WO2022252175A1 - 一种纳米CeZnO x掺杂多孔氮化碳水凝胶粒子的制备方法及应用 - Google Patents

一种纳米CeZnO x掺杂多孔氮化碳水凝胶粒子的制备方法及应用 Download PDF

Info

Publication number
WO2022252175A1
WO2022252175A1 PCT/CN2021/098109 CN2021098109W WO2022252175A1 WO 2022252175 A1 WO2022252175 A1 WO 2022252175A1 CN 2021098109 W CN2021098109 W CN 2021098109W WO 2022252175 A1 WO2022252175 A1 WO 2022252175A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous carbon
carbon nitride
cezno
preparation
fluidized bed
Prior art date
Application number
PCT/CN2021/098109
Other languages
English (en)
French (fr)
Inventor
张捍民
路梦洋
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to PCT/CN2021/098109 priority Critical patent/WO2022252175A1/zh
Publication of WO2022252175A1 publication Critical patent/WO2022252175A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention belongs to the technical field of sewage green purification, and relates to the preparation of high-efficiency CeZnO x doped porous carbon nitride hydrogel particles, in particular to the application of photocatalytic fluidized bed in-situ purification technology for water bodies.
  • In-situ purification is a suitable method for natural water pollution control.
  • Photocatalytic technology can use natural light energy, convert light energy into chemical energy, and complete the oxidative degradation of pollutants. It is considered to be a new generation of green and clean technology, suitable for in-situ treatment of refractory organic matter in natural water bodies.
  • the main problem currently existing in photocatalytic technology is the loss of powder photocatalyst.
  • photocatalysts in powder form are usually used, but the loss of photocatalysts will cause secondary pollution and threaten the ecological environment.
  • the separation of powdered catalysts from the water phase requires the use of solid-liquid separation technologies such as membrane separation or high-speed centrifugation, which increases the difficulty and cost of operation. Therefore, the immobilization technology of photocatalysts has attracted attention. Fixing the surface of the membrane, fixing the electrode surface, etc. are not suitable for the in-situ purification of natural water bodies.
  • the photocatalytic technology in the pollution control of natural water bodies usually adopts the form of catalyst fixed on the surface of the drum, but this method mainly has the following two defects. 1) The area on the drum that can receive light at the same time and is in contact with the water body is very small, resulting in low catalytic efficiency; 2) The photocatalyst fixed on the surface will inevitably fall off during long-term use, which can cause secondary pollution. Therefore, applicable photocatalyst immobilization techniques still need to be developed and innovated.
  • Sodium alginate hydrogel is a hydrophilic polymer organic cross-linked material with good hydrophilicity and can stably maintain a cross-linked network structure in water. Moreover, the internal structure of sodium alginate hydrogel is continuous, has good compatibility, and is easy to modify or functionalize; the cross-linked network structure of sodium alginate hydrogel can provide more channels for electron transfer and promote the improvement of photocatalytic efficiency. . Therefore, in this work, the photocatalyst and sodium alginate were blended to prepare photocatalytic gel particles, and the fixed photocatalyst was stably stored in the gel particles, and the particle size was controlled to make it easy to intercept and recycle.
  • the photocatalytic efficiency mainly depends on the performance of the catalyst.
  • carbon nitride is a non-metallic photocatalyst that can absorb visible light, and its band gap is 2.7e V. It has good visible light catalytic activity, chemical stability, thermal stability, biological Compatibility and ease of large-scale preparation.
  • CeZnO x prepared by Micro-Solvent Combustion Synthesis (SMCS) method can be combined with porous carbon nitride to form a heterojunction to promote electron transfer, and the abundant oxygen holes inside CeZnO x can further promote electron transfer and oxygen adsorption to inhibit photogenerated loading. compound flow. Therefore, this work uses nano-CeZnO x doped porous carbon nitride as a photocatalyst to construct a heterojunction and increase the separation efficiency of photogenerated carriers.
  • SMCS Micro-Solvent Combustion Synthesis
  • the laboratory has verified that the catalytic efficiency of CeZnO x /C 3 N 4 gel particles is similar to that of C 3 N 4 powder, indicating that CeZnO x /C 3 N 4 gel particles can meet the requirements of better catalytic efficiency and recovery at the same time.
  • the invention is designed to degrade natural water body pollutants in situ with a photocatalytic fluidized bed.
  • the fine-pored screen is made of hydrophilic materials, and the periphery of the screen is fixed by floating materials to make it float on the surface of the water body. It has a large surface area and a small depth, which is convenient for receiving sunlight; the filling density is close to that of water, and the photocatalytic particle size is larger than the mesh. particles, forming a photocatalytic fluidized bed.
  • the photocatalytically active gel particles in the photocatalytic fluidized bed can degrade organic matter in natural water bodies.
  • the number of photocatalytic fluidized beds or the dosage of photocatalytic hydrogel particles can be increased according to the degree of water pollution. The position of the fluidized bed is moved when the pollution site changes, and the gel particles can be completely recovered after the purification is completed.
  • the purpose of the present invention is to provide a method for purifying water body pollution in situ with a photocatalytic fluidized bed.
  • a photocatalytic fluidized bed In the process of in-situ treatment of natural water, not only can make full use of sunlight, but also can increase the contact area between catalyst and pollutants, and the catalyst can be recovered after the reaction is completed.
  • the construction and use process is simple and energy consumption is saved. Therefore, on the whole, photocatalytic fluidized bed technology is an efficient, stable and energy-saving green water treatment technology.
  • a preparation method of nanometer CeZnO x doped porous carbon nitride hydrogel particles the steps are as follows:
  • porous carbon nitride and CeZnO x to deionized water, stir well, and ultrasonically obtain a mixed solution; the mass ratio of porous carbon nitride and CeZnO x is 5:1-1:5; the concentration of the mixed solution is 3mg/ml.
  • step 6) The mixed solution obtained in step 5) was concentrated and reacted at 80°C to obtain a uniform viscous paste solution; then the viscous paste solution was subjected to vacuum defoaming and ultrasonic treatment to remove air bubbles, and stored at room temperature for at least 2 hours , to obtain nano-CeZnO x doped porous carbon nitride hydrogel particle precursor;
  • the nano-CeZnO x doped porous carbon nitride hydrogel particles were prepared by a mechanical automatic extrusion device.
  • the mechanical automatic extrusion device was composed of a reaction tank, an extrusion device and an injection device; the prepared nano-CeZnO x doped porous carbon nitride water Put the gel particle precursor solution into the injection device and fix it.
  • Said cerium (III) nitrate hexahydrate is replaced by divalent manganese compound, ferrous iron compound or divalent nickel compound.
  • the zinc nitrate hexahydrate is replaced by tetrabutyl titanate, titanium dioxide, melamine or urea.
  • the particle size of the nano-CeZnO x doped porous carbon nitride hydrogel particles prepared in step (7) is determined by the needle, and the particle size is 3-8mm.
  • the fine-pored screen is made of hydrophilic synthetic fibers, and the aperture of the fine-pored screen is less than 3mm.
  • the fine-pored screen is made of hydrophilic synthetic fibers, and the aperture of the fine-pored screen is less than 3mm.
  • the method for in-situ purification of water body pollution by photocatalytic hydrogel particle fluidized bed can effectively realize the recycling and application of photocatalytic technology in actual water treatment, improve photocatalytic efficiency, and effectively in-situ degrade water body organic pollutants.
  • the photocatalytic fluidized bed technology is simple and efficient, and the operating cost is low, which provides a feasible way and idea for the practical application of photocatalytic technology.
  • Figure 1 is a structural diagram of an automatic extrusion device for preparing gel particles.
  • Fig. 3 is a SEM image of nano-CeZnO x .
  • Fig. 4 is the EDS spectrum diagram of nano-CeZnO x .
  • porous carbon nitride sodium alginate hydrogel Disperse melamine and cyanuric acid in a molar ratio of 1:1-2:1 in 100ml deionized water, stir for 24 hours, and dry to obtain a white solid that is porous Carbon Nitride Precursor. Place in the grinder and grind thoroughly to fine particles.
  • the white porous carbon nitride precursor was sintered in a tube furnace under the protection of nitrogen. The sintering temperature was 550 degrees, the heating rate was 5 degrees per minute, and the sintering time was 4 hours.
  • the fine mesh is made of hydrophilic synthetic fibers, such as nylon and polyethylene, and the pore size of the hydrophilic mesh is less than 3mm.
  • a certain amount of C 3 N 4 hydrogel particles are put into the bed to form a fluidized bed. As shown in Figure 3, the fluidized bed floats on the surface of the natural water body and degrades the pollutants in the water body in situ. After the purification is completed, the C 3 N 4 hydrogel particles can be recovered.
  • nano-CeZnO x doped porous carbon nitride sodium alginate hydrogel disperse 300 mg of porous carbon nitride prepared in the above manner in 50 ml of deionized water, stir thoroughly for 2 hours, and sonicate for 1 hour.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种纳米CeZnO x掺杂多孔氮化碳水凝胶粒子的制备方法及应用,属于环境污染控制工程领域。光催化技术能够利用自然光能,适宜污染自然水体的原位净化。为避免光催化剂流失,提高光催化效率,本发明采用凝胶的方式固定光催化剂,制备CeZnOx/C 3N 4凝胶粒子,可以同时满足较好的催化效率和回收的要求。以亲水细孔丝网构建表面积大、深度小的流化床床体,内部装填密度接近于水、粒度大于网孔的凝胶粒子,形成流化床。光催化水凝胶粒子流化床建造简单,方便移动;充分利用太阳能,节省动力消耗;可长期使用,使用完成后催化剂可回收,特别适用于污染自然水体的原位净化。

Description

一种纳米CeZnO x掺杂多孔氮化碳水凝胶粒子的制备方法及应用 技术领域
本发明属于污水绿色净化技术领域,涉及高效率CeZnO x掺杂多孔氮化碳水凝胶粒子制备,特别涉及光催化流化床原位净化水体技术的应用。
背景技术
世界范围内,自然水体中检测到的污染物种类、剂量在不断增加,如抗生素、内分泌干扰物(EDCs)、农药与个人护理品(PPCPs)等,难以生物降解,严重威胁到生态环境健康。原位净化是自然水体污染控制的适宜方法。光催化技术能够利用自然光能,将光能转变为化学能,完成污染物质氧化降解,被认为是新一代绿色清洁技术,适用于自然水体难降解有机物的原位处理。
光催化技术目前存在的主要问题在于粉末光催化剂的流失。为保持较高的光催化效能,通常采用粉末形式光催化剂,但光催化剂的流失会造成二次污染威胁生态环境。从水相中分离粉末态催化剂需利用膜分离或高速离心等固液分离技术,增加了操作难度和成本。因此,光催化剂的固定技术引发重视。膜表面固定,电极表面固定等方式不适宜自然水体的原位净化,目前,自然水体污染控制中的光催化技术通常采用滚筒表面固定催化剂的形式,但这种方式主要有以下两个方面的缺陷:1)滚筒上能够同时接收光照且与水体接触的面积很小,导致催化效率低下;2)表面固定的光催化剂在长时间使用中不可避免发生脱落,可引发二次污染。因此,适用的光催化剂固定技术仍需发展和创新。
海藻酸钠水凝胶是亲水性高分子有机交联材料,亲水性好,在水中能够稳定保持交联网络结构。而且,海藻酸钠水凝胶内部结构连续、相容性好、易于修饰或功能化;海藻酸钠水凝胶的交联网络结构可为电子传递提供更多的通道,促进光催化效率的提升。因此,本工作采用光催化剂与海藻酸钠共混制备光催 化凝胶粒子,固定光催化剂稳定存在凝胶粒子中,且控制粒径大小,使其易于拦截回收。
在光催化反应中,催化剂吸收光子后,会形成光生电子-空穴对,光生载流子彼此分离迁移,与污染物质发生氧化还原反应。因此,光催化效能的主要取决于催化剂的性能。相比于传统的金属光催化材料,氮化碳是一种可以吸收可见光的非金属光催化剂,其禁带宽度为2.7e V,具有良好的可见光催化活性、化学稳定性、热稳定性、生物兼容性以及易于大规模制备等特点。因此十分适合作为光催化原位去除技术的主体,但是层状的氮化碳较小的比表面积所导致的反应位点较少,吸附能力较弱。多孔氮化碳相比层状的氮化碳含有更多的孔结构,可以提供更多的反应吸附位点从而提高催化效能。此外,在产生光生电子空穴的过程中,光生载流子极易复合,降低氧化还原效率。采用微溶剂燃烧合成(SMCS)法制备的CeZnO x可与多孔氮化碳结合构成异质结,促进电子转移,CeZnO x内部丰富的氧空穴也可进一步促进电子转移和氧吸附,抑制光生载流子的复合。因此,本工作采用纳米CeZnO x掺杂多孔氮化碳作为光催化剂,构建异质结,增加光生载流子的分离效率。实验室已验证,CeZnO x/C 3N 4凝胶粒子催化效率和C 3N 4粉末近似,说明CeZnO x/C 3N 4凝胶粒子可以同时满足较好的催化效率和回收的要求。
本发明设计以光催化流化床原位降解自然水体污染物。由亲水性材料制备细孔丝网,网周边由浮体材料固定,使其漂浮在水体表面,且表面积大、深度小,便于接收阳光;其中装填密度接近于水,粒度大于网孔的光催化粒子,形成光催化流化床。光催化流化床中具有光催化活性的凝胶粒子降解自然水体中的有机物,可依据水体污染程度,增加光催化流化床的数量或者光催化水凝胶粒子的投量,还可依据水体污染地点变化移动流化床位置,净化完成后凝胶粒 子可完全回收。
发明内容
本发明的目的是提供一种光催化流化床原位净化水体污染的方法。在原位处理自然水体的过程中,不仅可以充分利用太阳光,而且可以提高催化剂和污染物的接触面积,在反应完成后即可回收催化剂,建造使用过程简易,节省能源消耗。因此综合来看,光催化流化床技术是一种高效,稳定,节能的绿色水处理技术。
本发明的技术方案:
一种纳米CeZnO x掺杂多孔氮化碳水凝胶粒子的制备方法,步骤如下:
1)采用微溶剂燃烧合成法制备CeZnO x样品
将六水合硝酸铈(III)和六水合硝酸锌按照摩尔比1:1混合,研磨得到均匀的乳白色粘稠物;随后,将乳白色粘稠物于烧结温度为500度、升温速率为5度每分钟条件下,烧结2-4小时,得到淡黄色粉末CeZnO x
2)制备多孔氮化碳
将三聚氰胺和三聚氰酸按照质量比为1:1-2:1混合分散在去离子水中,搅拌24h后,烘干得到白色固体为多孔氮化碳前驱物;将多孔氮化碳前驱物研磨至颗粒;将多孔氮化碳前驱物颗粒于氮气保护下的管式炉中烧结,烧结温度为550度、升温速率为5度每分钟,烧结4h,后得到棕黄色固体多孔氮化碳;
3)配制浓度为15mg/ml的海藻酸钠水溶液,充分搅拌至混合均匀;
4)制备纳米CeZnO x掺杂多孔氮化碳水溶液
将多孔氮化碳和CeZnO x加入到去离子水中,充分搅拌,超声得到混合溶液;多孔氮化碳和CeZnO x的质量比为5:1-1:5;混合液浓度为3mg/ml。
5)将浓度为3mg/ml的多孔氮化碳和CeZnO x的混合液加入到海藻酸钠水溶 液中,两者体积比为1:1,搅拌24h,然后超声处理至少30分钟,以减少团聚;
6)步骤5)得到的混合液在80℃下浓缩反应得到均匀的粘稠浆糊状溶液;然后对粘稠浆糊状溶液进行真空脱泡超声处理去除气泡,并在室温下保存至少2小时,得到纳米CeZnO x掺杂多孔氮化碳水凝胶粒子前驱液;
7)制备纳米CeZnO x掺杂多孔氮化碳水凝胶粒子
采用机械自动挤压装置制备纳米CeZnO x掺杂多孔氮化碳水凝胶粒子,机械自动挤压装置由反应池、挤压装置和注射装置构成;将所制备的纳米CeZnO x掺杂多孔氮化碳水凝胶粒子前驱液放入注射装置中后固定,根据需求选择不同容积的注射管,将所需要粒径的针头插入注射管中;设置挤压装置的挤压速率为10-100ml/hour,以固定速率挤压注射装置,前驱液滴入反应池中进行交联反应,并在反应池中停留12h后;反应池中的反应液浓度为1mol/L的CaCl 2溶液,得到纳米CeZnO x掺杂多孔氮化碳水凝胶粒子。
所述的六水合硝酸铈(III)替换成二价锰化合物、二价铁化合物或二价镍化合物。
所述的六水合硝酸锌替换成钛酸四丁酯、二氧化钛、三聚氰胺或尿素。
步骤(7)制备的纳米CeZnO x掺杂多孔氮化碳水凝胶粒子的粒径大小由针头来决定,粒径大小为3-8mm。
所述的细孔丝网由亲水合成纤维制成,细孔丝网的孔径小于3mm。所述的细孔丝网由亲水合成纤维制成,细孔丝网的孔径小于3mm。
一种纳米CeZnO x掺杂多孔氮化碳水凝胶粒子流化床原位净化水体污染的方法,所用的光催化流化床由两个部分构成:浮体部分和细孔丝网部分;细孔丝网周边固定在浮体上;将纳米CeZnO x掺杂多孔氮化碳水凝胶粒子放入床体中,形成光催化流化床;光催化流化床浮于自然水体上,原位降解水体中污染物质; 依据水体污染程度,增加光催化流化床的数量或纳米CeZnO x掺杂多孔氮化碳水凝胶粒子的投量;依据水体污染地点变化移动光催化流化床位置,净化完成后凝胶粒子完全回收。
本发明的有益效果:这种光催化水凝胶粒子流化床原位净化水体污染的方法能够有效实现光催化技术在实际水处理中催化剂回收循环应用,提高光催化效率,有效原位降解水体中有机污染物。光催化流化床技术简单高效,运行成本低廉,为光催化技术的实际应用提供一种可行的方式和思路。
附图说明
图1是制备凝胶粒子的自动挤压装置结构图。
图2是光催化流化床装置应用示意图。
图3是纳米CeZnO x的SEM图。
图4是纳米CeZnO x的EDS能谱图。
具体实施方式
以下结合技术方案和附图详细叙述本发明的具体实施方式。
实施例1
纳米CeZnO x海藻酸钠水凝胶的制备:将2g将Ce(NO 3) 2与Zn(NO 3) 2按摩尔比1:1放置于研磨中,充分研磨,得到乳白色粘稠物,放置在马弗炉中烧结,烧结温度为500度,升温速率为5度每分钟,烧结时间为2h,得到淡黄色固体。该固体的微观形态通过SEM被观察到如图3所示,为球形状。所得CeZnO x的EDS能谱如图4所示,可以看出CeZnO x中Ce,Zn和O为主要元素,没有其他元素存在。
将淡黄色CeZnO x放入上述氮化碳分散液中,充分搅拌,超声;将5gSA(6%)溶液倒入上述混合液中,充分搅拌,超声;混合液在80度下进行浓缩过程,得 到粘稠前驱液;将前驱液放入图1所示的自动挤压装置的注射管中,设定挤压速率为100ml/h,根据需要调节针头大小,所得凝胶粒径大小范围为3-8mm;将所制得的凝胶颗粒在反应池中保持12h后倒入去离子水中保存。
光催化流化床:细孔丝网由亲水合成纤维制成,如尼龙、聚乙烯,亲水丝网孔径小于3mm。将一定数量的CeZnO x水凝胶粒子放入床体中,形成流化床。如图3所示,流化床浮于自然水体表面,原位降解水体中污染物质。净化完成后,CeZnO x水凝胶粒子可进行回收。
实施例2
多孔氮化碳海藻酸钠水凝胶的制备:将三聚氰胺与三聚氰酸按摩尔比1:1-2:1的比例分散于100ml去离子水中,搅拌24h后,烘干得到白色固体为多孔氮化碳前驱物。放置于研磨中,充分研磨至细小颗粒。将白色多孔氮化碳前驱物放置在氮气保护下的管式炉中烧结,烧结温度为550度,升温速率为5度每分钟,烧结时间为4h,后得到黄色固体多孔氮化碳;将淡黄色多孔氮化碳分散在5g SA(6%)溶液中,充分搅拌,超声;混合液在80度下进行浓缩过程,得到粘稠前驱液;将前驱液放入图1所示的自动挤压装置的注射管中,设定挤压速率为100ml/h,根据需要调节针头大小,所得凝胶粒径大小范围为3-8mm;将所制得的凝胶颗粒在反应池中保持12h后倒入去离子水中保存。
光催化流化床的应用:细孔丝网由亲水合成纤维制成,如尼龙、聚乙烯,亲水丝网孔径小于3mm。将一定数量的C 3N 4水凝胶粒子放入床体中,形成流化床。如图3所示,流化床浮于自然水体表面,原位降解水体中污染物质。净化完成后,C 3N 4水凝胶粒子可进行回收。
实施例3
纳米CeZnO x掺杂多孔氮化碳海藻酸钠水凝胶的制备:将上述方式制备的 300mg多孔氮化碳分散于50ml去离子水中,充分搅拌2h,超声1h。将淡黄色CeZnO x放入上述氮化碳分散液中,充分搅拌2h,超声1h;将5g SA(6%)溶液倒入上述混合液中,充分搅拌2h,超声1h;混合液在80度下进行浓缩过程,得到粘稠前驱液;将前驱液放入图1所示的自动挤压装置的注射管中,设定挤压速率为100ml/h,根据需要调节针头大小,所得凝胶粒径大小范围为3-8mm;将所制得的凝胶颗粒在反应池中保持12h后倒入去离子水中保存。
光催化流化床的应用:细孔丝网由亲水合成纤维制成,如尼龙、聚乙烯,亲水丝网孔径小于3mm。将一定数量的CeZnO x/C 3N 4水凝胶粒子放入床体中,形成流化床。如图3所示,流化床浮于自然水体表面,原位降解水体中污染物质。净化完成后,CeZnO x/C 3N 4水凝胶粒子可进行回收。

Claims (8)

  1. 一种纳米CeZnO x掺杂多孔氮化碳水凝胶粒子的制备方法,其特征在于,步骤如下:
    1)采用微溶剂燃烧合成法制备CeZnO x样品
    将六水合硝酸铈(III)和六水合硝酸锌按照摩尔比1:1混合,研磨得到均匀的乳白色粘稠物;随后,将乳白色粘稠物于烧结温度为500度、升温速率为5度每分钟条件下,烧结2-4小时,得到淡黄色粉末CeZnO x
    2)制备多孔氮化碳
    将三聚氰胺和三聚氰酸按照质量比为1:1-2:1混合分散在去离子水中,搅拌24h后,烘干得到白色固体为多孔氮化碳前驱物;将多孔氮化碳前驱物研磨至颗粒;将多孔氮化碳前驱物颗粒于氮气保护下的管式炉中烧结,烧结温度为550度、升温速率为5度每分钟,烧结4h,后得到棕黄色固体多孔氮化碳;
    3)配制浓度为15mg/ml的海藻酸钠水溶液,充分搅拌至混合均匀;
    4)制备纳米CeZnO x掺杂多孔氮化碳水溶液
    将多孔氮化碳和CeZnO x加入到去离子水中,充分搅拌,超声得到混合溶液;多孔氮化碳和CeZnO x的质量比为5:1-1:5;混合液浓度为3mg/ml;
    5)将多孔氮化碳和CeZnO x的混合液加入到海藻酸钠水溶液中,两者体积比为1:1,搅拌24h,然后超声处理至少30分钟,以减少团聚;
    6)步骤5)得到的混合液在80℃下浓缩反应得到均匀的粘稠浆糊状溶液;然后对粘稠浆糊状溶液进行真空脱泡超声处理去除气泡,并在室温下保存至少2小时,得到纳米CeZnO x掺杂多孔氮化碳水凝胶粒子前驱液;
    7)制备纳米CeZnO x掺杂多孔氮化碳水凝胶粒子
    采用机械自动挤压装置制备纳米CeZnO x掺杂多孔氮化碳水凝胶粒子,机械自动挤压装置由反应池、挤压装置和注射装置构成;将所制备的纳米CeZnO x 掺杂多孔氮化碳水凝胶粒子前驱液放入注射装置中后固定,根据需求选择不同容积的注射管,将所需要粒径的针头插入注射管中;设置挤压装置的挤压速率为10-100ml/hour,以固定速率挤压注射装置,前驱液滴入反应池中进行交联反应,并在反应池中停留12h后;反应池中的反应液浓度为1mol/L的CaCl 2溶液,得到纳米CeZnO x掺杂多孔氮化碳水凝胶粒子。
  2. 根据权利要求1所述的制备方法,其特征在于,所述的六水合硝酸铈(III)替换成二价锰化合物、二价铁化合物或二价镍化合物;所述的六水合硝酸锌替换成钛酸四丁酯、二氧化钛、三聚氰胺或尿素。
  3. 根据权利要求1或2所述的制备方法,其特征在于,步骤(7)制备的纳米CeZnO x掺杂多孔氮化碳水凝胶粒子的粒径大小由针头来决定,粒径大小为3-8mm。
  4. 根据权利要求1或2所述的制备方法,其特征在于,所述的细孔丝网由亲水合成纤维制成,细孔丝网的孔径小于3mm。
  5. 根据权利要求3所述的制备方法,其特征在于,所述的细孔丝网由亲水合成纤维制成,细孔丝网的孔径小于3mm。
  6. 根据权利要求4所述的制备方法,其特征在于,所述的细孔丝网由尼龙或聚乙烯制成。
  7. 根据权利要求5所述的制备方法,其特征在于,所述的细孔丝网由尼龙或聚乙烯制成。
  8. 一种纳米CeZnO x掺杂多孔氮化碳水凝胶粒子流化床原位净化水体污染的方法,其特征在于,所用的光催化流化床由两个部分构成:浮体部分和细孔丝网部分;细孔丝网周边固定在浮体上;将纳米CeZnO x掺杂多孔氮化碳水凝胶粒子放入床体中,形成光催化流化床;光催化流化床浮于自然水体上,原位降解水体中污染物质;依据水体污染程度,增加光催化流化床的数量或纳米CeZnO x掺杂多孔 氮化碳水凝胶粒子的投量;依据水体污染地点变化移动光催化流化床位置,净化完成后凝胶粒子完全回收。
PCT/CN2021/098109 2021-06-03 2021-06-03 一种纳米CeZnO x掺杂多孔氮化碳水凝胶粒子的制备方法及应用 WO2022252175A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/098109 WO2022252175A1 (zh) 2021-06-03 2021-06-03 一种纳米CeZnO x掺杂多孔氮化碳水凝胶粒子的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/098109 WO2022252175A1 (zh) 2021-06-03 2021-06-03 一种纳米CeZnO x掺杂多孔氮化碳水凝胶粒子的制备方法及应用

Publications (1)

Publication Number Publication Date
WO2022252175A1 true WO2022252175A1 (zh) 2022-12-08

Family

ID=84322698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098109 WO2022252175A1 (zh) 2021-06-03 2021-06-03 一种纳米CeZnO x掺杂多孔氮化碳水凝胶粒子的制备方法及应用

Country Status (1)

Country Link
WO (1) WO2022252175A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115991516A (zh) * 2023-02-14 2023-04-21 河海大学 一种光催化水体净化同步增氧装置
CN116062716A (zh) * 2023-01-10 2023-05-05 韶关学院 一种具有Gd单原子掺杂的石墨相氮化碳的合成方法
CN116159597A (zh) * 2023-02-24 2023-05-26 长春吉原生物科技有限公司 一种氧化铈水凝胶微球、其制备方法及其应用
CN117323971A (zh) * 2023-11-06 2024-01-02 青岛农业大学 SA@CDs/g-C3N4复合材料、其制备方法及在黄曲霉毒素脱除中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106563512A (zh) * 2016-11-08 2017-04-19 福州大学 可见光响应的光催化‑微生物复合材料及制备方法与应用
CN106622326A (zh) * 2016-12-13 2017-05-10 南京理工大学 一种核壳型氮化碳材料及其制备方法
CN107952464A (zh) * 2017-12-13 2018-04-24 大连理工大学 一种新型光催化材料及双光催化电极自偏压污染控制系统
CN108246337A (zh) * 2018-02-05 2018-07-06 中南林业科技大学 一种用于矿区废水修复的光催化小球及其制备方法
CN109759132A (zh) * 2019-02-20 2019-05-17 吉林建筑大学 复合光催化凝胶球的制备方法和复合光催化凝胶球
CN109884010A (zh) * 2019-02-27 2019-06-14 黑龙江大学 一种高比表面积多孔氮化碳的制备方法及利用其荧光检测tnp的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106563512A (zh) * 2016-11-08 2017-04-19 福州大学 可见光响应的光催化‑微生物复合材料及制备方法与应用
CN106622326A (zh) * 2016-12-13 2017-05-10 南京理工大学 一种核壳型氮化碳材料及其制备方法
CN107952464A (zh) * 2017-12-13 2018-04-24 大连理工大学 一种新型光催化材料及双光催化电极自偏压污染控制系统
CN108246337A (zh) * 2018-02-05 2018-07-06 中南林业科技大学 一种用于矿区废水修复的光催化小球及其制备方法
CN109759132A (zh) * 2019-02-20 2019-05-17 吉林建筑大学 复合光催化凝胶球的制备方法和复合光催化凝胶球
CN109884010A (zh) * 2019-02-27 2019-06-14 黑龙江大学 一种高比表面积多孔氮化碳的制备方法及利用其荧光检测tnp的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MISHRA, B. G. ET AL.: "Promoting Effect of Ceria on the Physicochemical and Catalytic Properties of CeO2-ZnO Composite Oxide Catalysts", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 243, no. 2, 23 September 2005 (2005-09-23), pages 204 - 213, XP028015599, ISSN: 1381-1169, DOI: 10.1016/j.molcata.2005.07.048 *
ZHANG XINYING, WU YAN, XIAO GAO, TANG ZHENPING, WANG MEIYIN, LIU FUCHANG, ZHU XUEFENG: "Simultaneous photocatalytic and microbial degradation of dye-containing wastewater by a novel g-C3N4-P25/photosynthetic bacteria composite", PLOS ONE, vol. 12, no. 3, 8 March 2017 (2017-03-08), pages 1 - 16, XP093010002, DOI: 10.1371/journal.pone.0172747 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116062716A (zh) * 2023-01-10 2023-05-05 韶关学院 一种具有Gd单原子掺杂的石墨相氮化碳的合成方法
CN115991516A (zh) * 2023-02-14 2023-04-21 河海大学 一种光催化水体净化同步增氧装置
CN115991516B (zh) * 2023-02-14 2024-05-10 河海大学 一种光催化水体净化同步增氧装置
CN116159597A (zh) * 2023-02-24 2023-05-26 长春吉原生物科技有限公司 一种氧化铈水凝胶微球、其制备方法及其应用
CN117323971A (zh) * 2023-11-06 2024-01-02 青岛农业大学 SA@CDs/g-C3N4复合材料、其制备方法及在黄曲霉毒素脱除中的应用
CN117323971B (zh) * 2023-11-06 2024-04-12 青岛农业大学 SA@CDs/g-C3N4复合材料、其制备方法及在黄曲霉毒素脱除中的应用

Similar Documents

Publication Publication Date Title
WO2022252175A1 (zh) 一种纳米CeZnO x掺杂多孔氮化碳水凝胶粒子的制备方法及应用
Li et al. Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction
Xing et al. Recent advances in floating TiO2-based photocatalysts for environmental application
US20220355286A1 (en) P-n heterojunction composite material supported on surface of nickel foam, preparation method therefor and application thereof
Yuan et al. Sewage sludge-based functional nanomaterials: development and applications
CN109046420A (zh) 一种多孔氮化碳光催化剂的制备方法
CN109046473B (zh) 一种过渡金属修饰TiO2-MOFs膜的复合电极及其制备方法与应用
CN112028168B (zh) 二硫化锡/碳纳米纤维复合材料在降解有机污染物中的应用
CN108393083A (zh) 一种用于污水处理的钒酸铋光催化剂及制备方法
Yan et al. Construction of novel ternary dual Z-scheme Ag3VO4/C3N4/reduced TiO2 composite with excellent visible-light photodegradation activity
Kumar et al. Epigrammatic status and perspective of sequestration of carbon dioxide: Role of TiO2 as photocatalyst
CN109621974A (zh) 一种CuMn2O4/rGO复合材料臭氧催化氧化除污染水处理方法
Xing et al. Degradation of levofloxacin in wastewater by photoelectric and ultrasonic synergy with TiO2/g-C3N4@ AC combined electrode
Chen et al. Construction and investigation of graphitic carbon nitride/expanded perlite composite photocatalyst with floating ability
CN113828296A (zh) 一种基于固相还原3d氧化石墨烯复合光催化气凝胶的制备方法
CN113666333A (zh) 铑诱导生长氧化锌-硫化锌异质结构光催化制氢合成方法
CN105195183A (zh) 一种Co3O4@ACSs/BiOCl球形吸附-光催化复合催化剂的制备方法
CN113385209B (zh) 一种纳米CeZnOx掺杂多孔氮化碳水凝胶粒子的制备方法及应用
CN106362749A (zh) 一种负载型氧化锌光催化剂的制备方法
CN110918085A (zh) 一种多孔wo3/c纳米片介孔复合光催化剂的制备方法
CN113976149B (zh) 钴铝水滑石/富铋氯氧化铋复合光催化剂及其制备方法和应用
CN113976158B (zh) 一种负载钴氧化物的自掺氮多孔碳催化剂及其制备方法与应用
CN114534746A (zh) 一种基于异质结光催化剂和甲醛水溶液的光催化制氢体系
CN109395781B (zh) 一种具有类芬顿光催化特性的氧化锡锑水凝胶及其制备方法和应用
CN112354533A (zh) 一种仿生合成活性炭-二氧化钛复合材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943541

Country of ref document: EP

Kind code of ref document: A1