WO2022250464A2 - 기계적인 힘에 선택적으로 감응하는 아지리딘 고분자 - Google Patents
기계적인 힘에 선택적으로 감응하는 아지리딘 고분자 Download PDFInfo
- Publication number
- WO2022250464A2 WO2022250464A2 PCT/KR2022/007464 KR2022007464W WO2022250464A2 WO 2022250464 A2 WO2022250464 A2 WO 2022250464A2 KR 2022007464 W KR2022007464 W KR 2022007464W WO 2022250464 A2 WO2022250464 A2 WO 2022250464A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- formula
- mechanical force
- aziridine
- mechanophore
- present
- Prior art date
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 49
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 150000001875 compounds Chemical class 0.000 claims description 22
- 150000002466 imines Chemical class 0.000 claims description 18
- 125000003118 aryl group Chemical group 0.000 claims description 9
- 238000007142 ring opening reaction Methods 0.000 claims description 9
- 125000005843 halogen group Chemical group 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 6
- 238000009210 therapy by ultrasound Methods 0.000 claims description 2
- -1 aziridine derivative compound Chemical class 0.000 abstract description 7
- 150000001541 aziridines Chemical class 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 description 29
- 238000010303 mechanochemical reaction Methods 0.000 description 12
- LGEJNEWAYFAEOI-UHFFFAOYSA-N 2-(aziridin-1-yl)isoindole-1,3-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1N1CC1 LGEJNEWAYFAEOI-UHFFFAOYSA-N 0.000 description 11
- 238000005481 NMR spectroscopy Methods 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 229920001577 copolymer Polymers 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 238000006460 hydrolysis reaction Methods 0.000 description 8
- 238000004088 simulation Methods 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000005062 Polybutadiene Substances 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- PLBVSLXAJCNJOF-UHFFFAOYSA-N [C].N1CC1 Chemical compound [C].N1CC1 PLBVSLXAJCNJOF-UHFFFAOYSA-N 0.000 description 6
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 229920001197 polyacetylene Polymers 0.000 description 6
- 229920002857 polybutadiene Polymers 0.000 description 6
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 5
- 238000013508 migration Methods 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 230000009257 reactivity Effects 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 125000004069 aziridinyl group Chemical group 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229920001084 poly(chloroprene) Polymers 0.000 description 4
- 229920001195 polyisoprene Polymers 0.000 description 4
- VYXHVRARDIDEHS-QGTKBVGQSA-N (1z,5z)-cycloocta-1,5-diene Chemical compound C\1C\C=C/CC\C=C/1 VYXHVRARDIDEHS-QGTKBVGQSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 125000005544 phthalimido group Chemical group 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- KSILMCDYDAKOJD-UHFFFAOYSA-N 2-aminoisoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(N)C(=O)C2=C1 KSILMCDYDAKOJD-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- FCDPQMAOJARMTG-UHFFFAOYSA-M benzylidene-[1,3-bis(2,4,6-trimethylphenyl)imidazolidin-2-ylidene]-dichlororuthenium;tricyclohexylphosphanium Chemical compound C1CCCCC1[PH+](C1CCCCC1)C1CCCCC1.CC1=CC(C)=CC(C)=C1N(CCN1C=2C(=CC(C)=CC=2C)C)C1=[Ru](Cl)(Cl)=CC1=CC=CC=C1 FCDPQMAOJARMTG-UHFFFAOYSA-M 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 238000006352 cycloaddition reaction Methods 0.000 description 2
- URYYVOIYTNXXBN-UPHRSURJSA-N cyclooctene Chemical compound C1CCC\C=C/CC1 URYYVOIYTNXXBN-UPHRSURJSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000007152 ring opening metathesis polymerisation reaction Methods 0.000 description 2
- 239000011986 second-generation catalyst Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- DYLIWHYUXAJDOJ-OWOJBTEDSA-N (e)-4-(6-aminopurin-9-yl)but-2-en-1-ol Chemical compound NC1=NC=NC2=C1N=CN2C\C=C\CO DYLIWHYUXAJDOJ-OWOJBTEDSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- 238000004057 DFT-B3LYP calculation Methods 0.000 description 1
- 238000003775 Density Functional Theory Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- KMRCSUAUXZCVDH-UHFFFAOYSA-N [N].C1CN1 Chemical group [N].C1CN1 KMRCSUAUXZCVDH-UHFFFAOYSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 235000019439 ethyl acetate Nutrition 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000013365 molecular weight analysis method Methods 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000006464 oxidative addition reaction Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/02—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
- C08G61/04—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
- C08G61/06—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
- C08G61/08—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/14—Side-groups
- C08G2261/143—Side-chains containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/14—Side-groups
- C08G2261/148—Side-chains having aromatic units
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/33—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
- C08G2261/332—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
- C08G2261/3322—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from cyclooctene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/40—Polymerisation processes
- C08G2261/41—Organometallic coupling reactions
- C08G2261/418—Ring opening metathesis polymerisation [ROMP]
Definitions
- the present invention relates to a mechanophore structure selectively responsive to mechanical force, and more particularly, to an aziridine derivative mechanophore and a polymer compound selectively responsive to mechanical force including the mechanophore.
- the mechano-chemical reaction of polymers is an excellent platform for various functions in materials science and technology.
- significant progress has been made in the fields of mechano-chemical activation of inert catalysts, stress sensing, mass transfer, drug release, modification of optical and electrical properties, and degradation of polymers.
- chemical reactions by mechanical forces can induce and control chemical reactions in pathways forbidden under traditional photochemical and thermal conditions.
- the mechano-chemical reactions of polymers are driven by chemical structures (mechanophores) designed to promote chemical transformations when exposed to external forces.
- Pankova et al. developed N-phthalimidoaziridine by introducing aryl substituents on both carbons. It has been disclosed that the aziridine implements a 1,2-migration reaction of the aziridine nitrogen substituent by heat (Alena S. Pankova, et. al., Tetrahedron Lett. 2015, 56, 5381-5385). However, the above studies did not show the thermal 1,2-transfer reactivity of aziridines with alkyl substituents on both carbons.
- Klukovich et al introduced gem-diboromocyclopropane, a three-membered ring compound similar to the aziridine structure, into polybutadiene. It has been disclosed that isomerization of introduced gem-dibromocyclopropane by mechanical force is realized (Jeremy. M. Lenhardt, et. al., J. Mater. Chem. 2011, 21 , 8454-8459). However, it was shown that the reaction occurs not only by mechanical force but also by heat.
- the inventors of the present invention have made diligent efforts to develop a polymer whose chemical bond is selectively broken by mechanical force and whose structure is changed.
- a mechanical force is applied, it was confirmed that the covalent bond of aziridine is broken and the structure is changed, and it is also confirmed that it is structurally stable under thermal conditions, which is a traditional method, and a product whose structure is selectively changed by mechanical force can be prepared. It was confirmed that there was, and the present invention was completed.
- the present invention is intended to provide an aziridine derivative mechanophore structure that selectively responds to mechanical force and a polymer compound that selectively responds to mechanical force including the structure.
- the present invention provides a mechanopore structure represented by the following [Formula 1], which does not react under heat or light conditions and which selectively responds to mechanical force.
- R are the same as or different from each other, and are each independently hydrogen, a halogen group, or an aryl group.
- the mechanophore structure according to the present invention is characterized in that the C-C covalent bond of the aziridine in [Formula 1] is broken by selectively responding to mechanical force.
- the mechanical force may be ultrasonic treatment.
- the [Formula 1] may be any one selected from structures represented by the following [Structural Formula 1].
- the present invention provides a polymer compound including a repeating unit represented by the following [Formula 1-1] or [Formula 1-2] using such a characteristic mechanophore structure.
- R are the same as or different from each other, and each independently represents hydrogen, a halogen group or an aryl group.
- n is an integer from 199 to 203;
- the high molecular compound according to the present invention is imine through a ring opening reaction by breaking the C-C covalent bond of aziridine in [Formula 1-1] or [Formula 1-2] by mechanical force. It is characterized in that (Imine) derivatives are produced.
- the polymer compound according to the present invention includes any one of repeating units represented by the following [Formula 1-1] and [Formula 1-2]; It is characterized in that it is a polymer compound including a repeating unit represented by the following [Formula 1-3].
- R are the same as or different from each other, and each independently represents hydrogen, a halogen group or an aryl group.
- n is an integer from 199 to 203.
- the polymer compound is also an imine derivative through a ring opening reaction by breaking the C-C covalent bond of aziridine in [Formula 1-1] or [Formula 1-2] by mechanical force. It is characterized in that is generated.
- the polymer compound may be represented by the following [Formula 1-4].
- n is an integer from 199 to 203.
- the aziridine derivative compound when used as a mechanophore to respond to mechanical force and thermal stimulation, respectively, the covalent bond of aziridine is broken selectively only to the mechanical force, thereby selectively responding only to the mechanical force. According to the present invention, it is possible to prepare a polymer containing a mechanophore that selectively responds only to mechanical force, and through this, it can be widely used in various industrial fields such as the field of new materials. .
- 1A shows a reaction formula for synthesizing an aziridine polymer compound P containing a large amount of aziridine according to the present invention, and an entropically driven ring opening metathesis copolymerization (ED-ROMP) reaction
- ED-ROMP entropically driven ring opening metathesis copolymerization
- Figure 2 shows the results of 1 H NMR analysis for confirming the chemical structure change according to the mechano-chemical reaction and thermal condition reaction of the aziridine polymer compound P according to the present invention.
- Figure 2A shows the mechanochemical/thermal reaction to P 2B is a comparison of 1 H NMR spectra for each of P, P1 and P2.
- CoGEF Consstrained Geometries for simulating As a result of the external force
- A is a plot of relative energy as a function of change in d relative to intact aziridine ( ⁇ d, ⁇ )
- B is a plot of N-N bond length
- C is a plot of N–N bond length
- D is Natural atomic charge (NAC) plot of the two carbon atoms of aziridine
- E is the NAC plot of the nitrogen atom of the phthalimido group.
- Figure 5 shows the structures of various N-phthalimidoaziridine derivatives that can be derived from olefin-based polymers.
- Figure 6 shows the results of 1 H NMR analysis to confirm the structural change due to the top-down N-phthalimidoaziridine polymer synthesis reaction and the mechano-chemical reaction after synthesis
- A is aziridination of cis-PB and cis-Azi PB is the sequential mechanochemical and hydrolysis reaction of
- B is the 1 H NMR characterization of the activated species in cis-Azi PB.
- FIG. 7 is a conceptual diagram showing the reaction of an aziridine polymer that selectively responds to mechanical force according to an embodiment of the present invention, and mechanical force of N-phthalimidoaziridine to imine. It shows the selective transformation by .
- FIG. 7 is a conceptual diagram showing the reaction of an aziridine polymer that selectively responds to mechanical force according to an embodiment of the present invention, wherein N-phthalimidoaziridine is converted to imine mechanically. It shows selective deformation by force.
- N-phthalimidoaziridine introduced into the aliphatic backbone can be confirmed.
- the pulling force along the backbone transformed by sonication activates the aziridine ring structure and induces 1,2-migration of the N-phthalimido group, leading to a ring-opening reaction and thus generating the corresponding imine.
- imines are decomposed into amines and aldehydes in a hydrolysis reaction by moisture present in ambient reaction conditions. This sequential reaction is confirmed by chemical structure analysis of the polymer using 1 H NMR spectroscopy.
- CoGEF Constrained geometries simulate external force
- An object of the present invention is to provide a novel mechanopore structure whose chemical bond is selectively broken by mechanical force and whose structure is changed, and a polymer containing the same.
- an N-heterotriangular ring compound as a mechanophore
- the inventors of the present invention recently investigated the potential of aziridine as a mechanophore, and the trivalence of the nitrogen atom can fine-tune the reactivity of aziridine to design an aziridine that is sensitive to mechanical force and insensitive to heat.
- N-phthalimidoaziridines with C-aryl substituents undergo 1,2-migration of N-phthalimido groups to give imines
- substitution of one or more aryl groups on the aziridine carbon stabilizes the azomethine ylide intermediate formed under heating conditions, and that replacing the aryl substituent with an alkyl substituent can cause a forced selective shift
- a cis-N-Phthalimidoaziridine copolymer (P) according to an embodiment of the present invention was synthesized through the steps according to [Scheme 1] below.
- the octagonal ring monomer containing cis-N-phthalimidoaziridine is cis,cis-1,5-cyclooctadiene (cis,cis-1,5 -cyclooctadiene) in one step.
- the imines formed by mechanical force were branched into amines and aldehydes through a hydrolysis reaction (Fig. 3A).
- CoGEF Constrained Geometries for simulating External Force
- F max a parameter that can relatively compare the mechano-chemical reactivity between different mechanophores.
- a recent theoretical study by Klein et al. showed that 2 ⁇ electrocyclic mechanophores such as aziridine, epoxide, and gem-dihalocyclopropane have mechanical properties in the range of 3.2–5.7 nN. It can undergo a chemical reaction.
- the F max value calculated in one embodiment of the present invention falls within the corresponding range, which demonstrates mechanochemical activation at the CC bond of aziridine.
- Example 5 Evaluation of substrate range and applicability of the mechanism of the present invention
- PB polybutadiene
- N-phthalimidoaziry that can be formed in synthetic olefin polymers, including polyacetylene (PA), polyisoprene (PI), polychloroprene (PC), and diphenyl polyene (DP) CoGEF calculations were performed for the Dean derivatives.
- PA polyacetylene
- PI polyisoprene
- PC polychloroprene
- DP diphenyl polyene
- trans-Azi DP was separated from the C-C bond of the alkyl substituent and the aziridine carbon, rather than the C-C bond of aziridine. This indicates a low mechano-chemical reactivity and suggests a competitive reaction between the polymer backbone and the aziridine C-C bonds for mechanical forces.
- trans-Az PA has a high value of F max (6.18 nN; Table 1), the CC bond of aziridine was broken, which means that the F max value required for the mechanical ring-opening reaction of the tri-membered ring mechanophore may have a larger value than the known value. .
- Example 6 N- of top-down method for simulation proof phthalimidoaziridine Polymer synthesis and mechano-chemical reactions
- cis-polybutadiene (cis-PB) (Fig. 6) is a polymer containing N-phthalimidoaziridine through an oxidative addition reaction of N-aminophthalimide. (cis-Azi PB) was synthesized.
- the aziridine derivative compound when used as a mechanophore to respond to mechanical force and thermal stimulation, respectively, the covalent bond of aziridine is broken selectively only to the mechanical force, thereby selectively responding only to the mechanical force. According to the present invention, it is possible to prepare a polymer containing a mechanophore that selectively responds only to mechanical force, and through this, it can be widely used in various industrial fields such as the field of new materials. .
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
본 발명은 기계적 힘에 선택적으로 감응하는 아지리딘 유도체의 메카노포어 구조체 및 이를 포함하는 고분자에 관한 것으로서, 아지리딘 유도체 화합물을 메카노포어로 사용하여 기계적인 힘과 열 자극에 각각 반응을 진행할 경우, 기계적인 힘에 선택적으로 아지리딘의 공유 결합이 끊어짐으로써, 기계적인 힘에만 선택적으로 감응할 수 있는 아지리딘이 존재하는 것을 밝힌 바, 본 발명에 따르면, 기계적인 힘에만 선택적으로 감응하는 메카노포어를 내포한 고분자를 제조할 수 있는바, 신소재 분야 등 다양한 산업 분야에서 널리 활용될 수 있다.
Description
본 발명은 기계적 힘에 선택적으로 감응하는 메카노포어 구조체로서, 더욱 상세하게는 아지리딘 유도체 메카노포어 (mechanophore) 및 이를 포함하여 기계적 힘에 선택적으로 감응하는 고분자 화합물에 관한 것이다.
고분자의 기계-화학적 반응은 재료 과학 및 기술 분야에서 다양한 기능을 할 수 있는 훌륭한 플랫폼이라고 할 수 있다. 지난 10년 동안 비활성 촉매의 기계-화학적인 힘에 의한 활성화, 응력 감지, 물질 전달, 약물 방출, 광학 및 전기적 특성의 변화, 고분자의 분해 등의 분야에서 상당한 진전을 이루었다. 또한, 기계적인 힘에 의한 화학 반응이 전통적인 광화학 및 열 조건에서 금지된 경로로 화학 반응을 유도 및 조절할 수 있다. 고분자의 기계-화학적 반응은 외부 힘에 노출될 때 화학적 변형을 촉진하도록 설계된 화학구조 (메카노포어, mechanophore)에 의해 유발된다.
현재까지의 대부분 기계-화학적 반응은, i) retro-[2+2], [4+2], [4+4] 고리화 첨가 반응 (cycloadditions), ii) 2π, 4π, 6π 전기환식 개환 반응 (electrocyclic ring opening reactions), iii) 동종 분해 반응 (homolytic reactions), iv) 이종 분해 반응 (heterolytic reactions)으로 분류되며, 많은 메카노포어가 광화학 및 열 자극에도 감응하여 반응하지만, 반응 경로는 서로 상이하며, 이러한 메카노포어의 보편적인 반응성은 전통적인 광화학 및 열 조건에서 진행되는 다른 반응과 직교적으로 기계-화학적 반응을 결합하는 것을 어렵게 한다. 예를 들어, 기계적인 힘에 의해 활성화될 수 있게 고안된 촉매는 기계적 힘 이외의 외부 자극에 의해 원치 않게 활성화될 수 있다. 또한, 기계적인 힘에 반응하여 분해되도록 설계된 고분자는 일상생활에서 열이나 빛에 의해 유발된 분해로 인해 내구성을 잃을 수 있다.
관련하여, Pankova 등은 양쪽 탄소에 아릴 (aryl) 치환기를 도입한 N-프탈이미도아지리딘 (N-phthalimidoaziridine)을 개발하였다. 해당 아지리딘 (aziridine)은 열에 의해 아지리딘 질소 치환기의 1,2-이동 반응 (1,2-migration reaction)을 구현한 것을 개시한 바 있다 (Alena S. Pankova, et. al., Tetrahedron Lett. 2015, 56, 5381-5385). 그러나, 상기 연구는 양쪽 탄소에 알킬 (alkyl) 치환기가 있는 아지리딘의 열에 의한 1,2-이동 반응성을 보이지 못했다.
또한, Klukovich 등은 아지리딘 구조와 유사한 3각 고리 화합물인 gem-다이브로모사이클로프로페인(diboromocyclopropane)를 폴리부타다이엔(polybutadiene)에 도입하였다. 도입된 gem-다이브로모사이클로프로페인을 기계적인 힘에 의해 이성질화 반응 (isomerization)을 구현한 것을 개시한 바 있다 (Jeremy. M. Lenhardt, et. al., J. Mater. Chem. 2011, 21, 8454-8459). 그러나, 상기 화합물은 기계적인 힘뿐만 아니라 열에 의해서도 반응이 일어나는 것을 보였다.
소수의 연구 그룹에서는 메카노포어의 기계적인 힘에 의해서 선택적으로 활성화되는 반응을 보고하기도 하였다.
전술한 기술적 배경 하에서, 본 발명의 발명자들은 기계적인 힘에 선택적으로 화학 결합이 끊어지며 구조가 변하는 고분자를 개발하기 위하여 예의 노력한 결과, N-헤테로 삼각고리 화합물인 아지리딘을 메카노포어로 사용하여 기계적인 힘을 가할 경우, 아지리딘의 공유 결합이 끊어지며 구조가 변하는 것을 확인하고, 또한, 전통적인 방식인 열 조건에서는 구조적으로 안정한 것을 확인하였으며, 기계적인 힘에 선택적으로 구조가 변하는 생성물을 제조할 수 있음을 확인하고, 본 발명을 완성하였다.
이에 따라 본 발명은 기계적 힘에 선택적으로 감응하는 아지리딘 유도체 메카노포어 (mechanophore) 구조체 및 이를 포함하여 기계적 힘에 선택적으로 감응하는 고분자 화합물을 제공하고자 한다.
본 발명은 상기 과제를 해결하기 위하여, 하기 [화학식 1]로 표시되고, 열 (heat) 또는 광 (light) 조건에서는 반응하지 않고, 기계적 힘에 선택적으로 반응하는 메카노포어 구조체를 제공한다.
[화학식 1]
상기 [화학식 1]에서, R은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐기 또는 아릴기이다.
본 발명의 일 실시예에 의하면, 본 발명에 따른 상기 메카노포어 구조체는 기계적 힘에 선택적으로 반응하여 상기 [화학식 1] 내의 아지리딘의 C-C 공유 결합이 끊어지는 것을 특징으로 한다.
본 발명의 일 실시예에 의하면, 상기 기계적 힘은 초음파 처리일 수 있다.
또한, 본 발명의 일 실시예에 의하면, 상기 [화학식 1]은 하기 [구조식 1]로 표시되는 구조체 중에서 선택되는 어느 하나일 수 있다.
[구조식 1]
또한, 본 발명은 이와 같은 특징적인 메카노포어 구조체를 이용하여 하기 [화학식 1-1] 또는 [화학식 1-2]로 표시되는 반복 단위를 포함하는 고분자 화합물을 제공한다.
[화학식 1-1]
[화학식 1-2]
상기 [화학식 1-1] 내지 [화학식 1-2]에서,
R은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐기 또는 아릴기이다.
m은 199 내지 203의 정수이다.
본 발명의 일 실시예에 의하면, 본 발명에 따른 상기 고분자 화합물은 기계적인 힘에 의해서 [화학식 1-1] 또는 [화학식 1-2] 내의 아지리딘의 C-C 공유 결합이 끊어지면서 고리 개환 반응 통하여 이민 (Imine) 유도체가 생성되는 것을 특징으로 한다.
또한, 본 발명에 따른 고분자 화합물은 하기 [화학식 1-1] 및 [화학식 1-2]로 표시되는 반복 단위 중 어느 하나와; 하기 [화학식 1-3]으로 표시되는 반복 단위를 포함하는 고분자 화합물인 것을 특징으로 한다.
[화학식 1-1]
[화학식 1-2]
[화학식 1-3]
상기 [화학식 1-1] 내지 [화학식 1-2]에서,
R은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐기 또는 아릴기이다.
m은 199 내지 203의 정수이고, n은 199 내지 203의 정수이다.
본 발명의 일 실시예에 의하면, 상기 고분자 화합물 역시 기계적인 힘에 의해서 [화학식 1-1] 또는 [화학식 1-2] 내의 아지리딘의 C-C 공유 결합이 끊어지면서 고리 개환 반응 통하여 이민 (Imine) 유도체가 생성되는 것을 특징으로 한다.
본 발명의 일 실시예에 의하면, 상기 고분자 화합물은 하기 [화학식 1-4]로 표시될 수 있다.
[화학식 1-4]
상기 [화학식 1-4]에서, m은 199 내지 203의 정수이고, n은 199 내지 203의 정수이다.
본 발명에서는 아지리딘 유도체 화합물을 메카노포어로 사용하여 기계적인 힘과 열 자극에 각각 반응을 진행할 경우, 기계적인 힘에만 선택적으로 아지리딘의 공유 결합이 끊어짐으로써, 기계적인 힘에만 선택적으로 감응할 수 있는 아지리딘이 존재하는 것을 밝힌 바, 본 발명에 따르면, 기계적인 힘에만 선택적으로 감응하는 메카노포어를 내포한 고분자를 제조할 수 있으며, 이를 통하여 신소재 분야 등 다양한 산업 분야에서 널리 활용될 수 있다.
도 1의 A는 본 발명에 따른 다량의 아지리딘이 함유된, 아지리딘 고분자 화합물 P를 합성하기 위한 반응식을 나타낸 것으로서, 엔트로피 구동 개환 복분해 공중합 (entropically driven ring opening metathesis copolymerization, ED-ROMP) 반응을 통하여 8원 고리 단량체 (M)에서 시스-N-프탈이미도아지리딘 (cis-N-phthalimidoaziridine)이 포함된 공중합체 (P)의 합성이며, B는 화합물 M과 P의 1H 스펙트럼을 나타내며, C는 화합물 P의 겔 투과 크로파토그래피 스펙트럼을 나타낸 것이다.
도 2는 본 발명에 따른 아지리딘 고분자 화합물 P의 기계-화학적 반응 및 열조건 반응에 따른 화학 구조 변화를 확인하기 위한 1H NMR 분석 결과를 나타낸 것으로서, 도 2A는 P에 대한 기계화학적/열적 반응을 통한 P1 및 P2 생성 결과를 확인한 것이고, 도 2B는 P, P1 및 P2 각각에 대한 1H NMR 스펙트럼의 비교이다.
도 3은 기계-화학적 반응을 통해 활성화된 고분자 화합물 P1의 가수분해 반응 및 이에 따른 화학 구조 변화를 확인하기 위한 1H NMR 분석 결과를 나타낸 것이다.
도 4는 본 발명에 따른 아지리딘 고분자 화합물 P의, 기계적인 힘에 의한 구조 변화 메커니즘 확인을 위해, B3LYP/6-31G*에서 밀도 기능 이론 (density functional theory)을 사용하여 CoGEF (Constrained Geometries for simulating External Force) 계산을 수행한 결과로서, 본 발명의 일 실시예에 따른 cis-N-phthalimidoaziridine의 인장 응력 유발 구조 변화 시뮬레이션이며,
도 4의 A는 말단 메틸기 사이의 거리 증가 (Δd, Å), B는 온전한 아지리딘 (Δd, Å)에 대한 상대적인 d 변화의 함수로서의 상대 에너지의 플롯, C는 N-N 결합 길이의 플롯, D는 아지리딘의 두 탄소 원자의 자연 원자 전하 (NAC) 플롯, E는 프탈이미도 그룹의 질소 원자의 NAC 플롯이다.
도 5는 올레핀계 중합체에 파생될 수 있는 다양한 N-프탈이미도아지리딘 유도체의 구조를 나타낸 것이다.
도 6은 하향식 N-프탈이미도아지리딘 고분자 합성 반응, 합성 후 기계-화학적 반응에 따른 구조 변화를 확인하기 위한 1H NMR 분석 결과를 나타낸 것으로서, A는 cis-PB의 Aziridination 및 cis-Azi PB의 순차적 기계화학적 및 가수분해 반응이고, B는 cis-Azi PB에서 활성화된 종의 1H NMR 특성이다.
도 7은 본 발명의 일 실시예에 따라 기계적인 힘에 선택적으로 감응하는 아지리딘 고분자의 반응을 보여주는 개념도로서, N-프탈이미도아지리딘 (N-phthalimidoaziridine)의 이민 (imine)으로의 기계적 힘에 의한 선택적 변형을 보여주는 것이다.
이하, 본 발명을 보다 상세하게 설명한다.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
하기 도 7은 본 발명의 일 실시예에 따라 기계적인 힘에 선택적으로 감응하는 아지리딘 고분자의 반응을 보여주는 개념도로서, N-프탈이미도아지리딘 (N-phthalimidoaziridine)의 이민 (imine)으로의 기계적 힘에 의한 선택적 변형을 보여주는 것이다.
하기 도 7에서 보는 바와 같이, 지방족 백본에 도입된 N-프탈이미도아지리딘 (N-phthalimidoaziridine)의 선택적 이동을 확인할 수 있다. 초음파 처리에 의해 변환된 백본을 따라 당기는 힘은 아지리딘 고리 구조를 활성화하고 N-프탈이미도 그룹의 1,2-이동을 유도하여 개환 반응을 유도하고 이에 따라 해당 이민을 생성한다. 또한, 이민은 주변 반응 조건에서 존재하는 수분에 의해서 가수분해 반응으로 아민과 알데히드로 분해된다. 이러한 순차적인 반응은 1H NMR 분광법을 사용하여 고분자의 화학 구조 분석에 의해 확인된다.
외력 (CoGEF, Constrained geometries simulate external force) 시뮬레이션을 통하여 적용된 기계적 힘이 아지리딘 탄소와 프탈이미도 부분의 질소 사이의 전하 불균형을 증가시키고 축이 힘 방향에 직교하는 N-N 결합을 활성화한다는 것을 확인할 수 있으며, 전자의 구조적 변화는 기계적 힘에 의한 이동 메커니즘을 증명한다.
CoGEF 계산을 이용하여 기계적 화학 반응의 기질 범위를 추가로 평가한 결과, 폴리부타디엔 (PB), 폴리아세틸렌 (PA), 폴리이소프렌 (PI), 폴리클로로프렌 (PC) 및 디페닐 폴리엔 (DP)의 경우 기계 화학적 2π 전기환식 개환 (≤5.7 nN)의 Fmax 범위에 속하며, 이를 실험적으로 증명하기 위해 cis-PB가 N-phthalimidoaziridine을 함유하도록 변형되어 이후 해당 이민으로의 변형을 확인하였다.
본 발명에서는 기계적인 힘에 선택적으로 화학 결합이 끊어지며 구조가 변하는 신규한 메커노포어 구조체 및 이를 내재하는 고분자를 제공하고자 한다.
본 발명의 일 실시예에서 N-헤테로 삼각고리 화합물인 아지리딘을 메카노포어로 사용하여 기계적인 힘을 가할 경우, 아지리딘의 공유 결합이 끊어지며 구조가 변하는 것을 확인하고, 또한, 전통적인 방식인 열 조건에서는 구조적으로 안정한 것을 확인하였으며, 기계적인 힘에 선택적으로 구조가 변하는 생성물을 제조할 수 있음을 확인하였다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명의 발명자들은 최근 메카노포어에 대한 아지리딘의 잠재력을 조사하고, 질소 원자의 3가는 아지리딘의 반응성을 미세 조정할 수 있어 기계적 힘에 민감하고 열에 둔감한 아지리딘을 설계하기 위해 N-프탈이미도 부분이 있는 아지리딘에 초점을 맞추고, 가열 조건 하에서, C-아릴 치환기를 갖는 N-프탈이미도아지리딘은 이민을 제공하기 위해 N-프탈이미도 그룹의 1,2-이동을 하여, 하나 이상의 아릴 그룹이 아지리딘 탄소에 치환되면 가열 조건 하에서 형성된 아조메틴 일리드 (Azomethine ylide) 중간체가 안정화되며, 이때 아릴 치환체를 알킬 치환체로 대체하면 강제 선택적 이동이 발생할 수 있음에 대해서 가설을 세우고, 하기 합성예 및 실시예를 통하여 확인하였다.
합성예 1 : cis-N-Phthalimidoaziridine copolymer (P)의 합성
하기 [반응식 1]에 따른 단계를 통하여 본 발명의 일 실시예에 따른 cis-N-Phthalimidoaziridine copolymer (P)을 합성하였다.
[반응식 1]
(1) 2-((
1R,8S,Z
)-9-
azabicyclo[6.1.0]non
-4-en-9-
yl
)
isoindoline
-1,3-
dione
(M)의 합성
-10 ℃에서 시스,시스-1,5-사이클로옥타다이엔 (cis,cis-1,5-cyclooctadiene) (1.62 mL, 18.5 mmol, 3.0 당량)을 무수 디클로로메탄 (anhydrous dichloromathane) (30 mL)에 N-아미노프탈이미드 (N-aminophthalimide) (1.00 g, 6.17 mmol, 1.0 당량) 및 (디아세톡시요오도)벤젠 ((diacetoxiodo) benzene) (1.41 g, 4.63 mmol, 0.75 eq.)이 용해되어 있는 용액에 첨가했다. 반응 혼합물을 실온에서 12시간 동안 교반했다. 반응이 완결된 후, 투명 용액을 디클로로메탄 (30 mL)으로 희석했다. 생성된 혼합물을 물 (3 × 30 mL)로 세척하고 Mg2SO4로 건조시켰다. 건조제를 여과 후 용매를 진공에서 제거하고 잔류물을 실리카겔 컬럼 크로마토그래피 (실리카겔, Hex 중 25% EtOAc)로 분리하여 황색 분말로서 생성물 (0.48 g, 2.96 mmol, 48% 수율)을 수득하였다.
1H NMR (500 MHz, CDCl3) δ: 7.76 (m, 2H), 7.67 (m, 2H), 5.60 (m, 2H), 2.62 (m, 2H), 2.44 (m, 4H), 2.31 (m, 2H), 2.07 (m, 2H) ppm.
13C NMR (500 MHz, CDCl3) δ: 24.32, 27.76, 48.65, 122.83, 129.05, 130.53, 133.85, 165.08 ppm.
HRMS (ESI) m/z: [M+Na]+ calcd for C16H16N2NaO2: 291.1109; found: 291.1107
(2) cis-N-Phthalimidoaziridine copolymer (P)의 합성
둥근 바닥 플라스크에서, M (0.2 g, 0.75 mmol, 1.0 eq.)와 시스-사이클로옥텐 (cis-cyclooctene) (0.082 g, 0.75 mmol, 1.0 eq.)을 0.3 mL의 무수 디클로로메탄(anhydrous dichloromathane, DCM)에 용해시켰다. 92.0 mg의 그럽스 2세대 촉매( Grubbs 2nd catalyst)를 1 mL의 DCM에 용해시켰다. 0.1 mL의 그럽스 2세대 촉매 용액을 반응 용액에 첨가시켰다. 30분 후 점도가 증가한 반응 용액에 0.1 mL의 DCM을 첨가시켰다. 반응 용액을 3시간 동안 교반시켰다. 반응 용액에 메탄올 (methanol)을 첨가하여 고분자를 침전시킨 후, 다시 DCM으로 용해하였다. 추가로 메탄올로 재침전시킨 후, 냉각 트랩이 장착된 오일 펌프로 용매를 제거하였다. 0.25 g의 polymer를 합성하였다.
1H NMR (500 MHz, CDCl3) δ: 7.67 (m, 4H), 5.46 (m, 4.5H), 2.58 (m, 2H), 2.37 (m, 4H), 2.06 (m, H), 2.01 (m, 5H), 1.82 (m, 2H), 1.59 (m, 2.5H), 1.29 (m, 10.5H).
13C NMR (500 MHz, CDCl3) δ: 14.12, 22.64, 29.09, 29.69, 31.58, 32.61, 48.35, 122.80, 129.23, 130.48, 133.88, 162.18 ppm.
Mn = 81.3 kDa, MW = 487.7 kDa PDI = 6.0.
본 발명에서는 다량의 아지리딘이 함유되어 있는 고분자를 합성하기 위해, 상향식 방법인 단량체로부터의 고분자화 반응을 이용하였다. (도 1A에서 P).
시스-N-프탈이미도아지리딘 (cis-N-phthalimidoaziridine) (도 1A의 M)을 함유하는 8각 고리 단량체는 시스,시스-1,5-사이클로옥타다이엔(cis,cis-1,5-cyclooctadiene)으로부터 한 단계로 제조되었다.
합성된 고분자는 1H 스펙트럼 (도 1 참고)과 겔 투과 크로파토그래피 스펙트럼 (도 1 참고)을 통해 아지리딘이 다량 함유되어있는 고분자가 합성되었음을 확인하였다. δ = 2.62 ppm에서 아지리딘 탄소의 양성자 공명은 원하는 아지리딘 고리의 형성을 나타낸다 (도 1B). Grubbs 2 세대 촉매의 존재하에 1:1 몰비의 화합물 M과 시스-사이클로옥텐 (cis-cyclooctene)의 엔트로피 구동 개환 복분해 중합 (entropically driven ring opening metathsis polymeization, ED-ROMP)을 통해 시스-N-프탈이미도아지리딘이 내포된 공중합체 (P)를 합성했다.
1H NMR 분석을 통해 단량체의 몰비가 중합체 사슬 구조에 잘 반영되었음을 확인했다. 공중합체 P에서 아지리딘 탄소의 양성자 공명은 δ = 2.59 ppm에서 관찰되었으며 (도 1B), 이는 단량체 M의 공명과 일치하고 중합 후 아지리딘 고리 구조의 유지를 나타낸다. 도 1C는 공중합체 P의 겔 투과 크로파토그래피 스펙트럼을 보여주며 수 평균 분자량 (Mn), 중량 평균 분자량 (Mw), 다 분산 지수 (PDI)는 각각 81.3kDa, 487.7kDa, 6.0으로 나타났다.
실시예 1 : 아지리딘 고분자의 기계-화학적 반응
P가 무수 톨루엔 (anhydrous toluene) (1 mg/mL)에 용해되어 있는 용액을 고강도 프로브 (20 kHz, 30% 진폭; 펄스 시퀀스 : 1초 켜짐 및 1초 꺼짐)를 사용하여 4 ~ 8 ℃의 N2 하에서 초음파 처리하였다.
2시간의 초음파 처리 후, 1H NMR 분석을 통해 δ = 8.10 및 4.69 ppm에서 새로운 양성자 공명이 나타난 것을 확인하였으며, 이는 각각 이민 (imine) 및 α-탄소의 양성자에 해당한다 (도 2B의 P1). 또한, δ = 9.76 ppm에서 새롭고 작은 피크도 검출되었는데, 이는 대기 중에 존재하는 물에 의한 이민의 가수 분해를 통해 얻어진 알데하이드 (aldehyde) 종의 형성을 나타낸다.
실시예 2 : 아지리딘 고분자의 열조건 반응
공중합체 P의 열 안정성을 평가하기 위해 무수 톨루엔에 P가 용해되어 있는 고분자 용액을 24시간 동안 환류시켰다. 반응 전 공중합체 P와의 1H NMR 스펙트럼 (P2, 도 2B)비교를 통해 화학 구조에 변화가 없음을 확인하였다. 이 발견은 1,2-디알킬-치환된 시스-N-프탈이미도아지리딘 (1,2-dialkyl substituted cis-N-phthalimidoaziridine)이 열 조건에서는 화학적으로 불활성이지만 기계 화학적 조건에서는 상당히 반응성이 있음을 나타낸다.
실시예 3 : 기계-화학적 반응을 통해 활성화된 고분자의 가수분해 반응
기계적인 힘에 의해 형성된 이민은 가수 분해 반응을 거쳐 아민 (amine)과 알데하이드 (aldehyde)로 분기되었다 (도 3A).
이민이 내포되어있는 P1 (1mg / mL)을 포함하는 THF 용액에 물 (5.0% v/v)을 첨가하면 알데하이드 양성자에 해당하는 δ = 9.76에서 새로운 양성자 공명이 나타났고 δ = 8.10 ppm에서 이민 양성자 피크의 감소가 크게 감소되었다 (도 3B). 가수 분해 전후의 분자량 분석을 통해 Mn이 28.0% 감소한 것을 확인하였다.
실시예 4 : 아지리딘 고분자의 기계적인 힘에 의한 구조 변화 메커니즘 규명
기계-화학적 고리 첨가 반응의 메커니즘을 설명하기 위해, B3LYP/6-31G*에서 밀도 기능 이론 (density functional theory)을 사용하여 CoGEF (Constrained Geometries for simulating External Force) 계산을 수행했하였다.
기계적인 힘에 의해 유도된 아지리딘의 구조적 변화를 시뮬레이션하기 위해, 메틸 치환기 사이의 거리 (Δd, Å)가 하기 도 4에 표시된 것처럼 점차 증가하였다. 초기 단계 (도 4의 i-ii 영역)에서 Δd의 증가로 인하여, (1) 상대적 에너지의 점진적인 증가 (도 4B), (2) N-N 결합 길이의 기하급수적인 증가 (도 4C), (3) 아지리딘 탄소 (도 4D) 및 프탈이미도 질소 (도 4E)의 NAC (natural atomic charge)가 각각 양수 및 음수 방향으로 증가하였다. 아지리딘의 C-C 결합은 최종적으로 Δd = 1.45 Å (도 4의 iii 위치)에서 절단되었다.
상기 시뮬레이션을 통해 두 가지 중요한 의미를 확인하였다.
첫째, 고분자 골격(backbone)에 가해진 기계적인 힘은 아지리딘의 C-C 결합을 인장시켜 아지리딘의 탄소와 프탈리미도 (phthalimido) 부분의 질소 원자 사이에 상당한 전하 불균형을 유발했다. 이러한 결과는 시스-N-프탈이미도아지리딘에 기계적인 힘을 가하면 N-N 결합이 활성화되고 전자가 풍부한 프탈이미도 질소가 1,2-이동 (1,2-migration)을 통해 전자가 부족한 아지리딘 탄소를 공격한다는 것을 뒷받침하는 것이다.
둘째, 서로 다른 메카노포어 간의 기계-화학적 반응성을 상대적으로 비교할 수 있는 매개 변수인 Fmax는 4.34 nN으로 밝혀졌다. 최근 Klein et al.의 이론적 연구에 따르면 아지리딘 (aziridine), 에폭사이드 (epoxide) 및 gem-다이할로사이클로프로페인 (dihalocyclopropane)과 같은 2π 전기 순환 메카노포어는 3.2-5.7 nN의 범위에서 기계 화학적 반응을 겪을 수 있다. 본 발명의 일 실시예에서 계산한 Fmax 값은 해당 범위에 속하며 이는 아지리딘의 C-C 결합에서 기계 화학적 활성화를 입증하는 것이다.
실시예 5 : 기질 범위 및 본 발명의 메커니즘 적용 가능성 평가
기계적인 힘에 의한 1,2-이동 반응 (1,2-migration reaction)의 기질 범위와 일상 생활에서 널리 사용되는 중합체에 대한 적용 가능성을 평가하기 위해, 하기에 표시된 폴리부타디엔 (polybutadiene, PB), 폴리아세틸렌 (polyacetylene, PA), 폴리아이소프렌 (polyisoprene, PI), 폴리클로로프렌 (polychloroprene, PC), 다이페닐 폴리엔 (diphenyl polyene, DP)을 포함한 합성 올레핀 중합체에 형성될 수 있는 N-프탈이미도아지리딘 유도체에 대한 CoGEF 계산을 실시하였다.
하기 도 5에 표시된 입체 화학적으로 순수한 N-프탈이미도아지리딘 유도체에 대해 CoGEF 시뮬레이션을 수행하고 Fmax 값을 얻었다. 하기 [표 1]에 요약된 바와 같이, trans-Az PA와 trans-Azi DP를 제외한 모든 아지리딘은 시스 이성질체 (cis-isomer)보다 트랜스 이성질체 (trans-isomer)에서 더 높은 Fmax 값 (1.27 ~ 3.41 nN)을 보였으며, Fmax 값은 5.7 nN 보다 낮았다. 이는 본 발명에 따른 N-프탈이미도아지리딘 유도체들이 메카노포어로서 잠재력이 있음을 입증하는 것이다.
Stereochemistry | Structure | Activation of aziridine C-C bond | Fmax (nN) |
cis | Azi PB | O | 4.34 |
Azi PA | O | 2.77 | |
Azi PI | O | 3.70 | |
Azi PC | O | 3.70 | |
Azi DP | O | 2.54 | |
trans | Azi PB | O | 5.61 |
Azi PA | O | 6.18 | |
Azi PI | O | 5.45 | |
Azi PC | O | 5.07 | |
Azi DP | X | - |
상기 시뮬레이션 결과에서 trans-Azi DP는 아지리딘의 C-C 결합이 아닌 알킬 치환기와 아지리딘 탄소의 C-C 결합에서 분리가 일어났다. 이는 낮은 기계-화학적 반응성을 의미하며 기계적인 힘에 대한 고분자 골격과 아지리딘 C-C 결합 간의 경쟁 반응을 암시한다.
또한, trans-Az PA는 높은 값의 Fmax (6.18 nN; 표 1)에도 불구하고 아지리딘의 C-C 결합가 끊어졌으며, 이는 3각 고리 메카노포어의 기계적 고리 개방 반응에 필요한 Fmax 값이 알려진 값보다 더 큰 값을 가질 수 있음을 의미하는 것이다.
실시예
6 : 시뮬레이션 증명을 위한 하향식 방법의 N-
프탈이미도아지리딘
고분자 합성 및 기계-화학적 반응
상기 시뮬레이션 결과를 검증하기 위해 시스-폴리부타다이엔 (cis-polybutadiene, cis-PB) (도 6)는 N-아미노프탈리미드의 산화 첨가 반응을 통해 N-프탈리미도아지리딘이 내포된 고분자 (cis-Azi PB)를 합성하였다.
합성된 고분자는 P와 동일한 조건에서 힘이 가해졌다. 반응 결과, 1H NMR 분석에서는 이민 (imine)과 알데하이드 (aldehyde) 피크가 각각 8.38 ppm과 9.77 ppm으로 관찰되었다 (도 6B). 또한, 추가적인 가수 분해 반응을 통해 이민 피크가 사라지는 것을 확인하였다 (도 6B).
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시형태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명에서는 아지리딘 유도체 화합물을 메카노포어로 사용하여 기계적인 힘과 열 자극에 각각 반응을 진행할 경우, 기계적인 힘에만 선택적으로 아지리딘의 공유 결합이 끊어짐으로써, 기계적인 힘에만 선택적으로 감응할 수 있는 아지리딘이 존재하는 것을 밝힌 바, 본 발명에 따르면, 기계적인 힘에만 선택적으로 감응하는 메카노포어를 내포한 고분자를 제조할 수 있으며, 이를 통하여 신소재 분야 등 다양한 산업 분야에서 널리 활용될 수 있다.
Claims (9)
- 제1항에 있어서,상기 메카노포어 구조체는 기계적 힘에 선택적으로 반응하여 상기 [화학식 1] 내의 아지리딘의 C-C 공유 결합이 끊어지는 것을 특징으로 하는 메카노포어 구조체.
- 제1항에 있어서,상기 기계적 힘은 초음파 처리인 것을 특징으로 하는 메카노포어 구조체.
- 제5항에 있어서,상기 고분자 화합물은 기계적인 힘에 의해서 [화학식 1-1] 또는 [화학식 1-2] 내의 아지리딘의 C-C 공유 결합이 끊어지면서 고리 개환 반응 통하여 이민 (Imine) 유도체가 생성되는 것을 특징으로 하는 고분자 화합물.
- 제7항에 있어서,상기 고분자 화합물은 기계적인 힘에 의해서 [화학식 1-1] 또는 [화학식 1-2] 내의 아지리딘의 C-C 공유 결합이 끊어지면서 고리 개환 반응 통하여 이민 (Imine) 유도체가 생성되는 것을 특징으로 하는 고분자 화합물.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/564,467 US20240317932A1 (en) | 2021-05-27 | 2022-05-26 | Mechanical force selectively responsive aziridine polymer |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20210068357 | 2021-05-27 | ||
KR10-2021-0068357 | 2021-05-27 | ||
KR10-2022-0063950 | 2022-05-25 | ||
KR1020220063950A KR102695640B1 (ko) | 2021-05-27 | 2022-05-25 | 기계적인 힘에 선택적으로 감응하는 아지리딘 고분자 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2022250464A2 true WO2022250464A2 (ko) | 2022-12-01 |
WO2022250464A3 WO2022250464A3 (ko) | 2023-01-19 |
Family
ID=84228944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/007464 WO2022250464A2 (ko) | 2021-05-27 | 2022-05-26 | 기계적인 힘에 선택적으로 감응하는 아지리딘 고분자 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20240317932A1 (ko) |
WO (1) | WO2022250464A2 (ko) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI558727B (zh) * | 2013-09-30 | 2016-11-21 | 陶氏全球科技有限責任公司 | 製備聚烯烴反應性遙爪預聚合物之方法、聚烯烴反應性遙爪預聚合物及交聯彈性體以及高分子量彈性體 |
-
2022
- 2022-05-26 WO PCT/KR2022/007464 patent/WO2022250464A2/ko active Application Filing
- 2022-05-26 US US18/564,467 patent/US20240317932A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2022250464A3 (ko) | 2023-01-19 |
US20240317932A1 (en) | 2024-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013165207A1 (ko) | 신규한 옥심에스테르 플로렌 화합물, 이를 포함하는 광중합 개시제 및 포토레지스트 조성물 | |
WO2011111965A2 (ko) | Oled 디바이스용 감광성 유기 절연재 조성물 | |
WO2017003250A1 (ko) | 프탈로니트릴 수지 | |
KR102557854B1 (ko) | 내산성을 갖는 염기 및/또는 라디칼 발생제, 및 그 염기 및/또는 라디칼 발생제를 함유하는 경화성 수지 조성물 | |
KR20050109940A (ko) | 복소 다환계 화합물, 이를 이용한 색소, 안료 또는 염료,색변환 재료 조성물 및 색변환막 | |
WO2022250464A2 (ko) | 기계적인 힘에 선택적으로 감응하는 아지리딘 고분자 | |
CN114672022A (zh) | 半芳香族聚酰亚胺及其基于半芳香族聚酰亚胺基的颜色可调室温磷光材料及其制备方法 | |
CN113727971A (zh) | 化合物、产酸剂、组合物、固化物及图案以及固化物及图案的制造方法 | |
KR102065710B1 (ko) | 많은 가교 작용기를 가지는 아지드 유형의 가교제 | |
WO2017052279A1 (ko) | 함질소 고리 화합물 및 이를 포함하는 색변환 필름 | |
WO2016163741A1 (ko) | 아지리딘을 내포하는 고분자 및 이의 제조방법 | |
US4398009A (en) | Polyoxazole precursor and the preparation thereof | |
WO2018190647A2 (ko) | 자가치유 기능 폴리비닐계 화합물 및 이의 제조방법 | |
KR102695640B1 (ko) | 기계적인 힘에 선택적으로 감응하는 아지리딘 고분자 | |
WO2018190679A1 (ko) | 함질소 고리 화합물 및 이를 포함하는 색변환 필름 | |
WO2021118233A1 (ko) | 다중고리 구조를 포함하는 비스말레이미드 유래 에폭시 화합물 및 이의 제조방법 | |
WO2020197148A1 (ko) | 트리블록 공중합체 및 이의 제조 방법 | |
WO2012015269A9 (ko) | 포스파페난트렌-카바졸계 유기발광 화합물 및 이를 포함하는 유기발광소자 | |
US4156761A (en) | Room temperature cured elastomer | |
Zhang et al. | Introduction of a phenanthrene ring into poly (arylene ethers) via intramolecular cyclization of 2, 2'-dibenzoylbiphenyl units | |
WO2016080762A1 (ko) | 프탈로니트릴 수지 | |
WO2020111496A1 (ko) | 가교제 화합물의 제조 방법 | |
WO2023013973A1 (ko) | 신규한 루카파립의 제조방법 | |
WO2023136701A1 (ko) | 화합물, 이의 제조 방법, 상기 화합물로부터 유래되는 단분자 및 올리고머 | |
WO2024147636A1 (ko) | 폴리하이드록시알카노에이트를 이용한 메틸피롤리돈의 제조방법 및 이로부터 제조된 메틸피롤리돈 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22811655 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22811655 Country of ref document: EP Kind code of ref document: A2 |