WO2022252982A1 - 非均相溶液法制备聚合物包覆的无机粒子及其应用 - Google Patents

非均相溶液法制备聚合物包覆的无机粒子及其应用 Download PDF

Info

Publication number
WO2022252982A1
WO2022252982A1 PCT/CN2022/093446 CN2022093446W WO2022252982A1 WO 2022252982 A1 WO2022252982 A1 WO 2022252982A1 CN 2022093446 W CN2022093446 W CN 2022093446W WO 2022252982 A1 WO2022252982 A1 WO 2022252982A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic particles
polymer
component
cement
reaction
Prior art date
Application number
PCT/CN2022/093446
Other languages
English (en)
French (fr)
Inventor
冯超
闫培会
万菲
程浩
陈若愚
袁歆悦
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2022252982A1 publication Critical patent/WO2022252982A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • C04B20/1037Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0076Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
    • C04B20/008Micro- or nanosized fillers, e.g. micronised fillers with particle size smaller than that of the hydraulic binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/023Chemical treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6685Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2038Resistance against physical degradation
    • C04B2111/2046Shock-absorbing materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the field of materials, and relates to a method for preparing polymer-coated inorganic particles, in particular to a method for preparing a heterogeneous solution of polymer-coated inorganic particles and its application in vibration reduction.
  • Polymer-coated inorganic nanoparticles have both the thermal stability, modulus, and mechanical strength of inorganic materials, as well as the ease of processing and flexibility of polymer materials, which not only improves the compatibility between inorganic nanoparticles and polymers, prevents inorganic
  • the agglomeration of nanoparticles can also improve the cohesiveness, gloss and mechanical properties of the latex film. Therefore, polymer-coated inorganic nanoparticles have played an increasingly important role in cosmetics, inks, coatings, fabrics and other fields.
  • it is generally difficult to coat inorganic nanoparticles with polymers due to the relatively poor affinity between organic polymers and inorganic nanoparticles.
  • emulsion polymerization mainly include emulsion polymerization, dispersion polymerization, soap-free emulsion polymerization, suspension polymerization, miniemulsion polymerization, heterogeneous coacervation, layer-by-layer assembly, etc.
  • the nucleation site of the emulsion polymerization method, dispersion polymerization method and soap-free emulsion polymerization method is not in the droplet, which is called non-droplet nucleation coating method; the nucleation site of the suspension polymerization method and miniemulsion polymerization method is in the liquid droplet.
  • Droplet called droplet nucleation coating method; and heterogeneous condensation method and layer-by-layer assembly method are special coating methods.
  • the polymerization methods adopted in the above coating methods all rely on free radical polymerization, the steps are complicated, the reaction time is long, and impurities such as dispersants and initiators are often produced, which are difficult to handle.
  • cement-based composite materials are materials that add fibers, fillers and polymers to cement-based materials to improve their various properties. Compared with general cement-based materials, cement-based damping composite materials have higher impact resistance and vibration resistance, fundamentally improve the shortcomings of high noise and high vibration of concrete pavement, increase the flexibility of the pavement, and bring new benefits to the concrete pavement. new vitality. At present, regarding the vibration reduction of concrete structures, additional equipment is usually installed in the concrete structure to reduce structural vibration. However, starting from the cement-based material itself to explore the damping performance of the material, a universally applicable cement-based damping material has not been developed.
  • the present invention provides a method for preparing polymer-coated inorganic particles using a heterogeneous solution.
  • two components A and B are used to synthesize a polymer with damping function to form a "shell", and inorganic particles are used as a "core” to obtain polymer-coated inorganic particles according to a gradual polymerization mechanism.
  • the method not only has a short experimental period, simple and easy-to-operate steps, but also has a large output and greatly reduces the content of impurities in the product.
  • the technical solution of the present invention a method for preparing polymer-coated inorganic particles using a heterogeneous solution, the polymer is obtained by reacting components A and B at a molar ratio of (1-1.1):1.
  • the A component is 4,4'-diphenylmethane diisocyanate or synthesized from 35-60 parts by weight of 4,4'-diphenylmethane diisocyanate and 50-70 parts by weight of polyether polyol semi-prepolymer.
  • component A is 4,4'-diphenylmethane diisocyanate
  • said component B consists of 80-100 parts by weight of polyethylene glycol and 0-20 parts by weight of 1,4-butanediol
  • component B consists of 10-75 parts by weight of polyether polyol and 20-80 parts by weight of chain extender.
  • step (3) Raise the temperature of the inorganic particle-component B mixing system obtained in step (1) to 70-80°C, and slowly add the dispersion system prepared in step (2) dropwise under stirring conditions. Continue to stir until a clear liquid appears in the upper layer of the reaction system, and when precipitation occurs in the lower part, the reaction is complete.
  • step (3) Separating, washing, drying and grinding the precipitate obtained from the reaction in step (3) to obtain polymer-coated inorganic particles with a core-shell structure.
  • the polyether polyol is polytetrahydrofuran polyol or poly ⁇ -caprolactone polyol;
  • the chain extender is 3,5-diethyl-2,4-toluenediamine, N,N'- One or more of diisobutylmethyldicyclohexylamine and N,N'-diisobutylphenylenediamine.
  • the polymer-coated inorganic particles prepared in the present invention use the polymers synthesized by components A and B as the "shell".
  • the polymers can convert vibration and noise mechanical energy into energy consumption, and have excellent adhesion and flexibility. And impact resistance, is a widely used vibration damping material.
  • the coating structure formed by inorganic particles and polymer combines the excellent vibration damping performance of polymer materials with the rigidity of inorganic particles to form a "micro damping structure" unit, which further improves its vibration damping performance.
  • the inorganic particles described in step (1) are surface-modified inorganic particles, specifically obtained by the following method: using plasma to activate the surface of the inorganic particles, and then taking an appropriate amount of surface-activated inorganic particles for silanization reaction, Surface-modified inorganic particles are obtained.
  • the specific steps for surface activation of inorganic particles are as follows: placing the inorganic particles in a petri dish, preferably just covering the bottom of the watch dish; controlling the vacuum degree to 10Pa, injecting a plasma cleaning gas with a pressure of 100Pa, applying The high-frequency voltage makes the plasma completely cover the inorganic particles, and the surface-activated inorganic particles can be obtained after a certain period of treatment.
  • the particle size of the inorganic particles is 200-800 mesh, the cleaning gas is oxygen, hydrogen, argon or nitrogen; the surface activation time is 30s-5min.
  • the specific steps of the silanization reaction are as follows: Weigh an appropriate amount of surface-activated inorganic particles, slowly add them to the methanol solution of silane coupling agent under stirring conditions, stir at room temperature for silanization reaction, filter, wash, vacuum After drying, the surface-modified silicon powder can be obtained.
  • the silane coupling agent is a silane coupling agent with amino and hydroxyl functional groups on the surface; the concentration of the methanol solution of the silane coupling agent is 0.5-5%; and the silanization reaction time is 2-8 hours.
  • the silane coupling agent is KH-540, KH-550, KH-551, KH-620, KH-791, KH-792, KH-901 or KH-902.
  • the application of the polymer-coated inorganic particle is used for the preparation of cement-based composite material, and the content of the polymer-coated inorganic particle in the cement-based composite material is 2-8wt% of cement powder.
  • the preparation of the cement-based composite material is as follows: adding the polymer-coated inorganic particles into the cement powder, stirring evenly; then adding water according to the weight ratio of water-cement ratio (0.4-0.5): 1, fully stirring and pouring The mold, demoulding and curing can obtain the cement-based composite material with damping function.
  • the polymer-coated inorganic particles prepared by the heterogeneous solution method in the present invention can dissipate part of the energy under vibration conditions; in addition, the inorganic particles will rub against the viscoelastic material, making the object
  • the mechanical energy of the movement is converted into heat energy and consumed; at the same time, the inorganic can also play the role of a mass block, and can also play the role of energy consumption through its own vibration-converting the energy of vibration into the kinetic energy of inorganic particles.
  • the polymer-coated inorganic particles are added as a new type of filler to other coatings such as cement, which can greatly improve the damping performance of the material and have important application value.
  • the present invention provides a new method for preparing polymer-coated inorganic particles.
  • the method has a short operating period, is simple and quick, and can be mass-produced quickly, overcoming the problems of complicated steps and many impurities in the product in the prior art. problem and has important industrial application prospects.
  • the polymer-coated inorganic particles prepared by the present invention have excellent damping properties, and when they are added to cement-based materials as fillers, the loss factor is greatly improved; therefore, they have a wide range of applications in engineering vibration and noise reduction prospect.
  • the types of inorganic particles and polymers can be selected according to different requirements to prepare functional core-shell particles from inorganic particles and polymers with different functions, which can adapt to the needs of different fields, Wide range of applications.
  • the polymer-coated inorganic particles prepared by the present invention are micron-sized inorganic particles, which fills the gap in the prior art.
  • FIG. 1 is the SEM photograph of fused silica sand (Fig. 1a) and polymer-coated fused silica sand (Fig. 1b) in Example 1; wherein Fig. 1c is a partially enlarged view of Fig. 1b.
  • FIG. 2a is the SEM picture of metallic silicon powder (Fig. 2a) and polymer-coated metallic silicon powder (Fig. 2b) in Example 2; wherein Fig. 2c is a partially enlarged view of Fig. 2b.
  • the specific operation is as follows: put a certain amount of inorganic particles in a petri dish, preferably just covering the bottom of the watch dish. Exhaust to make the vacuum degree reach about 10Pa, then pass in the plasma cleaning gas to keep the cleaning gas pressure at 100Pa, apply high-frequency voltage to break down the gas, and ionize and generate plasma through glow discharge . Make the plasma completely cover the inorganic particles and treat for 40 seconds to obtain surface-activated inorganic particles.
  • the cleaning gas is nitrogen, and the particle size of the inorganic particles is 200 mesh.
  • silane coupling agent is KH-550.
  • concentration of the methanol solution of the silane coupling agent is 2.5%.
  • the polymer is formed by two components A and B, and the two components A and B react at a molar ratio of 1:1.
  • the component A is 4,4'-diphenylmethane diisocyanate, and the component B is polyethylene glycol 400.
  • step (3) Raise the temperature of the inorganic particle-component B mixing system obtained in step (1) to 75°C, and slowly add the dispersion system prepared in step (2) drop by drop under stirring conditions. Continue to stir until a clear liquid appears in the upper layer of the reaction system, and when precipitation occurs in the lower part, the reaction is complete.
  • the polymer-coated inorganic particles are added to the cement powder according to the ratio of 4wt% of the cement powder, and stirred evenly. Then add water according to the weight ratio of water-cement ratio 0.4:1. In order to minimize the generation of pores, stir slowly for two minutes until it becomes a slurry; after fully stirring, pour it into the mold, demould, and cure, and the cement-based composite material with damping function can be obtained.
  • Embodiment 2 Different from Embodiment 1,
  • the cleaning gas used for surface activation of the inorganic particles by plasma is nitrogen, the activation time is 30s, and the particle size of the inorganic particles is 300 mesh.
  • the silane coupling agent used in the silylation reaction is KH-620.
  • the concentration of the silane coupling agent-methanol solution is 0.5%.
  • the polymer is formed by two components A and B, and the two components A and B react at a molar ratio of 1.1:1.
  • the A component is a semi-prepolymer synthesized by 35 parts by weight of 4,4'-diphenylmethane diisocyanate and 50 parts by weight of polyether polyol.
  • the B component is composed of 50 parts by weight of polytetrahydrofuran polyol, 40 parts by weight of N,N'-diisobutylmethyldicyclohexylamine and 20 parts by weight of N,N'-diisobutylphenylenediamine .
  • step (3) Raise the temperature of the inorganic particle-component B mixing system obtained in step (1) to 70°C, and slowly add the dispersion system prepared in step (2) dropwise under stirring conditions. Continue to stir until a clear liquid appears in the upper layer of the reaction system, and when precipitation occurs in the lower part, the reaction is complete.
  • FIG. 2b is a SEM photo of metal silicon powder
  • Figure 2c is a partial enlarged view of Figure 2b. It can be seen from Figure 2a that the particle size of metal silicon powder varies greatly; while Figure 2b shows that after coating, a single particle is coated or composite particles are formed, and there is no obvious gap between the formed particles. Adhesion, better dispersion. Figure 2c further proves that a coating layer is formed on the surface of the metal particles, and the coating effect is good, realizing the preparation of the core-shell structure.
  • the polymer-coated inorganic particles are added to the cement powder according to the ratio of 4wt% of the cement powder, and stirred evenly. Then add water according to the weight ratio of water-cement ratio 0.45:1. In order to minimize the generation of pores, stir slowly for two minutes until it becomes a slurry; after fully stirring, pour it into the mold, demould, and cure, and the cement-based composite material with damping function can be obtained.
  • Embodiment 3 Different from Embodiment 1,
  • the cleaning gas used for surface activation of the inorganic particles by plasma is argon, the activation time is 40 seconds, and the particle size of the inorganic particles is 200 mesh.
  • the silane coupling agent used in the silylation reaction is KH-540.
  • the concentration of the silane coupling agent-methanol solution is 1.5%.
  • the polymer is formed by two components A and B, and the two components A and B react at a molar ratio of 1.1:1.
  • the A component is a semi-prepolymer synthesized by 50 parts by weight of 4,4'-diphenylmethane diisocyanate and 65 parts by weight of polyether polyol.
  • the B component consists of 10 parts by weight of poly ⁇ -caprolactone polyol, 20 parts by weight of 3,5-diethyl-2,4-toluenediamine and 30 parts by weight of N,N'-diisobutylmethyl Dicyclohexylamine and 30 parts by weight of N,N'-diisobutylphenylenediamine.
  • step (3) Raise the temperature of the inorganic particle-component B mixing system obtained in step (1) to 75°C, and slowly add the dispersion system prepared in step (2) drop by drop under stirring conditions. Continue to stir until a clear liquid appears in the upper layer of the reaction system, and when precipitation occurs in the lower part, the reaction is complete.
  • step (3) Separating, washing, drying and grinding the precipitate obtained from the reaction in step (3) to obtain polymer-coated inorganic particles with a core-shell structure.
  • the polymer-coated inorganic particles are added to the cement powder at a ratio of 6 wt% of the cement powder, and stirred evenly. Then add water according to the weight ratio of water-cement ratio 0.5:1. In order to minimize the generation of pores, stir slowly for two minutes until it becomes a slurry; after fully stirring, pour it into the mold, demould, and cure, and the cement-based composite material with damping function can be obtained.
  • Embodiment 4 Different from Embodiment 1,
  • the cleaning gas used for surface activation of the inorganic particles by plasma is hydrogen, the activation time is 30 seconds, and the particle size of the inorganic particles is 800 mesh.
  • the silane coupling agent used in the silylation reaction is KH-901.
  • the concentration of the silane coupling agent-methanol solution is 0.75%.
  • the polymer is formed by two components A and B, and the two components A and B react at a molar ratio of 1:1.
  • the A component is 4,4'-diphenylmethane diisocyanate.
  • the B component consists of 95 parts by weight of polyethylene glycol 800 and 10 parts by weight of 1,4-butanediol.
  • step (3) Raise the temperature of the inorganic particle-component B mixing system obtained in step (1) to 80°C, and slowly add the dispersion system prepared in step (2) dropwise under stirring conditions. Continue to stir until a clear liquid appears in the upper layer of the reaction system, and when precipitation occurs in the lower part, the reaction is complete.
  • step (3) Separating, washing, drying and grinding the precipitate obtained from the reaction in step (3) to obtain polymer-coated inorganic particles with a core-shell structure.
  • the polymer-coated inorganic particles were characterized by SEM, and the results were similar to those in Example 1.
  • Embodiment 5 Different from Embodiment 1,
  • the cleaning gas used for surface activation of the inorganic particles by plasma is oxygen, the activation time is 40 seconds, and the particle size of the inorganic particles is 500 mesh.
  • the silane coupling agent used in the silylation reaction is KH-791.
  • the concentration of the silane coupling agent-methanol solution is 0.5%.
  • the polymer is formed by two components A and B, and the two components A and B react at a molar ratio of 1:1.
  • the A component is 4,4'-diphenylmethane diisocyanate.
  • the B component consists of 80 parts by weight of polyethylene glycol 800 and 20 parts by weight of 1,4-butanediol.
  • (1) Weigh an appropriate amount of acetone into the reaction device I, add component B with a mass ratio of 1:15 to the solvent at room temperature, stir to mix the two evenly, and obtain a homogeneous solution. Continue to stir and add inorganic particles to the aforementioned homogeneous solution until the inorganic particles are uniformly dispersed in the system to obtain a mixed system of inorganic particles-component B.
  • the inorganic particles are metal silicon powder.
  • step (3) Raise the temperature of the inorganic particle-component B mixing system obtained in step (1) to 75°C, and slowly add the dispersion system prepared in step (2) drop by drop under stirring conditions. Continue to stir until a clear liquid appears in the upper layer of the reaction system, and when precipitation occurs in the lower part, the reaction is complete.
  • step (3) Separating, washing, drying and grinding the precipitate obtained from the reaction in step (3) to obtain polymer-coated inorganic particles with a core-shell structure.
  • the polymer-coated inorganic particles were characterized by SEM, and the results were similar to those in Example 2.
  • Embodiment 6 Different from Embodiment 1,
  • the cleaning gas used for surface activation of the inorganic particles by plasma is argon, the activation time is 30 seconds, and the particle size of the inorganic particles is 500 mesh.
  • the silane coupling agent used in the silylation reaction is KH-550.
  • the concentration of the silane coupling agent-methanol solution is 0.75%.
  • the polymer is formed by two components A and B, and the two components A and B react at a molar ratio of 1.05:1.
  • the A component is a semi-prepolymer synthesized by 60 parts by weight of 4,4'-diphenylmethane diisocyanate and 70 parts by weight of polyether polyol.
  • the B component is composed of 75 parts by weight of poly ⁇ -caprolactone polyol and 20 parts by weight of 3,5-diethyl-2,4-toluenediamine.
  • step (3) Raise the temperature of the inorganic particle-component B mixing system obtained in step (1) to 75°C, and slowly add the dispersion system prepared in step (2) drop by drop under stirring conditions. Continue to stir until a clear liquid appears in the upper layer of the reaction system, and when precipitation occurs in the lower part, the reaction is complete.
  • step (3) Separating, washing, drying and grinding the precipitate obtained from the reaction in step (3) to obtain polymer-coated inorganic particles with a core-shell structure.
  • the polymer-coated inorganic particles were characterized by SEM, and the results were similar to those in Example 1.
  • Embodiment 7 the detection of the damping performance of the cement-based composite material prepared in embodiment 1-6
  • the slurry when the cement-based composite material was prepared in Examples 1-6 was poured into the steel mold for DMA (Dynamic Thermo-Mechanical Analysis) damping performance test, demolded and cured, that is, the cement-based composite material test sample.
  • DMA Dynamic Thermo-Mechanical Analysis
  • Detection method Use the Q800 dynamic thermomechanical analyzer produced by TA Company of the United States to test the DMA damping performance test of cement mortar. Due to the relatively high rigidity of the cement material, the applicant adopts a three-point bending loading mode, sets the amplitude to 15 ⁇ m, and at 20° C., with a blank cement material (without adding the polymer-coated inorganic particles prepared in Examples 1-6), 1-26Hz to scan the frequency to obtain the storage modulus, loss modulus and loss factor of the test sample. In addition, at 0.1 Hz, the blank group cement material (without adding the polymer-coated inorganic particles prepared in Examples 1-6) was used for temperature scanning at 10-20°C to obtain the storage modulus and loss modulus of the test sample. volume, loss factor.
  • test results of the cement-based composite materials prepared in Examples 1-6 are basically the same, and the test results (Table 1 and Table 2) of the cement-based composite materials prepared in Example 2 are taken as examples below to illustrate.
  • the storage modulus of the 1-26Hz blank group cement material is 6873-6935Mpa
  • the loss modulus is 164.5-187Mpa
  • the loss factor is 2.38 ⁇ 10 -2 -2.73 ⁇ 10 -2
  • the storage modulus of the cement-based composite material prepared in Example 2 is 6873-6935Mpa
  • the loss modulus is 848.1-1055Mpa
  • the loss factor is 3.67 ⁇ 10 -2 -4.40 ⁇ 10 -2 .
  • Loss factor increased by 54-61% compared to the blank group.
  • the storage modulus of the blank cement material at 10-20°C is 22989-23922Mpa
  • the loss modulus is 243.8-260.5Mpa
  • the loss factor is 3.19 ⁇ 10 -2 -3.36 ⁇ 10 - 2 .
  • the cement-based composite material prepared in Example 2 has a storage modulus of 23704-24093 Mpa, a loss modulus of 1010-1085 Mpa, and a loss factor of 4.26 ⁇ 10 -2 -4.50 ⁇ 10 -2 .
  • the loss factor increased by 34% compared to the blank group.
  • the loss factor of the cement-based composite material prepared in Examples 1-6 of the present application is greatly increased compared with the blank cement material, indicating that it has broad application prospects in engineering vibration and noise reduction.
  • the preparation method of the polymer-coated inorganic particles described in the present invention has a short operation period, is simple and fast, and can be mass-produced with a fast reaction speed, which further provides strong technical support for its wide application in industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供了一种采用非均相溶液制备聚合物包覆无机粒子的方法。所述聚合物由A、B组份反应得到;所述制备方法具体为:称取有机溶剂于反应装置I中,将B组份加入其中,搅拌使二者混合均匀,得到均相溶液。继续搅拌并向其中加入无机粒子,分散均匀,得到无机粒子-B组份的混合体系。称取有机溶剂于反应装置II中,将不溶于有机溶剂的A组份加入其中,搅拌均匀得到分散体系。将无机粒子-B组份的混合体系升温至70-80℃,边搅拌边逐滴加入前述A组份的分散体系,搅拌至反应体系上层出现澄清液体,下部产生沉淀时完毕。分离得到的沉淀即聚合物包覆的无机粒子。所述方法操作周期短,简单快捷,反应速度快可进行批量生产,具有重要的产业应用前景。

Description

非均相溶液法制备聚合物包覆的无机粒子及其应用 技术领域
本发明属于材料领域,涉及一种聚合物包覆无机粒子的制备方法,具体地说,涉及聚合物包覆无机粒子的非均相溶液制备法以及其在减振方面的应用。
背景技术
高分子聚合物包覆无机纳米粒子兼具无机材料的热稳定性、模数、机械强度以及高分子材料的易加工性、灵活性,不仅提高无机纳米粒子和聚合物的相容性、阻止无机纳米粒子的团聚现象,还能够提高乳胶膜的黏结性、光泽度以及机械性能。因此,高分子聚合物包覆无机纳米粒子已经在化妆品、油墨、涂料、织物等领域发挥着越来越重要的作用。但是,由于作为有机物的高分子聚合物和无机纳米粒子的亲和性比较差,聚合物包覆无机纳米粒子一般比较困难。目前常用的包覆方法主要有乳液聚合法、分散聚合法、无皂乳液聚合法、悬浮聚合法、细乳液聚合法以及异质凝聚法、层层组装法等。其中,乳液聚合法、分散聚合法和无皂乳液聚合法的成核地点不在液滴内,称为非液滴内成核包覆法;悬浮聚合法、细乳液聚合法的成核地点在液滴内,称为液滴内成核包覆法;而异质凝聚法和层层组装法属于特殊的包覆方法。以上包覆方法采用的聚合方式均依托于自由基聚合,步骤繁杂,反应时间长,而且往往会产生分散剂、引发剂等杂质,难以进行处理。
水泥基复合材料,就是在水泥基材料中掺加纤维、填料和聚合物等,以提高其各种性能的材料。与一般的水泥基材料相比,水泥基阻尼复合材料具有更高的抗冲击、抗振性,从根本上改善混凝土路面的高噪声、高振动的缺点,增加路面柔度,给混凝土路面带来新的生命力。目前关于混凝土结构减振,通常采用在混凝土结构中安装附加设备减少结构振动。但是从水泥基材料本身出发探究材料的阻尼性能,还没有研究出一种普遍适用的水泥基阻尼材料。
发明内容
针对现有技术中聚合物包覆无机粒子制备中所存在的问题,本发明提供了一种采用非均相溶液制备聚合物包覆无机粒子的方法。本发明所述的方法,采用A、B两个组分合成具有减振功能的聚合物形成“壳”,以无机粒子为“核”,按照逐步聚合机理得到聚合物包覆的无机粒子。所述方法不但实验周期短、步骤简单易操作,而且产量较多,且大大降低了产物中杂质的含量。
本发明的技术方案:采用非均相溶液制备聚合物包覆无机粒子的方法,所述聚合物由A、B组份按照(1-1.1):1的摩尔比反应得到。
其中,所述A组份为4,4’-二苯基甲烷二异氰酸酯或者由35-60重量份的4,4’-二苯基甲烷二异氰酸酯和50-70重量份聚醚多元醇合成的半预聚物。当A组份为4,4’-二苯基甲烷二异氰酸酯时,所述B组份由80-100重量份的聚乙二醇和0-20重量份的1,4-丁二醇组成;当A组分为所述半预聚物时,所述B组份由10-75重量份的聚醚多元醇和20-80重量份的扩链剂组成。所述制备方法具体包括以下步骤:
(1)称取有机溶剂S于反应装置I中,常温下将B组份加入其中,搅拌使二者混合均匀,得到均相溶液。继续搅拌并向前述均相溶液中加入无机粒子,直至无机粒子在体系中分散均匀,得到无机粒子-B组份的混合体系。其中,当所述当A组份为4,4’-二苯基甲烷二异氰酸酯时,所述有机溶剂S为丙酮;当A组分为半预聚物时,所述有机溶剂S为环己烷。所述的无机粒子为金属硅粉、石英砂或者硅灰。
(2)称取所述述有机溶剂S于反应装置II中,将不溶于有机溶剂S的A组份加入其中,搅拌均匀得到分散体系。
(3)将步骤(1)得到的无机粒子-B组份的混合体系升温至70-80℃,在搅拌条件下缓慢逐滴加入步骤(2)制备的分散体系。继续搅拌至反应体系上层出现澄清液体,下部产生沉淀时,反应完毕。
(4)将步骤(3)反应得到的沉淀进行分离、洗涤、烘干和研磨,即得到核壳结构的聚合物包覆的无机粒子。
其中,所述聚醚多元醇为聚四氢呋喃多元醇或者聚ε-己内酯多元醇;所述扩链剂为3,5-二乙基-2,4-甲苯二胺、N,N’-二异丁基甲基二环己胺和N,N’-二异丁基苯二胺等中的一种或者几种。本发明所制备的聚合物包覆的无机粒子,以A、B组分合成的聚合物作为“壳”,所述聚合物能够将振动噪声机械能转化为能消耗,具有优异的附着性、柔韧性及抗冲击性能,是一种广泛应用的减振材料。同时,无机粒子与聚合物所形成的包覆结构,将聚合物料优异的减振性能和无机粒子的刚性结合,形成了“微阻尼结构”单元,进一步提升了其减振性能。
优选的是,步骤(1)所述的无机粒子为表面修饰的无机粒子,具体通过下述方法得到:采用等离子体对无机粒子进行表面活化,然后取适量表面活化的无机粒子进行硅烷化反应,得到表面修饰的无机粒子。
其中,对无机粒子进行表面活化的具体步骤为:将无机粒子置于培养皿中,以刚好铺满表面皿底部为宜;控制真空度为10Pa,通入压力为100Pa等离子体用清洗气体,施加高频电压,使等离子体完全覆盖无机粒子,处理一定时间即可得到表面活化的无机粒子。所述无机粒子的粒径为200目-800目,所述的清洗气体为氧气、氢气、氩气或氮气;所述表面活化的时间为30s-5min。
其中,所述的硅烷化反应的具体步骤为:称取适量表面活化的无机粒子,在搅拌条件下缓慢加入到硅烷偶联剂甲醇溶液中,室温下搅拌发生硅烷化反应,过滤、洗涤、真空干燥即得到表面修饰的硅粉。所述的硅烷偶联剂为表面带有氨基和羟基官能团的硅烷偶联剂;所述硅烷偶联剂甲醇溶液的浓度为0.5~5%;所述硅烷化反应的时间为2~8小时。所述的硅烷偶联剂为KH-540、KH-550、KH-551、KH-620、KH-791、KH-792、KH-901或KH-902。
聚合物包覆的无机粒子的应用,将其用于水泥基复合材料的制备,所述水泥基复合材料中聚合物包覆的无机粒子的含量为水泥粉的2-8wt%。其中,水泥基复合材料的制备具体为:将聚合物包覆的无机粒子加入到水泥粉中,搅拌均匀;再按照水灰比(0.4-0.5):1的重量比加水,充分搅拌后倒入模具,脱模、养护,即可得到具有阻尼功能的水泥基复合材料。本发明通过非均相溶液法制备的聚合物包覆无机粒子,在振动条件下无机粒子表面包覆的粘弹性材料本身可以耗散部分能量;另外,无机粒子会与粘弹性材料摩擦,使物体运动的机械能转化成热能消耗掉;同时无机还可以起到质量块的作用,通过自身的振动也可以起到耗能的作用——将振动的能量转化为无机粒子的动能。综上可知,所述聚合物包覆的无机粒子作为一种新型填料加入到水泥等其他涂料中,可以大大提升材料的阻尼性能,具有重要的应用价值。
本发明的有益效果:
(1)本发明提供了一种制备聚合物包覆无机粒子的新方法,所述方法操作周期短,简单快捷,反应速度快可进行批量生产,克服了现有技术步骤复杂、产物杂质多的问题,具有重要的产业应用前景。
(2)本发明制备的聚合物包覆的无机粒子,具备优异的阻尼性能,将其作为填料加入水泥基材料中,损耗因子大幅度提高;因此,在工程减振降噪方面具有广阔的应用前景。
(3)本发明制备的聚合物包覆的无机粒子中,所无机粒子与聚合物的种类可以根据不同需求选取不同功能的无机粒子和聚合物制备功能核壳粒子,能够适应不同领域的需求,应用领域广泛。
(4)本发明制备的聚合物包覆的无机粒子,所述无机粒子为微米级无机粒子,填补了现有技术中的空白。
附图说明
附图1为实施例1中熔融石英砂(图1a)和聚合物包覆熔融石英砂(图1b)的SEM照片;其中图1c为图1b的局部放大图。
附图2为实施例2中金属硅粉(图2a)和聚合物包覆金属硅粉(图2b)的SEM照片;其中图2c为图2b的局部放大图。
具体实施方式
下面结合实施例对本发明做进一步的说明。
实施例1:
1.无机粒子表面的活化与硅烷化:
采用等离子体对无机粒子进行表面活化,具体操作如下:将一定量的无机粒子置于培养皿中,以刚好铺满表面皿底部为宜。排气使真空度达到10Pa左右,随后通入等离子体用清洗气体,使清洗气体压力保持在100Pa,施加高频电压,使气体被击穿,并通过辉光放电而发生离子化和产生等离子体。使等离子体完全覆盖无机粒子,处理40秒,即可得到表面活化的无机粒子。所述清洗气体为氮气,所述无机粒子的粒径为200目。
称取适量表面活化的无机粒子,在搅拌条件下缓慢加入到一定量的硅烷偶联剂甲醇溶液。室温下搅拌反应2-8小时,使无机粒子表面完成硅烷化反应。经过过滤、洗涤、真空干燥即制得表面修饰的无机粒子。所述硅烷偶联剂为KH-550。所述硅烷偶联剂甲醇溶液浓度为2.5%。
2.采用非均相溶液制备聚合物包覆的无机粒子
所述聚合物由A、B两个组分形成,A、B两个组分按摩尔比1:1进行反应。所述A组份为4,4’-二苯基甲烷二异氰酸酯,所述B组份为聚乙二醇400。
(1)称取适量丙酮于反应装置I中,常温下将B组份加入其中,所述B组份与丙酮的重量比为1:15。搅拌使二者混合均匀,得到均相溶液。继续搅拌并向前述均相溶液中加入无机粒子,直至无机粒子在体系中分散均匀,得到无机粒子-B组份的混合体系。所述的无机粒子为石英砂。
(2)称取适量丙酮于反应装置II中,将A组份加入其中,搅拌均匀得到分散体系。所述A组份与丙酮的重量比为1:30。
(3)将步骤(1)得到的无机粒子-B组份的混合体系升温至75℃,在搅拌条件下缓慢逐滴加入步骤(2)制备的分散体系。继续搅拌至反应体系上层出现澄清液体,下部产生沉淀时,反应完毕。
(4)将步骤(3)反应得到的沉淀进行分离、洗涤、烘干和研磨,即得到核壳结构的聚合物包覆的无机粒子。对聚合物包覆的无机粒子采用SEM进行表征(图1b),与熔融石英啥(图1a)有显著区别。从图1b可以看出,聚合物包覆熔融石英砂之后,石英砂的分散效果较好且产物之间未发生明显的粘连,分散性较好。图1c为图1b的局部放大图,从图1c可以看出,熔融石英砂表面形成一层包覆层,且包覆效果较好,实现核壳结构粒子制备。
3.水泥基复合材料的制备
将聚合物包覆的无机粒子按照水泥粉4wt%的比例加入到水泥粉中,搅拌均匀。再按照水灰比0.4:1的重量比加水。为了尽量减少气孔的产生,慢搅两分钟至成浆体状态;充分搅拌后 倒入模具,脱模、养护,即可得到具有阻尼功能的水泥基复合材料。
实施例2:与实施例1不同的是,
1.无机粒子表面的活化与硅烷化:
采用等离子体对无机粒子进行表面活化采用的清洗气体为氮气,活化时间为30s,所述无机粒子的粒径为300目。
硅烷化反应采用的述硅烷偶联剂为KH-620所述硅烷偶联剂-甲醇溶液浓度为0.5%。
2.采用非均相溶液制备聚合物包覆的无机粒子
所述聚合物由A、B两个组分形成,A、B两个组分按摩尔比1.1:1进行反应。所述A组份为由35重量份的4,4’-二苯基甲烷二异氰酸酯和50重量份聚醚多元醇合成的半预聚物。所述B组份由50重量份的聚四氢呋喃多元醇、40重量份的N,N’-二异丁基甲基二环己胺和20重量份的N,N’-二异丁基苯二胺组成。
(1)称取适量环己烷于反应装置I中,常温下将B组份加入其中,所述B组份与丙酮的重量比为1:40。搅拌使二者混合均匀,得到均相溶液。继续搅拌并向前述均相溶液中加入无机粒子,直至无机粒子在体系中分散均匀,得到无机粒子-B组份的混合体系。所述的无机粒子为金属硅粉。
(2)称取所述适量环己烷于反应装置II中,将A组份加入其中,搅拌均匀得到分散体系。所述A组份与丙酮的重量比为1:40。
(3)将步骤(1)得到的无机粒子-B组份的混合体系升温至70℃,在搅拌条件下缓慢逐滴加入步骤(2)制备的分散体系。继续搅拌至反应体系上层出现澄清液体,下部产生沉淀时,反应完毕。
(4)将步骤(3)反应得到的沉淀进行分离、洗涤、烘干和研磨,即得到核壳结构的聚合物包覆的无机粒子。对聚合物包覆的无机粒子采用SEM进行表征(图2b)。其中,附图2a是金属硅粉的SEM照片,其中图2c为图2b的局部放大图。从图2a可以看出,金属硅粉的粒径相差很大;而图2b显示,包覆之后形成单个粒子被包覆或者多个粒子包覆的复合粒子,形成的颗粒之间也没有明显的粘连,分散性较好。图2c则进一步证明,金属粒子表面形成一层包覆层,且包覆效果较好,实现核壳结构的制备。
3.水泥基复合材料的制备
将聚合物包覆的无机粒子按照水泥粉4wt%的比例加入到水泥粉中,搅拌均匀。再按照水灰比0.45:1的重量比加水。为了尽量减少气孔的产生,慢搅两分钟至成浆体状态;充分搅拌后倒入模具,脱模、养护,即可得到具有阻尼功能的水泥基复合材料。
实施例3:与实施例1不同的是,
1.无机粒子表面的活化与硅烷化:
采用等离子体对无机粒子进行表面活化采用的清洗气体为氩气,活化时间40秒,所述无机粒子的粒径为200目。
硅烷化反应采用的述硅烷偶联剂为KH-540。所述硅烷偶联剂-甲醇溶液浓度为1.5%。
2.采用非均相溶液制备聚合物包覆的无机粒子
所述聚合物由A、B两个组分形成,A、B两个组分按摩尔比1.1:1进行反应。所述A组份为由50重量份的4,4’-二苯基甲烷二异氰酸酯和65重量份聚醚多元醇合成的半预聚物。所述B组份由10重量份的聚ε-己内酯多元醇和20重量份的3,5-二乙基-2,4-甲苯二胺和30重量份的N,N’-二异丁基甲基二环己胺和30重量份的N,N’-二异丁基苯二胺组成。
(1)称取适量环己烷于反应装置I中,常温下将与溶剂质量比为1:80的B组份加入其中,搅拌使二者混合均匀,得到均相溶液。继续搅拌并向前述均相溶液中加入无机粒子,直至无机粒子在体系中分散均匀,得到无机粒子-B组份的混合体系。所述的无机粒子为硅灰。
(2)称取所述适量环己烷于反应装置II中,将将与溶剂质量比为1:80的A组份加入其中,搅拌均匀得到分散体系。
(3)将步骤(1)得到的无机粒子-B组份的混合体系升温至75℃,在搅拌条件下缓慢逐滴加入步骤(2)制备的分散体系。继续搅拌至反应体系上层出现澄清液体,下部产生沉淀时,反应完毕。
(4)将步骤(3)反应得到的沉淀进行分离、洗涤、烘干和研磨,即得到核壳结构的聚合物包覆的无机粒子。
3.水泥基复合材料的制备
将聚合物包覆的无机粒子按照水泥粉6wt%的比例加入到水泥粉中,搅拌均匀。再按照水灰比0.5:1的重量比加水。为了尽量减少气孔的产生,慢搅两分钟至成浆体状态;充分搅拌后倒入模具,脱模、养护,即可得到具有阻尼功能的水泥基复合材料。
实施例4:与实施例1不同的是,
1.无机粒子表面的活化与硅烷化:
采用等离子体对无机粒子进行表面活化采用的清洗气体为氢气,活化时间30秒,所述无机粒子的粒径为800目。
硅烷化反应采用的述硅烷偶联剂为KH-901。所述硅烷偶联剂-甲醇溶液浓度为0.75%。
2.采用非均相溶液制备聚合物包覆的无机粒子
所述聚合物由A、B两个组分形成,A、B两个组分按摩尔比1:1进行反应。所述A组份为4,4’-二苯基甲烷二异氰酸酯。所述B组份由95重量份的聚乙二醇800和10重量份的1,4-丁二醇组成。
(1)称取适量丙酮于反应装置I中,常温下将与溶剂质量比为1:15的B组份加入其中,搅拌使二者混合均匀,得到均相溶液。继续搅拌并向前述均相溶液中加入无机粒子,直至无机粒子在体系中分散均匀,得到无机粒子-B组份的混合体系。所述的无机粒子为石英砂。
(2)称取适量丙酮于反应装置II中,将与溶剂质量比为1:30的A组份加入其中,搅拌均匀得到分散体系。
(3)将步骤(1)得到的无机粒子-B组份的混合体系升温至80℃,在搅拌条件下缓慢逐滴加入步骤(2)制备的分散体系。继续搅拌至反应体系上层出现澄清液体,下部产生沉淀时,反应完毕。
(4)将步骤(3)反应得到的沉淀进行分离、洗涤、烘干和研磨,即得到核壳结构的聚合物包覆的无机粒子。对聚合物包覆的无机粒子采用SEM进行表征,结果与实施例1相似。
3.水泥基复合材料的制备
将聚合物包覆的无机粒子按照水泥粉8wt%的比例加入到水泥粉中,搅拌均匀。再按照水灰比0.45:1的重量比加水。为了尽量减少气孔的产生,慢搅两分钟至成浆体状态;充分搅拌后倒入模具,脱模、养护,即可得到具有阻尼功能的水泥基复合材料。
实施例5:与实施例1不同的是,
1.无机粒子表面的活化与硅烷化:
采用等离子体对无机粒子进行表面活化采用的清洗气体为氧气,活化时间40秒,所述无机粒子的粒径为500目。
硅烷化反应采用的述硅烷偶联剂为KH-791。所述硅烷偶联剂-甲醇溶液浓度为0.5%。
2.采用非均相溶液制备聚合物包覆的无机粒子
所述聚合物由A、B两个组分形成,A、B两个组分按摩尔比1:1进行反应。所述A组份为4,4’-二苯基甲烷二异氰酸酯。所述B组份由80重量份的聚乙二醇800和20重量份的1,4-丁二醇组成。
(1)称取适量丙酮于反应装置I中,常温下将与溶剂质量比为1:15的B组份加入其中,搅拌使二者混合均匀,得到均相溶液。继续搅拌并向前述均相溶液中加入无机粒子,直至无机粒子在体系中分散均匀,得到无机粒子-B组份的混合体系。所述的无机粒子为金属硅粉。
(2)称取适量丙酮于反应装置II中,将与溶剂质量比为1:30的A组份加入其中,搅拌均匀得到分散体系。
(3)将步骤(1)得到的无机粒子-B组份的混合体系升温至75℃,在搅拌条件下缓慢逐滴加入步骤(2)制备的分散体系。继续搅拌至反应体系上层出现澄清液体,下部产生沉淀时,反应完毕。
(4)将步骤(3)反应得到的沉淀进行分离、洗涤、烘干和研磨,即得到核壳结构的聚合物包覆的无机粒子。对聚合物包覆的无机粒子采用SEM进行表征,结果与实施例2相似。
3.水泥基复合材料的制备
将聚合物包覆的无机粒子按照水泥粉2wt%的比例加入到水泥粉中,搅拌均匀。再按照水灰比0.4:1的重量比加水。为了尽量减少气孔的产生,慢搅两分钟至成浆体状态;充分搅拌后倒入模具,脱模、养护,即可得到具有阻尼功能的水泥基复合材料。
实施例6:与实施例1不同的是,
1.无机粒子表面的活化与硅烷化:
采用等离子体对无机粒子进行表面活化采用的清洗气体为氩气,活化时间30秒,所述无机粒子的粒径为500目。
硅烷化反应采用的述硅烷偶联剂为KH-550。所述硅烷偶联剂-甲醇溶液浓度为0.75%。
2.采用非均相溶液制备聚合物包覆的无机粒子
所述聚合物由A、B两个组分形成,A、B两个组分按摩尔比1.05:1进行反应。所述A组份为由60重量份的4,4’-二苯基甲烷二异氰酸酯和70重量份聚醚多元醇合成的半预聚物。所述B组份由75重量份的聚ε-己内酯多元醇和20重量份的3,5-二乙基-2,4-甲苯二胺组成。
(1)称取适量环己烷于反应装置I中,常温下将与溶剂质量比为1:40的B组份加入其中,搅拌使二者混合均匀,得到均相溶液。继续搅拌并向前述均相溶液中加入无机粒子,直至无机粒子在体系中分散均匀,得到无机粒子-B组份的混合体系。所述的无机粒子为石英砂。
(2)称取所述适量环己烷于反应装置II中,将将与溶剂质量比为1:40的A组份加入其中,搅拌均匀得到分散体系。
(3)将步骤(1)得到的无机粒子-B组份的混合体系升温至75℃,在搅拌条件下缓慢逐滴加入步骤(2)制备的分散体系。继续搅拌至反应体系上层出现澄清液体,下部产生沉淀时,反应完毕。
(4)将步骤(3)反应得到的沉淀进行分离、洗涤、烘干和研磨,即得到核壳结构的聚合物包覆的无机粒子。对聚合物包覆的无机粒子采用SEM进行表征,结果与实施例1相似。
3.水泥基复合材料的制备
将聚合物包覆的无机粒子按照水泥粉2wt%的比例加入到水泥粉中,搅拌均匀。再按照水灰比0.4:1的重量比加水。为了尽量减少气孔的产生,慢搅两分钟至成浆体状态;充分搅拌后倒入模具,脱模、养护,即可得到具有阻尼功能的水泥基复合材料。
实施例7:实施例1-6制备的水泥基复合材料减振性能的检测
将实施例1-6制备水泥基复合材料时的浆体,倒入DMA(动态热机械分析)阻尼性能测试的钢模中,脱模、养护,即水泥基复合材料测试样品。
检测方法:采用美国TA公司所生产的Q800动态热机械分析仪,来测试水泥砂浆DMA阻尼性能测试。由于水泥材料刚度较大,申请人采用三点弯曲加载模式,将振幅设置为15μm,在20℃下,以空白组水泥材料(不添加实施例1-6制备的聚合物包覆无机粒子),1-26Hz进行频率扫描,得到测试样品的储能模量、损耗模量、损耗因子。此外,还在0.1hz下,以空白组水泥材料(不添加实施例1-6制备的聚合物包覆无机粒子),10-20℃进行温度扫描,得到测试样品的储能模量、损耗模量、损耗因子。
实施例1-6制备的水泥基复合材料的测试结果基本一致,下面以实施例2制备的水泥基复合材料的测试结果(表1、表2)为例进行说明。
表1 空白组水泥材料和实施例2制备的水泥基复合材料在20℃下进行频率扫描的结果
Figure PCTCN2022093446-appb-000001
由表1可知,在20℃下,1-26Hz空白组水泥材料的储能模量为6873-6935Mpa,损耗模量为164.5-187Mpa,损耗因子为2.38×10 -2-2.73×10 -2。而实施例2制备的水泥基复合材料的储能模量为6873-6935Mpa,损耗模量为848.1-1055Mpa,损耗因子为3.67×10 -2-4.40×10 -2。与 空白组相比,损耗因子增加了54-61%。
表1 空白组水泥材料和实施例2制备的水泥基复合材料在0.1hz下进行温度扫描的结果
Figure PCTCN2022093446-appb-000002
由表2可知,在0.1hz下,10-20℃空白组水泥材料的储能模量为22989-23922Mpa,损耗模量为243.8-260.5Mpa,损耗因子为3.19×10 -2-3.36×10 -2。而实施例2制备的制备的水泥基复合材料的储能模量为23704-24093Mpa,损耗模量为1010-1085Mpa,损耗因子为4.26×10 -2-4.50×10 -2。与空白组相比,损耗因子增加了34%。
综上可知,本申请的实施例1-6制备的水泥基复合材料的损耗因子,与空白组水泥材料相比大幅度增加,说明其在工程减振降噪方面具有广阔的应用前景。而且,本发明所述的聚合物包覆无机粒子的制备方法,操作周期短,简单快捷,反应速度快可进行批量生产,进一步为其在产业上的广泛应用提供了强有力的技术支撑。

Claims (10)

  1. 采用非均相溶液制备聚合物包覆无机粒子的方法,其特征在于:所述聚合物由A、B组份按照(1-1.1):1的摩尔比反应得到;所述A组份为4,4’-二苯基甲烷二异氰酸酯或者由35-60重量份的4,4’-二苯基甲烷二异氰酸酯和50-70重量份聚醚多元醇合成的半预聚物;当A组份为4,4’-二苯基甲烷二异氰酸酯时,所述B组份由80-100重量份的聚乙二醇和0-20重量份的1,4-丁二醇组成;当A组分为所述半预聚物时,所述B组份由10-75重量份的聚醚多元醇和20-80重量份的扩链剂组成;所述方法具体包括以下步骤:
    (1)称取有机溶剂S于反应装置I中,常温下将B组份加入其中,搅拌使二者混合均匀,得到均相溶液;继续搅拌并向前述均相溶液中加入无机粒子,直至无机粒子在体系中分散均匀,得到无机粒子-B组份的混合体系;
    (2)称取所述述有机溶剂S于反应装置II中,将不溶于有机溶剂S的A组份加入其中,搅拌均匀得到分散体系;
    (3)将步骤(1)得到的无机粒子-B组份的混合体系升温至70-80℃,在搅拌条件下缓慢逐滴加入步骤(2)制备的分散体系;继续搅拌至反应体系上层出现澄清液体,下部产生沉淀时,反应完毕;
    (4)将步骤(3)反应得到的沉淀进行分离、洗涤、烘干和研磨,即得到核壳结构的聚合物包覆的无机粒子。
  2. 根据权利要求1所述的采用非均相溶液制备聚合物包覆无机粒子的方法,其特征在于:步骤(1)所述的有机溶剂S为环己烷或者丙酮;所述的无机粒子为金属硅粉、石英砂或者硅灰;当所述当A组份为4,4’-二苯基甲烷二异氰酸酯时,所述有机溶剂S为丙酮;当A组分为半预聚物时,所述有机溶剂S为环己烷。
  3. 根据权利要求2所述的采用非均相溶液制备聚合物包覆无机粒子的方法,其特征在于:所述聚醚多元醇为聚四氢呋喃多元醇或者聚ε-己内酯多元醇;所述扩链剂为3,5-二乙基-2,4-甲苯二胺、N,N’-二异丁基甲基二环己胺和N,N’-二异丁基苯二胺等中的一种或者几种;
  4. 根据权利要求3所述的采用非均相溶液制备聚合物包覆无机粒子的方法,其特征在于:步骤(1)所述的无机粒子为表面修饰的无机粒子,具体通过下述方法得到:采用等离子体对无机粒子进行表面活化,然后取适量表面活化的无机粒子进行硅烷化反应,得到表面修饰的无机粒子。
  5. 根据权利要求4所述的采用非均相溶液制备聚合物包覆无机粒子的方法,其特征在于:所述步骤(1)中对无机粒子进行表面活化的具体步骤为:将无机粒子置于培养皿中,以刚好铺满表面皿底部为宜;控制真空度为10Pa,通入压力为100Pa等离子体用清洗气体,施加高频电压,使等离子体完全覆盖无机粒子,处理一定时间即可得到表面活化的无机粒 子。
  6. 根据权利要求5所述的采用非均相溶液制备聚合物包覆无机粒子的方法,其特征在于:所述无机粒子的粒径为200目-800目,所述的清洗气体为氧气、氢气、氩气或氮气;所述表面活化的时间为30s-5min。
  7. 根据权利要求4所述的采用非均相溶液制备聚合物包覆无机粒子的方法,其特征在于:步骤(1)所述的硅烷化反应的具体步骤为:称取适量表面活化的无机粒子,在搅拌条件下缓慢加入到硅烷偶联剂甲醇溶液中,室温下搅拌发生硅烷化反应,过滤、洗涤、真空干燥即得到表面修饰的硅粉。
  8. 根据权利要求7所述的具有阻尼功能的水泥基复合材料,其特征在于:所述的硅烷偶联剂为表面带有氨基和羟基官能团的硅烷偶联剂;所述硅烷偶联剂甲醇溶液的浓度为0.5~5%;所述硅烷化反应的时间为2~8小时。
  9. 如权利要求1-8中任意一项制备的聚合物包覆的无机粒子的应用,其特征在于:将其用于水泥基复合材料的制备,所述水泥基复合材料中聚合物包覆的无机粒子的含量为水泥粉的2-8wt%。
  10. 根据权利要求9所述的聚合物包覆的无机粒子的应用,其特征在于:水泥基复合材料的制备具体为:将聚合物包覆的无机粒子加入到水泥粉中,搅拌均匀;再按照水灰比(0.4-0.5):1的重量比加水,充分搅拌后倒入模具,脱模、养护,即可得到具有阻尼功能的水泥基复合材料。
PCT/CN2022/093446 2021-06-03 2022-05-18 非均相溶液法制备聚合物包覆的无机粒子及其应用 WO2022252982A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110616589.8 2021-06-03
CN202110616589.8A CN113511832A (zh) 2021-06-03 2021-06-03 非均相溶液法制备聚合物包覆的无机粒子及其应用

Publications (1)

Publication Number Publication Date
WO2022252982A1 true WO2022252982A1 (zh) 2022-12-08

Family

ID=78065456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093446 WO2022252982A1 (zh) 2021-06-03 2022-05-18 非均相溶液法制备聚合物包覆的无机粒子及其应用

Country Status (2)

Country Link
CN (1) CN113511832A (zh)
WO (1) WO2022252982A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116177934A (zh) * 2022-12-28 2023-05-30 佛山市南海科明达混凝土有限公司 一种自密实混凝土及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113511832A (zh) * 2021-06-03 2021-10-19 青岛理工大学 非均相溶液法制备聚合物包覆的无机粒子及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168468A (ja) * 2009-01-22 2010-08-05 Jgc Catalysts & Chemicals Ltd 重合開始基付き無機酸化物粒子並びにその製造方法、および該無機酸化物粒子を用いて得られる高分子修飾無機酸化物粒子並びにその製造方法
CN102311621A (zh) * 2011-07-11 2012-01-11 重庆理工大学 复合力场下制备聚乳酸/无机粒子复合材料的方法
CN113511832A (zh) * 2021-06-03 2021-10-19 青岛理工大学 非均相溶液法制备聚合物包覆的无机粒子及其应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102516831A (zh) * 2011-11-25 2012-06-27 中山大学 一种有机/无机杂化包覆型铝复合粒子的制备方法
CN104861428A (zh) * 2014-10-08 2015-08-26 青岛欣展塑胶有限公司 弹性体包覆刚性粒子增韧ptt聚酯的复合材料
CN104845211A (zh) * 2014-12-17 2015-08-19 王妮娜 一种具有核壳结构的ptt改性组合物
CN106566101B (zh) * 2016-06-12 2018-08-14 吉林建筑大学 有机无机复合阻燃保温材料及生产方法
CN106589302B (zh) * 2016-12-06 2019-06-28 黑龙江省科学院高技术研究院 一种基于质量弹簧模型的梯度阻尼复合材料的制备方法
CN109020298A (zh) * 2018-08-09 2018-12-18 姜香 一种混凝土速凝剂的制备方法
CN111410481B (zh) * 2020-03-31 2022-01-28 河海大学 一种核壳纳米粒子改性水泥基防护材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168468A (ja) * 2009-01-22 2010-08-05 Jgc Catalysts & Chemicals Ltd 重合開始基付き無機酸化物粒子並びにその製造方法、および該無機酸化物粒子を用いて得られる高分子修飾無機酸化物粒子並びにその製造方法
CN102311621A (zh) * 2011-07-11 2012-01-11 重庆理工大学 复合力场下制备聚乳酸/无机粒子复合材料的方法
CN113511832A (zh) * 2021-06-03 2021-10-19 青岛理工大学 非均相溶液法制备聚合物包覆的无机粒子及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAFSHEJANI TAHEREH MOHAMMADI, FENG CHAO, WOHLGEMUTH JONAS, KRAUSE FELIX, BOGNER ANDREAS, DEHN FRANK, THISSEN PETER: "Effect of polymer-coated silica particles in a Portland cement matrix via in-situ infrared spectroscopy", JOURNAL OF COMPOSITE MATERIALS, vol. 55, no. 4, 1 February 2021 (2021-02-01), USA , pages 475 - 488, XP093009183, ISSN: 0021-9983, DOI: 10.1177/0021998320952152 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116177934A (zh) * 2022-12-28 2023-05-30 佛山市南海科明达混凝土有限公司 一种自密实混凝土及其制备方法
CN116177934B (zh) * 2022-12-28 2023-11-03 佛山市南海科明达混凝土有限公司 一种自密实混凝土及其制备方法

Also Published As

Publication number Publication date
CN113511832A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2022252982A1 (zh) 非均相溶液法制备聚合物包覆的无机粒子及其应用
Rong et al. Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review
JP3703487B2 (ja) 架橋樹脂被覆シリカ微粒子およびその製造方法
CN102140179B (zh) 苯乙烯接枝二氧化硅超疏水薄膜的制备方法
CN109880294B (zh) 一种单宁酸改性氧化石墨烯的环氧纳米复合材料
DE2449656A1 (de) Neue form- und haertbare zusammensetzung, verfahren zur herstellung derselben und herstellung von mehrkomponentenkomposits
WO2014121570A1 (zh) 一种增韧环氧树脂/玻璃纤维预浸料及其制备方法
Li et al. Thiol–isocyanate click reaction in a Pickering emulsion: a rapid and efficient route to encapsulation of healing agents
CN109985584B (zh) 一种可调控的草莓状二氧化硅-有机杂化复合微球的制备方法
Lv et al. Trigger efficiency enhancement of polymeric microcapsules for self-healing cementitious materials
CN103113712A (zh) 一种改性纳米二氧化硅增韧环氧树脂的制备方法及其应用
CN108097866B (zh) 一种提高无机粘结剂砂强度的方法
CN106497311A (zh) 一种石墨烯阻燃涂层材料的制备方法
CN110527300A (zh) 一种具有互穿网络结构的高强度环氧-硅橡胶改性材料
Chen et al. Ultralow friction polymer composites containing highly dispersed and thermally robust microcapsules
CN110343276B (zh) 一种具有负介电性能的石墨烯/聚乙烯醇柔性复合薄膜及其制备方法
CN109465454B (zh) 一种基于表面带环氧官能团的不锈钢粉末的注射成型喂料
CN106623761B (zh) 一种特大型不锈钢铸件用铸造涂料及其制备方法
CN113105758B (zh) 一种具有扁平化结构的高振实密度的改性气相二氧化硅及其制备方法和用途
CN100480323C (zh) 双马来酰亚胺自润滑纳米复合材料及其制备方法
Nikje et al. Novel modified nanosilica-based on synthesized dipodal silane and its effects on the physical properties of rigid polyurethane foams
JP3819983B2 (ja) 樹脂被覆シリカ微粒子およびその製造方法
CN111518467A (zh) 一种高官能度聚氨酯丙烯酸酯-二氧化硅复合加硬涂层的制备方法
CN107053551B (zh) 一种半永久型脱模剂的制备方法
JPH0370778A (ja) 歯科材料用無機フィラーの表面処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815029

Country of ref document: EP

Kind code of ref document: A1