WO2022252484A1 - 聚合物自支撑纳米薄膜及其连续和宏量制备方法和应用 - Google Patents

聚合物自支撑纳米薄膜及其连续和宏量制备方法和应用 Download PDF

Info

Publication number
WO2022252484A1
WO2022252484A1 PCT/CN2021/126889 CN2021126889W WO2022252484A1 WO 2022252484 A1 WO2022252484 A1 WO 2022252484A1 CN 2021126889 W CN2021126889 W CN 2021126889W WO 2022252484 A1 WO2022252484 A1 WO 2022252484A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactive monomer
ionic liquid
polymer self
supporting
continuous
Prior art date
Application number
PCT/CN2021/126889
Other languages
English (en)
French (fr)
Inventor
徐志康
刘畅
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2022252484A1 publication Critical patent/WO2022252484A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/54Polyureas; Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/72Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of the groups B01D71/46 - B01D71/70 and B01D71/701 - B01D71/702
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/04Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08G12/06Amines
    • C08G12/08Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3228Polyamines acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/32Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/42Polyamides containing atoms other than carbon, hydrogen, oxygen, and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2361/22Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the invention relates to the field of film preparation, in particular to a polymer self-supporting nano film and its continuous and macro preparation method and application.
  • Polymer self-supporting nanofilms are widely used in the fields of separation and purification, energy regeneration, material protection, and electronic devices. Interfacial polymerization has become an important method for preparing self-supporting polymer nanofilms because of its fast, efficient and mild conditions.
  • Interfacial polymerization means that two highly reactive substances are respectively dissolved in two immiscible solvents, and a polymerization reaction occurs at the interface to form a polymer nanofilm.
  • ionic liquids are organic molten salts composed entirely of anions and cations, and are mostly liquid at room temperature. Compared with traditional organic solvents, ionic liquids have the advantages of non-volatility, non-flammability, high chemical and thermal stability, strong solubility, adjustable structure, wide electrochemical window, etc., and are known as a new type of "green solvent". It has a wide range of applications in the field of chemical synthesis.
  • ionic liquids Due to the huge difference in internal interactions, many ionic liquids can form interfaces with alkanes or benzene and their derivatives.
  • Using ionic liquid/organic solvent systems to carry out interfacial polymerization reactions can expand the range of monomer selection and screen reactants according to different application requirements. Synthesize nano-films of different types and functions, and at the same time reduce side reactions such as hydrolysis of reactants and improve film quality.
  • the high viscosity and designability of ionic liquids enable them to form stable and uniform solution coatings on the surface of various substrates, laying the foundation for the preparation of polymer nanofilms by controllable interfacial polymerization.
  • the invention provides a polymer self-supporting nano film and its continuous and macro preparation method, which greatly expands the optional types of reactants, and enables water-insoluble reactants with special structures to be applied to polymer films interface synthesis.
  • a continuous and macro-preparation method for a polymer self-supporting nano film comprising the following steps:
  • step (1) (2) contacting the ionic liquid solution coating of the reactive monomer a in step (1) with the non-polar solution having the reactive monomer b dissolved therein, causing interfacial polymerization, and synthesizing the polymer self-supporting nano film;
  • step (2) The polymer self-supporting nano-film in step (2) is washed with water, which automatically falls off from the transmission mechanism, and after drying and heat treatment, the polymer self-supporting nano-film is obtained.
  • step (2) the mode of contacting the ionic liquid solution coating of reactive monomer a with the non-polar solution dissolved in reactive monomer b is selected from one of the following two types:
  • the transmission mechanism is a conveyor belt, a roller, etc.; the material is polymer, glass, ceramics, metal, etc.
  • the melting point of the ionic liquid is -100°C to 100°C; the viscosity of the ionic liquid is 10cP to 1000cP.
  • the cation of the ionic liquid is selected from one or more of the following: alkyl quaternary ammonium ions, alkyl quaternary phosphonium ions, N,N'-dialkyl substituted imidazolium, N-alkyl substituted Pyridinium; anion selected from one or more of the following: halide, tetrachloroaluminate, hexafluoroaluminate, tetrafluoroborate, hexafluorophosphate, nitrate, perchlorate, trifluoroaluminate Acetate, trifluoromethanesulfonate ion, bistrifluoromethanesulfonimide anion, p-toluenesulfonate, perfluorobutyrate, perfluorobutanesulfonate.
  • the solvent of the non-polar solution is at least one of normal alkanes, isoparaffins, naphthenes and aromatics.
  • the solvent of the non-polar solution is n-hexane, n-heptane, n-octane, n-nonane, n-decane, n-undecane, n-dodecane, naphtha, isoparaffin , Isoparaffin H, Isoparaffin L, Isoparaffin M, Cyclopentane, Cyclohexane, Cycloheptane, Cyclooctane, Benzene, Toluene, 1,2-Xylene, 1,3-Xylene, At least one of 1,4-xylene and 1,3,5-trimethylbenzene.
  • the reactive monomer a is at least one of amine compounds, alcohol compounds, phenol compounds, hydrogen peroxide, persulfate and azobisisobutyronitrile.
  • the molecular structure of the amine compound has at least two amine groups.
  • the amine compound is at least one of the compounds represented by the following chemical formula:
  • n is an integer of 1-5;
  • R is an alkane substituent with a carbon number of 1-4, and n is an integer of 0-4;
  • R is an alkane substituent with a carbon number of 1-4, and n is an integer of 0-3;
  • the amine compounds are ethylenediamine, butylenediamine, hexamethylenediamine, octyldiamine, decanediamine, piperazine, 1,3-cyclohexanedimethylamine, diethylenetriamine, 1, 2-phenylenediamine, 1,3-phenylenediamine, 1,4-phenylenediamine, 2,2'-bis(4-aminophenyl)propane, 2,2'-bis(4-aminophenyl) Hexafluoropropane, tetrakis(4-aminophenyl)methane, 9,9'-bis(4-aminophenyl)fluorene, tetrakis(4-aminophenyl)ethylene, 4,4'-diaminodiphenylsulfone, At least one of 4,4'-bis(4-aminophenoxy)diphenylsulfone, tris(4-aminopheny
  • the molecular structure of the alcohol compound or phenol compound has at least two hydroxyl groups.
  • the alcohol compound or phenol compound is at least one of the compounds represented by the following chemical formula:
  • n is an integer of 1-5;
  • R is an alkane substituent with 1-4 carbons, and n is an integer of 0-3.
  • the alcohol compound or phenolic compound is ethylene glycol, butanediol, hexanediol, octanediol, decanediol, glycerol, 1,2-benzenediol, 1,3- Hydroquinone, 1,4-benzenediol, 9,9-bis(4-hydroxyphenyl)fluorene, 2,6-dihydroxyanthraquinone and 5,5',6,6'-tetrahydroxy-3, At least one of 3,3',3'-tetramethyl-1,1'-spirobiindole.
  • the reactive monomer b is at least one of acid chloride compound, aldehyde compound, isocyanate, pyrrole, thiophene and aniline.
  • the molecular structure of the acid chloride compound has at least two acid chloride groups.
  • the acid chloride compound is at least one of the compounds represented by the following chemical formula:
  • n is an integer of 2-4;
  • n 1 or 2.
  • the acid chloride compound is isophthaloyl dichloride, terephthaloyl dichloride, 1,2,4-benzenetricarboxylic acid chloride, 1,3,5-benzenetricarboxylic acid chloride, 1,2,4,5-benzene At least one of tetracarbonyl chloride, 4,4'-biphenyl dicarboxylic acid chloride and 3,5,3',5'-biphenyl tetracarboxylic acid chloride.
  • the molecular structure of the aldehyde compound has at least two aldehyde groups.
  • the aldehyde compound is at least one of the compounds represented by the following chemical formula:
  • R is a hydroxyl group or an alkane substituent with a carbon number of 1-4, m is an integer of 2-4, n is an integer of 0-4, and m+n ⁇ 6;
  • n 1 or 2.
  • aldehyde compounds are m-phthalaldehyde, terephthalaldehyde, 1,2,4-benzenetricarbaldehyde, 1,3,5-benzenetrialdehyde, 2,4,6-trihydroxy-1, 3,5-benzenetricarbaldehyde, 2,4,6-trimethyl-1,3,5-benzenetricarbaldehyde, 1,2,4,5-benzenetetracarbaldehyde, 4,4'-biphenyldicarbaldehyde and At least one of 3,5,3',5'-biphenyl tetracarbaldehyde.
  • the isocyanate has at least two isocyanate groups in its molecular structure.
  • isocyanate is toluene-2,4-diisocyanate, toluene-2,6-diisocyanate, 4,4-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate and 3,3'-diisocyanate At least one of methyl-4,4'-biphenyl diisocyanate.
  • the concentration of the reactive monomer a is 5-800 mM; in the non-polar solution of the reactive monomer b, the concentration of the reactive monomer b is 0.05-2 mM.
  • the thickness of the ionic liquid solution coating of the reactive monomer a is 50-1000 ⁇ m.
  • the time for immersing the transport mechanism coated with the ionic liquid solution of the reactive monomer a into the non-polar solution in which the reactive monomer b is dissolved is 30 to 3600 s;
  • the movement rate of the transmission mechanism is 0.02-3 cm min -1 .
  • the kind of the prepared polymer self-supporting nanometer film is polyamide, polyester, polymethylimine, polyurea, polyurethane, polypyrrole, polythiophene or polyaniline.
  • the present invention also provides an application of the polymer self-supporting nano film prepared by the above preparation method in seawater desalination, wastewater treatment, precious metal extraction, concentration difference power generation, organic solvent recovery, drug separation and purification, material surface protection, and conductive film .
  • the synthesized polymer self-supporting nano-membrane is polyamide or polyester or polyimine, it can be combined with a polymer or ceramic microfiltration or ultrafiltration substrate to form a thin-layer composite membrane for forward osmosis Seawater desalination, reverse osmosis seawater desalination, water system nanofiltration, organic nanofiltration, pressure delayed osmosis power generation and other fields.
  • the synthesized polymer self-supporting nano-film is polyurethane or polyurea, it can be coated on the hull, wall and other material surfaces that need to be protected as a protective coating.
  • the synthesized polymer self-supporting nano film is polypyrrole, polythiophene or polyaniline, it can be used as an electrochemical material such as an electrode modification layer.
  • the continuous and macro preparation method of the polymer self-supporting nano film of the present invention greatly expands the optional types of reactants, so that water-insoluble reactants with special structures can be applied to the interfacial synthesis of polymer films, And introduce new polymer film materials in the traditional film application field, so as to achieve specific properties.
  • the interfacial polymerization reaction is controlled by slowing down the diffusion rate of the reactants, and an ultrathin polymer self-supporting film can be obtained, and its thickness can be as low as 3 nm.
  • the continuous and macro preparation method of the polymer self-supporting nano film of the present invention avoids the problem that the side reaction of the conventional water/oil interface polymerization system causes more film defects, and the polymer nano film prepared by the method is uniform and compact, and the The joint degree is as high as 96%.
  • this method can coat a uniform and stable reactant ionic liquid solution on the surface of a conveyor belt of various materials, and can be flexibly coated with another reactant by immersion or spraying.
  • the non-polar solution of the substance triggers interfacial polymerization, which can realize the continuous macro-preparation of the self-supporting nano-film of the polymer.
  • the obtained polymer self-supporting nano-film can be attached to the surface of polymers, ceramics, metals, graphite and other substrates, and can be used in the fields of separation and purification, energy regeneration, material protection and electronic devices, and has great application prospects.
  • Fig. 1 is the structural representation of a kind of continuous and macro preparation device of preferred polymer self-supporting nano film
  • Figure 2 is the surface electron microscope image (a), cross-sectional electron microscope image (b), atomic force microscope image (c) and corresponding height image (d) of the polymer self-supporting nano film prepared in Example 20.
  • the selected preparation device is shown in Figure 1, including a conveyor belt, a feed liquid cylinder a with a scraper at the outlet, a feed liquid cylinder b with an atomizer at the outlet, a water tank, a heat treatment device, and a coil Winding device;
  • the material liquid cylinder a and the material liquid cylinder b are arranged above the conveyor belt, the material liquid cylinder b is located downstream of the material liquid cylinder a and upstream of the water tank, and a part of the conveyor belt enters under the liquid surface of the water tank.
  • the distance between the scraper and the conveyor belt is adjustable.
  • the preparation method comprises: first preparing the ionic liquid solution of the reactant a and the non-polar solution of the reactant b, and feeding them into the feed liquid tank a and the feed liquid tank b respectively.
  • the ionic liquid solution of the reactant a is extruded from the nozzle below the material liquid tank a, and scraped and coated on the forward moving conveyor belt by the height-adjustable scraper.
  • the non-polar solution of reactant b is sprayed on the forward-moving conveyor belt coated with the ionic liquid solution through the atomizer below the material liquid cylinder b, and the interfacial polymerization reaction of reactant a and reactant b begins.
  • the conveyor belt continues to move forward into the water tank, the ionic liquid solution is dissolved in the water, the interfacial polymerization reaction stops, and the synthesized polymer self-supporting nano-film is self-supporting on the water surface due to the surface tension of the water.
  • the water in the tank is circulated and pumped, constantly renewed, so that the polymer self-supporting nano-film is rinsed in the tank.
  • the film moves to the end of the water tank, it is taken out of the water by the conveyor belt, dried in the air, and sent to the heat treatment device for processing. After the film is finished, it is wound into rolls by rollers for use.
  • the synthesized polymer self-supporting nano-membrane is polyamide or polyester or polyimine, it can be combined with a polymer or ceramic microfiltration or ultrafiltration substrate to form a thin-layer composite membrane for forward osmosis of seawater Desalination, reverse osmosis seawater desalination, water system nanofiltration, organic nanofiltration, pressure delayed osmosis power generation and other fields.
  • the synthesized polymer self-supporting nano-film is polyurethane or polyurea, it can be coated on the hull, wall and other material surfaces that need to be protected as a protective coating. If the synthesized polymer self-supporting nano film is polypyrrole, polythiophene or polyaniline, it can be used as an electrochemical material such as an electrode modification layer.
  • the permeation flux, rejection or separation ratio are important parameters for evaluating the performance of the membrane.
  • the solvent flux F is defined as:
  • V represents the volume of liquid permeating the membrane within a certain period of time
  • A represents the effective area of the membrane used in the separation process
  • t represents the duration of the separation process
  • p is the test pressure.
  • the rejection rate R is defined as:
  • c f represents the concentration of the substance to be retained in the solution before separation
  • c p represents the concentration of the substance to be retained in the solution after treatment
  • the gas permeability Q is calculated by the following formula:
  • Pu is the pressure at the inlet end
  • P d is the pressure at the outlet end
  • P atm is the atmospheric pressure
  • T is the test temperature
  • A is the effective film area
  • dV/dt is the volume growth rate of the soap bubble flowmeter during the test.
  • the gas separation ratio ⁇ is defined as:
  • Q1 and Q2 are the permeability of the two gases, respectively.
  • the generated power W is calculated by the following formula:
  • A is the effective membrane area
  • is the osmotic pressure difference
  • P is the applied pressure
  • piperazine as reactant a for use.
  • Piperazine was dissolved in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate to obtain an ionic liquid solution with a concentration of 120 mM and a viscosity of 165 cP.
  • Select trimesoyl chloride as reactant b and dissolve trimesoyl chloride in n-hexane to obtain a non-polar solution with a concentration of 5.6 mM.
  • the ionic liquid solution of piperazine is evenly coated on the surface of the nylon conveyor belt by a scraper to obtain a stable liquid film with a thickness of 1000 ⁇ m.
  • the trimesoyl chloride n-hexane solution was sprayed onto the surface of the liquid film on the conveyor belt at a spraying rate of 1mL min -1 and a spraying time of 30s.
  • the film is continuously pushed forward by the conveyor belt to the conveyor belt at the end of the tank, and is drawn out of the water surface.
  • the film is dried in the air, and then sent to the heat treatment device. After the treatment, it is wound to obtain the finished piperazine polyamide self-supporting nano film.
  • Embodiments 1-3 lie in the moving speed of the conveyor belt.
  • the speeds at which the conveyor belt moves forward are 3 cm s -1 , 1.5 cm s -1 , and 0.3 cm s -1 , respectively.
  • the thickness of the doctor blade coating liquid film was replaced by 50 ⁇ m, 200 ⁇ m, 400 ⁇ m, 600 ⁇ m, and 800 ⁇ m respectively, and other conditions were the same as in Example 2.
  • the test performance is shown in Table 2:
  • the concentration of piperazine was replaced by 100mM, 90mM, 80mM, 70mM, 60mM respectively, and other conditions were the same as in Example 2.
  • the test performance is shown in Table 3:
  • the reactant a was replaced with 1,3-phenylenediamine at concentrations of 600mM, 500mM, 400mM, 300mM, and 200mM, and the resulting fully aromatic polyamide self-supporting nano-film was composited with a polyethersulfone ultrafiltration substrate to form a reaction Osmotic membranes are used for seawater desalination.
  • the solution to be separated used in this type of embodiment performance evaluation is 2000ppm NaCl aqueous solution, and the pressure used is 10bar, and all the other conditions are the same as in Example 2.
  • the test performance is shown in Table 5:
  • Example 20 Replace the non-polar solvent with heptane, octane, nonane, decane, undecane, dodecane, and isoparaffin H respectively, and the rest of the conditions are the same as in Example 20.
  • the test performance is shown in Table 6:
  • the solution to be separated in the performance evaluation of these examples is 50 ppm rhodamine B in methanol, the filter type is dead-end filtration, the pressure used is 3 bar, and the other conditions are the same as in Example 15.
  • the test performance is shown in Table 7:
  • the solution to be separated was replaced with polyethylene glycol aqueous solutions with molecular weights of 200Da, 400Da, 600Da, 800Da, and 1000Da, and the concentration was 2g L -1 , and the rest of the conditions were the same as in Example 34.
  • the test performance is shown in Table 8:
  • reactant a with 1,3,5-tris(4-aminophenyl)benzene
  • reactant b with terephthalaldehyde (PMD), 1,3,5-benzenetrialdehyde (TMD), 2,4,6-trihydroxy-1,3,5-benzenetricarbaldehyde (THMD), 4,4'-biphenyldicarbaldehyde (DMD), 3,5,3',5'-biphenyltetracarbaldehyde ( TDD), the non-polar solvent was replaced by 1,3,5-trimethylbenzene.
  • the moving speed of the conveyor belt is 0.02cm s -1 .
  • the covalent organic framework self-supporting nano-film of poly(methylimide) was composited with XP84 cross-linked polyimide substrate to form a thin-layer composite membrane for gas separation.
  • the gas pair to be separated is H 2 /CH 4 used in the performance evaluation of this embodiment, the inlet pressure is 0.1 bar, the gas outlet pressure is 1 atm, and other conditions are the same as in Example 42.
  • the test performance is shown in Table 9:
  • the obtained film was combined with a polyvinylidene fluoride microfiltration membrane with a vertical through-hole structure to form a thin-layer composite membrane for pressure-delayed osmosis power generation.
  • the feed liquid is deionized water
  • the extraction agent is MgCl 2 aqueous solution
  • the concentration is 2M, 3M, 4M, 5M, 6M respectively.
  • the test temperature was 30°C
  • the cross-flow flow rate was 15L min -1 .
  • the test performance is shown in Table 10:
  • the reactant a was replaced with ammonium persulfate at a concentration of 0.5M
  • the reactant b was replaced with pyrrole, thiophene, and aniline at a concentration of 5mM
  • the non-polar solvent was replaced with benzene.
  • the moving speed of the conveyor belt is 0.3 cm s -1 .
  • the prepared conductive polymer self-supporting nano film quartz substrate is compounded to form the modified electrode.
  • the test performance is shown in Table 11:
  • reactant a with 1,6-hexamethylenediamine at a concentration of 300M
  • reactant b with toluene-2,4-diisocyanate (24TDI), toluene-2,6-diisocyanate (26TDI), 4 , 4-diphenylmethane diisocyanate (MDI), 1,5-naphthalene diisocyanate (NDI), 3,3'-dimethyl-4,4'-biphenyl diisocyanate (TODI)
  • the concentration is 5mM
  • the non-polar solvent is replaced by isoparaffin G.
  • the moving speed of the conveyor belt is 0.17cm s -1 .
  • the polyurea self-supporting nano-film is used as a protective layer and composited with the concrete sheet.
  • the protection performance was measured by immersion in simulated seawater, and the wear resistance was tested with a TABERCS-17 wheel, with a load of 1000g and reciprocating 100 times.
  • the test performance is shown in Table 12:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本发明公开了一种聚合物自支撑纳米薄膜及其连续和宏量制备方法和应用,制备方法包括以下步骤:(1)将反应性单体a的离子液体溶液均匀涂布在连续向前运动的平整的传输机构上,形成稳定均匀的反应性单体a的离子液体溶液涂层;(2)将步骤(1)中的反应性单体a的离子液体溶液涂层与溶有反应性单体b的非极性溶液接触,发生界面聚合反应,合成聚合物自支撑纳米薄膜;(3)将步骤(2)中的聚合物自支撑纳米薄膜用水洗涤,其自动从传输机构上脱落,经干燥热处理后,即获得所述的聚合物自支撑纳米薄膜。本发明的制备方法极大地拓展了反应物的可选种类,使非水溶性的具有特殊结构的反应物能够应用于聚合物薄膜的界面合成中。

Description

聚合物自支撑纳米薄膜及其连续和宏量制备方法和应用 技术领域
本发明涉及膜制备领域,尤其涉及一种聚合物自支撑纳米薄膜及其连续和宏量制备方法和应用。
背景技术
聚合物自支撑纳米薄膜广泛应用于分离纯化、能源再生、材料保护以及电子器件等领域。界面聚合因其快速高效、条件温和而成为制备自支撑聚合物纳米薄膜的重要方法。
界面聚合是指两种高反应活性物质分别溶于两个互不相溶的溶剂中,并在界面处发生聚合反应,形成聚合物纳米薄膜。
常规的界面聚合反应发生在油/水界面上(例如专利文献US4277344和US4259183),其中一种高反应活性物质必为水溶性,但大多数有机物都难溶于水,因此常规的油/水界面聚合限制了反应物的选用,不利于任务专化聚合物纳米薄膜的开发。其次,油/水界面聚合反应速率极高,难以控制,且水作为一种活泼的质子性溶剂,易于与油相中的高活性反应物发生副反应,导致所得薄膜存在缺陷。由此可见,水虽然易于与有机溶剂形成界面,但水的存在却不利于界面聚合反应。因此,十分有必要开发一种无水、可控且普适的界面聚合体系。
与水不同,离子液体是一种完全由阴阳离子组成的有机熔融盐,大多在室温下呈液态。与传统有机溶剂相比,离子液体具有不挥发、不易燃、化学和热稳定性高、溶解能力强、结构可调控、电化学窗口宽等优点,被誉为一种新型的“绿色溶剂”,在化学合成领域有着广泛的应用。
由于内部相互作用的巨大差异,许多离子液体能够与烷烃或苯及其衍生物形成界面,使用离子液体/有机溶剂体系开展界面聚合反应,能够拓展单体选用范围,按不同应用需求筛选反应物,合成不同种类和功能的纳米薄膜,同时可以减少反应物水解等副反应,提高薄膜质量。特别地,离子液体的高粘度以及可设计性使其能够在各种基材表面形成稳定均匀的溶 液涂层,为可控界面聚合制备聚合物纳米薄膜奠定基础。
目前尚无基于离子液体/有机溶剂体系开展界面聚合制备聚合物纳米薄膜的专利和论文报导。
发明内容
本发明提供了一种聚合物自支撑纳米薄膜及其连续和宏量制备方法,该方法极大地拓展了反应物的可选种类,使非水溶性的具有特殊结构的反应物能够应用于聚合物薄膜的界面合成中。
本发明的技术方案如下:
一种聚合物自支撑纳米薄膜的连续和宏量制备方法,包括以下步骤:
(1)将反应性单体a的离子液体溶液均匀涂布在连续向前运动的平整的传输机构上,形成稳定均匀的反应性单体a的离子液体溶液涂层;
(2)将步骤(1)中的反应性单体a的离子液体溶液涂层与溶有反应性单体b的非极性溶液接触,引发界面聚合反应,合成聚合物自支撑纳米薄膜;
(3)将步骤(2)中的聚合物自支撑纳米薄膜用水洗涤,其自动从传输机构上脱落,经干燥热处理后,即获得所述的聚合物自支撑纳米薄膜。
步骤(2)中,反应性单体a的离子液体溶液涂层与溶有反应性单体b的非极性溶液接触的方式选自以下两种中的一种:
(A)将涂有反应性单体a的离子液体溶液涂层的传输机构浸入溶有反应性单体b的非极性溶液中;
(B)将溶有反应性单体b的非极性溶液喷涂至反应性单体a的离子液体溶液涂层表面。
所述的传输机构为传送带、辊筒等;材质为聚合物、玻璃、陶瓷、金属等。
优选的,所述的离子液体的熔点为-100℃~100℃;所述的离子液体的黏度为10cP~1000cP。
进一步优选的,所述离子液体的阳离子选自以下的一种或多种:烷基季铵离子、烷基季鏻离子、N,N'-二烷基取代咪唑鎓、N-烷基取代的吡啶鎓;阴离子选自以下的一种或多种:卤离子、四氯合铝酸根、六氟合铝酸根、四氟合硼酸根、六氟合磷酸根、硝酸根、高氯酸根、三氟乙酸根、三氟甲 磺酸根离子、双三氟甲磺酰亚胺阴离子、对甲苯磺酸根、全氟丁酸根、全氟丁基磺酸根。
优选的,所述非极性溶液的溶剂为正烷烃、异构烷烃、环烷烃和芳烃中的至少一种。
进一步优选的,所述非极性溶液的溶剂为正己烷、正庚烷、正辛烷、正壬烷、正癸烷、正十一烷、正十二烷、石脑油、异构烷烃G、异构烷烃H、异构烷烃L、异构烷烃M、环戊烷、环己烷、环庚烷、环辛烷、苯、甲苯、1,2-二甲苯、1,3-二甲苯、1,4-二甲苯和1,3,5-三甲基苯中的至少一种。
优选的,所述反应性单体a为胺类化合物、醇类化合物、酚类化合物、过氧化氢、过硫酸盐和偶氮二异丁腈中的至少一种。
所述胺类化合物的分子结构中至少具有两个胺基。
所述胺类化合物为由以下化学式表示的化合物中的至少一种:
Figure PCTCN2021126889-appb-000001
其中n为1—5的整数;
Figure PCTCN2021126889-appb-000002
其中R为碳数为1—4的烷烃取代基,且n为0—4的整数;
Figure PCTCN2021126889-appb-000003
其中R为碳数为1—4的烷烃取代基,且n为0—3的整数;
Figure PCTCN2021126889-appb-000004
进一步优选的,所述胺类化合物为乙二胺、丁二胺、己二胺、辛二胺、癸二胺、哌嗪、1,3-环己二甲胺、二乙烯三胺、1,2-苯二胺、1,3-苯二胺、1,4-苯二胺、2,2'-双(4-氨基苯基)丙烷、2,2'-双(4-氨基苯基)六氟丙烷、四(4-氨苯基)甲烷、9,9'-双(4-氨基苯基)芴、四(4-氨基苯基)乙烯、4,4'-二氨基二 苯砜、4,4'-双(4-氨基苯氧基)二苯砜、三(4-氨苯基)胺和1,3,5-三(4-氨苯基)苯中的至少一种。
所述醇类化合物或酚类化合物的分子结构中至少具有两个羟基。
优选的,所述醇类化合物或酚类化合物为由以下化学式表示的化合物中的至少一种:
Figure PCTCN2021126889-appb-000005
其中n为1—5的整数;
Figure PCTCN2021126889-appb-000006
其中R为碳数1—4的烷烃取代基,且n为0-3的整数。
优选的,所述的醇类化合物或酚类化合物为乙二醇、丁二醇、己二醇、辛二醇、癸二醇、丙三醇、1,2-苯二酚、1,3-苯二酚、1,4-苯二酚、9,9-双(4-羟基苯基)芴、2,6-二羟基蒽醌和5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺旋联吲哚中的至少一种。
所述反应性单体b为酰氯化合物、醛类化合物、异氰酸酯、吡咯、噻吩和苯胺中的至少一种。
所述酰氯化合物的分子结构中至少具有两个酰氯基团。
优选的,所述酰氯化合物为由以下化学式表示的化合物中的至少一种:
Figure PCTCN2021126889-appb-000007
其中n为2—4的整数;
Figure PCTCN2021126889-appb-000008
其中n为1或2。
进一步优选的,所述酰氯化合物为间苯二甲酰氯、对苯二甲酰氯、1,2,4-苯三甲酰氯、1,3,5-苯三甲酰氯、1,2,4,5-苯四甲酰氯、4,4'-联苯二甲酰氯和3,5,3',5'-联苯四甲酰氯中的至少一种。
所述醛类化合物的分子结构中至少具有两个醛基。
优选的,所述醛类化合物为由以下化学式表示的化合物中的至少一种:
Figure PCTCN2021126889-appb-000009
其中R为羟基或碳数1—4的烷烃取代基,m为2—4 的整数,n为0—4的整数,且m+n≤6;
Figure PCTCN2021126889-appb-000010
其中n为1或2。
进一步的,所述醛类化合物为间苯二甲醛、对苯二甲醛、1,2,4-苯三甲醛、1,3,5-苯三醛、2,4,6-三羟基-1,3,5-苯三甲醛、2,4,6-三甲基-1,3,5-苯三甲醛、1,2,4,5-苯四甲醛、4,4'-联苯二甲醛和3,5,3',5'-联苯四甲醛中的至少一种。
所述异氰酸酯的分子结构中至少具有两个异氰酸酯基。
进一步的,所述异氰酸酯为甲苯-2,4-二异氰酸酯、甲苯-2,6-二异氰酸酯、4,4-二苯基甲烷二异氰酸酯、1,5-萘二异氰酸酯和3,3'-二甲基-4,4'-联苯二异氰酸酯中的至少一种。
所述反应性单体a的离子液体溶液中,反应性单体a的浓度为5~800mM;反应性单体b的非极性溶液中,反应性单体b的浓度为0.05~2mM。
优选的,反应性单体a的离子液体溶液涂层的厚度为50~1000μm。
优选的,将涂有反应性单体a的离子液体溶液涂层的传输机构浸入溶有反应性单体b的非极性溶液中的时间为30~3600s;
或将溶有反应性单体b的非极性溶液喷涂至反应性单体a的离子液体溶液涂层表面的喷涂速率为0.5~2mL min -1
传送机构的运动速率为0.02~3cm min -1
所制得的聚合物自支撑纳米薄膜的种类为聚酰胺、聚酯、聚甲亚胺、聚脲、聚氨酯、聚吡咯、聚噻吩或聚苯胺。
本发明还提供了一种上述制备方法制得的聚合物自支撑纳米薄膜在海水淡化、废水处理、贵金属提取、浓差发电、有机溶剂回收、药物分离纯化、材料表面保护、导电薄膜中的应用。
若所合成的聚合物自支撑纳米薄膜为聚酰胺或聚酯或聚甲亚胺,则可将其与聚合物或陶瓷的微滤或超滤基底复合,构成薄层复合膜,用于正渗透海水淡化、反渗透海水淡化、水系纳滤、有机纳滤、压力延迟渗透发电等领域。
若所合成的聚合物自支撑纳米薄膜为聚氨酯或聚脲,则可将其包覆在船体、墙面以及其他需要保护的材料表面上,充当保护涂层。
若所合成的聚合物自支撑纳米薄膜为聚吡咯或聚噻吩或聚苯胺,则可将其用作电极修饰层等电化学材料。
与现有技术相比,本发明的有益效果为:
(1)本发明的聚合物自支撑纳米薄膜的连续和宏量制备方法极大拓展了反应物的可选种类,使非水溶性的具有特殊结构的反应物能够应用于聚合物薄膜的界面合成,并在传统的薄膜应用领域中引入新的聚合物薄膜材料,从而实现了特定的性能。
(2)由于离子液体的高粘度,界面聚合反应通过减缓反应物扩散速率得到控制,可以得到超薄聚合物自支撑膜,其厚度可低至3nm。
(3)本发明的聚合物自支撑纳米薄膜的连续和宏量制备方法避免了常规水/油界面聚合体系副反应导致薄膜缺陷较多的问题,使用该方法制备的聚合物纳米薄膜均匀致密,交联度高达96%。
(4)由于离子液体内部复杂的相互作用和其可调节的黏度,该方法能够在各种材料的输送带表面涂覆均匀稳定的反应物离子液体溶液,并可以灵活通过浸入或喷涂另一反应物的非极性溶液引发界面聚合,可实现聚合物自支撑纳米薄膜的连续化宏量制备。
(5)所得聚合物自支撑纳米薄膜能够附载在聚合物、陶瓷、金属、石墨等基材表面,并用于分离纯化、能源再生、材料保护以及电子器件等领域,拥有巨大的应用前景。
附图说明
图1为一种优选的聚合物自支撑纳米薄膜的连续和宏量制备装置的结构示意图;
图2为实施例20制备的聚合物自支撑纳米薄膜的表面电镜图(a)、截面电镜图(b)、原子力显微镜图(c)和相应的高度图(d)。
具体实施方式
下面结合附图和实施例对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
在以下具体实施例中,所选用的制备装置如图1所示,包括输送带、出口带有刮刀的料液缸a、出口带有雾化器的料液缸b、水槽、热处理装 置和卷绕装置;
料液缸a和料液缸b设置在输送带上方,料液缸b位于料液缸a的下游、水槽的上游,输送带的一部分进入水槽的液面下。刮刀与输送带的间距可调。
制备方法包括:首先配制反应物a的离子液体溶液和反应物b的非极性溶液,并分别加料至料液缸a和料液缸b。反应物a的离子液体溶液从料液缸a下方的喷嘴挤出,通过可调高度的刮刀刮涂在向前运动的传送带上。反应物b的非极性溶液通过料液缸b下方的雾化器喷涂在涂覆有离子液体溶液的向前运动的传送带上,反应物a与反应物b的界面聚合反应由此开始。传送带继续向前移动至水槽内,离子液体溶液即溶解在水中,界面聚合反应停止,所合成的聚合物自支撑纳米薄膜因水的表面张力而自支撑在水表面。水槽内的水循环泵送,不断更新,使得聚合物自支撑纳米薄膜在水槽中被漂洗。薄膜运动到水槽末端后被输送带捞出水面,在空气中干燥,并被送至热处理装置中处理,完毕后通过辊卷绕成卷以待使用。
若所合成聚合物自支撑纳米薄膜为聚酰胺或聚酯或聚甲亚胺,则可将其与聚合物或陶瓷的微滤或超滤基底复合,构成薄层复合膜,用于正渗透海水淡化、反渗透海水淡化、水系纳滤、有机纳滤、压力延迟渗透发电等领域。
若所合成的聚合物自支撑纳米薄膜为聚氨酯或聚脲,则可将其包覆在船体、墙面以及其他需要保护的材料表面上,充当保护涂层。若所合成的聚合物自支撑纳米薄膜为聚吡咯或聚噻吩或聚苯胺,则可将其用作电极修饰层等电化学材料。
当本发明制备的聚合物自支撑纳米薄膜以分离纯化应用为具体实施例时,渗透通量、截留或分离比为评估薄膜性能的重要参数。对于液相分离纯化,溶剂通量F定义为:
Figure PCTCN2021126889-appb-000011
其中V表示一定时间内透过膜的液体体积,A表示分离过程中所用薄膜的有效面积,t表示分离过程持续时间,p为测试压力。
截留率R定义为:
Figure PCTCN2021126889-appb-000012
其中c f表示分离前溶液待截留物质的浓度,c p表示处理后溶液中待截留物质的浓度。
对于气相分离纯化,气体渗透率Q由下式计算:
Figure PCTCN2021126889-appb-000013
其中P u为进气端压强,P d为出气端压强,P atm为大气压,T为测试温度,A为有效薄膜面积,dV/dt为测试时皂泡流量计的体积增速。
气体分离比α定义为:
Figure PCTCN2021126889-appb-000014
其中Q 1和Q 2分别为两种气体的渗透率。
对于压力延迟发电,发电功率W由下式计算:
W=A(Δπ-P)P
其中,A为有效薄膜面积,Δπ为渗透压差,P为外加压力。
实施例1—3
(1)选用哌嗪为反应物a。将哌嗪溶解于离子液体1-丁基-3-甲基咪唑四氟硼酸盐中,得到浓度为120mM的离子液体溶液,黏度为165cP。选用均苯三甲酰氯为反应物b,将均苯三甲酰氯溶于正己烷中,得到浓度为5.6mM的非极性溶液。分别将两溶液加入料液缸a和料液缸b。
(2)装置开启后,哌嗪的离子液体溶液经刮刀均匀涂覆在尼龙输送带表面,得到厚度为1000μm的稳定液膜。待液膜移动到雾化器处,均苯三甲酰氯正己烷溶液被喷涂至输送带上液膜表面,喷涂速率为1mL min -1,喷涂时间为30s。
(3)输送带继续向前移动至水槽中,合成的聚酰胺自支撑纳米薄膜漂浮于水面上漂洗。
(4)薄膜被输送带持续向前推进至水槽末端输送带,并被牵伸出水面,薄膜在空气中干燥,然后被送入热处理装置,处理完毕后卷绕得到成品哌嗪聚酰胺自支撑纳米薄膜。
(5)实施例1—3的区别在于输送带的移动速度。实施例1—3中,传送带向前运动的速率分别为3cm s -1、1.5cm s -1、0.3cm s -1
(6)将所制备的薄膜与聚醚砜超滤基底复合,就得到用于水系纳滤的1薄层复合膜。该膜使用平板错流装置评估其性能,待分离溶液为1000ppm的MgSO 4水溶液,测试温度为30℃,错流流速为30L min -1,测试压力为6bar。测试性能如表1所示:
表1
Figure PCTCN2021126889-appb-000015
实施例4—8
将刮刀涂布液膜厚度分别替换为50μm、200μm、400μm、600μm、800μm,其余条件同实施例2。测试性能如表2所示:
表2
Figure PCTCN2021126889-appb-000016
实施例9—13
将哌嗪浓度分别替换为100mM、90mM、80mM、70mM、60mM,其余条件同实施例2。测试性能如表3所示:
表3
Figure PCTCN2021126889-appb-000017
实施例14—18
将离子液体1-丁基-3-甲基咪唑四氟硼酸盐分别替换为1-乙基-3-甲基咪唑四氟硼酸盐(C2)、1-己基-3-甲基咪唑四氟硼酸盐(C6)、1-辛基-3-甲基咪唑四氟硼酸盐(C8)、1-癸基-3-甲基咪唑四氟硼酸盐(C10)、1-十二烷基-3-甲基咪唑四氟硼酸盐(C12),其余条件同实施例2。测试性能如表4所示:
表4
Figure PCTCN2021126889-appb-000018
实施例19—23
将反应物a替换为1,3-苯二胺,浓度分别为600mM、500mM、400mM、300mM、200mM,并将所得全芳族聚酰胺自支撑纳米薄膜与聚醚砜超滤基底复合,构成反渗透膜用于海水淡化。此类实施例性能评估所用待分离溶液为2000ppm NaCl水溶液,所用压力为10bar,其余条件同实施例2。测试性能如表5所示:
表5
Figure PCTCN2021126889-appb-000019
实施例24—30
分别将非极性溶剂分别换为庚烷、辛烷、壬烷、癸烷、十一烷、十二烷、异构烷烃H,其余条件同实施例20。测试性能如表6所示:
表6
Figure PCTCN2021126889-appb-000020
实施例31—37
分别将反应物a替换为2,2'-双(4-氨基苯基)丙烷(BAP)、2,2'-双(4-氨基苯基)六氟丙烷(BAHFP)、四(4-氨苯基)甲烷(TAM)、9,9'-双(4-氨基苯基)芴(BAF)、四(4-氨基苯基)乙烯(TAPE)、4,4'-二氨基二苯砜(BAS)、4,4'-双(4-氨基苯氧基)二苯砜(BAPS),并将制备得到的纳米薄膜与阳极氧化铝陶瓷基底(孔径20nm)复合,构成用于有机纳滤的薄层复合膜。此类实施例性能评估所用待分离溶液为50ppm罗丹明B的甲醇溶液,过滤类型为死端过滤,所用压力为3bar,其余条件同实施例15。测试性能如表7所示:
表7
Figure PCTCN2021126889-appb-000021
实施例38—42
将待分离溶液替换为分子量分别为200Da、400Da、600Da、800Da、1000Da的聚乙二醇水溶液,浓度为2g L -1,其余条件同实施例34。测试性能如表8所示:
表8
Figure PCTCN2021126889-appb-000022
实施例43—47
将反应物a替换为1,3,5-三(4-氨苯基)苯,分别将反应物b替换为对苯二甲醛(PMD)、1,3,5-苯三醛(TMD)、2,4,6-三羟基-1,3,5-苯三甲醛(THMD)、4,4'-联苯二甲醛(DMD)、3,5,3',5'-联苯四甲醛(TDD),非极性溶剂替换为1,3,5-三甲基苯。输送带运动速度为0.02cm s -1。将制备的聚甲亚胺共价有机框架自支撑纳米薄膜与XP84交联聚酰亚胺基底复合,用于气体分离的薄层复合膜。此类实施例性能评估所用待分离气体对为H 2/CH 4,进气端压力为0.1bar,出气端压力为1atm,其余条件同实施例42。测试性能如表9所示:
表9
Figure PCTCN2021126889-appb-000023
实施例48—52
使用实施例20中的聚酰胺自支撑纳米薄膜的制备条件,将所得薄膜与具有垂直通孔结构的聚偏氟乙烯微滤膜复合,构成用于压力延迟渗透发电的薄层复合膜。进料液为去离子水,汲取剂为MgCl 2水溶液,浓度分别为2M、3M、4M、5M、6M。测试温度为30℃,错流流速为15L min -1。测试性能如表10所示:
表10
Figure PCTCN2021126889-appb-000024
实施例53—55
将反应物a替换为过硫酸铵,浓度为0.5M,分别将反应物b替换为吡咯、噻吩、苯胺,浓度为5mM,非极性溶剂替换为苯。输送带运动速度为0.3cm s -1。将制备的导电聚合物自支撑纳米薄膜石英基片复合,构成改性电极。测试性能如表11所示:
表11
Figure PCTCN2021126889-appb-000025
实施例56—60
将反应物a替换为1,6-己二胺,浓度为300M,分别将反应物b替换为甲苯-2,4-二异氰酸酯(24TDI)、甲苯-2,6-二异氰酸酯(26TDI)、4,4-二苯基甲烷二异氰酸酯(MDI)、1,5-萘二异氰酸酯(NDI)、3,3'-二甲基-4,4'-联苯二异氰酸酯(TODI),浓度为5mM,非极性溶剂替换为异构烷烃G。输送带运动速度为0.17cm s -1。聚脲自支撑纳米薄膜作为保护层与混凝土片材复合。通过浸入模拟海水测定保护性能,使用TABERCS-17轮测试耐磨性,载荷1000g,往复100次。测试性能如表12所示:
表12
Figure PCTCN2021126889-appb-000026
以上所述的实施例对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种聚合物自支撑纳米薄膜的连续和宏量制备方法,其特征在于,包括以下步骤:
    (1)将反应性单体a的离子液体溶液均匀涂布在连续向前运动的平整的传输机构上,形成稳定均匀的反应性单体a的离子液体溶液涂层;
    (2)将步骤(1)中的反应性单体a的离子液体溶液涂层与溶有反应性单体b的非极性溶液接触,发生界面聚合反应,合成聚合物自支撑纳米薄膜;
    (3)将步骤(2)中的聚合物自支撑纳米薄膜用水洗涤,其自动从传输机构上脱落,经干燥热处理后,即获得所述的聚合物自支撑纳米薄膜。
  2. 根据权利要求1所述的聚合物自支撑纳米薄膜的连续和宏量制备方法,其特征在于,步骤(2)中,反应性单体a的离子液体溶液涂层与溶有反应性单体b的非极性溶液接触的方式选自以下两种中的一种:
    (A)将涂有反应性单体a的离子液体溶液涂层的传输机构浸入溶有反应性单体b的非极性溶液中;
    (B)将溶有反应性单体b的非极性溶液喷涂至反应性单体a的离子液体溶液涂层表面。
  3. 根据权利要求1所述的聚合物自支撑纳米薄膜的连续和宏量制备方法,其特征在于,所述的离子液体的熔点为-100℃~100℃;所述的离子液体的黏度为10cP~1000cP。
  4. 根据权利要求1所述的聚合物自支撑纳米薄膜的连续和宏量制备方法,其特征在于,所述非极性溶液的溶剂为正烷烃、异构烷烃、环烷烃和芳烃中的至少一种。
  5. 根据权利要求1所述的聚合物自支撑纳米薄膜的连续和宏量制备方法,其特征在于,所述反应性单体a为胺类化合物、醇类化合物、酚类化合物、过氧化氢、过硫酸盐和偶氮二异丁腈中的至少一种。
  6. 根据权利要求1或5所述的聚合物自支撑纳米薄膜的连续和宏量制备方法,其特征在于,所述反应性单体b为酰氯化合物、醛类化合物、异氰酸酯、吡咯、噻吩和苯胺中的至少一种。
  7. 根据权利要求6所述的聚合物自支撑纳米薄膜的连续和宏量制备方法,其特征在于,所述反应性单体a的离子液体溶液中,反应性单体a的浓度为5~800mM;反应性单体b的非极性溶液中,反应性单体b的浓度为0.05~2mM。
  8. 根据权利要求2所述的聚合物自支撑纳米薄膜的连续和宏量制备方法,其特征在于,反应性单体a的离子液体溶液涂层的厚度为50~1000μm;
    将涂有反应性单体a的离子液体溶液涂层的传输机构浸入溶有反应性单体b的非极性溶液中的时间为30~3600s;
    或,将溶有反应性单体b的非极性溶液喷涂至反应性单体a的离子液体溶液涂层表面的喷涂速率为0.5~2mL min -1
  9. 一种聚合物自支撑纳米薄膜,其特征在于,根据权利要求1—8任一项所述的连续和宏量制备方法制备得到。
  10. 一种根据权利要求9所述的聚合物自支撑纳米薄膜在海水淡化、废水处理、贵金属提取、浓差发电、有机溶剂回收、药物分离纯化、材料表面保护、导电薄膜中的应用。
PCT/CN2021/126889 2021-06-01 2021-10-28 聚合物自支撑纳米薄膜及其连续和宏量制备方法和应用 WO2022252484A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110609091.9 2021-06-01
CN202110609091.9A CN113461933B (zh) 2021-06-01 2021-06-01 聚合物自支撑纳米薄膜及其连续和宏量制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022252484A1 true WO2022252484A1 (zh) 2022-12-08

Family

ID=77872104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126889 WO2022252484A1 (zh) 2021-06-01 2021-10-28 聚合物自支撑纳米薄膜及其连续和宏量制备方法和应用

Country Status (2)

Country Link
CN (1) CN113461933B (zh)
WO (1) WO2022252484A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117946355A (zh) * 2024-03-27 2024-04-30 中国科学技术大学 一种不对称自支撑共价有机框架薄膜的制备方法及其应用
EP3519084B1 (en) * 2016-10-01 2024-07-03 Oxymem Limited A self-coiling hollow fibre membrane

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113461933B (zh) * 2021-06-01 2022-09-06 浙江大学 聚合物自支撑纳米薄膜及其连续和宏量制备方法和应用
CN113736097B (zh) * 2021-10-15 2022-04-26 四川大学 图灵结构共价有机框架膜材料及其用途
CN114957591B (zh) * 2022-03-24 2024-04-09 万华化学集团股份有限公司 一种用于药物缓释的cof基聚氨酯多孔膜的制备方法
CN116272897B (zh) * 2023-02-27 2024-08-27 中国检验检疫科学研究院 富集香豆素类化合物的磁性纳米粒及其制备方法和应用
CN116023282B (zh) * 2023-03-30 2023-08-01 吉林省卓材新研科技有限公司 一种共价有机框架材料及其配体和它在药物传递中的应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104474926A (zh) * 2014-12-12 2015-04-01 杭州水处理技术研究开发中心有限公司 一种聚酰胺反渗透膜的制备方法
CN106739363A (zh) * 2016-05-05 2017-05-31 林小锋 一种多层复合结构的薄膜复合膜及其制备方法
CN108452691A (zh) * 2018-03-01 2018-08-28 广州中国科学院先进技术研究所 界面聚合反应装置、中空纤维复合纳滤膜制备装置及方法
CN108889139A (zh) * 2018-07-31 2018-11-27 南京工业大学 一种基于界面聚合制备高通量共价有机骨架纳滤膜的方法
CN112516810A (zh) * 2020-11-11 2021-03-19 南京工业大学 一种纳滤膜的制造方法及装置
CN113461933A (zh) * 2021-06-01 2021-10-01 浙江大学 聚合物自支撑纳米薄膜及其连续和宏量制备方法和应用
CN113457459A (zh) * 2021-05-28 2021-10-01 浙江大学 一种聚酰胺功能复合膜的连续制备方法及装置
CN113527729A (zh) * 2021-05-28 2021-10-22 浙江大学 一种聚集诱导发光聚合物薄膜及其宏量制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346864A (ja) * 1991-05-23 1992-12-02 Japan Vilene Co Ltd 多層膜の製造方法及びその製造装置
JPH0938474A (ja) * 1995-07-27 1997-02-10 Toyobo Co Ltd 複合膜の製造方法及び製造装置
JP4221888B2 (ja) * 2000-09-20 2009-02-12 宇部興産株式会社 多孔質膜の連続製造方法および連続製造装置
CN105879700B (zh) * 2016-04-07 2019-01-15 天津天工新材料科技有限公司 一种晶须掺混复合反渗透膜的制备方法
CN108187512A (zh) * 2018-01-11 2018-06-22 中国石油大学(华东) 一种高通量聚酰胺纳滤复合膜及其制备方法
CN108727615B (zh) * 2018-06-27 2021-05-04 河南科技大学 一种离子液体-水界面制备Ag-聚合物纳米复合膜的方法
CN110026091B (zh) * 2019-03-15 2021-02-23 清华大学 一种离子液体改性的荷正电复合纳滤膜及其制备方法
CN110064312B (zh) * 2019-04-29 2022-03-08 袁书珊 一种高通量耐溶剂界面聚合复合膜及其制备方法
CN112755817B (zh) * 2021-02-22 2023-06-13 中国科学院苏州纳米技术与纳米仿生研究所 一种具有高性能的复合纳滤膜、其制备方法及应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104474926A (zh) * 2014-12-12 2015-04-01 杭州水处理技术研究开发中心有限公司 一种聚酰胺反渗透膜的制备方法
CN106739363A (zh) * 2016-05-05 2017-05-31 林小锋 一种多层复合结构的薄膜复合膜及其制备方法
CN108452691A (zh) * 2018-03-01 2018-08-28 广州中国科学院先进技术研究所 界面聚合反应装置、中空纤维复合纳滤膜制备装置及方法
CN108889139A (zh) * 2018-07-31 2018-11-27 南京工业大学 一种基于界面聚合制备高通量共价有机骨架纳滤膜的方法
CN112516810A (zh) * 2020-11-11 2021-03-19 南京工业大学 一种纳滤膜的制造方法及装置
CN113457459A (zh) * 2021-05-28 2021-10-01 浙江大学 一种聚酰胺功能复合膜的连续制备方法及装置
CN113527729A (zh) * 2021-05-28 2021-10-22 浙江大学 一种聚集诱导发光聚合物薄膜及其宏量制备方法
CN113461933A (zh) * 2021-06-01 2021-10-01 浙江大学 聚合物自支撑纳米薄膜及其连续和宏量制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU CHANG, YANG JING, GUO BIAN-BIAN, AGARWAL SEEMA, GREINER ANDREAS, XU ZHI-KANG: "Interfacial Polymerizationa tthe Alkane/Ionic Liquid Interface", ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, vol. 60, no. 26, 19 May 2021 (2021-05-19), pages 14636 - 14643, XP093009378, DOI: 10.1002/anie.202103555 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3519084B1 (en) * 2016-10-01 2024-07-03 Oxymem Limited A self-coiling hollow fibre membrane
CN117946355A (zh) * 2024-03-27 2024-04-30 中国科学技术大学 一种不对称自支撑共价有机框架薄膜的制备方法及其应用

Also Published As

Publication number Publication date
CN113461933A (zh) 2021-10-01
CN113461933B (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2022252484A1 (zh) 聚合物自支撑纳米薄膜及其连续和宏量制备方法和应用
Zhang et al. A novel polyesteramide thin film composite nanofiltration membrane prepared by interfacial polymerization of serinol and trimesoyl chloride (TMC) catalyzed by 4‑dimethylaminopyridine (DMAP)
Zhu et al. Poly (amidoamine) dendrimer (PAMAM) grafted on thin film composite (TFC) nanofiltration (NF) hollow fiber membranes for heavy metal removal
JP6796661B2 (ja) 選択透過性酸化グラフェン膜
Shao et al. Newly developed nanofiltration (NF) composite membranes by interfacial polymerization for Safranin O and Aniline blue removal
Setiawan et al. Fabrication and characterization of forward osmosis hollow fiber membranes with antifouling NF-like selective layer
KR101733264B1 (ko) 염제거율 및 투과유량 특성이 우수한 폴리아미드계 수처리 분리막 및 그 제조 방법
US20130146530A1 (en) Membrane, water treatment system, and method of making
CN104470627A (zh) 复合聚酰胺膜
US9731985B2 (en) Chemical additives for enhancement of water flux of a membrane
US9695065B2 (en) Combination of chemical additives for enhancement of water flux of a membrane
CN109701398B (zh) 一种COFs复合纳滤膜及其制备方法
Rastgar et al. Study of polyamide thin film characteristics impact on permeability/selectivity performance and fouling behavior of forward osmosis membrane
KR101961344B1 (ko) 폴리아미드 계면중합용 조성물 및 이를 이용한 역삼투막의 제조방법
CN104053494A (zh) 具有良好耐氯性的高通量水处理分离膜
Tang et al. Ultrafiltration membranes with ultrafast water transport tuned via different substrates
Zhao et al. Braid-reinforced polybenzimidazole (PBI) hollow fiber membranes for organic solvent nanofiltration (OSN)
Zhou et al. Organic solvent nanofiltration with nanoparticles aggregation based on electrostatic interaction for molecular separation
Lim et al. Effect of the support layer morphological structure on the performance of forward osmosis hollow fiber membranes
JP3250644B2 (ja) 複合中空糸膜およびその製造方法
Liu et al. Graphene oxide hollow fiber membranes for solvent dehydration by nanofiltration
Choi et al. High-performance nanofiltration of outer-selective thin-film composite hollow-fiber membranes via continuous interfacial polymerization
Wang et al. Controllable preparation of novel “ridge-valley shaped” poly (p-phenylene terephthamide)(PPTA) hollow fiber nanofiltration membrane for thermal dye/salt wastewater separation
KR102079845B1 (ko) 수처리 분리막의 제조방법, 이를 이용하여 제조된 수처리 분리막, 및 수처리 분리막 제조용 조성물
CN114130220A (zh) 一种聚三嗪类耐碱复合纳滤膜的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943836

Country of ref document: EP

Kind code of ref document: A1