WO2020189074A1 - 投光装置およびこれを備えたtofセンサ、距離画像生成装置 - Google Patents

投光装置およびこれを備えたtofセンサ、距離画像生成装置 Download PDF

Info

Publication number
WO2020189074A1
WO2020189074A1 PCT/JP2020/004621 JP2020004621W WO2020189074A1 WO 2020189074 A1 WO2020189074 A1 WO 2020189074A1 JP 2020004621 W JP2020004621 W JP 2020004621W WO 2020189074 A1 WO2020189074 A1 WO 2020189074A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
led
distance
drive current
tof sensor
Prior art date
Application number
PCT/JP2020/004621
Other languages
English (en)
French (fr)
Inventor
中條 秀樹
木下 政宏
昭宏 石井
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to DE112020001272.7T priority Critical patent/DE112020001272T5/de
Priority to US17/436,090 priority patent/US20220050207A1/en
Priority to CN202080015408.XA priority patent/CN113474672A/zh
Publication of WO2020189074A1 publication Critical patent/WO2020189074A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/305Frequency-control circuits

Definitions

  • the present invention relates to, for example, a floodlight device used as a light source of a TOF (Time of Flight) sensor, a TOF sensor provided with the light floodlight, and a distance image generator.
  • a floodlight device used as a light source of a TOF (Time of Flight) sensor
  • a TOF sensor provided with the light floodlight
  • a TOF sensor measures the distance to a measurement target by receiving the reflected light of the light emitted from an LED (Light emitting diode) as a light source toward the measurement target.
  • LED Light emitting diode
  • Such a TOF sensor irradiates light modulated at a predetermined frequency from an LED toward a measurement object, and measures the flight time of the light until the reflected light reflected by the measurement object is received. By doing so, the distance to the object to be measured is measured.
  • Patent Document 1 discloses a distance sensor that suppresses a decrease in distance measurement accuracy with respect to a temperature change when measuring a distance to an object.
  • the above-mentioned conventional distance measuring device has the following problems. That is, in the distance sensor disclosed in the above publication, a light emission control signal including a zero point is input to a light emitting element (LED or the like). In this case, high-frequency distortion is likely to occur in the drive current modulated at a predetermined frequency, so that the brightness of the emitted light varies non-linearly with respect to the drive current input to the LED, and the emitted light The waveform may be distorted.
  • An object of the present invention is to provide a floodlight device capable of effectively suppressing distortion of irradiated light, a TOF sensor provided with the same, and a distance image generation device.
  • the floodlight device includes an LED, a power supply unit, and a drive circuit.
  • the LED irradiates light in a predetermined direction.
  • the power supply unit supplies electric power to the LED.
  • the drive circuit causes the LED to input the waveform of the drive current modulated at a predetermined frequency by DC offset.
  • the drive circuit controls the waveform of the drive current input to the LED so as to be DC offset.
  • the drive current is processed at a predetermined modulation frequency and input to the LED.
  • the amount of light with respect to the drive current processed at the modulation frequency may have a non-linear region particularly near the zero point, and the waveform of the light emitted from the LED may be distorted. Therefore, for example, when the light projecting device is used as the light source of the TOF sensor, if the waveform of the light emitted from the LED is distorted, the distance to the measurement target measured by the TOF sensor has an error. May occur.
  • the drive circuit DC-offsets the waveform of the drive current and inputs it to the LED so as to avoid the vicinity of the zero point of the waveform of the amount of light with respect to the drive current where a non-linear region is likely to occur.
  • a non-linear region is unlikely to occur in the waveform of the amount of light for the drive current input while avoiding the vicinity of the zero point due to the DC offset, so that distortion of the waveform of the light emitted from the LED is effectively suppressed. can do.
  • the accuracy of distance measurement can be improved by irradiating the LED with light having a waveform in which the occurrence of distortion is suppressed.
  • the floodlight device according to the second invention is the floodlight device according to the first invention, and the drive circuit has an offset generation circuit that offsets the drive current by DC.
  • the offset generation circuit provided in the drive circuit generates a signal for DC offsetting the drive current input to the LED.
  • the drive current can be DC offset based on the offset signal generated in the offset generation circuit.
  • the floodlight device according to the third invention is the floodlight device according to the first or second invention, and the drive circuit inputs a drive current modulated by a frequency of 4 MHz or more to the LED.
  • a frequency of 4 MHz or more is used as the modulation frequency of the drive current input to the LED.
  • a non-linear region is likely to occur mainly near the zero point, but the above-mentioned DC offset causes the amount of light with respect to the drive current. It is possible to suppress the occurrence of a non-linear region in the waveform of. Therefore, it is possible to effectively suppress the occurrence of distortion in the waveform of the light emitted from the LED driven by the drive current processed at a modulation frequency of 4 MHz or higher.
  • the floodlight device is a floodlight device according to any one of the first to third inventions, and the drive circuit inputs a sine wave drive current to the LED.
  • the drive current input to the LED is input as a sine wave through, for example, a low-pass filter.
  • DC offset is performed, so that the waveform of the light emitted from the LED is effectively distorted. It can be suppressed.
  • the TOF sensor according to the fifth invention includes a light projecting device, a light receiving unit, and a measuring unit according to any one of the first to fourth inventions.
  • the light receiving unit receives the reflected light of the light emitted from the light projecting device toward the object to be measured.
  • the measuring unit measures the distance to the object to be measured based on the flight time of the light from the irradiation of the light from the light projecting device to the reception of the reflected light by the light receiving unit.
  • the TOF receives the reflected light of the light emitted from the above-mentioned light projecting device in the light receiving unit, and the measuring unit measures the distance to the object to be measured based on the flight time of the light from the irradiation to the light reception. (Time of Flight) Configure the sensor.
  • the LED emits light having a waveform in which the occurrence of distortion is suppressed, so that the measurement accuracy of the distance measured by the TOF sensor is improved. Can be made to.
  • the distance image generation device includes the TOF sensor according to the fifth invention, the light receiving unit is a light receiving element having a plurality of pixels, and the measuring unit is a plurality of pixels included in the light receiving element.
  • the distance to the object to be measured is measured based on the flight time of the light until the reflected light is received.
  • an image generation unit that generates a distance image by using the distance to the measurement object measured at each of the plurality of pixels is further provided.
  • a distance image generator including the TOF sensor described above is configured.
  • the distance image generation device is configured by using the TOF sensor including the above-mentioned light projecting device, the light having a waveform in which the occurrence of distortion is suppressed is emitted from the light projecting device (LED), so that the TOF
  • the TOF The measurement accuracy of the distance measured by the sensor can be improved. Therefore, the accuracy of the distance image generated by using the distance data measured by the TOF sensor can be improved.
  • FIG. 3 is a control block diagram showing a configuration of a distance image generation device including a TOF sensor including a light projecting device according to an embodiment of the present invention.
  • FIG. 3 is a control block diagram of a floodlight device included in the TOF sensor of FIG.
  • the graph which shows the non-linear part generated in the relationship between the driving current of LED and the amount of light.
  • (A) is a graph showing a current waveform corresponding to the drive current of FIG. 4 and an optical waveform emitted from an LED.
  • (B) is a graph in which the current waveform and the optical waveform are superimposed and displayed.
  • (A) is a graph showing a current waveform corresponding to a DC offset current waveform of the drive current of FIG. 4 and an optical waveform emitted from an LED.
  • (B) is a graph in which the current waveform and the optical waveform are superimposed and displayed.
  • the distance image generation device 30 including the TOF sensor 20 provided with the light projecting device 10 according to the embodiment of the present invention will be described below with reference to FIGS. 1 to 6 (b).
  • (1) Configuration of Distance Image Generation Device 30 The distance image generation device 30 according to the present embodiment captures the reflected light of the light emitted from the light projecting device 10 included in the TOF sensor 20 toward the measurement object 40. A distance image is generated that displays the distance to the measurement object 40 according to the flight time (TOF) of the light received at 22 from the time when the light is received to the time when the light is received. Then, as shown in FIG. 1, the distance image generation device 30 includes a TOF sensor 20 and a distance image generation unit 31.
  • the distance image generation unit 31 determines the timing at which each pixel of the image sensor 22 included in the TOF sensor 20 receives the reflected light from the measurement object 40 and the timing at which the light corresponding to the reflected light is emitted from the LED 15. Based on the time difference (flight time), a distance image including the distance information measured for each of a plurality of pixels of the image sensor 22 is generated.
  • the TOF sensor 20 receives the reflected light of the light emitted from the light projecting device 10 toward the measurement object 40, and receives the light from the irradiation of the light to the reception of the light.
  • the distance to the object to be measured 40 is displayed according to the flight time (TOF).
  • the TOF sensor 20 includes a light projecting device 10, a light receiving lens 21, an image pickup element (light receiving element) 22, a control unit (measurement unit) 23, and a storage unit 24. There is.
  • the floodlight device 10 has an LED 15 (see FIG. 3), and irradiates the measurement object 40 with desired light processed at a modulation frequency of, for example, 12 MHz.
  • the light projecting device 10 is provided with a light projecting lens (not shown) that collects the light emitted from the LED 15 and guides it in the direction of the measurement object 40.
  • the detailed configuration of the floodlight device 10 will be described in detail later.
  • the light receiving lens 21 is provided to irradiate the measurement object 40 from the light projecting device 10 and receive the reflected light reflected by the measurement object 40 and guide it to the image pickup element 22.
  • the image pickup element (light receiving element) 22 has a plurality of pixels, and as shown in FIG. 1, the reflected light received by the light receiving lens 21 is received by each of the plurality of pixels and photoelectrically converted. The signal is transmitted to the control unit 23.
  • the control unit 23 is connected to the light projecting device 10, the image sensor 22, the storage unit 24, and the distance image generation unit 31. Then, the control unit 23 reads various programs stored in the storage unit 24 and controls the irradiation of light by the light projecting device 10. Further, the control unit 23 receives data such as the timing received by the plurality of pixels included in the image sensor 22, and after the light projecting device 10 irradiates the measurement object 40 with light, the image sensor 22 The distance to the measurement object 40 is measured based on the flight time of the light until the reflected light is received. The measurement result is transmitted from the control unit 23 to the distance image generation unit 31, and the distance image generation unit 31 generates a distance image using the distance data corresponding to each pixel of the image sensor 22.
  • the control unit 23 sets the control unit 23 based on the phase difference ⁇ between the light projecting wave emitted from the light projecting device 10 and the light receiving wave received by the image sensor 22.
  • the distance from the TOF sensor 20 to the object to be measured 40 is calculated.
  • the phase difference ⁇ is represented by the following relational expression (1).
  • atan (y / x) ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ (1)
  • the conversion formula from the phase difference ⁇ to the distance D is expressed by the following relational formula (2).
  • D (c / (2 ⁇ f LED )) ⁇ ( ⁇ / 2 ⁇ ) + D OFFSET (2)
  • C is the speed of light ( ⁇ 3 ⁇ 10 8 m / s)
  • f LED is the frequency of the LED floodlight
  • D OFFSET is the distance offset.
  • the storage unit 24 is connected to the control unit 23, and is a control program for controlling the light projecting device 10 and the image sensor 22, the amount of reflected light detected by the image sensor 22, and light reception. Data such as timing is saved.
  • the light projecting device 10 of the present embodiment is a device that projects the light emitted from the LED 15 onto the object 40 to be measured, and irradiates the light with as little distortion as possible. Therefore, it has the following configuration.
  • the floodlight device 10 includes an LED 15, an LED power supply (power supply unit) 16, and an LED drive circuit (drive circuit) 10a.
  • the LED drive circuit 10a includes an offset generation circuit 11, a low-pass filter 12, an operational amplifier 13, a current sense resistor 14, and a FET (Field Effect Transistor) 17.
  • the drive current input to the LED 15 is controlled to be DC offset.
  • the offset generation circuit 11 receives, for example, a clock signal composed of a pulse signal of 0.3 V at 12 MHz, performs offset processing for DC offsetting the drive current input to the LED 15, and then performs a low-pass filter 12. Send to.
  • the low-pass filter 12 removes a high-frequency component exceeding a predetermined cutoff frequency from the offset-processed pulse signal received from the offset generation circuit 11, and passes only the low-frequency component through the sine wave signal waveform generated by the operational amplifier. Outputs to the non-inverting input terminal (+) of 13.
  • the operational amplifier 13 is provided to control the FET 17, and the output (DC offset signal) from the low-pass filter 12 is input to the non-inverting input terminal (+), and the current sense resistor is input to the inverting input terminal (-).
  • the feedback voltage generated in 14 is input.
  • the current sense resistor 14 is directly connected to the LED 15 and the FET 17, and is provided to detect the current flowing through the LED 15.
  • the LED 15 is configured by connecting n LEDs in series, and emits light by applying a voltage higher than the total forward voltage n ⁇ Vf of the n LEDs from the LED power supply 16. Although not shown in FIG. 3, it is assumed that a projection lens that collects the light emitted from the LED 15 and projects the light onto the measurement object 40 is provided in the vicinity of the LED 15.
  • the LED power supply 16 is connected in series with the LED 15 and applies the voltage n ⁇ Vf.
  • the FET 17 is controlled by the operational amplifier 13 so that the voltage generated in the current sense resistor 14 becomes a voltage that matches the voltage input from the low-pass filter 12. As a result, a drive current corresponding to the voltage input from the low-pass filter 12 flows through the LED 15 at a timing that matches the signal input from the low-pass filter 12.
  • the floodlight device 10 of the present embodiment by feeding back the voltage from the current sense resistor 14 using the operational amplifier 13, high-precision constant current drive is performed, and the offset generation circuit 11 is used.
  • the drive current can be input in a DC offset state with respect to the LED 15.
  • Offset processing of current waveform input to LED15 In the light projecting device 10 of the present embodiment, light is projected from the LED 15 onto the measurement object 40 via a light projecting lens (not shown) with the above configuration. Then, as described above, the floodlight device 10 of the present embodiment is provided with an offset generation circuit 11 in order to DC offset the drive current input to the LED 15.
  • the light projected from the LED 15 is a portion in which the amount of light (luminance) is non-linear, particularly in a region near the zero point where the input drive current is low (for example, less than 400 mA). Is included.
  • the modulated light emitted from the LED 15 is distorted, and the accuracy of the distance measurement by the TOF sensor 20 that performs the distance calculation using this light is improved. There is a risk of deterioration.
  • FIG. 5A shows a graph showing a current waveform corresponding to the drive current of the graph shown in FIG. 4 and an optical waveform emitted from the LED
  • FIG. 5B shows the current waveform and the optical waveform.
  • the superimposed graph is shown. That is, FIGS. 5 (a) and 5 (b) show an optical waveform in which distortion occurs when the LED 15 is driven when the waveform of the amount of light with respect to the drive current includes a non-linear region.
  • the optical waveform output from the LED 15 ( The amount of light) will be distorted.
  • attention is paid to the non-linearity between the drive current input to the LED 15 and the brightness (amount of light) of the light emitted from the LED 15, and by improving the non-linearity, the light emitted from the LED 15 is emitted. Suppresses the occurrence of distortion in the light.
  • the offset generation circuit 11 linearizes the waveform showing the relationship between the drive current input to the LED 15 and the amount of light, avoiding the vicinity of the zero point including the non-linear region.
  • offset processing is performed so as to offset DC by 400 mA or more.
  • the optical waveform corresponding to the current waveform of the DC-offset drive current becomes an optical waveform with almost no distortion as compared with the optical waveform shown in FIG. 5B. can do.
  • the offset amount of the drive current set in the offset generation circuit 11 is 400 mA or more, the larger the offset amount, the more the influence of the non-linear region of the light amount waveform on the drive current is eliminated and the distortion of the optical waveform is reduced. It can be resolved.
  • the power consumption of the LED 15 increases as the offset amount increases, it is preferable to set the offset amount in consideration of the balance between the elimination of distortion of the optical waveform and the power consumption.
  • the present invention is not limited to this.
  • the present invention can be applied to a configuration in which a rectangular wave drive current is input to an LED. Even in this case, it is effective to suppress the inclusion of a non-linear region in the rectangular wave near the zero point of the amount of light with respect to the drive current, and to include distortion in the waveform of the light emitted from the LED driven by this drive current. It is said that it can be suppressed. The same effect as above can be achieved.
  • control unit 23 of the TOF sensor 20 is configured to also serve as the control unit of the distance image generation device 30 .
  • the present invention is not limited to this.
  • the distance image generator side may also be provided with a control unit in addition to the control unit on the TOF sensor side.
  • this floodlight device may be used as a light source for a monocular distance sensor that measures the distance to a measurement object, instead of a distance image generator.
  • a light receiving element is used instead of the image sensor.
  • the present floodlight device may be used as a light source for various devices other than the TOF sensor, as long as it is a device that requires irradiation of light with less distortion.
  • the light projecting device of the present invention has the effect of effectively suppressing the distortion of the projected light, it can be widely applied as a light source for various sensors such as a TOF sensor, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

投光装置(10)は、LED(15)と、LED電源(16)と、駆動回路(10a)とを備えている。LED(15)は、所定の方向へ光を照射する。LED電源(16)は、LED(15)へ電力を供給する。駆動回路(10a)は、所定の周波数で変調された駆動電流の波形を、DCオフセットさせてLED(15)に入力させる。

Description

投光装置およびこれを備えたTOFセンサ、距離画像生成装置
 本発明は、例えば、TOF(Time of Flight)センサの光源として使用される投光装置およびこれを備えたTOFセンサ、距離画像生成装置に関する。
 近年、光源としてのLED(Light emitting diode)から測定対象物に向かって照射された光の反射光を受光して、測定対象物までの距離を測定するTOFセンサが使用されている。
 このようなTOFセンサは、所定の周波数で変調された光をLEDから測定対象物に向かって照射し、測定対象物に反射して戻ってきた反射光を受信するまでの光の飛行時間を測定することで、測定対象物までの距離を測定する。
 例えば、特許文献1には、対象物までの距離を測定する際に、温度変化に対する距離の測定精度の低下を抑制する距離センサについて開示されている。
特開2017-53769号公報
 しかしながら、上記従来の測距装置では、以下に示すような問題点を有している。
 すなわち、上記公報に開示された距離センサでは、ゼロ点を含む発光制御信号が発光素子(LED等)に入力されている。
 この場合、所定の周波数で変調された駆動電流には、高周波歪みが発生し易いため、LEDへ入力される駆動電流に対して照射される光の輝度が非線形に変動し、照射される光の波形に歪みが生じるおそれがある。
 本発明の課題は、照射される光の歪みを効果的に抑制することが可能な投光装置およびこれを備えたTOFセンサ、距離画像生成装置を提供することにある。
 第1の発明に係る投光装置は、LEDと、電源部と、駆動回路と、を備えている。LEDは、所定の方向へ光を照射する。電源部は、LEDへ電力を供給する。駆動回路は、所定の周波数で変調された駆動電流の波形を、DCオフセットさせてLEDに入力させる。
 ここでは、駆動回路が、LEDに対して入力される駆動電流の波形を、DCオフセットさせるように制御する。
 ここで、駆動電流は、所定の変調周波数で処理されてLEDに入力される。このとき、変調周波数で処理された駆動電流に対する光量が、特に、ゼロ点付近に非線形領域が発生し、LEDから照射される光の波形に歪みが生じるおそれがある。
 このため、例えば、投光装置をTOFセンサの光源として用いた場合には、LEDから照射される光の波形に歪みが生じると、TOFセンサを用いて測定される測定対象物までの距離に誤差が生じてしまうおそれがある。
 そこで、本発明の投光装置では、非線形領域が生じやすい駆動電流に対する光量の波形のゼロ点付近を避けるように、駆動回路が、駆動電流の波形をDCオフセットさせて、LEDに入力する。
 これにより、DCオフセットによってゼロ点付近を避けて入力された駆動電流に対する光量の波形には、非線形領域が発生しにくいため、LEDから照射される光の波形に歪みが生じることを効果的に抑制することができる。
 この結果、例えば、TOFセンサ等の光源として使用された場合でも、歪みの発生が抑制された波形を持つ光をLEDから照射することで、距離測定の精度を向上させることができる。
 第2の発明に係る投光装置は、第1の発明に係る投光装置であって、駆動回路は、駆動電流をDCオフセットさせるオフセット生成回路を有している。
 ここでは、駆動回路に設けられたオフセット生成回路が、LEDに入力される駆動電流をDCオフセットさせる信号を生成する。
 これにより、オフセット生成回路において生成されたオフセット信号に基づいて、駆動電流をDCオフセットすることができる。
 第3の発明に係る投光装置は、第1または第2の発明に係る投光装置であって、駆動回路は、LEDに対して、4MHz以上の周波数によって変調された駆動電流を入力する。
 ここでは、LEDに入力される駆動電流の変調周波数として、4MHz以上の周波数を用いる。
 これにより、4MHz以上の変調周波数によって処理された駆動電流と光量との関係には、主に、ゼロ点付近に非線形領域が発生しやすくなるものの、上述したDCオフセットすることにより、駆動電流に対する光量の波形に非線形領域が発生することを抑制することができる。
 よって、4MHz以上の変調周波数で処理された駆動電流によって駆動されたLEDから照射される光の波形に、歪みが生じることを効果的に抑制することができる。
 第4の発明に係る投光装置は、第1から第3の発明のいずれか1つに係る投光装置であって、駆動回路は、LEDに対して、正弦波の駆動電流を入力する。
 ここでは、LEDに入力される駆動電流を、例えば、ローパスフィルタを介して正弦波で入力する。
 これにより、駆動電流に対する光量の正弦波のゼロ点付近における非線形領域の発生を抑制するために、DCオフセットされているため、LEDから照射される光の波形に歪みが含まれることを効果的に抑制することができる。
 第5の発明に係るTOFセンサは、第1から第4の発明のいずれか1つに係る投光装置と、受光部と、測定部とを備えている。受光部は、投光装置から測定対象物に向かって照射された光の反射光を受光する。測定部は、投光装置から光が照射されてから受光部において反射光を受光するまでの光の飛行時間に基づいて、測定対象物までの距離を測定する。
 ここでは、上述した投光装置から照射された光の反射光を受光部において受光し、測定部が、照射から受光までの光の飛行時間に基づいて、測定対象物までの距離を測定するTOF(Time of Flight)センサを構成する。
 これにより、上述した投光装置をTOFセンサの光源として使用した場合でも、歪みの発生が抑制された波形を持つ光がLEDから照射されるため、TOFセンサによって測定される距離の測定精度を向上させることができる。
 第6の発明に係る距離画像生成装置は、第5の発明に係るTOFセンサを備え、受光部は、複数の画素を有する受光素子であって、測定部は、受光素子に含まれる複数の画素のそれぞれにおいて、反射光を受光するまでの光の飛行時間に基づいて、測定対象物までの距離を測定する。そして、複数の画素のそれぞれにおいて測定された測定対象物までの距離を用いて、距離画像を生成する画像生成部をさらに備えている。
 ここでは、上述したTOFセンサを含む距離画像生成装置を構成する。
 これにより、上述した投光装置を含むTOFセンサを用いて距離画像生成装置を構成した場合でも、歪みの発生が抑制された波形を持つ光が投光装置(LED)から照射されるため、TOFセンサによって測定される距離の測定精度を向上させることができる。
 よって、TOFセンサにおいて測定された距離データを用いて生成される距離画像の精度を向上させることができる。
(発明の効果)
 本発明に係る投光装置によれば、投光される光の歪みを効果的に抑制することができる。
本発明の一実施形態に係る投光装置を備えたTOFセンサを含む距離画像生成装置の構成を示す制御ブロック図。 図1の距離画像生成装置に含まれるTOFセンサによって測定対象物までの距離の測定原理について説明する図。 図1のTOFセンサに含まれる投光装置の制御ブロック図。 LEDの駆動電流と光量との関係に生じた非線形部分を示すグラフ。 (a)は、図4の駆動電流に対応する電流波形とLEDから照射される光波形とを示すグラフ。(b)は、その電流波形と光波形とを重ねて表示したグラフ。 (a)は、図4の駆動電流をDCオフセットした電流波形に対応する電流波形とLEDから照射される光波形とを示すグラフ。(b)は、その電流波形と光波形とを重ねて表示したグラフ。
 本発明の一実施形態に係る投光装置10を備えたTOFセンサ20を含む距離画像生成装置30について、図1~図6(b)を用いて説明すれば以下の通りである。
(1)距離画像生成装置30の構成
 本実施形態に係る距離画像生成装置30は、TOFセンサ20に含まれる投光装置10から測定対象物40に向かって照射された光の反射光を撮像素子22において受光して、光が照射されてから受光されるまでの光の飛行時間(TOF)に応じて、測定対象物40までの距離を表示する距離画像を生成する。そして、距離画像生成装置30は、図1に示すように、TOFセンサ20と、距離画像生成部31とを備えている。
 距離画像生成部31は、TOFセンサ20に含まれる撮像素子22の各画素において測定対象物40からの反射光を受光したタイミングと、その反射光に対応する光がLED15から照射されてタイミングとの時間差(飛行時間)に基づいて、撮像素子22の複数の画素ごとに測定された距離情報を含む距離画像を生成する。
(2)TOFセンサ20の構成
 TOFセンサ20は、投光装置10から測定対象物40に向かって照射された光の反射光を受光して、光が照射されてから受光されるまでの光の飛行時間(TOF)に応じて、測定対象物40までの距離を表示する。そして、TOFセンサ20は、図1に示すように、投光装置10と、受光レンズ21と、撮像素子(受光素子)22と、制御部(測定部)23と、記憶部24とを備えている。
 投光装置10は、LED15(図3参照)を有しており、測定対象物40に対して、例えば、12MHzの変調周波数で処理された所望の光を照射する。なお、投光装置10には、LED15から照射された光を集光して測定対象物40の方向へ導く投光レンズ(図示せず)が設けられている。また、投光装置10の詳細な構成については、後段にて詳述する。
 受光レンズ21は、投光装置10から測定対象物40に対して照射され、測定対象物40において反射した反射光を受光して、撮像素子22へと導くために設けられている。
 撮像素子(受光素子)22は、複数の画素を有しており、図1に示すように、受光レンズ21において受光された反射光を、複数の画素のそれぞれにおいて受光して、光電変換した電気信号を制御部23へと送信する。
 制御部23は、図1に示すように、投光装置10、撮像素子22、記憶部24および距離画像生成部31と接続されている。そして、制御部23は、記憶部24に保存された各種プログラムを読み込んで、投光装置10による光の照射を制御する。さらに、制御部23は、撮像素子22に含まれる複数の画素において受光したタイミング等のデータを受信して、投光装置10から測定対象物40に向かって光が照射されてから、撮像素子22においてその反射光を受信するまでの光の飛行時間に基づいて、測定対象物40までの距離を測定する。測定結果は、制御部23から距離画像生成部31へ送信され、距離画像生成部31において、撮像素子22の各画素に対応する距離データを用いて距離画像が生成される。
 本実施形態のTOFセンサ20では、図2に示すように、投光装置10から照射された投光波と、撮像素子22において受光した受光波との位相差Φに基づいて、制御部23が、TOFセンサ20から測定対象物40までの距離を演算する。
 ここで、位相差Φは、以下の関係式(1)によって示される。
   Φ=atan(y/x) ・・・・・(1)
(x=a2-a0,y=a3-a1、a0~a3は、受光波を90度間隔で4回サンプリングしたポイントにおける振幅)
 そして、位相差Φから距離Dへの変換式は、以下の関係式(2)によって示される。
    D=(c/(2×fLED))×(Φ/2π)+DOFFSET   ・・・・・(2)
(cは、光速(≒3×10m/s)、fLEDは、LEDの投光波の周波数、DOFFSETは、距離オフセット。)
 記憶部24は、図1に示すように、制御部23と接続されており、投光装置10および撮像素子22を制御するための制御プログラム、撮像素子22において検出された反射光の光量、受光タイミング等のデータを保存している。
(3)投光装置10の構成
 本実施形態の投光装置10は、LED15から照射された光を、測定対象物40に対して投光する装置であって、できるだけ歪みの少ない光を照射するために、以下のような構成を備えている。具体的には、投光装置10は、図3に示すように、LED15と、LED電源(電源部)16と、LED駆動回路(駆動回路)10aとを備えている。
 LED駆動回路10aは、図3に示すように、オフセット生成回路11と、ローパスフィルタ12と、オペアンプ13と、電流センス抵抗14と、FET(Field Effect Transistor)17と、を有し、LED電源16からLED15に入力される駆動電流をDCオフセットするように制御を行う。
 オフセット生成回路11は、例えば、12MHzで0.3Vのパルス信号からなるクロック信号を受信して、LED15に対して入力される駆動電流をDCオフセットするためのオフセット処理を行った後、ローパスフィルタ12へ送信する。
 ローパスフィルタ12は、オフセット生成回路11から受信したオフセット処理されたパルス信号から所定の遮断周波数を超える高周波成分を除去し、低周波成分のみを通過させて生成される正弦波の信号波形を、オペアンプ13の非反転入力端子(+)に対して出力する。
 オペアンプ13は、FET17を制御するために設けられており、非反転入力端子(+)にローパスフィルタ12からの出力(DCオフセットされた信号)が入力され、反転入力端子(-)に電流センス抵抗14に発生する帰還電圧が入力される。
 電流センス抵抗14は、LED15とFET17とに直接接続されており、LED15に流れる電流を検出するために設けられている。
 LED15は、n個のLEDが直列接続されて構成されており、LED電源16からn個のLEDの合計順方向電圧n・Vfよりも高い電圧が印加されて発光する。
 なお、図3では、図示を省略しているが、LED15から照射された光を集光して測定対象物40へ投光する投光レンズが、LED15の近傍に設けられているものとする。
 LED電源16は、LED15に対して直列接続されており、上記電圧n・Vfを印加する。
 FET17は、電流センス抵抗14に発生する電圧が、ローパスフィルタ12から入力される電圧と一致する電圧になるように、オペアンプ13によって制御される。これにより、LED15には、ローパスフィルタ12から入力される信号に合わせたタイミングで、ローパスフィルタ12から入力される電圧に相当する駆動電流が流れる。
 本実施形態の投光装置10では、以上のように、オペアンプ13を用いて電流センス抵抗14から電圧をフィードバックすることにより、高精度な定電流駆動を実施するとともに、オフセット生成回路11を用いてLED15に対して駆動電流をDCオフセットした状態で入力することができる。
 <LED15に入力される電流波形のオフセット処理>
 本実施形態の投光装置10では、以上のような構成により、LED15から投光レンズ(図示せず)を介して、測定対象物40に対して投光する。そして、本実施形態の投光装置10には、上述したように、LED15に入力される駆動電流をDCオフセットさせるために、オフセット生成回路11が設けられている。
 ここで、LED15から投光される光は、図4に示すように、特に、入力される駆動電流が低いゼロ点付近の領域(例えば、400mA未満)に、光量(輝度)が非線形になる部分が含まれる。
 このように、入力電流に対する光量が非線形になる部分が含まれると、LED15から照射される変調された光に歪みが生じ、この光を用いて距離演算を行うTOFセンサ20による距離測定の精度が低下してしまうおそれがある。
 一方、駆動電流が400mA以上になると、図4に示すように、電流波形は、ほぼ線形となり、駆動電流の値が大きくなるほど線形に近づいていく。
 図5(a)には、図4に示すグラフの駆動電流に対応する電流波形とLEDから照射される光波形とを示すグラフ、図5(b)には、その電流波形と光波形とを重ねて表示したグラフが示されている。すなわち、図5(a)および図5(b)には、駆動電流に対する光量の波形が非線形領域を含む場合にLED15を駆動した際に歪みが発生した光波形が示されている。
 つまり、駆動電流と光量との関係において非線形の部分がゼロ点付近に含まれるため、図5(b)に示すように、駆動電流を正弦波駆動しても、LED15から出力される光波形(光量)に歪みが生じてしまう。
 本実施形態の投光装置10では、LED15に入力される駆動電流とLED15から照射される光の輝度(光量)との非線形性に着目し、それを改善することで、LED15から照射される光に歪みが発生することを抑制する。
 具体的には、オフセット生成回路11が、図6(a)に示すように、LED15に入力される駆動電流と光量との関係を示す波形を、非線形領域を含むゼロ点付近を避けて、線形となっている領域のみを使用するために、400mA以上、DCオフセットするようにオフセット処理を行う。
 これにより、図6(b)に示すように、DCオフセットされた駆動電流の電流波形に対応する光波形は、図5(b)に示す光波形と比較して、歪みがほとんどない光波形にすることができる。
 この結果、LED15から歪みが抑制された光を測定対象物40に対して照射することができるため、TOFセンサ20において演算される距離の測定誤差を排除して、測定精度を向上させることができる。
 ここで、オフセット生成回路11において設定される駆動電流のオフセット量は、400mA以上であれば、オフセット量が大きくなるほど、駆動電流に対する光量の波形の非線形領域の影響を排除して光波形の歪みを解消することができる。ただし、オフセット量が大きくなるほど、LED15の消費電力が増えてしまうことから、光波形の歪み解消と消費電力とのバランスを考慮して、オフセット量が設定されることが好ましい。
 なお、このような駆動電流のオフセット処理は、TOFセンサ20における測定対象物40までの距離計算において引き算されることでキャンセルされるため、距離測定に影響を及ぼすことはない。
 [他の実施形態]
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 (A)
 上記実施形態では、ローパスフィルタ12を介して生成された正弦波の駆動電流がLED15に入力される構成を例として挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、矩形波の駆動電流がLEDに入力される構成に対しても、本発明の適用は可能である。
 この場合でも、駆動電流に対する光量のゼロ点付近における矩形波に非線形領域が含まれることを抑制して、この駆動電流によって駆動されるLEDから照射される光の波形に歪みが含まれることを効果的に抑制することができるという。上記と同様の効果を奏することができる。
 (B)
 上記実施形態では、LED15に入力される駆動電流の変調周波数として、12MHzの周波数を用いた例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、変調周波数としては、24MHz等、12MHzよりも大きい周波数を用いてもよいし、12MHzよりも小さい、例えば、4MHz以上の周波数を用いてもよい。
 (C)
 上記実施形態では、LED15に入力される駆動電流のDCオフセット量として、400mA以上が設定される例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、要求される光の歪みの抑制の程度に応じて、400mA未満のDCオフセット量が設定されていてもよい。
 (D)
 上記実施形態では、TOFセンサ20の制御部23が、距離画像生成装置30の制御部も兼ねるように構成された例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、距離画像生成装置側にも、TOFセンサ側の制御部とは別に、制御部が設けられた構成であってもよい。
 (E)
 上記実施形態では、本投光装置10を、TOFセンサ20を含む距離画像生成装置30の光源として用いた例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、本投光装置は、距離画像生成装置ではなく、測定対象物までの距離を測定する単眼の距離センサの光源として使用されてもよい。この場合には、撮像素子の代わりに、受光素子が用いられる。
 あるいは、本投光装置は、歪みの少ない光の照射が要求される装置であれば、TOFセンサ以外の各種装置の光源として使用されてもよい。
 本発明の投光装置は、投光される光の歪みを効果的に抑制することができるという効果を奏することから、例えば、TOFセンサ等の各種センサの光源として広く適用可能である。
10   投光装置
10a  LED駆動回路(駆動回路)
11   オフセット生成回路
12   ローパスフィルタ
13   オペアンプ
14   電流センス抵抗
15   LED
16   LED電源(電源部)
17   FET
20   TOFセンサ
21   受光レンズ
22   撮像素子
23   制御部
24   記憶部
30   距離画像生成装置
31   距離画像生成部
40   測定対象物

Claims (6)

  1.  所定の方向へ光を照射するLEDと、
     前記LEDへ電力を供給する電源部と、
     所定の周波数で変調された駆動電流の波形を、DCオフセットさせて前記LEDに入力させる駆動回路と、
    を備えている投光装置。
  2.  前記駆動回路は、前記駆動電流をDCオフセットさせるオフセット生成回路を有している、
    請求項1に記載の投光装置。
  3.  前記駆動回路は、前記LEDに対して、4MHz以上の周波数によって変調された前記駆動電流を入力する、
    請求項1または2に記載の投光装置。
  4.  前記駆動回路は、前記LEDに対して、正弦波の前記駆動電流を入力する、
    請求項1から3のいずれか1項に記載の投光装置。
  5.  請求項1から4のいずれか1項に記載の投光装置と、
     前記投光装置から測定対象物に向かって照射された光の反射光を受光する受光部と、
     前記投光装置から光が照射されてから前記受光部において前記反射光を受光するまでの光の飛行時間に基づいて、前記測定対象物までの距離を測定する測定部と、
    を備えたTOFセンサ。
  6.  請求項5に記載のTOFセンサを、
    備え、
     前記受光部は、複数の画素を有する受光素子であって、
     前記測定部は、前記受光素子に含まれる前記複数の画素のそれぞれにおいて、前記反射光を受光するまでの光の飛行時間に基づいて、前記測定対象物までの距離を測定し、
     前記複数の画素のそれぞれにおいて測定された前記測定対象物までの距離を用いて、距離画像を生成する画像生成部をさらに備えた、
    距離画像生成装置。
PCT/JP2020/004621 2019-03-15 2020-02-06 投光装置およびこれを備えたtofセンサ、距離画像生成装置 WO2020189074A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112020001272.7T DE112020001272T5 (de) 2019-03-15 2020-02-06 Lichtprojektionsvorrichtung, damit ausgestatteter TOF-Sensor und Distanzbildgenerator
US17/436,090 US20220050207A1 (en) 2019-03-15 2020-02-06 Light projecting device, tof sensor provided with same and distance image generator
CN202080015408.XA CN113474672A (zh) 2019-03-15 2020-02-06 投光装置及具备其的tof传感器、距离图像生成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-048180 2019-03-15
JP2019048180A JP2020148706A (ja) 2019-03-15 2019-03-15 投光装置およびこれを備えたtofセンサ、距離画像生成装置

Publications (1)

Publication Number Publication Date
WO2020189074A1 true WO2020189074A1 (ja) 2020-09-24

Family

ID=72431890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004621 WO2020189074A1 (ja) 2019-03-15 2020-02-06 投光装置およびこれを備えたtofセンサ、距離画像生成装置

Country Status (5)

Country Link
US (1) US20220050207A1 (ja)
JP (1) JP2020148706A (ja)
CN (1) CN113474672A (ja)
DE (1) DE112020001272T5 (ja)
WO (1) WO2020189074A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304922A (ja) * 1998-02-17 1999-11-05 Ricoh Opt Ind Co Ltd 物体検知装置
JP2005003742A (ja) * 2003-06-09 2005-01-06 Kawai Musical Instr Mfg Co Ltd 鍵位置検出装置
US7995191B1 (en) * 2006-06-29 2011-08-09 Sandia Corporation Scannerless laser range imaging using loss modulation
US20180302582A1 (en) * 2017-04-18 2018-10-18 Stmicroelectronics (Crolles 2) Sas Time-of-flight detection pixel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8301484A (nl) * 1983-04-27 1984-11-16 Philips Nv Optische zender.
JPH04282876A (ja) * 1991-03-11 1992-10-07 Mitsubishi Electric Corp 光電変換システム
JP2006047464A (ja) * 2004-08-02 2006-02-16 Olympus Corp 画像投影装置
JP6025081B2 (ja) * 2013-02-28 2016-11-16 株式会社テクノロジーハブ 距離画像センサ
JP2017053769A (ja) 2015-09-10 2017-03-16 株式会社村田製作所 距離センサ
CN108287347A (zh) * 2018-02-09 2018-07-17 广东欧珀移动通信有限公司 测距方法、电子装置及计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304922A (ja) * 1998-02-17 1999-11-05 Ricoh Opt Ind Co Ltd 物体検知装置
JP2005003742A (ja) * 2003-06-09 2005-01-06 Kawai Musical Instr Mfg Co Ltd 鍵位置検出装置
US7995191B1 (en) * 2006-06-29 2011-08-09 Sandia Corporation Scannerless laser range imaging using loss modulation
US20180302582A1 (en) * 2017-04-18 2018-10-18 Stmicroelectronics (Crolles 2) Sas Time-of-flight detection pixel

Also Published As

Publication number Publication date
JP2020148706A (ja) 2020-09-17
CN113474672A (zh) 2021-10-01
DE112020001272T5 (de) 2021-12-16
US20220050207A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
JP6286677B2 (ja) 測距システム、及び撮像センサ
US9245482B2 (en) Image display device
US9218786B2 (en) Image display device
US10670397B2 (en) Distance measuring device and method of measuring distance by using the same
US8610693B2 (en) Optical position detection device, optical position detection system, and display system with input function
KR100234914B1 (ko) 광학 변위 측정 장치 및 광학 변위 측정 시스템
JP2011061613A (ja) 画像読取装置および画像形成装置
WO2020189074A1 (ja) 投光装置およびこれを備えたtofセンサ、距離画像生成装置
JP2007147336A (ja) 光学式測距方法
US9470555B2 (en) Encoder
JP5216673B2 (ja) 距離計用受光装置および距離計
WO2021256094A1 (ja) 光源駆動装置、光源装置および測距装置
JP5840209B2 (ja) 光波測距装置
JP6942452B2 (ja) 測距装置
US11415908B2 (en) Multi-beam light source driving device and image forming apparatus including same, and multi-beam light source driving method
WO2024013948A1 (ja) 半導体レーザ駆動装置
JP5125976B2 (ja) 光学変調回路、光学変調装置、画像表示装置、画像形成装置および光学変調方法
US20210382153A1 (en) Method and apparatus for characterizing a time-of-flight sensor and/or a cover covering the time-of-flight sensor
JP4813629B1 (ja) 発光素子の駆動装置
WO2022250043A1 (ja) 色検出装置
JP6812188B2 (ja) 受光回路及び光電センサ
JP2000266537A (ja) 光波測距装置
JP2022059468A (ja) 位置検出装置
JP3659260B2 (ja) 光学式変位測定装置
JPS62237411A (ja) 自動合焦装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772694

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20772694

Country of ref document: EP

Kind code of ref document: A1