WO2022250119A1 - 触媒、触媒の製造方法、及び中間品 - Google Patents
触媒、触媒の製造方法、及び中間品 Download PDFInfo
- Publication number
- WO2022250119A1 WO2022250119A1 PCT/JP2022/021635 JP2022021635W WO2022250119A1 WO 2022250119 A1 WO2022250119 A1 WO 2022250119A1 JP 2022021635 W JP2022021635 W JP 2022021635W WO 2022250119 A1 WO2022250119 A1 WO 2022250119A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- nickel
- oxide layer
- nickel oxide
- producing
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 100
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 239000013067 intermediate product Substances 0.000 title claims abstract description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 92
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 41
- 229910000480 nickel oxide Inorganic materials 0.000 claims abstract description 39
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims abstract description 20
- 229910002640 NiOOH Inorganic materials 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 238000004070 electrodeposition Methods 0.000 claims description 4
- 238000006056 electrooxidation reaction Methods 0.000 claims description 4
- 239000007772 electrode material Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 21
- 238000005868 electrolysis reaction Methods 0.000 description 17
- 238000000034 method Methods 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 15
- 239000006260 foam Substances 0.000 description 12
- 239000003792 electrolyte Substances 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000001237 Raman spectrum Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000002386 leaching Methods 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000000970 chrono-amperometry Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- -1 Hydroxide ions Chemical class 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 239000003011 anion exchange membrane Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
- C25B11/061—Metal or alloy
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/052—Electrodes comprising one or more electrocatalytic coatings on a substrate
- C25B11/053—Electrodes comprising one or more electrocatalytic coatings on a substrate characterised by multilayer electrocatalytic coatings
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
- C25B11/077—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/06—Washing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
- B01J37/348—Electrochemical processes, e.g. electrochemical deposition or anodisation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Definitions
- the present invention relates to catalysts, catalyst manufacturing methods, and intermediates.
- Catalysts using nickel are required to have higher activity and excellent durability in alkaline environments.
- An object of the present invention is to solve the above problems, and to provide a catalyst that achieves both durability and high activity, a method for producing the same, and an intermediate product suitable for producing the catalyst.
- the catalyst according to the present invention has a nickel oxide layer containing NiOOH and a layer containing NiFe in this order on a nickel substrate.
- the nickel oxide layer has a thickness of 50 to 500 nm.
- the proportion of Fe is 4-20% by mass with respect to the total amount of the catalyst.
- One embodiment of the above catalyst is an electrode material for oxygen evolution.
- the method for producing a catalyst according to the present invention has step (I) of forming a nickel oxide layer containing NiOOH on a nickel substrate.
- the step (I) includes electrochemical oxidation of a nickel base material.
- One embodiment of the method for producing the above catalyst has a step (II) of forming a layer containing NiFe on the nickel oxide layer after the step (I).
- the step (II) includes electrodeposition of Fe.
- the intermediate product according to the present invention is an intermediate product of the above catalyst, A nickel substrate and a nickel oxide layer containing NiOOH on the nickel substrate.
- the present invention solves the above problems, and provides a catalyst that achieves both durability and high activity, a method for producing the same, and an intermediate product suitable for producing the catalyst.
- FIG. 3 is a schematic cross-sectional view showing another example of the present catalyst; It is a typical sectional view showing an example of a water electrolysis device.
- 1 is a Raman spectrum of an intermediate product obtained in Example 1.
- FIG. 1 is a cross-sectional SEM image and an EDX image of the catalyst obtained in Example 1.
- FIG. 2 shows a cross-sectional SEM image and an EDX image of the catalyst obtained in Comparative Example 1.
- FIG. It is a graph which shows the measurement result of a current density. It is a graph which shows the measurement result of the current density after 12 hours. 4 is a graph showing durability evaluation results of the catalyst obtained in Example 1.
- FIG. 1 is a Raman spectrum of an intermediate product obtained in Example 1.
- FIG. 1 is a cross-sectional SEM image and an EDX image of the catalyst obtained in Example 1.
- FIG. 2 shows a cross-sectional SEM image and an EDX image of the catalyst obtained in Comparative Example 1.
- FIG. It is a graph
- the catalyst according to the present invention (hereinafter also simply referred to as the present catalyst), the method for producing the catalyst, and the intermediate product will be described in detail below.
- "-" indicating a numerical range means that the numerical values described before and after it are included as the lower limit and the upper limit.
- the following description and drawings have been simplified where appropriate. Matters necessary for carrying out the present invention, which are not specifically mentioned in this specification, can be grasped as design matters by those skilled in the art based on the prior art in the relevant field.
- FIG. 1 and 2 are schematic cross-sectional views of the catalyst.
- the nickel base 31 is a plate-like base, and the nickel base 31 has a nickel oxide layer 32 containing NiOOH and a layer 33 containing NiFe in this order. is doing.
- the nickel base material 41 is a porous base material, and the nickel oxide layer 42 containing NiOOH and the layer 43 containing NiFe are formed on the nickel base material 41 . have in order.
- the porous inner surface also has the layer configuration described above.
- the shape of the nickel substrates 31 and 41 can be appropriately selected according to the use of the present catalyst.
- Examples of the shape of the substrate include plate-like, film-like, wire-like, fibrous, porous, foam-like (bubble-like), felt (nonwoven fabric)-like, and mesh-like.
- the nickel base material may contain other elements as long as the effects of the present invention are exhibited.
- Nickel substrates are preferably nickel foams.
- the thickness of the nickel substrate is preferably 100-2000 ⁇ m, more preferably 200-1600 ⁇ m. If the thickness is 100 ⁇ m or more, the catalyst becomes more excellent in durability and activity.
- the nickel oxide layers 32 and 42 are characterized by containing NiOOH. Since the present catalyst has the nickel oxide layer, it is more excellent in durability and activity than a catalyst in which a layer containing NiFe is formed directly on a nickel substrate.
- the nickel oxide layer should contain at least NiOOH, and may further contain other nickel oxides as long as the effects of the present invention are exhibited.
- Other nickel oxides include, for example, NiO, Ni 2 O 3 and the like.
- the proportion of NiOOH in the nickel oxide layer is preferably 50% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more with respect to 100% by mass of the nickel oxide layer.
- the thickness of the nickel oxide layer in the present catalyst is preferably 50-500 nm, more preferably 100-400 nm. If the nickel oxide layer is 50 nm or more, a catalyst with excellent durability and activity can be obtained. A sufficient effect can be obtained when the thickness of the nickel oxide layer is 500 nm or less.
- the present catalyst has a layer containing NiFe on the nickel oxide layer.
- the proportion of Fe in the present catalyst is preferably 4 to 20% by mass with respect to the total amount of the catalyst including the nickel base material. If Fe is 4% by mass or more, a catalyst with excellent durability and activity can be obtained. Moreover, a sufficient effect can be obtained when Fe is 20% by mass or less.
- each layer can be measured by mapping with a scanning electron microscope (SEM) and an energy dispersive X-ray analyzer (EDX). Also, the composition of each layer can be measured by X-ray photoelectron spectroscopy (XPS).
- SEM scanning electron microscope
- EDX energy dispersive X-ray analyzer
- XPS X-ray photoelectron spectroscopy
- This manufacturing method is characterized by having a step (I) of forming a nickel oxide layer containing NiOOH on a nickel substrate. According to this manufacturing method, by forming a nickel oxide layer containing NiOOH on a nickel substrate, the formation of the layer containing NiFe is facilitated and the leaching of the layer containing NiFe is suppressed.
- Examples of methods for forming a nickel oxide layer on a nickel substrate include a method of spraying NiOOH particles by an aerosol deposition method or the like, and a method of oxidizing the surface of the nickel substrate.
- the nickel base material is a porous base material such as foam
- the method of oxidizing the base material surface is preferable because a nickel oxide layer is easily formed on the inner surface. Electrochemical oxidation is preferred as the method for oxidizing the substrate surface.
- Electrochemical oxidation includes, for example, a method in which a nickel base material having a desired shape is first prepared, the nickel base material is immersed in an alkaline electrolyte or the like, and a voltage is applied to oxidize the nickel base material.
- the nickel base material may be produced by a known method, or a commercially available product may be used.
- acid treatment may be performed as necessary.
- the thickness of the nickel oxide layer can be adjusted by adjusting the voltage application time.
- the formation of the nickel oxide layer can be confirmed by Raman spectrum or the like.
- the intermediate product obtained through step (I) is a novel intermediate product having a nickel base material and a nickel oxide layer containing NiOOH on the nickel base material, and is suitable for the production of the present catalyst. is.
- Each structure of the intermediate product is the same as that of the main catalyst except for the layer containing NiFe, so the description is omitted here.
- step (II) of forming a layer containing NiFe on the nickel oxide layer.
- Methods of forming a layer containing NiFe on a nickel oxide layer include, for example, a method of spraying NiFe particles by an aerosol deposition method or the like, and a method of electrodepositing Fe.
- the nickel substrate is a porous substrate such as a foam
- the method of electrodepositing Fe is preferable because a layer containing NiFe can be easily formed on the inner surface.
- Electrodeposition of Fe includes, for example, a method of electrodeposition by immersing the intermediate product in an electrolytic solution containing Fe 2+ and applying a voltage. By adjusting the voltage application time, the thickness of the layer containing NiFe and the proportion of Fe in the present catalyst can be adjusted.
- the present catalyst can be produced by the above method.
- the present catalyst can be suitably used as an electrode material for generating oxygen.
- An example of a water electrolysis device using the present catalyst will be described.
- FIG. 3 is a schematic cross-sectional view showing an example of a water electrolysis device.
- the anode 10 has an anode catalyst 11 and a first diffusion layer 12 arranged in this order from the electrolyte membrane 5 side
- the cathode 20 has a cathode catalyst 21 and a second diffusion layer 22 arranged in this order from the electrolyte membrane 5 side.
- a cell 6 is further provided with separators 13 and 23 outside the anode 10 and the cathode 20, respectively.
- the water electrolysis device 1 may have a single cell 6 or a stack of a plurality of cells 6 .
- the water supply unit may supply water to at least one of the cathode and the anode.
- an anion conductive membrane is used as the electrolyte membrane 5 .
- a voltage is applied to both electrodes while supplying water or an alkaline aqueous solution to the cathode 20 side, the following reaction occurs on the cathode 20 side to generate hydrogen gas.
- 2H 2 O+2e ⁇ ⁇ 2OH ⁇ +H 2 Hydroxide ions (OH ⁇ ) pass through the anion-conducting membrane and move to the anode 10 .
- the following reaction occurs at the anode 10 to generate oxygen gas.
- the generated hydrogen and oxygen are discharged from the cell 6 through gas channels 14 and 24 provided in the separators 13 and 23, respectively.
- the gas flow path is connected, for example, to a storage tank or the like via a gas-liquid separator (not shown), and the hydrogen and oxygen are each stored in the storage tank or the like after water is separated by the gas-liquid separator. be.
- the power source 7 can be appropriately selected from known DC power sources, but renewable energy such as solar power generation and wind power generation, which fluctuate greatly, can also be suitably used.
- Example 1 Production of the present catalyst
- a commercially available Ni foam was uniformly pressed to a thickness of 200 ⁇ m.
- the Ni foam was cut into 1 cm 2 , acid treated with HCl, washed with ethanol and water.
- the Ni foam was then immersed in 1 M KOH, 2.5 V vs RHE was applied for 1 min using a 10 cm 2 Ni foam counter electrode, Hg/HgO reference electrode, to oxidize the Ni foam surface to include NiOOH.
- a nickel oxide layer was formed to obtain an intermediate product.
- the nickel oxide layer containing NiOOH was confirmed by Raman spectrum (see FIG. 4).
- the above intermediate product was immersed in an electrolytic solution containing 25 mM Fe 2+ , (NH 4 ) 2 SO 4 , H 2 SO 4 and water, adjusted to pH 3 or less, degassed with N 2 , and coated with a Pt counter electrode. Then, using an Ag/AgCl reference electrode, Fe was electrodeposited by the chronoamperometry method to obtain the catalyst of Example 1. The obtained catalyst was observed by SEM and EDX, and it was confirmed that the nickel oxide layer had a thickness of about 250 nm (see FIG. 5).
- Comparative Example 3 As the catalyst of Comparative Example 3, a Ni foam pressed to a thickness of 200 ⁇ m was cut into 1 cm 2 pieces, acid-treated with HCl, and washed with ethanol and water.
- the catalyst of Example 1 achieved a current density of 10 mA/cm 2 at a voltage of 1.47 V, compared to 1.49 V for Comparative Example 1, 1.49 V for Comparative Example 2, Comparative Example 3 was 1.56V.
- FIG. 8 shows the results of measuring the current density of the catalysts of Example 1 and Comparative Example 1 after applying a constant current of 10 mA/cm 2 for 12 hours.
- Table 1 shows the results of measuring the concentration of iron and nickel before and after applying a constant current for 12 hours by EDX.
- FIG . 9 shows the measurement results of the current density of the catalyst in FIG.
- the catalyst of Comparative Example 1 required a higher voltage to achieve a current density of 10 mA/cm 2 after 12 hours.
- the catalyst of Example 1 showed almost no change in the voltage required to achieve a current density of 10 mA/cm 2 , indicating high durability.
- the mass concentration of iron in the catalyst of Comparative Example 1 decreased significantly after 12 hours, and leaching of iron was confirmed.
- this catalyst which has a nickel oxide layer containing NiOOH and a layer containing NiFe in this order on a nickel substrate, has high activity and excellent durability.
- 1 water electrolysis device, 5: electrolyte membrane, 6: cell, 7: power supply, 8: membrane electrode assembly, 10: anode (anode electrode), 11: anode catalyst, 12: first diffusion layer, 13: separator , 14: gas channel, 20: cathode (cathode electrode), 21: cathode catalyst, 22: second diffusion layer, 23: separator, 24: gas channel, 31, 41: nickel substrate, 32, 42: nickel oxide layer, 33, 43: layer containing NiFe, 100, 200: catalyst
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Catalysts (AREA)
Abstract
Description
固体アルカリ水電解に用いる触媒としては、従来、白金等の貴金属が用いられていた。一方、低コスト化等の観点から貴金属を使用しない触媒が求められており、一例としてニッケルを用いた触媒が検討されている(例えば特許文献1、2)。
ニッケル基材と、当該ニッケル基材上に、NiOOHを含む酸化ニッケル層を有する。
なお、本発明において数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。また、本明細書において特に言及していない本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。
まず図1及び図2を参照して、本触媒を説明する。図1及び図2は触媒の模式的な断面図である。図1の例に示す触媒100は、ニッケル基材31が板状の基材であり、当該ニッケル基材31上に、NiOOHを含む酸化ニッケル層32と、NiFeを含む層33とをこの順に有している。
また、図2の例に示す触媒200は、ニッケル基材41が多孔質の基材であり、当該ニッケル基材41上に、NiOOHを含む酸化ニッケル層42と、NiFeを含む層43とをこの順に有している。図2の例では、多孔質の内側表面も上記の層構成を有している。
本触媒は上記層構成を有することで、ニッケル基材を用いながらアルカリ環境下における耐久性と高活性とを両立する。
なお、ニッケル基材は、本発明の効果を奏する範囲で他の元素を含んでいてもよい。
ニッケル基材はニッケルフォームが好ましい。またニッケル基材の厚みは、100~2000μmが好ましく、200~1600μmがより好ましい。当該厚みが100μm以上であれば、耐久性と活性により優れた触媒となる。
酸化ニッケル層中のNiOOHの割合は、酸化ニッケル層100質量%に対し、50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上が更に好ましい。
本触媒中のFeの割合は、ニッケル基材を含む触媒全量に対して4~20質量%であることが好ましい。Feが4質量%以上であれば、耐久性と活性により優れた触媒を得ることができる。また、Feが20質量%以下で十分な効果が得られる。
次に上記触媒の製造方法(以下、本製造方法とも言う)について説明する。
本製造方法は、ニッケル基材上に、NiOOHを含む酸化ニッケル層を形成する工程(I)を有することを特徴とする。本製造方法によれば、ニッケル基材上にNiOOHを含む酸化ニッケル層を形成することで、NiFeを含む層の形成を容易とし、且つ、NiFeを含む層の浸出が抑制される。
なお、酸化ニッケル層の形成はラマンスペクトルなどにより確認することができる。
酸化ニッケル層上にNiFeを含む層を形成する方法としては、例えば、NiFeの粒子をエアロゾルデポジション法などにより噴射して形成する方法や、Feを電着する方法などが挙げられる。ニッケル基材がフォーム状など多孔質の基材の場合、内部表面にNiFeを含む層を形成しやすい点からFeを電着する方法が好ましい。
上記アノード触媒11として本触媒を用いることで、水電解装置としての耐久性が向上する。
2H2O+2e-→2OH-+H2
水酸化物イオン(OH-)は、アニオン伝導膜を透過して陽極10に移動する。陽極10では下記の反応が起こり、酸素ガスが発生する。
2OH-→H2O+1/2O2+2e-
発生した水素及び酸素は、各々セパレータ13及び23に設けられたガス流路14、24を通じてセル6から排出される。ガス流路は、例えば、図示しない気液分離器を介して貯蔵用タンク等に接続され、水素及び酸素は、各々、気液分離器で水が分離された後、貯蔵用タンク等に収容される。
市販のNiフォームを厚さ200μmとなるように均一にプレスした。当該Niフォームを1cm2に切断し、HClで酸処理し、エタノール及び水で洗浄した。次いで、当該Niフォームを1M KOHに浸漬し、10cm2のNiフォーム対向電極、Hg/HgO参照電極を用い、2.5V vs RHEを1分間印加して、Niフォーム表面を酸化し、NiOOHを含む酸化ニッケル層を形成し中間品を得た。なお、NiOOHを含む酸化ニッケル層はラマンスペクトルにより確認した(図4参照)。
得られた触媒を、SEM及びEDXで観察し、酸化ニッケル層の厚みが約250nmであることを確認した(図5参照)。
市販のNiフォームを厚さ200μmとなるように均一にプレスした。当該Niフォームを1cm2に切断し、HClで酸処理し、エタノール及び水で洗浄した。次いで、当該Niフォームを、25mM Fe2+と、(NH4)2SO4とH2SO4と水を含み、pHを3以下に調整し、N2で脱気した電解液に浸漬し、Pt対向電極と、Ag/AgCl参照電極を用いて、クロノアンペロメトリー法によりFeを電着し、比較例1の触媒を得た。
得られた触媒を、SEM及びEDXで観察した(図6参照)。
比較例2の触媒として、前記実施例1で得られた中間品を用いた。
また比較例3の触媒として、厚さ200μmとなるようにプレスしたNiフォームを1cm2に切断し、HClで酸処理し、エタノール及び水で洗浄したものを用いた。
実施例1及び比較例1~3の触媒に対し、電圧をかけて、電流密度を測定した。結果を図7に示す。
以下の電気化学反応は、三電極電気化学セルで実施した。作用電極として上記実施例および比較例で製造した1cm2の触媒を用い、対電極として18cm2のPt箔を用い、参照電極としてHg/HgO参照電極を用いた。測定した電位値は、可逆水素電極(RHE)に変換した。電解液は1M KOHを使用した。ボルタンメトリー分析は、触媒の酸素発生反応(OER)活性を測定するために、10mV/秒の掃引速度で実施した。最初のOER活性分析の後、触媒のOER安定性は、10mA/cm2で24時間定電流電解を実施することで評価した。ボルタンメトリー応答を使用して、最初の12時間後および電気分解の終了時に触媒のOER活性をチェックした。
10mA/cm2で24時間の電気分解後に安定したOER活性を示した実施例1の触媒の安定性は、更に50mA/cm2で20時間電気分解を行うことによって評価を行った。電気分解後、ボルタンメトリー応答を行って、触媒のOER活性をチェックした。
実施例1及び比較例1の触媒について、10mA/cm2の定電流を12時間かけた後の電流密度を測定した結果を図8に示す。またEDXにより、定電流を12時間かけた前後の鉄及びニッケルの濃度を測定した結果を表1に示す。
更に、図9には、図1の触媒の初期、10mA/cm2で24時間の電気分解後、50mA/cm2で20時間電気分解の電流密度の測定結果を示す。
また、表1に示すとおり比較例1の触媒は12時間経過後に鉄の質量濃度が大幅に低下しており、鉄の浸出が確認された。
31,41:ニッケル基材、32,42:酸化ニッケル層、33,43:NiFeを含む層、100,200:触媒
Claims (9)
- ニッケル基材上に、NiOOHを含む酸化ニッケル層と、NiFeを含む層と、をこの順に有する、触媒。
- 前記酸化ニッケル層の厚みが、50~500nmである、請求項1に記載の触媒。
- Feの割合が、触媒全量に対し4~20質量%である、請求項1又は2に記載の触媒。
- 酸素発生用の電極材料である、請求項1~3のいずれか一項に記載の触媒。
- 請求項1~4のいずれか一項に記載の触媒の製造方法であって、
ニッケル基材上に、NiOOHを含む酸化ニッケル層を形成する工程(I)を有する、触媒の製造方法。 - 前記工程(I)が、ニッケル基材の電気化学的酸化を含む、請求項5に記載の触媒の製造方法。
- 前記工程(I)の後、酸化ニッケル層上にNiFeを含む層を形成する工程(II)を有する、請求項5又は6に記載の触媒の製造方法。
- 前記工程(II)が、Feの電着を含む、請求項7に記載の触媒の製造方法。
- 請求項1~4のいずれか一項に記載の触媒の中間品であって、
ニッケル基材と、当該ニッケル基材上に、NiOOHを含む酸化ニッケル層を有する、中間品。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023524232A JPWO2022250119A1 (ja) | 2021-05-26 | 2022-05-26 | |
CN202280037284.4A CN117412810A (zh) | 2021-05-26 | 2022-05-26 | 催化剂、催化剂的制造方法及中间品 |
EP22811387.4A EP4349480A1 (en) | 2021-05-26 | 2022-05-26 | Catalyst, method for producing catalyst, and intermediate product |
US18/563,472 US20240254639A1 (en) | 2021-05-26 | 2022-05-26 | Catalyst, method for producing catalyst, and intermediate product |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021088162 | 2021-05-26 | ||
JP2021-088162 | 2021-05-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022250119A1 true WO2022250119A1 (ja) | 2022-12-01 |
Family
ID=84228929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/021635 WO2022250119A1 (ja) | 2021-05-26 | 2022-05-26 | 触媒、触媒の製造方法、及び中間品 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240254639A1 (ja) |
EP (1) | EP4349480A1 (ja) |
JP (1) | JPWO2022250119A1 (ja) |
CN (1) | CN117412810A (ja) |
WO (1) | WO2022250119A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57116785A (en) * | 1980-11-24 | 1982-07-20 | Mpd Technology | Electrode for generating gas from alkaline electrolyte and production thereof |
JPS61500671A (ja) * | 1983-12-12 | 1986-04-10 | ザ ダウ ケミカル カンパニ− | 酸化ニッケルヒドロキシド電極の製造 |
JP2019505361A (ja) * | 2015-11-30 | 2019-02-28 | ニューサウス イノベーションズ ピーティーワイ リミテッド | 触媒活性を向上させる方法 |
JP2019034256A (ja) | 2017-08-10 | 2019-03-07 | 国立研究開発法人物質・材料研究機構 | 水素製造用触媒、その製造方法、および、それを用いた水素製造装置 |
CN110479281A (zh) * | 2019-08-12 | 2019-11-22 | 广西师范大学 | 一种基于FeOOH-NiOOH/NF电催化剂及制备方法 |
JP2020179327A (ja) | 2019-04-24 | 2020-11-05 | 時空化学株式会社 | Voc除去用触媒の製造方法、voc除去用触媒及びvoc除去方法 |
US10975482B1 (en) * | 2020-02-27 | 2021-04-13 | Haiming Li | Self-derivative iron-containing nickel anode for water electrolysis |
JP2021088162A (ja) | 2019-12-06 | 2021-06-10 | 株式会社ミマキエンジニアリング | 印刷物製造システムおよび印刷物製造方法 |
-
2022
- 2022-05-26 EP EP22811387.4A patent/EP4349480A1/en active Pending
- 2022-05-26 WO PCT/JP2022/021635 patent/WO2022250119A1/ja active Application Filing
- 2022-05-26 US US18/563,472 patent/US20240254639A1/en active Pending
- 2022-05-26 JP JP2023524232A patent/JPWO2022250119A1/ja active Pending
- 2022-05-26 CN CN202280037284.4A patent/CN117412810A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57116785A (en) * | 1980-11-24 | 1982-07-20 | Mpd Technology | Electrode for generating gas from alkaline electrolyte and production thereof |
JPS61500671A (ja) * | 1983-12-12 | 1986-04-10 | ザ ダウ ケミカル カンパニ− | 酸化ニッケルヒドロキシド電極の製造 |
JP2019505361A (ja) * | 2015-11-30 | 2019-02-28 | ニューサウス イノベーションズ ピーティーワイ リミテッド | 触媒活性を向上させる方法 |
JP2019034256A (ja) | 2017-08-10 | 2019-03-07 | 国立研究開発法人物質・材料研究機構 | 水素製造用触媒、その製造方法、および、それを用いた水素製造装置 |
JP2020179327A (ja) | 2019-04-24 | 2020-11-05 | 時空化学株式会社 | Voc除去用触媒の製造方法、voc除去用触媒及びvoc除去方法 |
CN110479281A (zh) * | 2019-08-12 | 2019-11-22 | 广西师范大学 | 一种基于FeOOH-NiOOH/NF电催化剂及制备方法 |
JP2021088162A (ja) | 2019-12-06 | 2021-06-10 | 株式会社ミマキエンジニアリング | 印刷物製造システムおよび印刷物製造方法 |
US10975482B1 (en) * | 2020-02-27 | 2021-04-13 | Haiming Li | Self-derivative iron-containing nickel anode for water electrolysis |
Also Published As
Publication number | Publication date |
---|---|
US20240254639A1 (en) | 2024-08-01 |
CN117412810A (zh) | 2024-01-16 |
EP4349480A1 (en) | 2024-04-10 |
JPWO2022250119A1 (ja) | 2022-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7029420B2 (ja) | 二酸化炭素電解セル用電極触媒層、ならびにそれを具備する、電解セルおよび二酸化炭素電解用電解装置 | |
Wang et al. | Porous Ni2P nanoflower supported on nickel foam as an efficient three-dimensional electrode for urea electro-oxidation in alkaline medium | |
US11913125B2 (en) | Trimetallic layered double hydroxide composition | |
KR102200474B1 (ko) | 양기능성 수전해용 전극촉매 및 그 제조방법, 그리고, 상기 전극 촉매를 포함하는 수전해 전지 | |
JP2002100373A (ja) | 燃料電池用触媒化多孔性炭素電極製造方法 | |
JP7413304B2 (ja) | 二酸化炭素電解装置 | |
Park et al. | Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis | |
CN109852992A (zh) | 一种高效电催化全分解水纳米片阵列电极及其制备方法和应用 | |
EP3040449B1 (en) | Electrochemical reduction device | |
KR20200141015A (ko) | 양기능성 수전해용 전극촉매 및 그 제조방법, 그리고, 상기 전극 촉매를 포함하는 수전해 전지 | |
Yasutake et al. | Ru-core Ir-shell electrocatalysts deposited on a surface-modified Ti-based porous transport layer for polymer electrolyte membrane water electrolysis | |
KR101860763B1 (ko) | 비귀금속계 전기화학 촉매, 이를 이용한 프로톤 교환 막 물 전해 장치 및 그 제조 방법 | |
WO2022250119A1 (ja) | 触媒、触媒の製造方法、及び中間品 | |
CN114807967B (zh) | 一种Ir修饰的Ni/NiO多孔纳米棒阵列全解水催化剂的制备方法 | |
WO2022244644A1 (ja) | 水電解セル用アノードガス拡散層、水電解セル、及び水電解装置 | |
EP3040448A1 (en) | Electrochemical reduction device | |
KR102266601B1 (ko) | 복합 금속 산화물 촉매를 포함하는 수전해전극의 제조방법 | |
US20210198795A1 (en) | Artificial lung for electrocatalysis | |
Ma et al. | Performance of PdRu/C anode catalyst for anion-exchange membrane direct ethanol fuel cell | |
WO2022250122A1 (ja) | 触媒の製造方法、及び触媒 | |
WO2022250120A1 (ja) | 触媒、及び触媒の製造方法 | |
CN116103693B (zh) | 一种析氢电极及其制备方法和在电解水制氢中的应用 | |
Fuku et al. | The Potential Role of Electrocatalysts in Electrofuel Generation and Fuel Cell Application | |
JP7477126B2 (ja) | イリジウム-マンガン酸化物複合材料、イリジウム-マンガン酸化物複合電極材料、及びこれらの製造方法 | |
KR102724065B1 (ko) | 삼중금속 층상 이중 수산화물 조성물 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22811387 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18563472 Country of ref document: US Ref document number: 2023524232 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280037284.4 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317085046 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022811387 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022811387 Country of ref document: EP Effective date: 20240102 |