经济都产生非常严重的威胁。
现有市场上诸多驾驶人考试车辆的车载安全保护系统均是通过毫米波雷达获取障碍物距离来判断刹车条件,当车辆在拐弯且遇到比较复杂的现场环境下,比如附近有行人走动或者其他车辆行驶等,无法做到精确的安全刹车判断,容易导致误刹车而影响正常行驶,进一步地影响了车辆驾驶考试、培训的正常进行。
发明内容
为了克服现有技术中存在的不足,本发明提供一种应用于驾考、驾培中的车辆安全控制方法,以解决现有技术中驾驶考试车辆的车载安全保护系统仅通过毫米波雷达或超声波雷达获取现场障碍物信息来判断车辆刹车条件不准确,容易导致影响车辆正常行驶的问题。
为实现上述目的,本发明采用的技术方案如下:
第一方面,本发明提供了一种车辆安全控制方法,步骤如下:
实时获取车辆所处的位置信息;
实时获取车辆速度及方向盘转角信息;
根据车辆位置信息和车辆速度、方向盘转角信息计算得到车辆行进路线上的碰撞缓冲区的边缘位置信息;
获取障碍物的位置信息;
根据所述障碍物的位置信息和所述碰撞缓冲区的边缘位置信息,计算所述障碍物是否位于所述碰撞缓冲区内;当所述障碍物位于所述碰撞缓冲区内时,对所述车辆采取刹车动作。
进一步地,所述实时获取车辆所处的位置信息的步骤,具体包括:
通过车辆顶部安装的双GPS天线及场地设有的差分定位基准站实时获取车辆顶部安装的GPS主天线的位置坐标,得到车辆的位置坐标。
进一步地,所述根据车辆位置信息和车辆速度、方向盘转角信息计算得到车辆行进路线上的碰撞缓冲区的边缘位置信息的步骤,具体包括:
根据所述速度信息判断所述车辆是否处于前进行驶状态;
当所述车辆处于前进行驶状态时,将车辆头部位置信息作为碰撞缓冲区的边缘位置的起始点信息;
根据所述方向盘转角信息判断所述车辆是否处于直线行驶状态;
当所述车辆处于直线行驶状态时,根据所述车辆头部位置信息和所述速度信息计算所述碰撞缓冲区的边缘位置信息;
当所述车辆不是处于直线行驶状态时,根据所述车辆头部位置信息和所述方向盘转角信息计算所述碰撞缓冲区的边缘位置信息。
进一步地,所述根据车辆位置信息和车辆速度、方向盘转角信息计算得到车辆行进路线上的碰撞缓冲区的边缘位置信息的步骤,还包括:
当所述车辆处于后退行驶状态时,将车辆尾部位置信息作为碰撞缓冲区的边缘位置的起始点信息;
根据所述方向盘转角信息判断所述车辆是否处于直线行驶状态;
当所述车辆处于直线行驶状态时,根据所述车辆尾部位置信息和所述速度信息计算所述碰撞缓冲区的边缘位置信息;
当所述车辆处于转弯行驶状态时,根据所述车尾的位置信息和所述方向盘转角信息计算所述碰撞缓冲区的边缘位置信息。
进一步地,所述根据所述障碍物的位置信息和所述碰撞缓冲区的边缘位置信息,计算所述障碍物是否位于所述碰撞缓冲区内的步骤,包括:
选取所述场地中位于所述碰撞缓冲区外的任一点作为计算点,并将所述计算点与障碍物点连成一个线段,依次计算所述线段与所述碰撞缓冲区边缘中的每条边的叉积,得到所述线段与所述碰撞缓冲区边缘中的各个边是否相交;
判断与所述线段相交的边的数量是否为偶数;
当与所述线段相交的边的数量为偶数时,得到所述障碍物位于所述碰撞缓冲区外的 计算结果;
当与所述线段相交的边的数量为奇数时,得到所述障碍物位于所述碰撞缓冲区内的计算结果。
进一步地,所述实时获取车辆所处的位置信息的步骤,具体包括:
在车辆所在场地中选取一个基准点测量出其位置坐标(lon0,lat0),并将该基准点作为场地直角坐标系的原点;
根据实时获取的车辆GPS主天线的位置坐标(lon1,lat1)及上述场地直角坐标系的原点的位置坐标(lon0,lat0)计算出GPS主天线在场地直角坐标系中的坐标(x,y),计算公式如下:
x=R*(lon1–lon0)*cos(lat1–lat0)
y=R*(lat1–lat0)
式中,R为地球半径;
选取场地中一静止基准车辆,获取该基准车辆车身各个点的位置坐标以及车辆的基准GPS主天线的位置坐标,以基准GPS主天线的位置坐标作为GPS主天线直角坐标系的原点,再计算出基准车辆车身各个点在GPS主天线直角坐标系的坐标;
根据上述基准车辆车身各个点在GPS主天线直角坐标系的坐标和GPS主天线在场地直角坐标系的坐标计算出该车辆在场地直角坐标系中车身各个点的坐标,得到车身是一个多边形。
进一步地,所述获取障碍物的位置信息的步骤,具体包括:根据毫米波雷达协议解析出障碍物坐标,即毫米波雷达直角坐标系的坐标,再根据毫米波雷达在车身的安装位置,将障碍物基于毫米波雷达直角坐标系的坐标转换为场地直角坐标系的坐标:
障碍物基于毫米波雷达坐标系的坐标为(x0,y0),转成极坐标为(a0,r0);根据毫米波雷达安装位置位于场地直角坐标系的坐标(x1,y1)、车头方向和场地直角坐标系Y轴的夹角a1,及障碍物位于场地平面坐标系的方位角a2,得出障碍物转换后的最终坐标为(x1+r0*sin(a2),y1+r0*cos(a2)),其中,a2=a1+a0。
第二方面,本发明提供了一种车辆安全控制装置,包括:
第一获取模块,用于实时获取车辆所处的位置信息;
第二获取模块,用于实时获取所述车辆的速度信息及方向盘转角信息;
第一计算模块,用于根据所述车辆所处的位置信息、所述速度信息速度和所述方向 盘转角信息计算得到所述车辆的碰撞缓冲区的边缘位置信息;
第三获取模块,用于获取障碍物的位置信息;
第二计算模块,用于根据所述障碍物的位置信息和所述碰撞缓冲区的边缘位置信息,计算所述障碍物是否位于所述碰撞缓冲区内;当所述障碍物位于所述碰撞缓冲区内时,对所述车辆采取刹车动作。
第三方面,本发明提供了一种电子设备,其特征在于,包括:存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行上述第一方面所述的车辆安全控制方法。
第四方面,本发明提供了一种电子设备,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行上述第一方面所述的车辆安全控制方法。
本发明的有益效果:
1、本发明提供的车辆安全控制方法,通过根据实时获取的车辆位置信息和车辆速度以及方向盘转角信息,计算出车辆行进路线上的碰撞缓冲区的精确区域,从而结合障碍物信息准确计算刹车条件,避免仅根据获取障碍物距离来判断刹车条件所导致的误刹车,从而有效降低驾驶考试、训练车辆的误刹车的概率,避免很多无效的刹车,保证了驾驶考试、训练车辆在复杂环境下可以正常的行驶,提高了驾驶考试、训练效率,同时也避免了因误刹车导致的不必要安全隐患。
2、本发明提供的车辆安全控制方法,通过双GPS天线及场地设有的差分定位基准站实时获取车辆顶部安装的GPS主天线的位置坐标,得到车辆准确的实时位置坐标,使车辆位置信息内能够达到厘米级精度,进一步避免了定位误差导致的误刹车情况或仅通过毫米波雷达探测导致的误刹车。
附图说明
图1为本发明实施例1提供的一种车辆安全控制方法的步骤流程图;
图2为图1中步骤S103的具体步骤流程图;
图3为毫米波雷达探测的障碍物坐标转换示意图;
图4为车辆前进直行状态碰撞缓冲区示意图。
图5为车辆前进左转状态碰撞缓冲区示意图。
图6为本发明实施例2提供的一种车辆安全控制装置的原理框图;
图7为本发明实施例2提供的一种电子设备的硬件结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
实施例1
图1示出了本发明实施例的车辆安全控制方法的流程图,如图1所示,该方法可以包括如下步骤:
S101:实时获取车辆所处的位置信息。在本实施例中,该步骤获取的车辆所处的位置信息包括该车辆车身各个点的坐标,得到车身是一个多边形。
在本实施例中,为了提高获取的车辆所处的位置信息的准确度,可以通过双GPS天线及场地设有的差分定位基准站实时获取车辆顶部安装的GPS主天线的位置坐标,进而得到车辆的位置坐标。
S102:实时获取车辆速度及方向盘转角信息。在本实施例中,通过车载OBD接口实时读取车辆速度及方向盘转角信息。此外,还可以在车辆方向盘连杆上设置外置编码器,用以在通过车载OBD接口无法读取方向盘转角信息时,通过外置编码器获取方向盘转交信息,具体地,转动方向盘将带动编码器转动,因此,读取到的编码器的旋转角度即为方向盘转角信息。
S103:根据车辆位置信息和车辆速度、方向盘转角信息计算得到车辆行进路线上的碰撞缓冲区的边缘位置信息。具体地,碰撞缓冲区同样为一个不规则多边形,该步骤中计算得到的碰撞缓冲区的边缘位置信息包括碰撞缓冲区多边形上多个点的坐标。
S104:获取障碍物的位置信息。
在本实施例中,需要将步骤S101中实时获取的车辆的位置信息以及步骤S104中获取的障碍物的位置信息统一至同一坐标系中,具体地,该同一坐标系可以为车辆上设置的GPS天线直角坐标系(车辆的位置信息即为通过车辆上设置的GPS天线获取),也可以为雷达直角坐标系(障碍物信息即为通过雷达获取),还可以为车辆所在的场地的场地直角坐标系等,在此不做限制。
在这里,以上述同一坐标系为场地直角坐标为例,步骤S101可以包括如下具体步骤:
步骤A:在车辆所在场地中选取一个基准点测量出其位置坐标(lon0,lat0),并将该基准点作为场地直角坐标系的原点。
步骤B:根据实时获取的车辆GPS主天线的位置坐标(lon1,lat1)及上述场地直角坐标系的原点的位置坐标(lon0,lat0)计算出GPS主天线在场地直角坐标系中的坐标(x,y),计算公式如下:
x=R*(lon1–lon0)*cos(lat1–lat0)
y=R*(lat1–lat0)
式中,R为地球半径。
步骤C:选取场地中一静止基准车辆,获取该基准车辆车身各个点的位置坐标以及车辆的基准GPS主天线的位置坐标,以基准GPS主天线的位置坐标作为GPS主天线直角坐标系的原点,再计算出基准车辆车身各个点在GPS主天线直角坐标系的坐标。在这里,需要说明的是,基准车辆应与上述车辆同样型号,且本领域技术人员应当可以理解,基准车辆与上述车辆可以为同一车辆也可以为不同车辆,也即,基准车辆可以即为处于静止状态的上述车辆。
步骤D:根据上述基准车辆车身各个点在GPS主天线直角坐标系的坐标和GPS主天线在场地直角坐标系的坐标计算出该车辆在场地直角坐标系中车身各个点的坐标,得到车身是一个多边形。
同样地,以上述同一坐标系为场地直角坐标为例,步骤S104可以包括如下具体步骤:
步骤a:根据毫米波雷达协议解析出障碍物坐标。在该步骤中,解析出的障碍物作为为毫米波雷达直角坐标系的坐标。
步骤b:根据毫米波雷达在车身的安装位置,将障碍物基于毫米波雷达直角坐标系的坐标转换为场地直角坐标系的坐标。
具体地,如图3所示,假设障碍物基于毫米波雷达坐标系的坐标为(x0,y0),转成极坐标为(a0,r0),则可以根据毫米波雷达安装位置位于场地直角坐标系的坐标(x1,y1)、车头方向和场地直角坐标系Y轴的夹角a1,及障碍物位于场地平面坐标系的方位角a2,得出障碍物转换后的最终坐标为:(x1+r0*sin(a2),y1+r0*cos(a2))。
其中,所述车头方向和场地直角坐标系Y轴的夹角a1的计算方法如下:
根据车身多边形各点在场地直角坐标系的坐标,得到车头中心点在场地直角坐标系的坐标为(x3,y3)和车尾中心点在场地直角坐标系的坐标为(x4,y4);
a1=atan(x4–x3,y4–y3)
其中,所述障碍物位于场地平面坐标系的方位角为a2=a1+r0。
S105:根据所述障碍物的位置信息和所述碰撞缓冲区的边缘位置信息,计算所述障碍物是否位于所述碰撞缓冲区内。在本实施例中,当所述障碍物位于所述碰撞缓冲区内时,对所述车辆采取刹车动作。
在本实施例中,根据上述步骤S103得到的碰撞缓冲区多边形以及多边形上各点的坐标及上述步骤S104中得到的障碍物转换后的最终坐标计算各障碍物点是否位于缓冲区多边形内。具体地,同样以上述同一坐标系为场地直角坐标系为例,步骤S105具体包括如下步骤:
步骤一:取场地外远处一点与任意一个障碍物点连成一个线段,依次计算该线段与碰撞缓冲区多边形每条边的叉积,得到所述线段与所述碰撞缓冲区边缘中的各个边是否相交。
具体地,所述线段与碰撞缓冲区多边形每条边的叉积的计算方法为:
假如有两条线段,线段A(Point s1,Point e1),线段B(Point s2,Point e2),那么:
d1=(e1.x-s1.x)*(s2.y-s1.y)-(s2.x-s1.x)*(e1.y-s1.y);
d2=(e1.x-s1.x)*(e2.y-s1.y)-(e2.x-s1.x)*(e1.y-s1.y);
r1=(e2.x-s2.x)*(e1.y-s2.y)-(e1.x-s2.x)*(e2.y-s2.y);
r2=(e2.x-s2.x)*(s1.y-s2.y)-(s1.x-s2.x)*(e2.y-s2.y);
若d1*d2<0且r1*r2<0,则线段相交,否则线段不相交。式中,e1.x为点e1的x轴坐标,e1.y为点e1的y轴坐标,s1.x为点s1的x轴坐标,s1.y为点s1的y轴坐标,e2.x为点e2的x轴坐标,e2.y为点e2的y轴坐标,s2.x为点s2的x轴坐标,s2.y为点s2的y轴坐标。
步骤二:判断与所述线段相交的边的数量是否为偶数。具体地,当与所述线段相交的边的数量为偶数时,则执行步骤三;当与所述线段相交的边的数量为奇数时,则执行步骤四。
步骤三:得到所述障碍物位于所述碰撞缓冲区外的计算结果。此时,不需要发出刹 车指令。
步骤四:得到所述障碍物位于所述碰撞缓冲区内的计算结果。此时,需要发出刹车指令。
本发明实施例中的车辆安全控制方法,通过根据实时获取的车辆位置信息和车辆速度以及方向盘转角信息,计算出车辆行进路线上的碰撞缓冲区的精确区域,从而使结合障碍物信息准确计算刹车条件,避免仅根据获取障碍物距离来判断刹车条件所导致的误刹车,从而有效降低驾驶考试、训练车辆的误刹车的概率,避免很多无效的刹车,保证了驾驶考试、训练车辆在复杂环境下可以正常的行驶,提高了驾驶考试、训练效率,同时也避免了因误刹车导致的不必要安全隐患。
作为本发明实施例的一种可选实施方式,如图2所示,步骤S103可以具体包括如下步骤:
S201:根据所述速度信息判断所述车辆是否处于前进行驶状态。具体地,当所述车辆是否处于前进行驶状态时,执行步骤S202。
S202:将车辆头部位置信息作为碰撞缓冲区的边缘位置信息的起始点信息。
S203:根据所述方向盘转角信息判断所述车辆是否处于直线行驶状态。具体地,当所述车辆处于直线行驶状态时,则实行步骤S204;当所述车辆不是处于直线行驶状态时(也即当所述车辆处于转弯状态时),则执行步骤S205。
在本实施例中,可以在方向盘的转动角度为10度以内时,认为所述车辆处于直线行驶状态,在方向盘的转动角度大于10度时,认为所述车辆处于转弯行驶状态。
S204:根据所述车辆头部位置信息和所述速度信息计算所述碰撞缓冲区的边缘位置信息。
具体地,如图4所示,当所述车辆处于直线前进行驶状态时,碰撞缓冲区为一个长方形,且碰撞缓冲区取车头左右两点为轨迹起始点,长方形由上述两个轨迹起始点和两个轨迹终点组成;根据车辆速度计算长方形的各边长度:所述长方形的短边长度为车头左右两点的距离,长边长度为v*t,v为车辆实时速度,t为车辆从开始刹车至完全停止的时间;根据长方形长边长度计算两个轨迹起始点静止后的坐标,以得到长方形四个点的坐标,从而得到碰撞缓冲区的边缘位置信息。
S205:根据所述车辆头部位置信息和所述方向盘转角信息计算所述碰撞缓冲区的边缘位置信息。
具体地,当所述车辆前进且向左打方向时,碰撞缓冲区的轨迹起始点为车头左右两点,左前轮为转弯内侧轮;当所述车辆前进且向右打方向时,碰撞缓冲区的轨迹起始点为车头左右两点,但右前轮为转弯内侧轮。
如图5所示(图5中以述车辆前进且转弯方向为左转时为例进行示出),转弯时,内侧轮的转弯角度大于外侧轮的角度。其中,内侧轮的轨迹计算方法为:根据方向盘的转动角度计算出内侧轮的转角(内侧轮的转角与方向盘的转动角度之间的关系每一型号的车辆均为固定,可以直接换算得到);再根据内侧轮的转角计算内侧轮的转弯半径和转弯圆心(转弯圆心为:左前轮的行驶方向的垂线与左后轮的行驶方向的垂线的交点;转弯半径为:转弯圆心到左前轮的连线长度);转弯时内侧车轮的轨迹为一个圆形,从转弯内侧轮附近的车头点开始计圆形曲线,从车头点开始每间隔固定角度依次选取一个点,计算所选取点的坐标;外侧轮的轨迹计算方法为:根据当前方向盘角度计算阿克曼转角,然后用内侧轮转角减去阿克曼转角得出外侧轮的转角,进而得到外侧轮的转弯圆心和转弯半径(具体计算方式与内侧轮相同);从转弯外侧轮附近的车头点开始计圆形曲线,从车头点开始每间隔固定角度依次选取一个点,计算所选取点的坐标;将计算得到的两侧车轮轨迹点及车头两起始点依次连接,得到碰撞缓冲区多边形以及多边形上各点的坐标。
在本实施例中,内侧轮和外侧轮的圆形曲线上所选取点的数量(也即每间隔固定角度依次选取一个点中的固定角度的大小)根据当前车速来判断,车速越高需要选取的点数越多,例如,可以将上述固定角度的取值范围设置为5-15度。
作为本发明实施例的一种可选实施方式,如图2所示,步骤S103还可以具体包括如下步骤:
当步骤S201中的判断结果为所述车辆不是处于前进行驶状态时(也即当所述车辆处于后退行驶状态时),执行步骤S206。
S206:将车辆尾部位置信息作为碰撞缓冲区的边缘位置信息的起始点信息。
S207:根据所述方向盘转角信息判断所述车辆是否处于直线行驶状态。具体地,当所述车辆处于直线行驶状态时,则实行步骤S208;当所述车辆不是处于直线行驶状态时(也即当所述车辆处于转弯状态时),则执行步骤S209。
S208:根据所述车辆尾部位置信息和所述速度信息计算所述碰撞缓冲区的边缘位置信息。
具体地,当所述车辆处于直线后退行驶状态时,碰撞缓冲区为一个长方形,且碰撞缓冲区取车尾左右两点为轨迹起始点,长方形由上述两个轨迹起始点和两个轨迹终点组成;根据车辆速度计算长方形的各边长度:所述长方形的短边长度为车尾左右两点的距离,长边长度为v*t,v为车辆实时速度,t为车辆从开始刹车至完全停止的时间;根据长方形长边长度计算两个轨迹起始点静止后的坐标,以得到长方形四个点的坐标,从而得到碰撞缓冲区的边缘位置信息。
S209:根据所述车尾的位置信息和所述方向盘转角信息计算所述碰撞缓冲区的边缘位置信息。
具体地,与前进时类似,当所述车辆后退且向左打方向则时,碰撞缓冲区的轨迹起始点为车尾左右两点,左前轮为转弯内侧轮;当所述车辆前进且向右打方向时,碰撞缓冲区的轨迹起始点为车尾左右两点,但右前轮为转弯内侧轮。转弯时,内侧轮的转弯角度大于外侧轮的角度。内侧轮的轨迹计算方法为:根据方向盘的转动角度计算出内侧轮的转角,再根据内侧轮的转角计算最小转弯半径;根据最小转弯半径计算转弯圆心,转弯时车轮的轨迹为一个圆形,从转弯内侧轮一侧的车尾点开始计圆形曲线,从车尾点开始每间隔固定角度依次选取一个点,计算所选取点的坐标;外侧轮的轨迹计算方法为:根据当前方向盘角度计算阿克曼转角,然后用内侧轮转角减去阿克曼转角得出外侧轮的转角,从转弯外侧轮一侧的车尾点开始计圆形曲线,从车尾点开始每间隔固定角度依次选取一个点,计算所选取点的坐标;将计算得到的两侧车轮轨迹点及车尾两起始点依次连接,得到碰撞缓冲区多边形以及多边形上各点的坐标。
实施例2
图6示出了本发明实施例的一种车辆安全控制装置的原理框图,该装置可以用于实现实施例1或者其任意可选实施方式所述的车辆安全控制方法。如图6所示,该装置包括:第一获取模块10、第二获取模块20、第一计算模块30、第三获取模块40和第二计算模块50。其中,
第一获取模块10用于实时获取车辆所处的位置信息。
第二获取模块20用于实时获取所述车辆的速度信息及方向盘转角信息。
第一计算模块30用于根据所述车辆所处的位置信息、所述速度信息速度和所述方向盘转角信息计算得到所述车辆的碰撞缓冲区的边缘位置信息。
第三获取模块40用于获取障碍物的位置信息。
第二计算模块50用于根据所述障碍物的位置信息和所述碰撞缓冲区的边缘位置信息,计算所述障碍物是否位于所述碰撞缓冲区内;当所述障碍物位于所述碰撞缓冲区内时,对所述车辆采取刹车动作。
本发明实施例还提供了一种电子设备,如图7所示,该电子设备可以包括处理器71和存储器72,其中处理器71和存储器72可以通过总线或者其他方式连接,图7中以通过总线连接为例。
处理器71可以为中央处理器(Central Processing Unit,CPU)。处理器71还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable GateArray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。
存储器72作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态计算机可执行程序以及模块,如本发明实施例中的车辆安全控制方法对应的程序指令/模块(如图6示出的第一获取模块10、第二获取模块20、第一计算模块30、第三获取模块40和第二计算模块50)。处理器71通过运行存储在存储器72中的非暂态软件程序、指令以及模块,从而执行处理器的各种功能应用以及数据处理,即实现上述方法实施例中的车辆安全控制方法。
存储器72可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储处理器71所创建的数据等。此外,存储器72可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器72可选包括相对于处理器71远程设置的存储器,这些远程存储器可以通过网络连接至处理器71。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器72中,当被所述处理器71执行时,执行如图1-图5所示实施例中的车辆安全控制方法。
上述电子设备具体细节可以对应参阅图1至图5所示的实施例中对应的相关描述和效果进行理解,此处不再赘述。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分流程,是可以通过 计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。
尽管以上本发明的实施方案进行了描述,但本发明并不局限于上述的具体实施方案和应用领域,上述的具体实施方案仅仅是示意性的、指导性的,而不是限制性的。本领域的普通技术人员在本说明书的启示下,在不脱离本发明权利要求所保护的范围的情况下,还可以做出很多种的形式,这些均属于本发明保护之列。

Claims (10)

  1. 一种车辆安全控制方法,其特征在于,步骤如下:
    实时获取车辆所处的位置信息;
    实时获取车辆速度及方向盘转角信息;
    根据车辆位置信息和车辆速度、方向盘转角信息计算得到车辆行进路线上的碰撞缓冲区的边缘位置信息;
    获取障碍物的位置信息;
    根据所述障碍物的位置信息和所述碰撞缓冲区的边缘位置信息,计算所述障碍物是否位于所述碰撞缓冲区内;当所述障碍物位于所述碰撞缓冲区内时,对所述车辆采取刹车动作。
  2. 根据权利要求1所述的车辆安全控制方法,其特征在于,所述实时获取车辆所处的位置信息的步骤,具体包括:
    通过车辆顶部安装的双GPS天线及场地设有的差分定位基准站实时获取车辆顶部安装的GPS主天线的位置坐标,得到车辆的位置坐标。
  3. 根据权利要求1所述的车辆安全控制方法,其特征在于,所述根据车辆位置信息和车辆速度、方向盘转角信息计算得到车辆行进路线上的碰撞缓冲区的边缘位置信息的步骤,具体包括:
    根据所述速度信息判断所述车辆是否处于前进行驶状态;
    当所述车辆处于前进行驶状态时,将车辆头部位置信息作为碰撞缓冲区的边缘位置的起始点信息;
    根据所述方向盘转角信息判断所述车辆是否处于直线行驶状态;
    当所述车辆处于直线行驶状态时,根据所述车辆头部位置信息和所述速度信息计算所述碰撞缓冲区的边缘位置信息;
    当所述车辆不是处于直线行驶状态时,根据所述车辆头部位置信息和所述方向盘转角信息计算所述碰撞缓冲区的边缘位置信息。
  4. 根据权利要求3所述的车辆安全控制方法,其特征在于,所述根据车辆位置信息和车辆速度、方向盘转角信息计算得到车辆行进路线上的碰撞缓冲区的边缘位置信息的步骤,还包括:
    当所述车辆处于后退行驶状态时,将车辆尾部位置信息作为碰撞缓冲区的边缘位置的起始点信息;
    根据所述方向盘转角信息判断所述车辆是否处于直线行驶状态;
    当所述车辆处于直线行驶状态时,根据所述车辆尾部位置信息和所述速度信息计算所述碰撞缓冲区的边缘位置信息;
    当所述车辆处于转弯行驶状态时,根据所述车尾的位置信息和所述方向盘转角信息计算所述碰撞缓冲区的边缘位置信息。
  5. 根据权利要求1所述的车辆安全控制方法,其特征在于,所述根据所述障碍物的位置信息和所述碰撞缓冲区的边缘位置信息,计算所述障碍物是否位于所述碰撞缓冲区内的步骤,包括:
    选取所述场地中位于所述碰撞缓冲区外的任一点作为计算点,并将所述计算点与障碍物点连成一个线段,依次计算所述线段与所述碰撞缓冲区边缘中的每条边的叉积,得到所述线段与所述碰撞缓冲区边缘中的各个边是否相交;
    判断与所述线段相交的边的数量是否为偶数;
    当与所述线段相交的边的数量为偶数时,得到所述障碍物位于所述碰撞缓冲区外的计算结果;
    当与所述线段相交的边的数量为奇数时,得到所述障碍物位于所述碰撞缓冲区内的计算结果。
  6. 根据权利要求1所述的车辆安全控制方法,其特征在于,所述实时获取车辆所处的位置信息的步骤,具体包括:
    在车辆所在场地中选取一个基准点测量出其位置坐标(lon0,lat0),并将该基准点作为场地直角坐标系的原点;
    根据实时获取的车辆GPS主天线的位置坐标(lon1,lat1)及上述场地直角坐标系的原点的位置坐标(lon0,lat0)计算出GPS主天线在场地直角坐标系中的坐标(x,y),计算公式如下:
    x=R*(lon1–lon0)*cos(lat1–lat0)
    y=R*(lat1–lat0)
    式中,R为地球半径;
    选取场地中一静止基准车辆,获取该基准车辆车身各个点的位置坐标以及车辆的基准GPS主天线的位置坐标,以基准GPS主天线的位置坐标作为GPS主天线直角坐标系的原点,再计算出基准车辆车身各个点在GPS主天线直角坐标系的坐标;
    根据上述基准车辆车身各个点在GPS主天线直角坐标系的坐标和GPS主天线在场地直角坐标系的坐标计算出该车辆在场地直角坐标系中车身各个点的坐标,得到车身是一个多边形。
  7. 根据权利要求6所述的车辆安全控制方法,其特征在于,所述获取障碍物的位置信息的步骤,具体包括:根据毫米波雷达协议解析出障碍物坐标,即毫米波雷达直角坐标系的坐标,再根据毫米波雷达在车身的安装位置,将障碍物基于毫米波雷达直角坐标系的坐标转换为场地直角坐标系的坐标:
    障碍物基于毫米波雷达坐标系的坐标为(x0,y0),转成极坐标为(a0,r0);根据毫米波雷达安装位置位于场地直角坐标系的坐标(x1,y1)、车头方向和场地直角坐标系Y轴的夹角a1,及障碍物位于场地平面坐标系的方位角a2,得出障碍物转换后的最终坐标为(x1+r0*sin(a2),y1+r0*cos(a2)),其中,a2=a1+a0。
  8. 一种车辆安全控制装置,其特征在于,包括:
    第一获取模块,用于实时获取车辆所处的位置信息;
    第二获取模块,用于实时获取所述车辆的速度信息及方向盘转角信息;
    第一计算模块,用于根据所述车辆所处的位置信息、所述速度信息速度和所述方向盘转角信息计算得到所述车辆的碰撞缓冲区的边缘位置信息;
    第三获取模块,用于获取障碍物的位置信息;
    第二计算模块,用于根据所述障碍物的位置信息和所述碰撞缓冲区的边缘位置信息,计算所述障碍物是否位于所述碰撞缓冲区内;当所述障碍物位于所述碰撞缓冲区内时,对所述车辆采取刹车动作。
  9. 一种电子设备,其特征在于,包括:存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行权利要求1-7任一项所述的车辆安全控制方法。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行权利要求1-7任一项所述的车辆安全控制方法。
PCT/CN2022/093846 2021-06-04 2022-05-19 一种车辆安全控制方法、装置、设备及存储介质 WO2022252999A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110624252.1A CN113183967A (zh) 2021-06-04 2021-06-04 一种车辆安全控制方法、装置、设备及存储介质
CN202110624252.1 2021-06-04

Publications (1)

Publication Number Publication Date
WO2022252999A1 true WO2022252999A1 (zh) 2022-12-08

Family

ID=76975933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093846 WO2022252999A1 (zh) 2021-06-04 2022-05-19 一种车辆安全控制方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN113183967A (zh)
WO (1) WO2022252999A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113183967A (zh) * 2021-06-04 2021-07-30 多伦科技股份有限公司 一种车辆安全控制方法、装置、设备及存储介质
CN113844447A (zh) * 2021-11-02 2021-12-28 阿波罗智能技术(北京)有限公司 自动驾驶碰撞检测方法、装置、电子设备及可读存储介质
CN114179832B (zh) * 2021-12-29 2023-12-19 阿波罗智联(北京)科技有限公司 用于自动驾驶车辆的变道方法
CN114694461B (zh) * 2022-05-09 2024-02-02 多伦科技股份有限公司 用于提高驾驶培训中驾驶安全的方法、装置及电子设备
CN116106906B (zh) * 2022-12-01 2023-11-21 山东临工工程机械有限公司 工程车辆避障方法、装置、电子设备、存储介质及装载机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154285A (ja) * 2017-03-21 2018-10-04 トヨタ自動車株式会社 衝突前制御実施装置
CN108973959A (zh) * 2017-06-01 2018-12-11 德尔福技术有限公司 对于缓慢移动体的自动制动系统
US20200070818A1 (en) * 2018-09-05 2020-03-05 Mitsubishi Electric Corporation Collision avoidance apparatus
CN111452788A (zh) * 2019-01-22 2020-07-28 上海汽车集团股份有限公司 一种后向防追尾控制方法及装置
CN112277798A (zh) * 2020-10-29 2021-01-29 西安工业大学 一种汽车行驶防碰撞系统和控制方法
CN112389392A (zh) * 2020-12-01 2021-02-23 安徽江淮汽车集团股份有限公司 车辆主动制动方法、装置、设备及存储介质
CN113183967A (zh) * 2021-06-04 2021-07-30 多伦科技股份有限公司 一种车辆安全控制方法、装置、设备及存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010005448B4 (de) * 2010-04-05 2020-07-23 Toyota Jidosha Kabushiki Kaisha Kollisionsbeurteilungsvorrichtung für ein Fahrzeug
CN103661599B (zh) * 2013-12-04 2016-01-06 奇瑞汽车股份有限公司 一种车辆转弯轨迹预测系统和方法
CN108318884A (zh) * 2018-02-12 2018-07-24 辅易航智能科技(苏州)有限公司 基于超声波传感器实现低速紧急制动的方法
CN109624972B (zh) * 2018-12-06 2020-06-09 北京百度网讯科技有限公司 车辆防止碰撞的方法、装置、设备及可读存储介质
KR102187378B1 (ko) * 2019-05-21 2020-12-08 주식회사 만도 충돌 방지 장치, 그를 가지는 차량 및 그 제어 방법
CN111337941B (zh) * 2020-03-18 2022-03-04 中国科学技术大学 一种基于稀疏激光雷达数据的动态障碍物追踪方法
CN111708365A (zh) * 2020-06-24 2020-09-25 宝武集团环境资源科技有限公司 一种自动路径规划方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154285A (ja) * 2017-03-21 2018-10-04 トヨタ自動車株式会社 衝突前制御実施装置
CN108973959A (zh) * 2017-06-01 2018-12-11 德尔福技术有限公司 对于缓慢移动体的自动制动系统
US20200070818A1 (en) * 2018-09-05 2020-03-05 Mitsubishi Electric Corporation Collision avoidance apparatus
CN111452788A (zh) * 2019-01-22 2020-07-28 上海汽车集团股份有限公司 一种后向防追尾控制方法及装置
CN112277798A (zh) * 2020-10-29 2021-01-29 西安工业大学 一种汽车行驶防碰撞系统和控制方法
CN112389392A (zh) * 2020-12-01 2021-02-23 安徽江淮汽车集团股份有限公司 车辆主动制动方法、装置、设备及存储介质
CN113183967A (zh) * 2021-06-04 2021-07-30 多伦科技股份有限公司 一种车辆安全控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN113183967A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
WO2022252999A1 (zh) 一种车辆安全控制方法、装置、设备及存储介质
US20200265710A1 (en) Travelling track prediction method and device for vehicle
CN108922173B (zh) 一种车辆偏离检测方法及装置
CN111750886B (zh) 局部路径规划方法及装置
EP3745376B1 (en) Method and system for determining driving assisting data
WO2020135740A1 (zh) 自动驾驶车辆的换道方法、系统及车辆
US9734718B2 (en) Vehicle location estimation apparatus and vehicle location estimation method
CN110867132B (zh) 环境感知的方法、装置、电子设备和计算机可读存储介质
CN108932869A (zh) 车辆系统、车辆信息处理方法、记录介质、交通系统、基础设施系统及信息处理方法
WO2023071959A1 (zh) 避障方法、装置、电子设备和存储介质
CN111380546A (zh) 基于平行道路的车辆定位方法、装置、电子设备和介质
EP4335710A1 (en) Traveling path boundary determination method and device, vehicle, storage medium, and terminal
WO2023025007A1 (zh) 车辆避让方法、装置、车载设备及存储介质
WO2023273512A1 (zh) 预警方法、电子设备和计算机可读存储介质
CN111006681A (zh) 一种辅助导航方法、装置、设备和介质
CN114185337A (zh) 一种车辆、车辆预碰撞检测方法及装置
US11753014B2 (en) Method and control unit automatically controlling lane change assist
EP4206610A1 (en) Map matching method and apparatus, and electronic device and storage medium
CN110834626B (zh) 行车障碍预警方法、装置、车辆和存储介质
WO2022089241A1 (zh) 一种汽车定位的方法及装置
CN112752217B (zh) 一种基于车间通信的可控震源车防撞车控制方法
CN114648892A (zh) 车辆行驶安全预警方法、装置、车辆、设备及介质
WO2022183369A1 (zh) 目标检测方法和装置
CN114779257A (zh) 一种车位检测方法、装置、存储介质和车辆
CN114312698A (zh) 车辆制动方法、装置、设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815046

Country of ref document: EP

Kind code of ref document: A1