WO2022250361A1 - 리튬 이차 전지용 캐소드 및 이의 제조 방법 - Google Patents

리튬 이차 전지용 캐소드 및 이의 제조 방법 Download PDF

Info

Publication number
WO2022250361A1
WO2022250361A1 PCT/KR2022/007031 KR2022007031W WO2022250361A1 WO 2022250361 A1 WO2022250361 A1 WO 2022250361A1 KR 2022007031 W KR2022007031 W KR 2022007031W WO 2022250361 A1 WO2022250361 A1 WO 2022250361A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
phosphate
carbon nanotubes
secondary battery
nitrogen
Prior art date
Application number
PCT/KR2022/007031
Other languages
English (en)
French (fr)
Inventor
박광진
나성민
박현규
김선욱
조혁희
Original Assignee
가천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단 filed Critical 가천대학교 산학협력단
Publication of WO2022250361A1 publication Critical patent/WO2022250361A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode for a lithium secondary battery and a manufacturing method thereof.
  • the lithium secondary battery is a secondary battery with a structure in which lithium ions are eluted from the cathode as ions during charging, move to the anode and are stored, and during discharging, lithium ions return from the anode to the cathode. caused by
  • the conductive material when manufacturing an electrode, a process of compressing the electrode active material is required. At this time, when a conductive material is used together, the conductive material is dispersed between the compressed electrode active materials to maintain micropores between the active material particles, thereby improving the permeability of the electrolyte. . In addition, the conductive material can reduce the resistance in the electrode due to its high conductivity. Recently, research is being conducted to use carbon nanotubes (CNTs), graphene, carbon black, and the like as conductive materials.
  • CNTs carbon nanotubes
  • Carbon nanotubes a type of fine carbon fibers, are tubular carbons with a diameter of less than 1 ⁇ m, and their use is increasing due to high conductivity, tensile strength and heat resistance due to their specific structure.
  • carbon nanotubes have a problem in that they are easily aggregated due to strong van der Waals attraction between them, resulting in low solubility and dispersibility.
  • One object of the present invention is to provide a cathode for a lithium secondary battery including a carbon nanotube conductive material capable of providing excellent electrical capacity and having good dispersibility.
  • Another object of the present invention is to provide a method for manufacturing the cathode.
  • a cathode for a lithium secondary battery including carbon nanotubes treated with a phosphate-based material or nitrogen is provided.
  • the carbon nanotubes may be doped with a phosphate-based material.
  • the doping amount of the phosphate-based material may be 0.1 to 100% by weight, for example, 0.1 to 80% by weight or 0.1 to 40% by weight with respect to the carbon nanotubes.
  • the phosphate-based material may be selected from the group consisting of manganese phosphate, lithium iron phosphate, cobalt phosphate, ammonium phosphate, and lithium phosphate.
  • the carbon nanotubes may be coated with a phosphate-based material.
  • the carbon nanotubes may be doped with nitrogen.
  • the nitrogen doping amount may be 0.1 to 100% by weight, for example, 0.1 to 80% by weight or 0.1 to 40% by weight with respect to the carbon nanotubes.
  • the nitrogen may be derived from a material selected from the group consisting of urea and acetonitrile.
  • the carbon nanotubes may be coated with nitrogen.
  • the cathode may further include an additional conductive material in addition to the carbon nanotubes.
  • the additional conductive material may be carbon black.
  • the weight ratio of the carbon nanotubes to the carbon black may be in the range of greater than 1:0 to 1:30, for example, greater than 1:0 to 1:3.
  • a lithium secondary battery comprising a cathode, an anode facing the cathode, and an electrolyte between the cathode and the anode, wherein the cathode is the one described above.
  • step (a) treating carbon nanotubes with a phosphate-based material or nitrogen; and (b) mixing the phosphate-based material or nitrogen-treated carbon nanotubes prepared in step (a) with a cathode active material and a binder.
  • the step (a) is a step of doping the carbon nanotubes with a phosphate-based material or nitrogen, and the doping is performed by introducing the carbon nanotubes into a furnace and then adding phosphate under an inert atmosphere. It may include the step of heat-treating at 300 to 1,500 ° C, for example, 700 to 1,000 ° C by introducing a source of nitrogen-based material or nitrogen.
  • the step (a) is a step of coating the carbon nanotubes with a phosphate-based material or nitrogen, and the coating is a mixture of the carbon nanotubes and a phosphate-based material or a source of nitrogen in a solvent. steps may be included.
  • the dispersibility of the carbon nanotubes is increased, and the carbon nanotubes are uniformly distributed on the surface of the cathode active material without clumping. Accordingly, a process of coating the cathode active material with a separate coating material may be omitted, thereby simplifying the process. In addition, the capacity of a cathode and a lithium secondary battery including the carbon nanotubes as a conductive material is improved.
  • FIG. 1 is a diagram schematically showing an apparatus used for doping a conductive material according to the present invention.
  • FIG. 2 is a diagram schematically showing a method for coating a conductive material according to the present invention.
  • FIG 3 is a SEM image of a cathode material prepared using carbon nanotubes doped with a phosphate-based material in a preparation example of the present invention.
  • (a) is a P 2p XPS spectrum of the cathode material
  • (b) is a cycling performance test result.
  • (a) is an N 1s XPS spectrum of the cathode material
  • (b) is a cycling performance test result.
  • a lithium secondary battery generally includes a cathode, an anode positioned opposite to the cathode, a separator interposed between the cathode and the anode, and an electrolyte. Meanwhile, the lithium secondary battery may selectively further include a battery container accommodating an electrode assembly including the cathode, anode, and separator, and a sealing member sealing the battery container.
  • the cathode is prepared by coating an electrode mixture, which is a mixture of a cathode active material, a conductive material, and a binder, on a cathode current collector and then drying the mixture. If necessary, a filler may be further added to the mixture.
  • an electrode mixture which is a mixture of a cathode active material, a conductive material, and a binder
  • the cathode current collector is generally made to have a thickness of 3 to 500 ⁇ m.
  • the cathode current collector is not particularly limited as long as it does not cause chemical change in the battery and has high conductivity.
  • a surface treated with carbon, nickel, titanium, silver, etc. may be used.
  • the current collector may form fine irregularities on its surface to increase adhesion of the cathode active material, and various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics are possible.
  • the conductive material may include carbon nanotubes according to the present invention.
  • the carbon nanotubes may be doped or coated with a phosphate-based material or nitrogen.
  • the phosphate-based material may be selected from the group consisting of manganese phosphate, lithium iron phosphate, cobalt phosphate, ammonium phosphate, and lithium phosphate.
  • the nitrogen may be derived from a material selected from the group consisting of urea and acetonitrile.
  • Doping with the phosphate-based material or nitrogen is performed by introducing the carbon nanotubes into a furnace and then introducing the phosphate-based material or a source of nitrogen under an inert atmosphere, for example, H2 atmosphere, at 300 to 1,500 ° C., for example It may include a step of heat treatment at 700 to 1,000 °C.
  • An example of a device usable for the doping is shown in FIG. 1 .
  • the coating with the phosphate-based material or nitrogen may include mixing the carbon nanotubes and the phosphate-based material or a nitrogen source in a solvent.
  • An example of the coating process is shown in FIG. 2 .
  • coating may be performed by mixing, eg, stirring, a coating material source together with a solvent and carbon nanotubes, and then drying.
  • the mixing temperature may be 60 to 90 °C.
  • the amount of the coating material source may be used in an amount of about 0.1 to 5% by weight based on the weight of the carbon nanotubes.
  • the drying may be carried out at a temperature of about 70 to 90 ° C, but is not necessarily limited thereto.
  • the carbon nanotubes doped or coated with a phosphate-based material or nitrogen are combined with the cathode active material, they can be distributed on the surface of the cathode active material with excellent dispersibility without agglomeration. Accordingly, it is not necessary to separately coat the cathode active material for the purpose of improving stability of the cathode active material.
  • the cathode active material was coated with a separate coating material for stability of the cathode active material, and the coating process involved mixing, drying, and heat treatment of the coating material.
  • a coating process of a cathode active material and a cathode manufacturing process using the same are required again, and thus the process is complicated and lengthy.
  • phosphate-based materials or nitrogen-coated or doped carbon nanotubes are used according to the present invention, since the carbon nanotubes coat the surface of the cathode active material with excellent dispersibility, the process for coating the cathode active material (mixing, drying and heat treatment) are not required to separately perform, thereby simplifying the process.
  • the conductive material may further include a conductive material other than the carbon nanotubes of the present invention, and in this case, the additional conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery,
  • graphite such as natural graphite and artificial graphite
  • carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskeys such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the additional conductive material may be carbon black.
  • An example of the carbon black is super-p.
  • the weight ratio of the carbon nanotubes to the carbon black may be in the range of greater than 1:0 to 1:30, for example, in the range of greater than 1:0 to 1:3.
  • the conductive material is typically added in an amount of 1 to 50% by weight based on the total weight of the mixture including the cathode active material.
  • the binder is a component that assists in the binding of the active material and the conductive material and the binding to the current collector, and is typically added in an amount of 1 to 50% by weight based on the total weight of the mixture including the cathode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, poly propylene, ethylene-propylene-diether polymer (EPDM), sulfonated EPDM, styrene butyrene rubber, fluororubber, various copolymers and the like.
  • the filler is selectively used as a component that suppresses expansion of the cathode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery, and examples thereof include olefinic polymers such as polyethylene and polypropylene; Fibrous materials such as glass fibers and carbon fibers are used.
  • the present invention also provides a secondary battery including the cathode, and the secondary battery may be a lithium ion battery, a lithium ion polymer battery, or a lithium polymer battery.
  • the anode is manufactured by applying, drying, and pressing an anode active material on an anode current collector, and optionally, a conductive material, a binder, a filler, and the like as described above may be further included as needed.
  • the anode active material may be, for example, carbon such as non-graphitizing carbon or graphite-based carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me' y O z (Me: Mn, Fe, Pb, Ge; Me' : Metal composite oxides such as Al, B, P, Si, elements of groups 1, 2, and 3 of the periodic table, halogens, 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3;1 ⁇ z ⁇ 8); lithium metal; lithium alloy; silicon-based alloys; tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2 O 5 ; conductive polymers such as polyacetylene
  • the anode current collector is generally made to have a thickness of 3 to 500 ⁇ m.
  • Such an anode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, the surface of copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel.
  • a surface treated with carbon, nickel, titanium, silver, or the like, an aluminum-cadmium alloy, or the like may be used.
  • fine irregularities may be formed on the surface to enhance the binding force of the anode active material, and may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and nonwoven fabrics.
  • the separator separates the anode and the cathode and provides a passage for the movement of lithium ions.
  • a porous polymer film for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A laminated structure of two or more layers of may be used.
  • porous non-woven fabrics for example, non-woven fabrics made of high-melting glass fibers, polyethylene terephthalate fibers, and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be selectively used in a single-layer or multi-layer structure.
  • the electrolyte examples include organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes commonly used in manufacturing lithium secondary batteries.
  • the electrolyte may include a non-aqueous organic solvent and a lithium salt.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN( C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 or the like may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1M to 2.0M. When the concentration of the lithium salt is within the above range, the electrolyte has appropriate conductivity and viscosity, so excellent electrolyte performance can be exhibited, and lithium ions can move effectively.
  • the electrolyte may further contain one or more additives for the purpose of improving lifespan characteristics of a battery, suppressing a decrease in battery capacity, and improving a discharge capacity of a battery.
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack may include a power tool; electric vehicles, including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it may be used as a power source for one or more medium or large-sized devices among power storage systems.
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs);
  • PHEVs plug-in hybrid electric vehicles
  • Carbon nanotubes doped with a phosphate-based material were prepared using the apparatus shown in FIG. 1 .
  • Argon gas was used to use the flushing reactor, the deposition temperature was 700 to 1,000 ° C, the H2 flow rate was adjusted to about 1,000 to 2,000 mL / min, and the concentration of the doping source was adjusted to about 2 to 20 mg / mL.
  • the doping source here was ammonium phosphate. Under the above conditions, the preparation was performed by flowing the doping source into the reactor for 1 hour.
  • carbon nanotubes coated with a phosphate-based material were prepared. Specifically, after mixing the coating source with distilled water in a beaker, the carbon nanotubes were added, stirred for 5 minutes, and dried at 80° C. to obtain carbon nanotubes coated with a phosphate-based material (ammonium phosphate).
  • a phosphate-based material ammonium phosphate
  • Carbon nanotubes doped or coated with nitrogen were also prepared in the same manner as described in (1) and (2) above. Acetonitrile was used as a nitrogen source.
  • the carbon nanotubes prepared according to any of the above (1) to (3) were mixed with a cathode active material in an NMP solution for 20 minutes, cast on aluminum foil, and dried at 80° C. to prepare a cathode.
  • a cathode is prepared by using carbon nanotubes doped with a phosphate-based material according to the present invention as a conductive material along with super-p as an additional conductive material at a ratio of 0:4 (pristine), 1:3, and 4:0 , the SEM image of the cathode material thus prepared is shown in FIG. 3 . From FIG. 3 , it was confirmed that the carbon nanotubes doped with the phosphate-based material were distributed without aggregation on the surface of the cathode active material after preparing the cathode. In addition, it was confirmed that the higher the ratio of the carbon nanotubes doped with the phosphate-based material, the larger the amount was distributed on the surface.
  • a cathode was prepared by mixing carbon nanotubes doped with a phosphate-based material as a conductive material and super-p at various concentrations, and its XPS and cycling performance were analyzed and shown in FIG. 4 .
  • a cathode using nitrogen-doped carbon nanotubes, nitrogen-coated carbon nanotubes, and super-p was used, and its XPS and cycling performance were analyzed and shown in FIG. 5 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 포스페이트계 물질 또는 질소에 의해 도핑 또는 코팅된 탄소나노튜브 도전재를 포함하는 리튬 이차 전지용 캐소드 및 이의 제조 방법에 관한 것이다. 본 발명에 따라 포스페이트계 물질 또는 질소로 탄소나노튜브를 처리함으로써 탄소나노튜브의 분산성이 높아지고, 이에 따라 상기 탄소나노튜브를 도전재로 포함하는 캐소드 및 리튬 이차 전지의 용량이 증가할 수 있다.

Description

리튬 이차 전지용 캐소드 및 이의 제조 방법
본 발명은 리튬 이차 전지용 캐소드 및 이의 제조 방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차 전지의 수요가 급격히 증가하고 있다. 특히 최근에는 전기 자동차의 에너지까지 적용 분야가 확대되고 있으며, 이에 따라 전지의 고용량화에 대한 요구가 증가하고 있으며, 단위 체적 당 에너지 밀도가 더 높은 고밀도 전극을 제조하기 위한 방안이 활발히 연구되고 있다.
리튬 이차 전지는 충전시에는 캐소드로부터 리튬이 이온으로서 용출하여 애노드로 이동하여 흡장되고, 방전시에는 반대로 애노드로부터 캐소드로 리튬 이온이 되돌아가는 구조의 이차 전지인데, 높은 에너지 밀도는 캐소드 활물질의 전위에 기인한다.
한편, 전극 제조시에는 전극 활물질을 압축하는 과정이 필요한데 이 때 도전재를 함께 사용하면 압축된 전극 활물질 사이에 도전재가 분산되어 활물질 입자들 사이의 미세기공을 유지하여 전해액의 침투성을 향상시킬 수 있다. 또한 도전재는 전도성이 높아 전극내 저항을 감소시킬 수 있다. 최근에는 도전재로서 탄소 나노튜브(CNT), 그래핀(Graphene), 카본 블랙(Carbon Black) 등을 사용하기 위한 연구가 진행되고 있다.
미세 탄소섬유의 일종인 탄소 나노튜브는 직경 1 ㎛ 미만 굵기의 튜브형 탄소로서, 그 특이적 구조에 기인한 높은 도전성, 인장 강도 및 내열성 등으로 인해 사용이 증가하고 있는 추세이다. 그러나, 탄소 나노튜브는 서로 간의 강한 반데르발스 인력이 작용하여 쉽게 응집된다는 문제점이 있어, 용해성 및 분산성이 낮다는 문제가 있다.
본 발명의 일 목적은 분산성이 양호하고 우수한 전기 용량을 제공할 수 있는 탄소나노튜브 도전재를 포함하는 리튬 이차 전지용 캐소드를 제공하는 것이다.
본 발명의 다른 일 목적은 상기 캐소드의 제조 방법을 제공하는 것이다.
본 발명의 일 양태에 따르면, 포스페이트계 물질 또는 질소에 의해 처리된 탄소나노튜브를 포함하는 리튬 이차 전지용 캐소드가 제공된다.
본 발명의 일 구현예에 따르면, 상기 탄소나노튜브는 포스페이트계 물질에 의해 도핑된 것일 수 있다.
본 발명의 다른 일 구현예에 따르면, 상기 포스페이트계 물질의 도핑량은 탄소나노튜브에 대하여 0.1 내지 100 중량%, 예를 들어 0.1 내지 80 중량% 또는 0.1 내지 40 중량%일 수 있다.
본 발명의 다른 일 구현예에 따르면, 상기 포스페이트계 물질은 망간 포스페이트, 리튬철 포스페이트, 코발트 포스페이트, 암모늄 포스페이트, 및 리튬 포스페이트로 이루어진 군에서 선택되는 것일 수 있다.
본 발명의 다른 일 구현예에 따르면, 상기 탄소나노튜브는 포스페이트계 물질로 코팅된 것일 수 있다.
본 발명의 다른 일 구현예에 따르면, 상기 탄소나노튜브는 질소에 의해 도핑된 것일 수 있다.
본 발명의 다른 일 구현예에 따르면, 상기 질소의 도핑량은 탄소나노튜브에 대하여 0.1 내지 100 중량%, 예를 들어 0.1 내지 80 중량% 또는 0.1 내지 40 중량%일 수 있다.
본 발명의 다른 일 구현예에 따르면, 상기 질소는 우레아 및 아세토니트릴로 이루어진 군에서 선택되는 물질로부터 유래한 것일 수 있다.
본 발명의 다른 일 구현예에 따르면, 상기 탄소나노튜브는 질소로 코팅된 것일 수 있다.
본 발명의 다른 일 구현예에 따르면, 상기 캐소드는 상기 탄소나노튜브 이외에 추가의 도전재를 더 포함할 수 있다.
본 발명의 다른 일 구현예에 따르면, 상기 추가의 도전재는 카본 블랙일 수 있다.
본 발명의 다른 일 구현예에 따르면, 상기 탄소나노튜브 대 상기 카본 블랙의 중량비가 1:0 초과 내지 1:30의 범위, 예를 들어 1:0 초과 내지 1:3의 범위일 수 있다.
본 발명의 다른 일 양태에 따르면, 캐소드, 상기 캐소드에 대향하는 애노드, 및 상기 캐소드와 애노드 사이의 전해질을 포함하고, 여기서 상기 캐소드가 전술한 것임을 특징으로 하는 리튬 이차 전지가 제공된다.
본 발명의 또다른 일 양태에 따르면, (a) 포스페이트계 물질 또는 질소로 탄소나노튜브를 처리하는 단계; 및 (b) 상기 (a) 단계에서 제조한 포스페이트계 물질 또는 질소로 처리된 탄소나노튜브를 캐소드 활물질 및 바인더와 함께 혼합하는 단계를 포함하는 것을 특징으로 하는 리튬 이차 전지용 캐소드의 제조 방법이 제공된다.
본 발명의 일 구현예에 따르면, 상기 (a) 단계는 포스페이트계 물질 또는 질소로 탄소나노튜브를 도핑하는 단계이고, 상기 도핑은 로(furnace)에 탄소나노튜브를 투입한 후, 불활성 분위기 하에서 포스페이트계 물질 또는 질소의 공급원을 투입하여 300 내지 1,500℃, 예를 들어 700 내지 1,000℃에서 열처리하는 단계를 포함할 수 있다.
본 발명의 다른 일 구현예에 따르면, 상기 (a) 단계는 포스페이트계 물질 또는 질소로 탄소나노튜브를 코팅하는 단계이고, 상기 코팅은 탄소나노튜브와 포스페이트계 물질 또는 질소의 공급원을 용매 중에서 함께 혼합하는 단계를 포함할 수 있다.
본 발명에 따라 포스페이트계 물질 또는 질소로 탄소나노튜브를 처리함으로써 탄소나노튜브의 분산성이 높아지고, 캐소드 활물질의 표면에 뭉침없이 균일하게 분포하게 된다. 이에 따라 캐소드 활물질을 별도의 다른 코팅 물질로 코팅하는 공정을 생략할 수 있어 공정이 간소화될 수 있다. 또한, 상기 탄소나노튜브를 도전재로 포함하는 캐소드 및 리튬 이차 전지의 용량이 개선된다.
도 1 은 본 발명에 따라 도전재를 도핑 처리하기 위해 사용되는 장치를 개략적으로 도시한 도면이다.
도 2 는 본 발명에 따라 도전재를 코팅 처리하기 위한 방법을 도식적으로 나타낸 도면이다.
도 3 은 본 발명의 제조예에서 포스페이트계 물질로 도핑된 탄소 나노 튜브를 사용하여 제조한 캐소드 물질의 SEM 이미지이다.
도 4 에서 (a)는 캐소드 재료의 P 2p XPS 스펙트럼이고, (b)는 사이클링 성능 실험 결과이다.
도 5 에서 (a)는 캐소드 재료의 N 1s XPS 스펙트럼이고, (b)는 사이클링 성능 실험 결과이다.
이하, 본 발명에 대해 상세히 설명한다.
본 출원에서 사용한 용어는 단지 특정한 구현예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.
리튬 이차 전지는 일반적으로 캐소드, 상기 캐소드와 대향하여 위치하는 애노드, 상기 캐소드와 애노드 사이에 개재되는 분리막 및 전해질을 포함한다. 한편, 상기 리튬 이차 전지는 상기 캐소드, 애노드, 분리막으로 구성되는 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
일반적으로, 상기 캐소드는 캐소드 집전체 상에 캐소드 활물질, 도전재 및 바인더의 혼합물인 전극 합제를 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 캐소드 활물질은, 예를 들어 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 구리 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현 되는 리튬 망간 복합 산화물; LiNixMn2-xO4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 포함할 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 캐소드 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만든다. 이러한 캐소드 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 캐소드 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 도전재는 본 발명에 따른 탄소나노튜브를 포함할 수 있다. 상기 탄소나노튜브는 포스페이트계 물질 또는 질소에 의해 도핑 또는 코팅된 것일 수 있다.
본 발명의 다른 일 구현예에 따르면, 상기 포스페이트계 물질은 망간 포스페이트, 리튬철 포스페이트, 코발트 포스페이트, 암모늄 포스페이트, 및 리튬 포스페이트로 이루어진 군에서 선택되는 것일 수 있다.
본 발명의 다른 일 구현예에 따르면, 상기 질소는 우레아 및 아세토니트릴로 이루어진 군에서 선택되는 물질로부터 유래한 것일 수 있다.
상기 포스페이트계 물질 또는 질소에 의한 도핑은 로(furnace)에 탄소나노튜브를 투입한 후, 불활성 분위기, 예를 들어 H2 분위기 하에서 포스페이트계 물질 또는 질소의 공급원을 투입하여 300 내지 1,500℃, 예를 들어 700 내지 1,000℃에서 열처리하는 단계를 포함할 수 있다. 상기 도핑에 사용할 수 있는 장치의 예를 도 1에 나타내었다.
상기 포스페이트계 물질 또는 질소에 의한 코팅은 탄소나노튜브와 포스페이트계 물질 또는 질소의 공급원을 용매 중에서 함께 혼합하는 단계를 포함할 수 있다. 상기 코팅 공정에 대한 예를 도 2에 나타내었다. 도 2에 도시된 바와 같이, 코팅물질 공급원을 용매 및 탄소나노튜브와 함께 혼합, 예를 들어 교반한 후, 건조하여 코팅을 실시할 수 있다. 여기서 상기 혼합 온도는 60 내지 90℃일 수 있다. 또한, 상기 코팅물질 공급원의 양은 탄소나노튜브의 중량을 기준으로 약 0.1 내지 5 중량%의 양으로 사용될 수 있다. 상기 건조는 대략 70 내지 90℃의 온도에서 실시될 수 있으나, 반드시 이에 한정되는 것은 아니다.
포스페이트계 물질 또는 질소가 도핑 또는 코팅된 탄소나노튜브는 캐소드 활물질과 복합화될 때 캐소드 활물질의 표면상에 뭉침없이 우수한 분산성으로 분포할 수 있다. 이에 따라 캐소드 활물질의 안정성 개선 등을 목적으로 캐소드 활물질을 별도로 코팅할 필요가 없게 된다. 종래에 따르면 캐소드 활물질의 안정성 등을 위해 캐소드 활물질을 별도의 다른 코팅 물질로 코팅하였으며, 상기 코팅 공정은 코팅 물질의 혼합, 건조, 및 열처리를 수반하였다. 또한, 캐소드의 제조를 위해서는 캐소드 활물질의 코팅 공정과 이를 사용한 캐소드 제조 공정이 다시 필요하여 공정이 복잡하고 길어지는 단점이 있었다. 그러나, 본 발명에 따라 포스페이트계 물질 또는 질소가 코팅 또는 도핑된 탄소나노튜브를 사용하면 상기 탄소나노튜브가 캐소드 활물질의 표면을 우수한 분산성으로 코팅하여 주므로, 캐소드 활물질의 코팅을 위한 공정 (혼합, 건조, 및 열처리)을 별도로 수행할 필요가 없어져서 공정이 보다 간소화되게 된다.
상기 도전재는 본 발명의 탄소나노튜브 이외의 다른 도전재를 추가로 더 포함하여도 되고, 이 때 상기 추가의 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼나스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 본 발명의 일 구현예에 따르면, 상기 추가의 도전재는 카본 블랙일 수 있다. 상기 카본 블랙의 예로는 super-p가 있다. 상기 탄소나노튜브 대 상기 카본 블랙의 중량비는 1:0 초과 내지 1:30의 범위, 예를 들어 1:0 초과 내지 1:3의 범위일 수 있다.
도전재는 통상적으로 캐소드 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 캐소드 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화 비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디에테르 폴리머 (EPDM), 술폰화 EPDM, 스티렌 부티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 캐소드의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
본 발명은 또한, 상기 캐소드를 포함하는 이차전지를 제공하고, 상기 이차전지는 리튬 이온 전지, 리튬 이온 폴리머 전지, 또는 리튬 폴리머 전지일 수 있다.
애노드는 애노드 집전체 상에 애노드 활물질을 도포, 건조 및 프레싱하여 제조되며, 필요에 따라 상기에서와 같은 도전재, 바인더, 충진제 등이 선택적으로 더 포함될 수 있다.
상기 애노드 활물질은, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3 (0≤x≤1), LixWO2 (0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, 및 Bi2O5 등의 금속 산화물; 폴리아세틸렌 등 의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등을 사용할 수 있고, 상세하게는 탄소계 물질 및/또는 Si을 포함할 수 있다.
상기 애노드 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만들어진다. 이러한 애노드 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 캐소드 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 애노드 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 분리막은 애노드와 캐소드를 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차 전지에서 분리막으로서 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기 전해질로는 리튬 이차 전지 제조시 통상적으로 사용되는 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있다. 구체적으로, 상기 전해질은 비수계 유기 용매 및 리튬염을 포함할 수 있다. 상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAlO4, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용하는 것이 바람직하다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 첨가제가 1종 이상 더 포함될 수도 있다.
본 발명의 다른 일 양태에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 실시예를 참조하여 본 발명에 대해 보다 구체적으로 설명한다.
[제조예 1]
(1) 포스페이트계 물질로 도핑된 탄소나노튜브의 제조
도 1에 나타낸 장치를 사용하여 포스페이트계 물질로 도핑된 탄소나노튜브를 제조하였다. Flushing reactor를 이용하기 위해 아르곤 가스를 사용하였으며 증착 온도는 700 내지 1,000℃로 하고, H2 유속은 약 1,000 내지 2,000 mL/분으로 조절하고, 도핑 공급원의 농도는 약 2 내지 20 mg/mL이도록 조절하였다. 여기서 도핑 공급원은 암모늄 포스페이트로 하였다. 상기 조건 하에 도핑 공급원을 1시간 동안 반응기로 흘리며 제조를 진행하였다.
(2) 포스페이트계 물질로 코팅된 탄소나노튜브의 제조
도 2에 개략적으로 도시한 순서에 따라 포스페이트계 물질로 코팅된 탄소나노튜브를 제조하였다. 구체적으로, 비이커에 코팅 공급원을 증류수와 함께 넣어서 혼합한 후, 탄소나노튜브를 첨가하여 5 분간 교반하였으며 80℃에서 건조하여 포스페이트계 물질 (암모늄 포스페이트)로 코팅된 탄소나노튜브를 얻었다.
(3) 질소로 도핑 또는 코팅된 탄소나노튜브의 제조
질소로 도핑 또는 코팅된 탄소나노튜브도 상기 (1)과 (2)에서 설명한 바와 동일한 방식으로 제조하였다. 질소 공급원으로는 아세토니트릴을 사용하였다.
[제조예 2]
전술한 (1) 내지 (3) 중 임의에 따라 제조된 탄소나노튜브를 캐소드 활물질과 함께 NMP 용액 중에서 20 분 동안 혼합하고 알루미늄 포일에 캐스팅하고 80℃에서 건조하여 캐소드를 제조하였다.
도전재로서 본 발명에 따라 포스페이트계 물질로 도핑된 탄소나노튜브를 추가의 도전재로서 super-p와 함께 0:4 (pristine), 1:3, 및 4:0 의 비로 사용하여 캐소드를 제조하고, 이렇게 제조된 캐소드 재료의 SEM 이미지를 도 3에 나타내었다. 도 3으로부터 캐소드 제조후 캐소드 활물질의 표면에 포스페이트계 물질로 도핑된 탄소나노튜브가 뭉침 현상 없이 분포하는 것을 확인할 수 있었다. 또한, 포스페이트계 물질로 도핑된 탄소나노튜브의 비율이 높을수록 표면에 많은 양이 분포하는 것을 확인하였다.
[평가예 1]
도전재로서 포스페이트계 물질로 도핑된 탄소나노튜브와 super-p를 다양한 농도로 혼합하여 캐소드를 제조하고 이의 XPS 및 사이클링 성능을 분석하여 도 4에 나타내었다.
도 4의 (a) 에서 포스페이트계 물질로 도핑된 탄소나노튜브의 함량이 높아질수록 포스페이트 성분을 나타내는 피이크가 높아지는 것을 확인할 수 있다.
또한, 앞서 설명한 바와 같이 전극 제조시에 포함되는 포스페이트계 물질로 도핑된 탄소나노튜브가 활물질 표면에 균일하게 분산되었기 때문에 도 4의 (b) 에서 용량이 우수하게 나온 것으로 보인다.
위의 결과로부터 전극 제조 과정에서 포스페이트계 물질로 도핑된 탄소나노튜브를 추가하는 것만으로 탄소나노튜브에 의한 전기전도도 향상 뿐만 아니라 기존의 활물질 코팅 효과도 얻을 수 있음을 알 수 있다.
[평가예 2]
도전재로서 질소로 도핑된 탄소나노튜브, 질소로 코팅된 탄소나노튜브, super-p 를 사용하여 캐소드를 사용하고 이의 XPS 및 사이클링 성능을 분석하여 도 5에 나타내었다.
도 5의 (b)에서 질소를 코팅한 탄소나노튜브와 질소를 도핑한 탄소나노튜브를 전극 제조시에 사용한 것을 비교해 보았을 때 Super P를 사용한 pristine 과 비교시 사이클링 안정성이 향상되는 것을 확인하였다.
질소로 도핑한 탄소나노튜브(N-CNT) : Super P = 4 : 0 인 경우 가장 높은 사이클링 안정성을 갖는데 이는 탄소나노튜브의 전기전도도 효과가 더해져서 나타나는 것으로 보인다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (16)

  1. 포스페이트계 물질 또는 질소에 의해 처리된 탄소나노튜브를 포함하는 리튬 이차 전지용 캐소드.
  2. 제1항에 있어서, 상기 탄소나노튜브는 포스페이트계 물질에 의해 도핑된 것을 특징으로 하는 리튬 이차 전지용 캐소드.
  3. 제1항에 있어서, 상기 포스페이트계 물질은 망간 포스페이트, 리튬철 포스페이트, 코발트 포스페이트, 암모늄 포스페이트, 및 리튬 포스페이트로 이루어진 군에서 선택되는 것을 특징으로 하는 리튬 이차 전지용 캐소드.
  4. 제2항에 있어서, 상기 포스페이트계 물질의 도핑량은 탄소나노튜브에 대하여 0.1 내지 100 중량%인 것을 특징으로 하는 리튬 이차 전지용 캐소드.
  5. 제1항에 있어서, 상기 탄소나노튜브는 포스페이트계 물질로 코팅된 것을 특징으로 하는 리튬 이차 전지용 캐소드.
  6. 제1항에 있어서, 상기 탄소나노튜브는 질소에 의해 도핑된 것을 특징으로 하는 리튬 이차 전지용 캐소드.
  7. 제1항에 있어서, 상기 질소는 우레아 및 아세토니트릴로 이루어진 군에서 선택되는 물질로부터 유래한 것을 특징으로 하는 리튬 이차 전지용 캐소드.
  8. 제6항에 있어서, 상기 질소의 도핑량은 탄소나노튜브에 대하여 0.1 내지 100 중량%인 것을 특징으로 하는 리튬 이차 전지용 캐소드.
  9. 제1항에 있어서, 상기 탄소나노튜브는 질소로 코팅된 것을 특징으로 하는 리튬 이차 전지용 캐소드.
  10. 제1항에 있어서, 상기 탄소나노튜브 이외에 추가의 도전재를 더 포함하는 것을 특징으로 하는 리튬 이차 전지용 캐소드.
  11. 제10항에 있어서, 상기 추가의 도전재는 카본 블랙인 것을 특징으로 하는 리튬 이차 전지용 캐소드.
  12. 제11항에 있어서, 상기 탄소나노튜브 대 상기 카본 블랙의 중량비가 1:0 초과 내지 1:30의 범위인 것을 특징으로 하는 리튬 이차 전지용 캐소드.
  13. 캐소드, 상기 캐소드에 대향하는 애노드, 및 상기 캐소드와 애노드 사이의 전해질을 포함하고, 여기서 상기 캐소드가 제1항에 기재된 것임을 특징으로 하는 리튬 이차 전지.
  14. (a) 포스페이트계 물질 또는 질소로 탄소나노튜브를 처리하는 단계; 및
    (b) 상기 (a) 단계에서 제조한 포스페이트계 물질 또는 질소로 처리된 탄소나노튜브를 캐소드 활물질 및 바인더와 함께 혼합하는 단계를 포함하는 것을 특징으로 하는 리튬 이차 전지용 캐소드의 제조 방법.
  15. 제14항에 있어서, 상기 (a) 단계는 포스페이트계 물질 또는 질소로 탄소나노튜브를 도핑하는 단계이고, 상기 도핑은 로(furnace)에 탄소나노튜브를 투입한 후, 불활성 분위기 하에서 포스페이트계 물질 또는 질소의 공급원을 투입하여 300 내지 1,500℃에서 열처리하는 단계를 포함하는 것을 특징으로 하는 제조 방법.
  16. 제14항에 있어서, 상기 (a) 단계는 포스페이트계 물질 또는 질소로 탄소나노튜브를 코팅하는 단계이고, 상기 코팅은 탄소나노튜브와 포스페이트계 물질 또는 질소의 공급원을 용매 중에서 함께 혼합하는 단계를 포함하는 것을 특징으로 하는 제조 방법.
PCT/KR2022/007031 2021-05-26 2022-05-17 리튬 이차 전지용 캐소드 및 이의 제조 방법 WO2022250361A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0067825 2021-05-26
KR1020210067825A KR102624191B1 (ko) 2021-05-26 2021-05-26 리튬 이차 전지용 캐소드 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2022250361A1 true WO2022250361A1 (ko) 2022-12-01

Family

ID=84228304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007031 WO2022250361A1 (ko) 2021-05-26 2022-05-17 리튬 이차 전지용 캐소드 및 이의 제조 방법

Country Status (2)

Country Link
KR (1) KR102624191B1 (ko)
WO (1) WO2022250361A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120104749A (ko) * 2011-03-14 2012-09-24 연세대학교 산학협력단 금속인산화물/탄소나노튜브 나노복합체 및 이의 제조 방법
KR20170139761A (ko) * 2016-06-10 2017-12-20 한양대학교 산학협력단 질소가 도핑된 탄소를 함유하는 양극 활물질층 및 보호막을 구비하는 금속-황 전지용 양극, 이의 제조방법
JP2019189495A (ja) * 2018-04-26 2019-10-31 株式会社名城ナノカーボン カーボン材料
KR20200129519A (ko) * 2019-05-09 2020-11-18 주식회사 엘지화학 리튬-황 전지용 전극 및 이를 포함하는 리튬-황 전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120104749A (ko) * 2011-03-14 2012-09-24 연세대학교 산학협력단 금속인산화물/탄소나노튜브 나노복합체 및 이의 제조 방법
KR20170139761A (ko) * 2016-06-10 2017-12-20 한양대학교 산학협력단 질소가 도핑된 탄소를 함유하는 양극 활물질층 및 보호막을 구비하는 금속-황 전지용 양극, 이의 제조방법
JP2019189495A (ja) * 2018-04-26 2019-10-31 株式会社名城ナノカーボン カーボン材料
KR20200129519A (ko) * 2019-05-09 2020-11-18 주식회사 엘지화학 리튬-황 전지용 전극 및 이를 포함하는 리튬-황 전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LUO WEN-BIN, WEN LEI, ZHAI YU-CHUN, LIU CHANG, LI FENG: "Carbon nanotube-modified LiFePO 4 for high rate lithium ion batteries", NEW CARBON MATERIALS, vol. 29, no. 4, 31 August 2014 (2014-08-31), pages 287 - 294, XP093008731, DOI: 10.1016/S18725805(14)601384 *

Also Published As

Publication number Publication date
KR102624191B1 (ko) 2024-01-15
KR20220159788A (ko) 2022-12-05

Similar Documents

Publication Publication Date Title
WO2016148383A1 (ko) 다층 구조 전극 및 이를 포함하는 리튬 이차전지
WO2010079956A2 (ko) 리튬 이차전지용 양극 활물질
WO2012086939A2 (ko) 음극 활물질 및 이를 이용한 이차전지
WO2013157856A1 (ko) 다층구조 전극 및 그 제조방법
WO2013157863A1 (ko) 전극 및 이를 포함하는 이차전지
CN102136574A (zh) 阴极活性材料及包含该阴极活性材料的锂二次电池
WO2012077929A2 (ko) 음극 활물질 및 이를 이용한 이차전지
WO2014081252A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2014196777A1 (ko) 황-리튬 이온 전지용 전극 조립체 및 이를 포함하는 황-리튬 이온 전지
WO2014081249A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2015199384A1 (ko) 리튬 이차전지
WO2013157832A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2015012640A1 (ko) 에너지 밀도가 향상된 이차전지용 전극 및 이를 포함하는 리튬 이차전지
WO2012091301A2 (ko) 음극 활물질 및 이를 이용한 이차전지
WO2020013667A1 (ko) 무기 전해액을 포함하는 리튬 이차전지
WO2014081254A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2013157811A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2012111919A2 (ko) 음극 활물질의 제조방법
WO2012086940A2 (ko) 음극 활물질 및 이를 이용한 이차전지
WO2013157862A1 (ko) 전극조립체 및 이를 포함하는 리튬 이차전지
KR20080017110A (ko) 점토 광물이 코팅되어 있는 시트형 분리막 및 이를 사용한전기화학 셀
WO2019017617A1 (ko) 집전체가 없는 전극 및 이를 포함하는 이차전지
WO2013157873A1 (ko) 이차전지용 전극 및 이를 포함하는 이차전지
CN112289982B (zh) 一种正极材料及其制备方法、一种固态锂电池
WO2019103498A1 (ko) 실리콘계 입자-고분자 복합체, 및 이를 포함하는 음극 활물질

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22811554

Country of ref document: EP

Kind code of ref document: A1