WO2022250043A1 - 色検出装置 - Google Patents
色検出装置 Download PDFInfo
- Publication number
- WO2022250043A1 WO2022250043A1 PCT/JP2022/021217 JP2022021217W WO2022250043A1 WO 2022250043 A1 WO2022250043 A1 WO 2022250043A1 JP 2022021217 W JP2022021217 W JP 2022021217W WO 2022250043 A1 WO2022250043 A1 WO 2022250043A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- color
- measurement object
- detection value
- component detection
- value
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 107
- 238000005259 measurement Methods 0.000 claims abstract description 100
- 238000006243 chemical reaction Methods 0.000 claims abstract description 29
- 239000000758 substrate Substances 0.000 claims description 18
- 239000003086 colorant Substances 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- DFUSDJMZWQVQSF-XLGIIRLISA-N (2r)-2-methyl-2-[(4r,8r)-4,8,12-trimethyltridecyl]-3,4-dihydrochromen-6-ol Chemical compound OC1=CC=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1 DFUSDJMZWQVQSF-XLGIIRLISA-N 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/50—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
- G01J3/51—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
- G01J3/513—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters having fixed filter-detector pairs
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/251—Colorimeters; Construction thereof
Definitions
- the invention disclosed in this specification relates to a color detection device.
- Patent Document 1 a color sensor that detects color components (RGB) of light is known (for example, Patent Document 1).
- the object of the invention disclosed in this specification is to provide a color detection device that can effectively detect the color of an object using a color sensor.
- the color detection device disclosed herein a light source that irradiates the object to be measured with white light; A color sensor that receives the reflected light reflected by the measurement object and outputs an R (red) component detection value, a G (green) component detection value, and a B (blue) component detection value, each of which is a first predetermined bit.
- the R component detection value output from the color sensor based on the maximum value of each of the R component detection value, the G component detection value, and the B component detection value previously measured by the color sensor for a plurality of types of measurement objects; and a conversion unit that converts each of the G component detection value and the B component detection value into a detection value of a second predetermined bit whose number of bits is smaller than that of the first predetermined bit.
- FIG. 1 is a diagram showing a configuration example of a color detection device.
- FIG. 2 is a diagram showing a configuration example of a color sensor.
- FIG. 3 is a diagram showing an example of the positional relationship of the object to be measured with respect to the substrate (viewed in a direction parallel to the substrate surface).
- FIG. 4 is a diagram showing an example of the positional relationship of the object to be measured with respect to the substrate (viewed in a direction perpendicular to the substrate surface).
- FIG. 5 is a table showing an example result of 8-bit conversion of RGB component detection values.
- FIG. 6A is a graph showing the R (Red)-G (Green) correspondence relationship of the detected values after conversion shown in FIG.
- FIG. 6A is a graph showing the R (Red)-G (Green) correspondence relationship of the detected values after conversion shown in FIG.
- FIG. 6B is a graph showing the GB (Blue) correspondence relationship of the detected values after conversion shown in FIG.
- FIG. 6C is a graph showing the BR correspondence of the detected values after conversion shown in FIG.
- FIG. 7 is a table showing another result example of 8-bit conversion of RGB component detection values.
- FIG. 8A is a graph showing the RG correspondence of the detected values after conversion shown in FIG.
- FIG. 8B is a graph showing the GB correspondence relationship of the detected values after conversion shown in FIG.
- FIG. 8C is a graph showing the BR correspondence of the detected values after conversion shown in FIG.
- FIG. 9 is a diagram showing a schematic configuration example of an image forming apparatus.
- FIG. 1 is a diagram showing a configuration example of a color detection device.
- the color detection device 8 has a substrate 4, a color sensor 5, a white LED 6, a control section 7, a switch SW, and a resistor R.
- Color sensor 5 , white LED 6 , switch SW, and resistor R are mounted on substrate 4 .
- the control unit 7 is, for example, a microcomputer. Power is supplied to each part of the color detection device 8 from the power supply voltage VCC.
- the white LED 6 is a chip LED that emits white light.
- the switch SW and the resistor R are arranged on a path through which a current flows to the white LED 6 by the power supply voltage VCC.
- the switch SW is controlled to be turned on/off by the controller 7 .
- Light emission/extinction of the white LED 6 can be switched by turning on/off the switch SW.
- the resistor R limits the current flowing through the white LED 6 and adjusts the amount of white light.
- the color sensor 5 is a sensor IC that can detect color components of light. Specifically, the color components are an R component (red component), a G component (green component), and a B component (blue component).
- the white LED 6 emits white light.
- the white LED 6 irradiates the object to be measured with white light.
- the color sensor 5 receives light reflected by the object to be measured and detects color components.
- the color sensor 5 outputs the detected color components to the controller 7 as digital data.
- Digital data output from the color sensor 5 is, for example, 16-bit data.
- the control unit 7 converts each detection value of RGB components of 16-bit data acquired from the color sensor 5 into 8-bit data, for example.
- FIG. 2 is a diagram showing a configuration example of the color sensor 5.
- the color sensor 5 shown in FIG. 2 includes light receiving elements 51A, 51B, 51C, ADCs (AD converters) 52A, 52B, 52C, a logic circuit 53, an infrared blocking filter 54, a red light transmitting filter 55A, and a green light It has a transmission filter 55B and a blue light transmission filter 55C.
- ADCs AD converters
- the light receiving element 51A generates an analog current signal corresponding to the amount of red light incident through the infrared cutoff filter 54 and the red light transmission filter 55A. That is, the light receiving element 51A detects the R component (red component) of the input light.
- the light receiving element 51B generates an analog current signal corresponding to the amount of green light incident through the infrared cutoff filter 54 and the green light transmission filter 55B. That is, the light receiving element 51B detects the G component (green component) of the input light.
- the light receiving element 51C generates an analog current signal corresponding to the amount of blue light incident through the infrared cutoff filter 54 and the blue light transmission filter 55C. That is, the light receiving element 51C detects the B component (blue component) of the input light.
- a photodiode, a phototransistor, or the like can be preferably used as each of the light receiving elements 51A, 51B, and 51C.
- the ADCs 52A, 52B, 52C convert the analog current signals from the light receiving elements 51A, 51B, 51C into, for example, 16-bit digital data and output them.
- the infrared cutoff filter 54 cuts off the infrared component IR contained in the input light on the upstream side of each of the red light transmission filter 55A, the green light transmission filter 55B, and the blue light transmission filter 55C. By providing such an infrared cutoff filter 54, the RGB components can be detected with high accuracy.
- the logic circuit 53 sends digital data as RGB component detection signals output from the ADCs 52A, 52B, and 52C to the control unit 7 by I2C communication.
- Position of object to be measured> 3 and 4 are diagrams showing an example of the positional relationship of the measurement object 3 with respect to the substrate 4.
- FIG. 3 is a diagram of a state in which the measurement object 3 is viewed in the direction X parallel to the substrate surface of the substrate 4 .
- FIG. 4 is a diagram of a state viewed in a direction Y perpendicular to the substrate surface of the substrate 4 (hereinafter simply referred to as the vertical direction).
- the measurement object 3 is composed of a first measurement object 31 and a second measurement object 32 .
- the first measurement object 31 can take various colors as opposed to the second measurement object 32 of a predetermined color.
- the color detection device 8 aims to detect the color of the first measurement object 31 among the measurement objects 3 .
- the positional relationship, shape, etc. of the first measurement object 31 and the second measurement object 32 are not limited to those shown in FIGS.
- the plane of the white LED 6 projected onto the measurement object 3 in the vertical direction overlaps the first measurement object 31 .
- the white LED 6 irradiates the first measurement object 31 with white light, and the reflected light from the first measurement object 31 can be received by the color sensor 5 .
- the plane of the white LED 6 projected onto the measuring object 3 in the vertical direction also overlaps with the second measuring object 32 . Thereby, the white light from the white LED 6 is also irradiated to the second measurement object 32 , and the reflected light from the second measurement object 32 is received by the color sensor 5 .
- the color detection of the first measurement object 31 by the color sensor 5 is performed taking into account the color of the second measurement object 32 as well.
- the plane of the white LED 6 projected onto the measuring object 3 in the vertical direction may overlap only the first measuring object 31 of the measuring object 3 .
- the second measurement object 32 is not a measurement object, but corresponds to a part other than the first measurement object 31, and only the first measurement object 31 among the first measurement object 31 and the above-mentioned parts emits white light. be irradiated.
- the resistance R can be used to limit and adjust the amount of light emitted from the white LED 6 .
- the resistor R may be a variable resistor.
- the distance L2 in the direction along the substrate surface between the white LED 6 and the color sensor 5 shown in FIG. A wall may be provided between the white LED 6 and the color sensor 5 to shield the white light.
- Color detection method a color detection method by the color detection device 8 will be described.
- the first measurement objects 31 having various colors are prepared in advance, each first measurement object 31 is irradiated with white light by a white LED, the reflected light is received by a color sensor, and the RGB components are detected by the color sensor. is detected.
- FIG. 5 shows, as an example, the results of color component detection by the color sensor for each first measurement object 31 prepared as described above with the first measurement objects 31 having colors A to N.
- “Color sensor values” shown in FIG. 5 indicate detected RGB component values for each first measurement object 31 .
- Each of the RGB component detection values is a 16-bit (0 to 65535) value.
- the "color sensor value” shown in FIG. 5 is a value that takes into consideration the color of the second measurement object 32 in addition to the first measurement object 31, as described above.
- the maximum value for each RGB component of the RGB component detection values measured in advance by the color sensor is obtained.
- the obtained maximum values for each of the RGB components are pre-stored in the controller 7 .
- the control unit 7 causes the white LED 6 to irradiate the first measurement object 31 with white light, causes the color sensor 5 to receive the reflected light from the first measurement object 31, and detects the RGB components. Then, the control unit 7 converts the RGB component detection values (16-bit digital data for each component) output from the color sensor 5 into 8-bit data for each RGB component. At this time, it is assumed that the maximum value of each component corresponds to 255, which is the maximum value of 8 bits. Convert to bit value. That is, conversion of the detection value to 8 bits is performed based on the following equation (1).
- DET*(8bit) 255 ⁇ (DET*(16bit)/MAX*) (1)
- the maximum values of the RGB components detected by the color sensor 5 are "2100", “5150”, and "2710".
- FIG. 5 shows values converted into 8-bit detection values for each first measurement object 31 based on the above equation (1) using this maximum value (“After 8-bit conversion” in FIG. 5).
- the white color that serves as a reference for the first measurement object 31, it is measured by irradiating the white first measurement object 31 with white light in advance and receiving the reflected light by the color sensor 5.
- the RGB component detection values can be used as a reference white. That is, assuming that each detected value of the RGB components obtained above corresponds to 255, the detected value by the color sensor 5 can be converted into an 8-bit detected value.
- the reference white first measurement object 31 as described above does not exist. Even in such a case, according to the present embodiment, the color represented by each maximum value of the RGB component detection values obtained as described above is assumed to be a virtual reference white, and conversion to 8-bit detection values is possible. It becomes possible.
- Modified Example of Color Detection Method> 6A, 6B, and 6C are graphs obtained by plotting the RGB component detection values after the 8-bit conversion shown in FIG. each shown.
- the light amount of the white LED 6 is small, and the difference in the RGB component detection values by the color sensor 5 due to the difference in the color of the first measurement object 31 becomes small.
- the detected value after bit conversion becomes a value close to 255, and the color of any of the first measurement objects 31 becomes whitish. That is, there is a problem that it is difficult to discriminate fine differences in the color of the first measurement object 31 .
- the following modification of the color detection method may be implemented.
- the maximum value of each component of the RGB component detection values measured in advance by the color sensor is determined, and the minimum value of each component is also determined, and the determined minimum value is stored in the control section 7 .
- the control unit 7 converts the RGB component detection values (16-bit data) detected by the color sensor 5 for the first measurement object 31 into 8-bit detection values.
- the maximum value of each component corresponds to 255, which is the maximum value of 8 bits
- the minimum value of each component corresponds to a predetermined minimum value of 8 bits. Converts a value to an 8-bit value. That is, conversion of the detection value to 8 bits is performed based on the following equation (2).
- DET*(8bit) (DET*(16bit)-MIN*) ⁇ (255-min)/(MAX*-MIN*)+min (2)
- MIN Minimum value obtained in advance
- FIG. 7 shows the result of converting the first measurement object 31 similar to that of FIG. 5 into 8-bit RGB component detection values using the above equation (2).
- the minimum values of the RGB component detection values by the color sensor 5 are "1150", “2720”, and "1050".
- FIG. 7 shows the results when the predetermined minimum value of 8 bits is set to "50".
- FIGS. 8A, 8B, and 8C Graphs obtained by plotting the RGB component detection values after the 8-bit conversion shown in FIG. 7 with the RG relationship, the GB relationship, and the BR relationship are shown in FIGS. 8A, 8B, and 8C, respectively.
- the RGB component detection values after conversion to 8 bits are distributed between 50 and 255 compared to FIGS. 6A-6C previously described.
- the color detection resolution is improved, and it becomes possible to discriminate fine differences in the color of the first measurement object 31.
- the color detection device as described above can be applied to various applications.
- an image forming apparatus will be described as an example of an application. If the image forming apparatus can discriminate the color of the paper, appropriate image formation control can be performed according to the discrimination result.
- FIG. 9 is a diagram showing a schematic configuration example of an image forming apparatus.
- the image forming apparatus 9 shown in FIG. 9 has a paper feed tray 91, performs image formation on the paper P accommodated in the paper feed tray 91, and discharges the paper.
- the image forming apparatus 9 has a sheet conveying section, an image forming section, a sheet discharging section, etc., which are not shown in FIG. Further, the image forming method may be an inkjet method or a laser method.
- the substrate 4 is arranged above the paper P accommodated in the paper feed tray 91 .
- the white LED 6 can irradiate the paper P with white light, and the reflected light from the paper P can be received by the color sensor 5 .
- the RGB component detection values by the color sensor 5 are converted into 8-bit detection values by the controller 7 (not shown in FIG. 9).
- color detection based on the virtual reference white can be performed by using the method of the above-described embodiment.
- the arrangement of the substrate 4 is not limited to the example shown in FIG. 9, and may be arranged, for example, in the middle of the paper transport path.
- the measurement object 3 may be configured by combining a first measurement object 31 of the same color with a second measurement object 32 of a different color.
- color detection may be performed on a combination of each of the first measurement objects 31 of colors A to N and a plurality of second measurement objects 32 of different colors.
- the measurement object 3 including the measurement object 3 not having the first measurement object 31 is measured in advance by the color sensor, and the maximum value or the minimum value is obtained. You can get the value.
- the first measurement object 31 is not essential in the measurement object 3.
- the second measurement object 32 exists in the same color variations as the first measurement object 31. good too.
- the color detection device (8) disclosed herein is a light source (6) that irradiates the measurement object (3) with white light; A color sensor that receives the reflected light reflected by the measurement object and outputs an R (red) component detection value, a G (green) component detection value, and a B (blue) component detection value, each of which is a first predetermined bit.
- the conversion unit may, in addition to the maximum value, detect an R component detection value, a G component detection value, and a B component detection value which are measured in advance by a color sensor for a plurality of types of measurement objects. (Second configuration).
- the second predetermined bits may be 8 bits, and the conversion unit may perform the conversion assuming that the minimum value corresponds to a value in the vicinity of 50 in the 8 bits. (third configuration).
- the first predetermined bits may be 16 bits, and the second predetermined bits may be 8 bits (fourth configuration).
- a configuration may be adopted in which a resistor (R) is arranged in a path through which current flows to the light source (fifth configuration).
- the light source and the color sensor may be mounted on the same substrate (sixth configuration).
- the measurement object has a first measurement object (31) and a second measurement object (32), and the light source comprises the first measurement object (31) and a second measurement object (32).
- a configuration may be adopted in which the white light is applied to both the measurement target and the second measurement target (seventh configuration).
- the maximum value may be a value obtained for a combination of a plurality of the first measurement objects having different colors and a plurality of the second measurement objects having different colors. 8 configuration).
- the object to be measured has a first object to be measured (31) and a portion (32) other than the first object to be measured, and the light source is Alternatively, the white light may be applied only to the first measurement target among the first measurement target and the site (ninth configuration).
- an image forming apparatus (9) disclosed in this specification has a color detection device having any one of the first to ninth configurations, and the measurement object is paper (P). It is configured.
- the invention disclosed in this specification can be used, for example, for color detection in various devices.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
色検出装置(8)は、白色光を測定対象物(3)に照射する光源(6)と、前記測定対象物で反射した反射光を受光して、各々第1所定ビットであるR(赤色)成分検出値、G(緑色)成分検出値、およびB(青色)成分検出値を出力するカラーセンサ(5)と、あらかじめ複数種類の測定対象物についてカラーセンサにより測定されたR成分検出値、G成分検出値、およびB成分検出値の各々の最大値に基づき、前記カラーセンサから出力される前記R成分検出値、前記G成分検出値、および前記B成分検出値を各々、前記第1所定ビットよりも小さいビット数である第2所定ビットの検出値に変換する変換部(7)と、を有する。
Description
本明細書中に開示されている発明は、色検出装置に関する。
従来、光の色成分(RGB)を検出するカラーセンサが知られている(例えば特許文献1)。
昨今、上記カラーセンサを用いて対象物の色を検出する技術が重要となっており、当該技術の改善が必要であった。
上記状況に鑑み、本明細書中に開示されている発明は、カラーセンサを用いて対象物の色を有効に検出することが可能となる色検出装置を提供することを目的とする。
例えば、本明細書中に開示されている色検出装置は、
白色光を測定対象物に照射する光源と、
前記測定対象物で反射した反射光を受光して、各々第1所定ビットであるR(赤色)成分検出値、G(緑色)成分検出値、およびB(青色)成分検出値を出力するカラーセンサと、
あらかじめ複数種類の測定対象物についてカラーセンサにより測定されたR成分検出値、G成分検出値、およびB成分検出値の各々の最大値に基づき、前記カラーセンサから出力される前記R成分検出値、前記G成分検出値、および前記B成分検出値を各々、前記第1所定ビットよりも小さいビット数である第2所定ビットの検出値に変換する変換部と、を有する構成としている。
白色光を測定対象物に照射する光源と、
前記測定対象物で反射した反射光を受光して、各々第1所定ビットであるR(赤色)成分検出値、G(緑色)成分検出値、およびB(青色)成分検出値を出力するカラーセンサと、
あらかじめ複数種類の測定対象物についてカラーセンサにより測定されたR成分検出値、G成分検出値、およびB成分検出値の各々の最大値に基づき、前記カラーセンサから出力される前記R成分検出値、前記G成分検出値、および前記B成分検出値を各々、前記第1所定ビットよりも小さいビット数である第2所定ビットの検出値に変換する変換部と、を有する構成としている。
本明細書中に開示されている色検出装置によれば、カラーセンサを用いて対象物の色を有効に検出することが可能となる。
以下に本開示の例示的な実施形態について図面を参照して説明する。
<1.色検出装置の構成>
図1は、色検出装置の構成例を示す図である。図1に示すように、色検出装置8は、基板4と、カラーセンサ5と、白色LED6と、制御部7と、スイッチSWと、抵抗Rと、を有している。カラーセンサ5、白色LED6、スイッチSW、および抵抗Rは、基板4に実装される。制御部7は、例えばマイコンである。電源電圧VCCから色検出装置8の各部に電力が供給される。
図1は、色検出装置の構成例を示す図である。図1に示すように、色検出装置8は、基板4と、カラーセンサ5と、白色LED6と、制御部7と、スイッチSWと、抵抗Rと、を有している。カラーセンサ5、白色LED6、スイッチSW、および抵抗Rは、基板4に実装される。制御部7は、例えばマイコンである。電源電圧VCCから色検出装置8の各部に電力が供給される。
白色LED6は、白色光を発光するチップLEDである。スイッチSWおよび抵抗Rは、電源電圧VCCによって白色LED6に電流が流れる経路に配置される。スイッチSWは、制御部7によりオンオフを制御される。スイッチSWのオンオフにより、白色LED6の発光・消灯を切り替えることができる。抵抗Rは、白色LED6に流れる電流を制限し、白色光の光量を調整する。
カラーセンサ5は、光の色成分を検出可能なセンサICである。上記色成分は、具体的には、R成分(赤色成分)、G成分(緑色成分)、B成分(青色成分)である。制御部7によりスイッチSWがオン状態とされることで白色LED6は白色光を発光する。白色LED6は、白色光を測定対象物に照射する。カラーセンサ5は、測定対象物で反射された光を受光して色成分を検出する。カラーセンサ5は、検出した色成分をデジタルデータとして制御部7へ出力する。カラーセンサ5が出力するデジタルデータは、例えば16ビットデータである。制御部7は、カラーセンサ5から取得した16ビットデータのRGB成分各検出値を例えば8ビットデータに変換する。
<2.カラーセンサの構成>
図2は、カラーセンサ5の構成例を示す図である。図2に示すカラーセンサ5は、受光素子51A,51B,51Cと、ADC(ADコンバータ)52A,52B,52Cと、ロジック回路53と、赤外線遮断フィルタ54と、赤色光透過フィルタ55Aと、緑色光透過フィルタ55Bと、青色光透過フィルタ55Cと、を有している。
図2は、カラーセンサ5の構成例を示す図である。図2に示すカラーセンサ5は、受光素子51A,51B,51Cと、ADC(ADコンバータ)52A,52B,52Cと、ロジック回路53と、赤外線遮断フィルタ54と、赤色光透過フィルタ55Aと、緑色光透過フィルタ55Bと、青色光透過フィルタ55Cと、を有している。
受光素子51Aは、赤外線遮断フィルタ54および赤色光透過フィルタ55Aを介して入射される赤色光の光量に応じたアナログ電流信号を生成する。すなわち、受光素子51Aは、入力光のR成分(赤色成分)を検出する。
受光素子51Bは、赤外線遮断フィルタ54および緑色光透過フィルタ55Bを介して入射される緑色光の光量に応じたアナログ電流信号を生成する。すなわち、受光素子51Bは、入力光のG成分(緑色成分)を検出する。
受光素子51Cは、赤外線遮断フィルタ54および青色光透過フィルタ55Cを介して入射される青色光の光量に応じたアナログ電流信号を生成する。すなわち、受光素子51Cは、入力光のB成分(青色成分)を検出する。
上記の受光素子51A,51B,51Cとしては、それぞれ、フォトダイオードあるいはフォトトランジスタなどを好適に用いることができる。
ADC52A,52B,52Cは、受光素子51A,51B,51Cからのアナログ電流信号を例えば16ビットのデジタルデータに変換して出力する。
赤外線遮断フィルタ54は、赤色光透過フィルタ55A、緑色光透過フィルタ55B、および、青色光透過フィルタ55Cそれぞれの上流側で、入力光に含まれる赤外線成分IRを遮断する。このような赤外線遮断フィルタ54を設けることにより、RGB成分を精度良く検出することができる。
ロジック回路53は、ADCロジック機能(=ADCの時分割制御機能)、および、I2Cインターフェイス機能(=データ信号SDAとクロック信号SCLの通信機能)を備えている。ロジック回路53は、ADC52A,52B,52Cから出力されるRGB成分検出信号としてのデジタルデータをI2C通信によって制御部7に送出する。
<3.測定対象物の位置>
図3および図4は、測定対象物3の基板4に対する位置関係の一例を示す図である。なお、図3は、測定対象物3を基板4の基板面に平行な方向Xに視た状態の図である。図4は、基板4の基板面に垂直な方向Y(以下、単に垂直方向)に視た状態の図である。測定対象物3は、第1測定対象31と、第2測定対象32と、から構成される。所定の色の第2測定対象32に対して第1測定対象31は種々の色を採りうる。色検出装置8は、測定対象物3のうち第1測定対象31の色を検出することを目的としている。なお、第1測定対象31および第2測定対象32の配置関係および形状などは図3および図4に示すものに限らない。
図3および図4は、測定対象物3の基板4に対する位置関係の一例を示す図である。なお、図3は、測定対象物3を基板4の基板面に平行な方向Xに視た状態の図である。図4は、基板4の基板面に垂直な方向Y(以下、単に垂直方向)に視た状態の図である。測定対象物3は、第1測定対象31と、第2測定対象32と、から構成される。所定の色の第2測定対象32に対して第1測定対象31は種々の色を採りうる。色検出装置8は、測定対象物3のうち第1測定対象31の色を検出することを目的としている。なお、第1測定対象31および第2測定対象32の配置関係および形状などは図3および図4に示すものに限らない。
図3に矢印で示すように、白色LED6により白色光を測定対象物3に照射して、測定対象物3での反射光をカラーセンサ5により受光する。
また、図4に示すように、白色LED6を垂直方向に測定対象物3に投影した面は、第1測定対象31と重なる。これにより、白色LED6により白色光を第1測定対象31に照射して、第1測定対象31での反射光をカラーセンサ5により受光させることができる。なお、図4に示すように、白色LED6を垂直方向に測定対象物3に投影した面は、第2測定対象32とも重なる。これにより、白色LED6による白色光は第2測定対象32にも照射されて、第2測定対象32での反射光がカラーセンサ5により受光される。従って、カラーセンサ5による第1測定対象31の色検出は第2測定対象32の色も加味して行われる。なお、白色LED6を垂直方向に測定対象物3に投影した面が測定対象物3のうち第1測定対象31のみに重なるようにしてもよい。この場合、第2測定対象32は、測定対象とはならず、第1測定対象31以外の部位に相当し、第1測定対象31と上記部位とのうち第1測定対象31のみに白色光が照射される。
また、図3に示す白色LED6と測定対象物3との間の垂直方向の距離L1は、カラーセンサ5での受光される光が白っぽくなりすぎず、かつ黒っぽくなりすぎないような距離が望ましい。また、設計により上記距離L1を短くせざるを得ない場合は、抵抗Rにより白色LED6の光量を制限して調整することができる。なお、抵抗Rは、可変抵抗であってもよい。
また、図3に示す白色LED6とカラーセンサ5との間の基板面に沿う方向の距離L2は、白色光が直接カラーセンサ5により受光される量を抑えるような距離が望ましい。なお、白色LED6とカラーセンサ5との間に白色光を遮蔽するための壁を設けてもよい。
なお、白色LED6とカラーセンサ5を同じ基板4に実装させることで、白色LED6、カラーセンサ5、および測定対象物3の位置関係のばらつきを抑制できる。
<4.色検出方法>
ここで、色検出装置8による色検出方法について説明する。ここで、あらかじめ、各種の色を有する第1測定対象31を用意して、第1測定対象31ごとに白色LEDにより白色光を照射し、反射光をカラーセンサにより受光させ、カラーセンサによりRGB成分を検出させる。
ここで、色検出装置8による色検出方法について説明する。ここで、あらかじめ、各種の色を有する第1測定対象31を用意して、第1測定対象31ごとに白色LEDにより白色光を照射し、反射光をカラーセンサにより受光させ、カラーセンサによりRGB成分を検出させる。
図5には、一例としてA~Nまでの色を有する第1測定対象31を用意して、各第1測定対象31について上記のようにカラーセンサにより色成分検出を行った結果を示す。図5に示す「カラーセンサ値」が第1測定対象31ごとの検出されたRGB成分検出値を示している。当該RGB成分検出値は、それぞれ16ビット(0から65535)の値である。なお、図5に示す「カラーセンサ値」は、先述したように第1測定対象31に加えて第2測定対象32の色も加味された値となっている。
そして、このようにあらかじめカラーセンサにより測定されたRGB成分検出値のRGB成分ごとの最大値を求める。求められたRGB成分ごとの各最大値を制御部7に、あらかじめ記憶させる。
そして、制御部7は、第1測定対象31に白色LED6により白色光を照射させ、第1測定対象31での反射光をカラーセンサ5に受光させてRGB成分を検出する。そして、制御部7は、カラーセンサ5から出力されるRGB成分検出値(各成分16ビットデジタルデータ)をRGB各成分の8ビットデータに変換する。このとき、各成分の上記最大値が8ビットの最大値である255に相当するとし、上記最大値とカラーセンサ5から出力されるRGB成分検出値との比率に基づき、RGB成分検出値を8ビットの値に変換する。すなわち、下記(1)式に基づいて8ビットへの検出値の変換が行われる。
DET*(8bit)=255×(DET*(16bit)/MAX*) (1)
ただし、DET*(8bit):8ビット変換後の検出値、DET*(16bit):16ビットの検出値、MAX:あらかじめ取得される最大値、*:R,G,Bのいずれかの成分
DET*(8bit)=255×(DET*(16bit)/MAX*) (1)
ただし、DET*(8bit):8ビット変換後の検出値、DET*(16bit):16ビットの検出値、MAX:あらかじめ取得される最大値、*:R,G,Bのいずれかの成分
図5の例では、カラーセンサ5によるRGB成分検出値の各成分の各最大値は、「2100」、「5150」、「2710」である。この最大値を用いて上記(1)式に基づき、各第1測定対象31について8ビットの検出値に変換した値を図5に示す(図5の「8ビット変換後」)。
ここで仮に、第1測定対象31の基準となる白色が存在する場合は、あらかじめ当該白色の第1測定対象31に白色光を照射して反射光をカラーセンサ5により受光することで測定されるRGB成分検出値を基準の白色とすることができる。すなわち、上記で得られるRGB成分の各検出値が255に相当するとして、カラーセンサ5による検出値を8ビットの検出値に変換することができる。
しかしながら、上記のような基準の白色の第1測定対象31が存在しない場合がある。このような場合でも、本実施形態によれば、先述のように求められるRGB成分検出値の各最大値で表される色を仮想的な基準の白色として、8ビットの検出値への変換が可能となる。
<5.色検出方法の変形例>
ここで、先述した図5で示した8ビット変換後のRGB成分検出値をR-Gの関係、G-Bの関係、B-Rの関係でそれぞれプロットしたグラフを図6A,6B,6Cにそれぞれ示す。図5の例では、白色LED6の光量が小さく、カラーセンサ5によるRGB成分検出値の第1測定対象31の色の違いによる差が小さくなってしまうため、図6A~6Cに示すように、8ビット変換後の検出値は255に寄った値となり、いずれの第1測定対象31の色も白っぽい色となってしまう。すなわち、第1測定対象31の色の細かな違いを判別しにくい課題がある。
ここで、先述した図5で示した8ビット変換後のRGB成分検出値をR-Gの関係、G-Bの関係、B-Rの関係でそれぞれプロットしたグラフを図6A,6B,6Cにそれぞれ示す。図5の例では、白色LED6の光量が小さく、カラーセンサ5によるRGB成分検出値の第1測定対象31の色の違いによる差が小さくなってしまうため、図6A~6Cに示すように、8ビット変換後の検出値は255に寄った値となり、いずれの第1測定対象31の色も白っぽい色となってしまう。すなわち、第1測定対象31の色の細かな違いを判別しにくい課題がある。
そこで、次のような色検出方法の変形例を実施してもよい。ここでは、先述のようにあらかじめカラーセンサにより測定されたRGB成分検出値の各成分の最大値を求めるとともに、各成分の最小値も求め、求めた最小値を制御部7に記憶させる。
そして、制御部7は、第1測定対象31についてカラーセンサ5により検出されたRGB成分検出値(16ビットデータ)を8ビットの検出値に変換する。この場合、各成分の上記最大値が8ビットの最大値である255に相当し、各成分の上記最小値が8ビットの所定最小値に相当するとし、カラーセンサ5から出力されるRGB成分検出値を8ビットの値に変換する。すなわち、下記(2)式に基づいて8ビットへの検出値の変換が行われる。
DET*(8bit)=(DET*(16bit)-MIN*)×(255-min)/(MAX*-MIN*)+min (2)
ただし、DET*(8bit):8ビット変換後の検出値、DET*(16bit):16ビットの検出値、MAX:あらかじめ取得される最大値、MIN:あらかじめ取得される最小値、*:R,G,Bのいずれかの成分、min:8ビットの所定最小値
DET*(8bit)=(DET*(16bit)-MIN*)×(255-min)/(MAX*-MIN*)+min (2)
ただし、DET*(8bit):8ビット変換後の検出値、DET*(16bit):16ビットの検出値、MAX:あらかじめ取得される最大値、MIN:あらかじめ取得される最小値、*:R,G,Bのいずれかの成分、min:8ビットの所定最小値
ここで、上記8ビットの所定最小値は0としてもよいが、この場合、色が暗くなりすぎてしまう可能性がある。そこで、上記8ビットの所定最小値は、人の目から見て実際の色に近い値を得られるように、色見本の黒色をもとに設定することが望ましい。例えば、色見本としてTOCOL fan deck - Aを使用し、当該色見本の黒色(No.159)(R=47 G=47 B=46)をもとにすれば、上記8ビットの所定最小値は50付近の値とすることができる。具体的には、45から55までの値とすればよい。
図7は、図5と同様の第1測定対象31について、上記のような(2)式により8ビットのRGB成分検出値に変換した結果を示す。図7に示すように、カラーセンサ5によるRGB成分検出値の各最小値は、「1150」、「2720」、「1050」となっている。また、図7は、上記8ビットの所定最小値を「50」とした場合の結果である。
ここで、図7で示した8ビット変換後のRGB成分検出値をR-Gの関係、G-Bの関係、B-Rの関係でそれぞれプロットしたグラフを図8A,8B,8Cにそれぞれ示す。このように、図8A~8Cでは、先述した図6A~6Cと比べて、8ビットへ変換後のRGB成分検出値が50から255の間で分散される。これにより、白色LED6の光量に関わらず、色検出の分解能が向上し、第1測定対象31の色の細かな違いを判別することが可能となる。
<6.画像形成装置への適用>
以上説明したような色検出装置は、様々なアプリケーションに適用が可能である。ここでは、アプリケーションの一例として、画像形成装置について説明する。画像形成装置において用紙の色判別を行うことができれば、判別結果に応じて適切な画像形成制御を行うことが可能となる。
以上説明したような色検出装置は、様々なアプリケーションに適用が可能である。ここでは、アプリケーションの一例として、画像形成装置について説明する。画像形成装置において用紙の色判別を行うことができれば、判別結果に応じて適切な画像形成制御を行うことが可能となる。
図9は、画像形成装置の概略的な構成例を示す図である。図9に示す画像形成装置9は、給紙トレイ91を有し、給紙トレイ91に収容された用紙Pに対して画像形成を行って排出する。画像形成装置9は、図9に図示しない用紙搬送部、画像形成部、用紙排出部などを有している。また、画像形成方法は、インクジェット方式あるいはレーザー方式など方式は問わない。
図9の例では、基板4を給紙トレイ91に収容された用紙Pの上方に配置させている。これにより、白色LED6により白色光を用紙Pに照射させ、用紙Pでの反射光をカラーセンサ5により受光することができる。そして、制御部7(図9で図示せず)により、カラーセンサ5によるRGB成分検出値は、8ビットの検出値に変換される。この場合、用紙Pの基準の白色が指定されていない場合であっても、先述した実施形態のような方法を用いることにより、仮想的な基準の白色に基づいた色検出を行うことができる。なお、基板4の配置は、図9の例に限らず、例えば、用紙搬送路の途中に配置してもよい。
<7.その他>
以上、本開示の実施形態について説明したが、本開示の趣旨の範囲内であれば、実施形態は種々に変更が可能である。
以上、本開示の実施形態について説明したが、本開示の趣旨の範囲内であれば、実施形態は種々に変更が可能である。
例えば、測定対象物3は、同じ色の第1測定対象31に対して異なる色の第2測定対象32が組み合わされて構成されることとしてもよい。例えば、図5の例であれば、色A~Nまでの各第1測定対象31と色が異なる複数の第2測定対象32の組み合わせに対して、色検出を行ってもよい。例えば、第2測定対象32が4種類存在する場合であれば、14×4=56個の組み合わせのそれぞれについてカラーセンサ5によりRGB成分検出値が検出され、RGB各成分の56個の検出値における各最大値あるいは各最小値が得られる。
また、第1測定対象31を有する測定対象物3に加えて、第1測定対象31を有さない測定対象物3も含めて、あらかじめカラーセンサによりRGB成分検出値を測定し、最大値あるいは最小値を取得してもよい。
また、測定対象物3において第1測定対象31は必須ではなく、例えば第1測定対象31を用いる実施形態の場合の第1測定対象31と同じ色のバリエーションで第2測定対象32が存在してもよい。
<8.総括>
以下では、上記で説明した種々の実施形態について総括的に述べる。
以下では、上記で説明した種々の実施形態について総括的に述べる。
例えば、本明細書中に開示されている色検出装置(8)は、
白色光を測定対象物(3)に照射する光源(6)と、
前記測定対象物で反射した反射光を受光して、各々第1所定ビットであるR(赤色)成分検出値、G(緑色)成分検出値、およびB(青色)成分検出値を出力するカラーセンサ(5)と、
あらかじめ複数種類の測定対象物についてカラーセンサにより測定されたR成分検出値、G成分検出値、およびB成分検出値の各々の最大値に基づき、前記カラーセンサから出力される前記R成分検出値、前記G成分検出値、および前記B成分検出値を各々、前記第1所定ビットよりも小さいビット数である第2所定ビットの検出値に変換する変換部(7)と、
を有する構成としている(第1の構成)。
白色光を測定対象物(3)に照射する光源(6)と、
前記測定対象物で反射した反射光を受光して、各々第1所定ビットであるR(赤色)成分検出値、G(緑色)成分検出値、およびB(青色)成分検出値を出力するカラーセンサ(5)と、
あらかじめ複数種類の測定対象物についてカラーセンサにより測定されたR成分検出値、G成分検出値、およびB成分検出値の各々の最大値に基づき、前記カラーセンサから出力される前記R成分検出値、前記G成分検出値、および前記B成分検出値を各々、前記第1所定ビットよりも小さいビット数である第2所定ビットの検出値に変換する変換部(7)と、
を有する構成としている(第1の構成)。
また、上記第1の構成において、前記変換部は、前記最大値に加えて、あらかじめ複数種類の測定対象物についてカラーセンサにより測定されたR成分検出値、G成分検出値、およびB成分検出値の各々の最小値に基づき、前記第2所定ビットの検出値への変換を行う構成としてもよい(第2の構成)。
また、上記第2の構成において、前記第2所定ビットは、8ビットであり、前記変換部は、前記最小値が前記8ビットにおける50付近の値に相当するとして前記変換を行う構成としてもよい(第3の構成)。
また、上記第1から第3のいずれかの構成において、前記第1所定ビットは、16ビットであり、前記第2所定ビットは、8ビットである構成としてもよい(第4の構成)。
また、上記第1から第4のいずれかの構成において、前記光源に電流が流れる経路に配置される抵抗(R)を有する構成としてもよい(第5の構成)。
また、上記第1から第5のいずれかの構成において、前記光源と前記カラーセンサは、同じ基板に実装されている構成としてもよい(第6の構成)。
また、上記第1から第6のいずれかの構成において、前記測定対象物は、第1測定対象(31)と、第2測定対象(32)と、を有し、前記光源は、前記第1測定対象と前記第2測定対象との両方に前記白色光を照射する構成としてもよい(第7の構成)。
また、上記第7の構成において、前記最大値は、色の異なる複数の前記第1測定対象と色の異なる複数の前記第2測定対象との組み合わせについて得られる値である構成としてもよい(第8の構成)。
また、上記第1から第6のいずれかの構成において、前記測定対象物は、第1測定対象(31)と、前記第1測定対象以外の部位(32)と、を有し、前記光源は、前記第1測定対象と前記部位とのうち前記第1測定対象のみに前記白色光を照射する構成としてもよい(第9の構成)。
また、本明細書中に開示されている画像形成装置(9)は、上記第1から第9のいずれかの構成の色検出装置を有し、前記測定対象物は、用紙(P)である構成としている。
本明細書中に開示されている発明は、例えば、各種の機器における色検出に利用することができる。
3 測定対象物
4 基板
5 カラーセンサ
6 白色LED
7 制御部
8 色検出装置
9 画像形成装置
31 第1測定対象
32 第2測定対象
51A,51B,51C 受光素子
52A,52B,52C ADC
53 ロジック回路
54 赤外線遮断フィルタ
55A 赤色光透過フィルタ
55B 緑色光透過フィルタ
55C 青色光透過フィルタ
91 給紙トレイ
P 用紙
R 抵抗
SW スイッチ
4 基板
5 カラーセンサ
6 白色LED
7 制御部
8 色検出装置
9 画像形成装置
31 第1測定対象
32 第2測定対象
51A,51B,51C 受光素子
52A,52B,52C ADC
53 ロジック回路
54 赤外線遮断フィルタ
55A 赤色光透過フィルタ
55B 緑色光透過フィルタ
55C 青色光透過フィルタ
91 給紙トレイ
P 用紙
R 抵抗
SW スイッチ
Claims (10)
- 白色光を測定対象物に照射する光源と、
前記測定対象物で反射した反射光を受光して、各々第1所定ビットであるR(赤色)成分検出値、G(緑色)成分検出値、およびB(青色)成分検出値を出力するカラーセンサと、
あらかじめ複数種類の測定対象物についてカラーセンサにより測定されたR成分検出値、G成分検出値、およびB成分検出値の各々の最大値に基づき、前記カラーセンサから出力される前記R成分検出値、前記G成分検出値、および前記B成分検出値を各々、前記第1所定ビットよりも小さいビット数である第2所定ビットの検出値に変換する変換部と、を有する色検出装置。 - 前記変換部は、前記最大値に加えて、あらかじめ複数種類の測定対象物についてカラーセンサにより測定されたR成分検出値、G成分検出値、およびB成分検出値の各々の最小値に基づき、前記第2所定ビットの検出値への変換を行う、請求項1に記載の色検出装置。
- 前記第2所定ビットは、8ビットであり、
前記変換部は、前記最小値が前記8ビットにおける50付近の値に相当するとして前記変換を行う、請求項2に記載の色検出装置。 - 前記第1所定ビットは、16ビットであり、
前記第2所定ビットは、8ビットである、請求項1から請求項3のいずれか1項に記載の色検出装置。 - 前記光源に電流が流れる経路に配置される抵抗を有する、請求項1から請求項4のいずれか1項に記載の色検出装置。
- 前記光源と前記カラーセンサは、同じ基板に実装されている、請求項1から請求項5のいずれか1項に記載の色検出装置。
- 前記測定対象物は、第1測定対象と、第2測定対象と、を有し、
前記光源は、前記第1測定対象と前記第2測定対象との両方に前記白色光を照射する、請求項1から請求項6のいずれか1項に記載の色検出装置。 - 前記最大値は、色の異なる複数の前記第1測定対象と色の異なる複数の前記第2測定対象との組み合わせについて得られる値である、請求項7に記載の色検出装置。
- 前記測定対象物は、第1測定対象と、前記第1測定対象以外の部位と、を有し、
前記光源は、前記第1測定対象と前記部位とのうち前記第1測定対象のみに前記白色光を照射する、請求項1から請求項6のいずれか1項に記載の色検出装置。 - 請求項1から請求項9のいずれか1項に記載の色検出装置を有し、
前記測定対象物は、用紙である、画像形成装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023523480A JPWO2022250043A1 (ja) | 2021-05-27 | 2022-05-24 | |
US18/516,111 US20240085312A1 (en) | 2021-05-27 | 2023-11-21 | Color sensing device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021089108 | 2021-05-27 | ||
JP2021-089108 | 2021-05-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/516,111 Continuation US20240085312A1 (en) | 2021-05-27 | 2023-11-21 | Color sensing device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022250043A1 true WO2022250043A1 (ja) | 2022-12-01 |
Family
ID=84228844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/021217 WO2022250043A1 (ja) | 2021-05-27 | 2022-05-24 | 色検出装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240085312A1 (ja) |
JP (1) | JPWO2022250043A1 (ja) |
WO (1) | WO2022250043A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000310561A (ja) * | 1999-04-27 | 2000-11-07 | Hamamatsu Photonics Kk | 光検出装置 |
JP2001008104A (ja) * | 1999-06-23 | 2001-01-12 | Fuji Photo Film Co Ltd | 広ダイナミックレンジ撮像装置 |
JP2002365139A (ja) * | 2001-05-22 | 2002-12-18 | Xerox Corp | 角度、方位角および変位に敏感でないカラープリンタ用色修正システム及び分光光度計 |
JP2003035599A (ja) * | 2001-05-22 | 2003-02-07 | Xerox Corp | カラープリンタにおけるカラーコントロールシステムに用いられる色画像形成バーに基づく色修正システムおよび分光光度計 |
JP2005266072A (ja) * | 2004-03-17 | 2005-09-29 | Fuji Photo Film Co Ltd | 放射線画像読取方法および装置 |
JP2005333316A (ja) * | 2004-05-19 | 2005-12-02 | Sony Corp | 固体撮像装置 |
WO2015097963A1 (ja) * | 2013-12-27 | 2015-07-02 | キヤノン株式会社 | 撮像装置およびその制御方法 |
JP2020129756A (ja) * | 2019-02-08 | 2020-08-27 | ローム株式会社 | フリッカ検出装置 |
-
2022
- 2022-05-24 WO PCT/JP2022/021217 patent/WO2022250043A1/ja active Application Filing
- 2022-05-24 JP JP2023523480A patent/JPWO2022250043A1/ja active Pending
-
2023
- 2023-11-21 US US18/516,111 patent/US20240085312A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000310561A (ja) * | 1999-04-27 | 2000-11-07 | Hamamatsu Photonics Kk | 光検出装置 |
JP2001008104A (ja) * | 1999-06-23 | 2001-01-12 | Fuji Photo Film Co Ltd | 広ダイナミックレンジ撮像装置 |
JP2002365139A (ja) * | 2001-05-22 | 2002-12-18 | Xerox Corp | 角度、方位角および変位に敏感でないカラープリンタ用色修正システム及び分光光度計 |
JP2003035599A (ja) * | 2001-05-22 | 2003-02-07 | Xerox Corp | カラープリンタにおけるカラーコントロールシステムに用いられる色画像形成バーに基づく色修正システムおよび分光光度計 |
JP2005266072A (ja) * | 2004-03-17 | 2005-09-29 | Fuji Photo Film Co Ltd | 放射線画像読取方法および装置 |
JP2005333316A (ja) * | 2004-05-19 | 2005-12-02 | Sony Corp | 固体撮像装置 |
WO2015097963A1 (ja) * | 2013-12-27 | 2015-07-02 | キヤノン株式会社 | 撮像装置およびその制御方法 |
JP2020129756A (ja) * | 2019-02-08 | 2020-08-27 | ローム株式会社 | フリッカ検出装置 |
Also Published As
Publication number | Publication date |
---|---|
US20240085312A1 (en) | 2024-03-14 |
JPWO2022250043A1 (ja) | 2022-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI227778B (en) | Color photosensor | |
US9848097B2 (en) | Image reading device, image reading method, image forming apparatus, and computer-readable recording medium | |
GB2312506A (en) | Photoelectric measuring device | |
JP2009510959A (ja) | 単色光源により画像センサをスペクトル統合校正するための方法 | |
US11614695B2 (en) | Image forming apparatus and optical sensor | |
JP2604754B2 (ja) | 分光光度計 | |
US20110188002A1 (en) | Image projector | |
WO2022250043A1 (ja) | 色検出装置 | |
DE60040832D1 (de) | Objektsensor und seine Anwendung in einer Scheibenwischersteuerungsschaltung | |
JP4071984B2 (ja) | カラー像処理装置において使用するための精度を向上させた濃度計 | |
EP3043159B1 (en) | Method for processing light sensor signals and light sensor system | |
US7247834B2 (en) | Photoelectric sensor for detecting presence/absence of object | |
JPH0414838B2 (ja) | ||
US9253336B2 (en) | Image reading apparatus, and image reading method | |
JP6252162B2 (ja) | 画像読取装置、画像形成装置およびプログラム | |
WO2023189428A1 (ja) | 色判別装置、色判別システム、および画像形成装置 | |
JP2008249783A (ja) | 画像表示装置及び方法、及びスクリーン | |
JP2513095B2 (ja) | 端部検出装置 | |
WO2022255342A1 (ja) | 液面高さ検出装置 | |
WO2020189074A1 (ja) | 投光装置およびこれを備えたtofセンサ、距離画像生成装置 | |
JP3925852B2 (ja) | 防犯センサ | |
JP3235871B2 (ja) | 距離検出方法および自動焦点調節装置 | |
JP2021165697A (ja) | 光学センサユニット、画像形成装置 | |
JP2005151320A (ja) | 受光装置およびそれを用いた光通信システム | |
JPH0349088B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22811313 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023523480 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22811313 Country of ref document: EP Kind code of ref document: A1 |