WO2022249977A1 - スラグを利用した硬化体及び硬化体の製造方法 - Google Patents

スラグを利用した硬化体及び硬化体の製造方法 Download PDF

Info

Publication number
WO2022249977A1
WO2022249977A1 PCT/JP2022/020890 JP2022020890W WO2022249977A1 WO 2022249977 A1 WO2022249977 A1 WO 2022249977A1 JP 2022020890 W JP2022020890 W JP 2022020890W WO 2022249977 A1 WO2022249977 A1 WO 2022249977A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
boron
less
free mgo
amount
Prior art date
Application number
PCT/JP2022/020890
Other languages
English (en)
French (fr)
Inventor
風彦 永田
恵太 田
久宏 松永
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2022549245A priority Critical patent/JP7195502B1/ja
Priority to CN202280036682.4A priority patent/CN117355494A/zh
Priority to KR1020237039486A priority patent/KR20230169360A/ko
Publication of WO2022249977A1 publication Critical patent/WO2022249977A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • C04B7/153Mixtures thereof with other inorganic cementitious materials or other activators
    • C04B7/17Mixtures thereof with other inorganic cementitious materials or other activators with calcium oxide containing activators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a hardened body produced using slag containing free MgO, such as steelmaking slag, as a material, and a method for producing this hardened body.
  • Patent Document 1 As an attempt to utilize steelmaking slag, for example, there is a hydrated hardening body using steelmaking slag, as disclosed in Patent Document 1.
  • the hydrated hardening body described in Patent Document 1 is a water and a binding material that hardens by a sum reaction, and is hardened after adding water and kneading.
  • the hydration reaction of free MgO is a reaction in which free MgO in steelmaking slag comes into contact with water such as rainwater or seawater to generate Mg(OH) 2 (MgO+H 2 O ⁇ Mg(OH) 2 ). Yes, and this reaction causes a volume expansion.
  • Patent Document 2 describes a method for preventing fire of basic fire bricks by forming a crystal film of one or more of sulfate, boric acid, and borate on the surface of basic fire bricks.
  • the weight of the brick is a (g)
  • the saturated solubility is b (g)
  • the weight of the solute is c (g)
  • the value of the formula represented by 100c/(a ⁇ b) is 0.2 or more.
  • a fire prevention method for basic refractory bricks comprising impregnating the basic refractory bricks with an aqueous solution having a value of 1.0 or less, or coating the basic refractory bricks with the aqueous solution and then drying the aqueous solution.
  • the present invention has been made in view of the above circumstances, and its object is to provide a hardened body using slag containing free MgO such as steelmaking slag, which suppresses volume expansion due to hydration reaction due to free MgO.
  • another object of the present invention is to provide a hardened body using slag, whose strength increases at an early stage, and to provide a method for producing this hardened body.
  • the gist of the present invention for solving the above problems is as follows.
  • a hardened body using slag containing free MgO in which the unit amount of slag containing free MgO is 2720 kg/m3 or less, and the unit amount of ground granulated blast furnace slag is 250 kg/m3 or more. 800 kg/m 3 or less, a unit amount of slaked lime of 12 kg/m 3 or more and 160 kg/m 3 or less, and a unit boron-containing substance amount of 0.5 kg/m 3 or more and 4.0 kg/m 3 or less in terms of B 2 O 3 A hardened body using slag.
  • a method for producing a hardened body using slag containing free MgO as a material wherein the unit amount of slag containing free MgO is 2720 kg/m 3 or less, and the unit amount of ground granulated blast furnace slag is 250 kg/m 3 . 800 kg/m 3 or more, a unit amount of slaked lime of 12 kg/m 3 or more and 160 kg/m 3 or less, and a unit amount of boron-containing substance converted to B 2 O 3 of 0.5 kg/m 3 or more and 4.0 kg/m 3 or less. is formed, water is added to the formed mixture and kneaded, and then the kneaded mixture is solidified.
  • a method for producing a hardened body using slag containing free MgO as a material wherein the slag containing free MgO is immersed in a solution in which a boron-containing substance is dissolved, or the slag containing free MgO is A solution in which the boron-containing substance is dissolved is sprayed to deposit 0.10% by mass or more of the boron-containing substance in terms of B 2 O 3 on the surface of the slag containing free MgO in advance, and the boron-containing substance is deposited in advance.
  • the unit amount of the slag containing free MgO is 2720 kg/m 3 or less, and the unit amount of the boron-containing substance adhering to the surface of the slag is 0.5 kg/m 3 or more and 4.0 kg/ in terms of B 2 O 3 m 3 or less, a unit blast furnace slag ground powder amount of 250 kg/m 3 or more and 800 kg/m 3 or less, and a unit slaked lime amount of 12 kg/m 3 or more and 160 kg/m 3 or less to form a mixture, and water is added to the formed mixture.
  • a method for producing a hardened body using slag characterized by kneading and then solidifying the kneaded mixture.
  • a hardened body using slag (hereinafter also referred to as a “hardened slag body”) according to the present embodiment is obtained by adding water to a mixture containing slag containing free MgO as a material, kneading, and then kneading. It is a cured product produced by solidifying the mixture.
  • the unit amount of slag containing free MgO is 2720 kg/m 3 or less
  • the unit amount of ground granulated blast furnace slag is 250 kg/m 3 or more and 800 kg/m 3 or less
  • the unit amount of slaked lime is 12 kg/m 3 or more and 160 kg/m 3 or more.
  • slag or natural aggregates containing no free MgO can be used as materials if necessary.
  • a slag containing no free MgO is a slag in which a periclase peak is not confirmed by X-ray diffraction.
  • Natural aggregates are, for example, "gravel and sand".
  • a feature of the hardened slag body according to the present embodiment is that it contains 0.5 kg/m 3 or more and 4.0 kg/m 3 or less of a boron-containing substance in terms of B 2 O 3 per 1 m 3 of hardened body.
  • the boric acid or borate crystal film functions as a moisture adsorption inhibitor, suppresses the hydration of free MgO, and prevents expansion cracks of the hardened slag body caused by hydration expansion due to free MgO.
  • the unit boron-containing substance amount for suppressing the hydration expansion of free MgO is 0.5 kg/m 3 or more and 4.0 kg/m 3 or less in terms of B 2 O 3 . This is because when the unit amount of boron-containing substances is less than 0.5 kg/m 3 in terms of B 2 O 3 , the effect of suppressing hydration swelling is small, while when it is greater than 4.0 kg/m 3 in terms of B 2 O 3 , This is because the inventors have found that the cured body does not harden.
  • the boron-containing substance is not particularly limited as long as boron dissolves in water. Boron oxides and boron compounds such as borax ( Na2B4O5 (OH) 4.8H2O ) can be used.
  • Another feature of the hardened slag material according to the present embodiment is the use of slaked lime (Ca(OH) 2 ) as an alkaline stimulant.
  • slaked lime Ca(OH) 2
  • the reason for using slaked lime is that (1) it does not destroy the crystal coating of boric acid or borate on the surface of free MgO formed by the boron-containing substance, and (2) it can suppress the expansion of free MgO in the slag hardened body, and (2) the blast furnace. (3) strength is developed earlier than ordinary Portland cement;
  • ground granulated blast furnace slag which is a binder generally used for hardened slag
  • ordinary Portland cement the pH (hydrogen ion concentration index) of ordinary Portland cement is as high as about 12.7, so magnesium borate is dissolved, and the effect of suppressing the expansion of free MgO is reduced.
  • the supply of alkali is necessary for the manifestation of latent hydraulicity of ground granulated blast furnace slag.
  • the alkaline stimulant is required not to destroy the crystal coating of magnesium borate and to supply the alkali necessary for developing the latent hydraulicity of the ground granulated blast furnace slag.
  • the pH of the saturated aqueous solution is 12.4, which is lower than the pH of Portland cement
  • slaked lime which can supply alkaline stimulus to ground granulated blast furnace slag
  • the strength develops earlier than when ordinary Portland cement is used. Also from this point, it can be said that using slaked lime as an alkaline stimulant is suitable.
  • the amount of slaked lime in the slag hardened body is 12 kg/m 3 or more and 160 kg/m 3 or less per 1 m 3 of the slag hardened body. This is because if the unit amount of slaked lime is less than 12 kg/m 3 , the paste rate, which is the volume ratio of water, ground granulated blast furnace slag, and slaked lime in the hardened body, will be insufficient and the hardened body will not solidify. On the other hand, even if the amount of slaked lime exceeds 160 kg/m 3 , the paste ratio in the hardened body becomes too high and the strength is not improved. Therefore, the unit amount of slaked lime shall be 160 kg/m 3 or less.
  • the slag hardened body 250 kg/m 3 or more and 800 kg/m 3 or less of ground granulated blast furnace slag is blended per 1 m 3 of slag hardened body.
  • the unit amount of ground granulated blast furnace slag to this range, the amount of alkali ions supplied from slaked lime and the amount of reactive SiO2 in the ground granulated blast furnace slag having latent hydraulicity This is because the physical balance becomes appropriate and a cured body having sufficient strength can be obtained.
  • the ground granulated blast furnace slag used in producing the hardened slag body according to the present embodiment is obtained by pulverizing granulated blast furnace slag.
  • the ground granulated blast furnace slag preferably has a particle size of about 0.1 mm or less and a specific surface area of about 3000 cm 2 /g or more according to the Blaine method. Further, the use of ground granulated blast furnace slag having a specific surface area of 4000 cm 2 /g or more according to the Blaine method is more preferable because the activity is further increased.
  • the slag containing free MgO used when producing the slag hardened body according to the present embodiment is slag for which a periclase peak is confirmed by X-ray diffraction.
  • the high chromium molten iron alloy means chromium-containing molten iron, high chromium molten steel (usually containing 5% by mass or more of chromium) typified by stainless steel, and chromium-containing steel for producing this high chromium molten steel.
  • Mother molten metal for example, a molten iron alloy having a chromium concentration of 5% by mass or more and a carbon concentration of 1% by mass or more and 2% by mass or less, which is melted in an electric furnace or the like).
  • Chromium-containing hot metal is usually produced by smelting reduction of chromium ore in electric furnaces, iron bath smelting reduction furnaces, and shaft furnace smelting reduction furnaces.
  • High chromium molten steel is smelted through primary refining furnaces such as electric furnaces, converters, and AOD furnaces, and secondary refining furnaces such as VOD furnaces, RH vacuum degassers, and ladle refining furnaces.
  • Chromium-containing molten mother metal for producing high-chromium molten steel is mainly melted in an electric furnace or a converter.
  • the generated slag contains free MgO.
  • Such slag is suitable for producing the hardened slag body according to the present embodiment.
  • the slag (referred to as "converter decarburization slag") generated when pure oxygen is supplied to the molten iron in the furnace from a top-blowing lance or the like in a converter and the decarburization and refining of the molten iron is usually performed, also contains free MgO. is lower than that of chromium smelting slag, it can be used as slag containing free MgO when producing the slag hardened body according to the present embodiment.
  • the hardened slag body expresses its strength by filling the gaps of aggregates such as slag with a paste portion composed of ground granulated blast furnace slag, hydrated lime, and water and bonding them together.
  • the unit amount of slag containing free MgO is specified to be 2720 kg/m 3 or less. This is because when the unit amount of slag containing free MgO exceeds 2720 kg/m 3 , the unit amount of granulated granulated blast furnace slag, unit amount of slaked lime, and unit amount of water in the hardened body decrease, so the adhesive strength of the aggregate decreases. This is because the strength of the cured body is lowered.
  • the lower limit of the unit amount of slag containing free MgO is not defined. This is because the slag containing free MgO functions as an aggregate in the slag hardened body, but if necessary, slag containing no free MgO or natural aggregate can be used as a material, so technically This is because there is no need to define the lower limit of the unit amount of slag containing free MgO. However, if the unit amount of slag is too small, the effective use of slag is not promoted. Therefore, the unit amount of slag containing free MgO is preferably 300 kg/m 3 or more per 1 m 3 of hardened slag. This makes it possible to effectively utilize the slag containing free MgO.
  • a high performance water reducing agent in the slag hardened body according to the present embodiment.
  • the strength of the slag hardened body can be increased.
  • the material cannot be dispersed.
  • Superplasticizers are used to disperse materials while reducing the amount of water added.
  • the high-performance water reducing agent for example, a polycarboxylic acid-based high-performance water reducing agent can be used.
  • the amount of superplasticizer used is preferably 0.3% by mass or more and 1.5% by mass or less of the total amount of ground granulated blast furnace slag and unit amount of slaked lime.
  • One of the methods for producing a slag hardened body has a unit amount of slag containing free MgO of 2720 kg/m 3 or less, a unit amount of blast furnace slag ground powder of 250 kg/m 3 or more and 800 kg/m 3 or less, and a unit amount of slaked lime of 12 kg. /m 3 or more and 160 kg/m 3 or less, and the unit boron-containing substance amount is 0.5 kg/m 3 or more and 4.0 kg/m 3 or less in terms of B 2 O 3 to form a mixture, and water is added to the formed mixture. It is a method of kneading and then solidifying the kneaded mixture.
  • slag or natural aggregates that do not contain free MgO can be used as materials if necessary. Also, a suitable amount of superplasticizer can be used.
  • Another method for producing a hardened slag body is to immerse a slag containing free MgO in a solution in which a boron-containing substance is dissolved.
  • the atomized solution in which the boron-containing substance is dissolved is sprayed on the slag containing free MgO, and the surface of the slag containing free MgO is preliminarily coated with 0.10% by mass or more of the boron-containing substance in terms of B 2 O 3 .
  • the unit amount of the free MgO-containing slag to which the boron-containing substance is attached in advance is 2720 kg/m 3 or less
  • the unit amount of the boron-containing substance attached to the surface of the slag is 0 in terms of B 2 O 3 .5 kg/m 3 or more and 4.0 kg/m 3 or less, a unit amount of blast furnace slag ground powder of 250 kg/m 3 or more and 800 kg/m 3 or less, and a unit amount of slaked lime of 12 kg/m 3 or more and 160 kg/m 3 or less to form a mixture. do.
  • water is added to the mixture thus formed, kneaded, and then the kneaded mixture is solidified.
  • slag or natural aggregates that do not contain free MgO can be used as materials if necessary. Also, a suitable amount of superplasticizer can be used.
  • the present embodiment even when a slag containing free MgO such as steelmaking slag is used as a material when producing a hardened slag body, the hydration expansion due to the free MgO does not occur. It is possible to obtain a hardened body which does not cause expansion cracks caused by the sintering process and which can quickly develop sufficient strength for use as an artificial stone.
  • slag A to C three types of slag (slag A to C) having the compositions shown in Table 1 were used to produce hardened slag bodies.
  • CaO/SiO 2 represents the ratio of CaO concentration (% by mass) to SiO 2 concentration (% by mass) in slag (referred to as “basicity”)
  • MgO and free MgO represents the MgO concentration (mass %) and the free MgO concentration (mass %) in the slag, respectively.
  • the slag shown in Table 1 is blended with ground granulated blast furnace slag, slaked lime, natural aggregate (coarse aggregate), boron-containing substance, superplasticizer and water in unit amounts within the scope of the present invention, and hardened body was produced (example of the present invention).
  • the unit amount of boron-containing substance in terms of B 2 O 3 is 0.5 kg/m 3 , 1.0 kg/m 3 , 2.0 kg/m 3 , 3.5 kg/m 3 , 4.0 kg/m 3 , and the unit amount of slaked lime was set to 12 kg/m 3 , 15 kg/m 3 , 44 kg/m 3 , 59 kg/m 3 , 100 kg/m 3 , 144 kg/m 3 and 160 kg/m 3 for each.
  • a hardened body blended with ordinary Portland cement without blending slaked lime, a hardened body with a unit amount of slaked lime outside the range of the present invention, a hardened body without blending a boron-containing substance, and B 2 O 3 A hardened body having a converted unit boron-containing substance amount of 4.5 kg/m 3 was also produced (comparative example).
  • the reagent diboron trioxide (B 2 O 3 ) was used as the boron-containing substance and dissolved in the water used for producing the cured body.
  • the cured body for strength measurement was removed from the frame after curing and cured in water at 20° C. until 3 days old, and then the compressive strength was measured according to JIS A 1108.
  • the material age is the number of days that have elapsed since the hardened slag was placed.
  • the cured body for expansion determination was removed from the frame after curing and cured in water at 20° C. until 14 days old. After curing, it was immersed in water at 80°C. Forty-five days after immersion, the cured body was observed to confirm the presence or absence of large cracks. A compressive strength of 3.0 N/mm 2 or more was considered acceptable.
  • Table 2 shows the composition table of the test piece manufactured using slag A and the results of compressive strength and expansion determination.
  • Comparative Examples 4 to 6 in which the unit amount of slaked lime was 6 kg/m 3 , the specimens were not solidified, and the compressive strength and expansion judgment could not be measured.
  • Comparative Examples 7 to 13 in which boron was not added, cracking was confirmed after 45 days, and it was confirmed that free MgO was expanding.
  • Comparative Examples 14 to 20 in which the unit amount of boron-containing substances in terms of B 2 O 3 was 4.5 kg/m 3 , the specimens did not solidify, and the compressive strength and expansion judgment could not be measured.
  • the unit amount of slaked lime is 12 kg/m 3 or more and 160 kg/m 3 or less
  • the unit amount of boron-containing substances in terms of B 2 O 3 is 0.5 kg/m 3 or more and 4.0 kg/m 3 or less.
  • the 3-day compressive strength was 3.0 N/mm 2 or more, and no cracks were found in the expansion determination, confirming that they were in a sound state.
  • Table 3 shows the composition table of the test piece manufactured using slag B and the results of compressive strength and expansion determination.
  • Comparative Examples 24 to 26 in which the unit amount of slaked lime was 6 kg/m 3 , the hardened body was not solidified, and the compressive strength and expansion judgment could not be measured.
  • Comparative Examples 27 to 33 in which boron was not added, cracking was confirmed after 45 days, and it was confirmed that free MgO was expanding.
  • Comparative Examples 34 to 40 in which the unit amount of boron-containing substances in terms of B 2 O 3 was 4.5 kg/m 3 , the cured bodies were not solidified, and the compressive strength and expansion judgment could not be measured.
  • the unit amount of slaked lime is 12 kg/m 3 or more and 160 kg/m 3 or less
  • the unit amount of boron-containing substances in terms of B 2 O 3 is 0.5 kg/m 3 or more and 4.0 kg/m 3 or less.
  • the 3-day compressive strength was 3.0 N/mm 2 or more, and no cracks were found in the expansion determination, confirming that they were in a sound state.
  • Table 4 shows the composition table of the test piece manufactured using slag C and the results of compressive strength and expansion determination.
  • Comparative Examples 41 to 43 in which the unit amount of slaked lime was 6 kg/m 3 and the unit amount of slag C was 3060 kg/m 3 , the hardened body did not solidify, and the compressive strength and expansion judgment could not be measured.
  • Comparative Examples 44 to 50 in which boron was not added, cracking was confirmed after 45 days, and it was confirmed that free MgO was expanding. Further, in Comparative Examples 51 to 57 in which the unit amount of boron-containing substances in terms of B 2 O 3 was 4.5 kg/m 3 , the cured bodies did not solidify, and the compressive strength and expansion judgment could not be measured.
  • the unit amount of slag C is 2720 kg/m 3 or less
  • the unit slaked lime amount is 12 kg/m 3 or more and 160 kg/m 3 or less
  • the unit boron-containing substance amount is 0.5 kg in terms of B 2 O 3 /m 3 or more and 4.0 kg/m 3 or less in Examples 71 to 105 of the present invention
  • the 3-day compressive strength is 3.0 N/mm 2 or more, and there is no crack in the expansion judgment, and the soundness is good. status was confirmed.
  • slags A to C Three types of slag (slags A to C) shown in Table 1 were brought into contact with a boron-containing substance, and a test was conducted to produce a cured body using the slag with the boron-containing substance previously attached to the slag surface.
  • a reagent diboron trioxide B 2 O 3
  • this diboron trioxide reagent is dissolved in 50 times the mass of water to form an aqueous solution (boric acid aqueous solution).
  • bogent diboron trioxide reagent B 2 O 3
  • Ground granulated blast furnace slag, slaked lime, natural aggregate (coarse aggregate), superplasticizer and water are added to the slag to which 0.10% by mass or more of boron-containing substances in terms of B 2 O 3 are attached in advance.
  • a cured product was produced by blending in a unit amount within the scope of the invention (example of the present invention).
  • the deposition amount of the boron-containing substance in the slag in terms of B 2 O 3 was 0.1% by mass, 0.3% by mass, 0.5% by mass, and 1.0% by mass with respect to the slag mass.
  • a hardened body was also produced in which the amount of the boron-containing substance adhering to the slag surface was outside the range of the present invention (comparative example).
  • Table 5 shows the composition table of the test piece manufactured using slag A and the results of compressive strength and expansion judgment.
  • the unit slaked lime amount is 12 kg/m 3 or more and 160 kg/m 3 or less
  • the boron-containing substance attached to the slag surface is 0.10% by mass or more in terms of B 2 O 3 of the slag
  • the 3-day compressive strength was 3.0 N/mm 2 or more, and the cured body was in a sound state even after 45 days after being immersed in water at 80 ° C. It was confirmed that it was preserved.
  • Table 6 shows the composition table of the test piece manufactured using slag B and the results of compressive strength and expansion determination.
  • the unit slaked lime amount is 12 kg/m 3 or more and 160 kg/m 3 or less
  • the boron-containing substance attached to the slag surface is 0.10% by mass or more in terms of B 2 O 3 of the slag
  • the unit boron-containing substance amount in terms of B 2 O 3 in the hardened body calculated from the product of the mass ratio in terms of B 2 O 3 of the contained substance is 0.5 kg/m 3 or more and 4.0 kg/m 3 or less.
  • the 3-day compressive strength was 3.0 N/mm 2 or more, and it was confirmed that even after 45 days of being immersed in water at 80°C, the cured body remained in a sound state. was done.
  • Table 7 shows the composition table of the test piece manufactured using slag C and the results of compressive strength and expansion determination.
  • the unit slaked lime amount is 12 kg/m 3 or more and 160 kg/m 3 or less
  • the boron-containing substance attached to the slag surface is 0.10% by mass or more in terms of B 2 O 3 of the slag
  • the unit boron-containing substance amount in terms of B 2 O 3 in the hardened body calculated from the product of the mass ratio in terms of B 2 O 3 of the contained substance is 0.5 kg/m 3 or more and 4.0 kg/m 3 or less.
  • the 3-day compressive strength was 3.0 N/mm 2 or more, and even after 45 days of immersion in water at 80 ° C., it was confirmed that the cured body remained in a sound state. was done.
  • the boron-containing substance attached to the slag surface is 0.10% by mass or more of the slag in terms of B 2 O 3
  • the product of the unit slag amount and the mass ratio of the attached boron-containing substance in terms of B 2 O 3 In Comparative Examples 72 to 78, in which the unit boron-containing substance amount in terms of B 2 O 3 in the hardened body calculated from the above exceeds 4.0 kg/m 3 , the specimen did not harden.

Abstract

製鋼スラグなどの遊離MgOを含有するスラグを材料として製造される硬化体であって、遊離MgOによる水和反応による体積膨張を抑えた上で、早期に強度が増大する硬化体を提供する。 本発明に係るスラグを利用した硬化体は、遊離MgOを含有するスラグを利用した前記混合物が固化することで製造される硬化体であって、前記硬化体において、遊離MgOを含有するスラグの単位量が2720kg/m以下、単位高炉スラグ微粉末量が250kg/m以上800kg/m以下、単位消石灰量が12kg/m以上160kg/m以下、単位ホウ素含有物質量がB換算で0.5kg/m以上4.0kg/m以下である。

Description

スラグを利用した硬化体及び硬化体の製造方法
 本発明は、製鋼スラグなどの遊離MgOを含有するスラグを材料として利用して製造される硬化体及びこの硬化体の製造方法に関する。
 製鋼工程では、耐火物に含まれるMgOが精錬中にスラグに溶解して、耐火物が溶損することを防ぐために、スラグに飽和溶解度以上のMgOを添加する操業が行われることがある。このような精錬で発生するスラグ中には、精錬中に未反応のまま残留したMgO、及び、スラグが冷却される過程で晶出したMgOが存在する。このような未反応のMgO及び晶出したMgOを遊離MgOという。
 製鋼スラグを活用する試みとして、例えば、特許文献1に開示されているような、製鋼スラグを利用した水和硬化体がある。特許文献1に記載の水和硬化体は、水和反応を生ずる未反応のCaOを含有した製鋼スラグを含有する骨材と、潜在水硬性を有するシリカ含有物質を50重量%以上含有した、水和反応によって硬化する結合材と、を有しており、水を加えて混練した後に硬化されている。
 しかし、遊離MgOを含む製鋼スラグは、長期にわたって遊離MgOの水和反応が進行し、膨張する性質があるため、硬化体の膨張ひび割れの懸念があり、水和硬化体の材料としての活用は困難である。ここで、遊離MgOの水和反応とは、製鋼スラグ中の遊離MgOが雨水や海水などの水分と接触してMg(OH)を生成する反応(MgO+HO→Mg(OH))であり、この反応によって体積が膨張する。
 耐火物の分野では、例えば、特許文献2に開示されているような、耐火物表面にホウ酸などの結晶被膜を形成するMgOの水和抑制技術が周知である。特許文献2には、塩基性耐火煉瓦の表面に硫酸塩、ホウ酸、ホウ酸塩の中の1種または2種以上の結晶被膜を形成する塩基性耐火煉瓦の消化防止方法において、塩基性耐火煉瓦を、水の重量をa(g)、飽和溶解度をb(g)、溶質の重量をc(g)とした場合、100c/(a×b)によって示される式の値が0.2以上1.0以下の値を有する水溶液に含浸するか、もしくは、塩基性耐火煉瓦に上記水溶液を塗布したのち、この水溶液を乾燥させてなる、塩基性耐火煉瓦の消化防止方法が開示されている。
特許第3582263号公報 特開平8-169783号公報
 しかしながら、上記の従来技術に基づき、遊離MgOを含む製鋼スラグを骨材とし、高炉スラグ微粉末、及び、アルカリ刺激材として普通ポルトランドセメントを用い、遊離MgOの水和膨張を抑えるためにBを含有させた硬化体を試作したところ、Bの凝結遅延効果によって翌日に脱枠できず、また、3日圧縮強度は3N/mm未満であり、硬化体としての使用に耐えられるものではなかった。更に、遊離MgOの水和膨張は抑制されず、硬化体にひび割れが生じた。
 本発明は上記事情に鑑みてなされたもので、その目的とするところは、製鋼スラグなどの遊離MgOを含有するスラグを利用した硬化体であって、遊離MgOによる水和反応による体積膨張を抑えた上で、早期に強度が増大する、スラグを利用した硬化体を提供することであり、また、この硬化体の製造方法を提供することである。
 上記課題を解決するための本発明の要旨は以下のとおりである。
 [1]遊離MgOを含有するスラグを利用した硬化体であって、前記硬化体において、遊離MgOを含有するスラグの単位量が2720kg/m3以下、単位高炉スラグ微粉末量が250kg/m以上800kg/m以下、単位消石灰量が12kg/m以上160kg/m以下、単位ホウ素含有物質量がB換算で0.5kg/m以上4.0kg/m以下であることを特徴とする、スラグを利用した硬化体。
 [2]遊離MgOを含有するスラグを材料として利用した硬化体の製造方法であって、遊離MgOを含有するスラグの単位量を2720kg/m以下、単位高炉スラグ微粉末量を250kg/m以上800kg/m以下、単位消石灰量を12kg/m以上160kg/m以下、単位ホウ素含有物質量をB換算で0.5kg/m以上4.0kg/m以下として混合物を形成し、形成した混合物に水を加えて混練し、その後、混練した混合物を固化させることを特徴とする、スラグを利用した硬化体の製造方法。
 [3]遊離MgOを含有するスラグを材料として利用した硬化体の製造方法であって、遊離MgOを含有するスラグをホウ素含有物質が溶解した溶液に浸漬させる、または、遊離MgOを含有するスラグにホウ素含有物質が溶解した溶液を吹き付けて、遊離MgOを含有するスラグの表面にB換算で0.10質量%以上のホウ素含有物質を予め付着させ、予めホウ素含有物質を付着させた、前記遊離MgOを含有するスラグの単位量を2720kg/m以下、且つ、当該スラグの表面に付着したホウ素含有物質の単位量をB換算で0.5kg/m以上4.0kg/m以下、単位高炉スラグ微粉末量を250kg/m以上800kg/m以下、単位消石灰量を12kg/m以上160kg/m以下として混合物を形成し、形成した混合物に水を加えて混練し、その後、混練した混合物を固化させることを特徴とする、スラグを利用した硬化体の製造方法。
 本発明によれば、スラグを利用して硬化体を製造する際に、製鋼スラグなどの遊離MgOを含有するスラグを材料として使用した場合であっても、遊離MgOによる水和膨張に起因する膨張ひび割れが発生せず、且つ、人工石としての利用に十分な強度を早期に発現可能な硬化体が得られる。
 以下、本実施形態の一例を説明する。
 本実施形態に係る、スラグを利用した硬化体(以下、「スラグ硬化体」とも記す)は、遊離MgOを含有するスラグを材料として含む混合物に水が加えられて混練され、その後、混練された混合物が固化することで製造される硬化体である。当該硬化体において、遊離MgOを含有するスラグの単位量が2720kg/m以下、単位高炉スラグ微粉末量が250kg/m以上800kg/m以下、単位消石灰量が12kg/m以上160kg/m以下、単位ホウ素含有物質量がB換算で0.5kg/m以上4.0kg/m以下である。この場合に、必要に応じて遊離MgOを含有しないスラグや天然骨材を材料として用いることができる。遊離MgOを含有しないスラグとは、X線回折でペリクレースのピークが確認されないスラグである。天然骨材とは、例えば、「砂利や砂」である。
 本実施形態に係るスラグ硬化体の特徴は、硬化体1mあたりB換算で0.5kg/m以上4.0kg/m以下のホウ素含有物質を含有することである。ホウ素含有物質を、遊離MgOを含有するスラグに添加することで、スラグ中の遊離MgOの表面に硼酸または硼酸塩の結晶被膜が形成される。この結晶被膜により、遊離MgOの表面と、空気中などの雰囲気中の水分との接触が遮断される。つまり、硼酸または硼酸塩の結晶被膜が水分吸着防止材として機能し、遊離MgOの水和が抑制され、遊離MgOによる水和膨張に起因する、スラグ硬化体の膨張ひび割れが防止される。
 本実施形態に係るスラグ硬化体では、遊離MgOの水和膨張を抑制するための単位ホウ素含有物質量を、B換算で0.5kg/m以上4.0kg/m以下とする。これは、単位ホウ素含有物質量が、B換算で0.5kg/m未満では水和膨張抑制効果が小さく、一方、B換算で4.0kg/mより大きいと、硬化体が固化しないことを、本発明者らが見出したからである。
 ホウ素含有物質としては、ホウ素が水に溶解するものであればよく、特に限定しないが、例えば、酸性酸化物である三酸化二ホウ素(B)やホウ酸(HBO)、ホウ砂(Na(OH)・8HO)などの酸化ホウ素及びホウ素化合物を使用することができる。
 本実施形態に係るスラグ硬化体の特徴の他の一つは、アルカリ刺激材として消石灰(Ca(OH))を用いることである。消石灰を用いる理由は、(1)ホウ素含有物質によって形成される遊離MgOの表面の硼酸または硼酸塩の結晶被膜を破壊せず、スラグ硬化体中の遊離MgOの膨張を抑制できること、(2)高炉スラグ微粉末の潜在水硬性の発現に必要なアルカリを供給できること、(3)普通ポルトランドセメントと比較して早期に強度が発現することによる。
 ホウ素含有物質を添加したスラグ硬化体においては、遊離MgOの表面にホウ酸マグネシウムによる結晶被膜が形成されると考えられる。
 一般的にスラグ硬化体に用いられる結合材である高炉スラグ微粉末と普通ポルトランドセメントとの組み合わせでは、普通ポルトランドセメントのpH(水素イオン濃度指数)が約12.7と高いことから、ホウ酸マグネシウムの結晶被膜が溶解し、遊離MgOの膨張抑制効果が小さくなる。一方で、高炉スラグ微粉末の潜在水硬性の発現にはアルカリの供給が必要である。つまり、アルカリ刺激材には、ホウ酸マグネシウムによる結晶被膜を破壊せず、且つ高炉スラグ微粉末の潜在水硬性発現に必要なアルカリを供給できることが要求される。
 このため、本実施形態に係るスラグ硬化体では、飽和水溶液のpHが12.4とポルトランドセメントのpHよりも低く、一方で、高炉スラグ微粉末にアルカリ刺激を供給できる消石灰をアルカリ刺激材として使用する。また、アルカリ刺激材として消石灰を用いた場合、普通ポルトランドセメントを用いた場合よりも早期に強度が発現する。この点からも、アルカリ刺激材として消石灰を使用することが適しているといえる。
 本実施形態に係るスラグ硬化体では、スラグ硬化体中の消石灰を、スラグ硬化体1mあたり12kg/m以上160kg/m以下とする。これは、単位消石灰量が12kg/m未満では、硬化体中の水、高炉スラグ微粉末、消石灰の体積割合であるペースト率が不足するために硬化体が固化しなくなるからである。一方、消石灰を160kg/mより多く配合しても、硬化体中のペースト率が高くなりすぎ、強度は向上しない。したがって、単位消石灰量は160kg/m以下とする。
 本実施形態に係るスラグ硬化体では、高炉スラグ微粉末をスラグ硬化体1mあたり250kg/m以上800kg/m以下配合する。これは、単位高炉スラグ微粉末量を、この範囲に限定することによって、消石灰から供給されるアルカリイオンの量と、潜在水硬性を有する高炉スラグ微粉末中の反応性SiOの量との量的バランスが適正となり、十分な強度を持つ硬化体が得られるためである。
 本実施形態に係るスラグ硬化体を製造する際に使用する高炉スラグ微粉末は、高炉水砕スラグを粉砕したものである。高炉スラグ微粉末は、その粒径が約0.1mm以下で、ブレーン法による比表面積が約3000cm/g以上のものが好ましい。また、ブレーン法による比表面積が4000cm/g以上の高炉スラグ微粉末を用いると、活性がより高くなり、より一層好ましい。
 本実施形態に係るスラグ硬化体を製造する際に使用する、遊離MgOを含有するスラグとは、X線回折でペリクレースのピークが確認されるスラグのことである。このようなスラグとしては、特に、高クロム溶融鉄合金を溶製する際に発生するスラグを用いることが好ましい。ここで、高クロム溶融鉄合金とは、クロム含有溶銑や、ステンレス鋼に代表される高クロム溶鋼(通常、クロム含有量5質量%以上)、及び、この高クロム溶鋼を製造するためのクロム含有母溶湯(例えば、電気炉などで溶製される、クロム濃度が5質量%以上、炭素濃度が1質量%以上2質量%以下の溶融鉄合金)などが挙げられる。
 クロム含有溶銑は、通常、電気炉や鉄浴式溶融還元炉、シャフト炉式の溶融還元炉などにおいて、クロム鉱石の溶融還元によって溶製される。高クロム溶鋼は、電気炉、転炉、AOD炉などの一次精錬炉と、VOD炉、RH真空脱ガス装置、取鍋精錬炉などの二次精錬炉とを経て溶製される。また、高クロム溶鋼を製造するためのクロム含有母溶湯は、主として電気炉や転炉で溶製される。
 これらの製錬炉及精錬炉のうち、クロム鉱石を溶融還元する溶融還元炉では、炉体耐火物の保護のために、スラグの飽和溶解度以上にMgOをスラグに添加する操業が行われているので、発生するスラグ(クロム製錬スラグ)には遊離MgOが含まれている。このようなスラグは本実施形態に係るスラグ硬化体を製造する際に好適である。
 転炉にて上吹きランスなどから炉内の溶銑に純酸素を供給し、通常溶銑の脱炭精錬を行う際に発生するスラグ(「転炉脱炭スラグ」という)も、遊離MgOの含有量はクロム製錬スラグに比較して低いものの、本実施形態に係るスラグ硬化体を製造する際に、遊離MgOを含有するスラグとして使用することができる。
 ところで、スラグ硬化体は、高炉スラグ微粉末、消石灰、水からなるペースト分が、スラグなどの骨材の間隙を埋め、接着することで強度が発現する。本実施形態に係るスラグ硬化体では、遊離MgOを含有するスラグの単位量を2720kg/m以下に規定する。これは、遊離MgOを含有するスラグの単位量が2720kg/mを超えると、硬化体中の単位高炉スラグ微粉末量、単位消石灰量、単位水量が少なくなるため、骨材の接着力が低下し、硬化体の強度が低くなるからである。
 一方、本実施形態に係るスラグ硬化体では、遊離MgOを含有するスラグの単位量の下限値を規定していない。これは、遊離MgOを含有するスラグは、スラグ硬化体において骨材として機能しているが、必要に応じて、遊離MgOを含有しないスラグや天然骨材も材料として用いることができるので、技術的に遊離MgOを含有するスラグの単位量の下限値を規定する必要がないからである。しかしながら、あまりにも少ないスラグの単位量では、スラグの有効活用が促進されないことから、遊離MgOを含有するスラグの単位量はスラグ硬化体1mあたり300kg/m以上とすることが好ましい。これにより、遊離MgOを含有するスラグを有効活用できる。
 また、本実施形態に係るスラグ硬化体では、高性能減水剤を使用することが好ましい。スラグ硬化体を製造する際に、混練時の水分添加量を少なくすることで、スラグ硬化体の強度を上昇させることができる。しかし、混練時の水分添加量を少なくすると、材料を分散できなくなる。高性能減水剤は、水分添加量を少なくしつつ材料を分散させるために用いるものである。高性能減水剤としては、例えば、ポリカルボン酸系の高性能減水剤を利用することができる。一般的に、高性能減水剤の使用量は、単位高炉スラグ微粉末量と単位消石灰量との合計の0.3質量%以上1.5質量%以下が好ましい。
 次いで、本実施形態に係るスラグ硬化体の製造方法について説明する。本実施形態に係るスラグ硬化体の製造方法には、2つの製造方法がある。
 スラグ硬化体の製造方法の1つは、遊離MgOを含有するスラグの単位量を2720kg/m以下、単位高炉スラグ微粉末量を250kg/m以上800kg/m以下、単位消石灰量を12kg/m以上160kg/m以下、単位ホウ素含有物質量をB換算で0.5kg/m以上4.0kg/m以下として混合物を形成し、形成した混合物に水を加えて混練し、その後、混練した混合物を固化させる方法である。
 この場合に、必要に応じて遊離MgOを含有しないスラグや天然骨材を材料として用いることができる。また、適宜の量の高性能減水剤を使用することができる。
 スラグ硬化体の製造方法の他の1つは、遊離MgOを含有するスラグをホウ素含有物質が溶解した溶液に浸漬させる。または、遊離MgOを含有するスラグにホウ素含有物質が溶解した霧状の溶液を吹き付けて、遊離MgOを含有するスラグの表面にB換算で0.10質量%以上のホウ素含有物質を予め付着させる。次いで、予めホウ素含有物質を付着させた、遊離MgOを含有するスラグの単位量を2720kg/m以下、且つ、当該スラグの表面に付着したホウ素含有物質の単位量をB換算で0.5kg/m以上4.0kg/m以下、単位高炉スラグ微粉末量を250kg/m以上800kg/m以下、単位消石灰量を12kg/m以上160kg/m以下として混合物を形成する。こうして形成した混合物に水を加えて混練し、その後、混練した混合物を固化させる方法である。遊離MgOを含有するスラグの表面にB換算で0.10質量%以上のホウ素含有物質を予め付着させる理由は、ホウ素含有物質の含有量がB換算で0.10質量%未満では、水和膨張抑制効果が不十分であるからである。
 この場合に、必要に応じて遊離MgOを含有しないスラグや天然骨材を材料として用いることができる。また、適宜の量の高性能減水剤を使用することができる。
 以上説明したように、本実施形態によれば、スラグ硬化体を製造する際に、製鋼スラグなどの遊離MgOを含有するスラグを材料として使用した場合であっても、遊離MgOによる水和膨張に起因する膨張ひび割れが発生せず、且つ、人工石としての利用に十分な強度を早期に発現可能な硬化体が得られる。
 以下、本発明の実施例について説明する。本実施例では、表1に示す組成の3種類のスラグ(スラグA~C)を用いて、スラグ硬化体を作製した。尚、表1において、「CaO/SiO」は、スラグ中のSiO濃度(質量%)に対するCaO濃度(質量%)の比(「塩基度」という)を表し、「MgO」及び「遊離MgO」は、スラグ中のMgO濃度(質量%)及び遊離MgO濃度(質量%)をそれぞれ表す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すスラグに、高炉スラグ微粉末、消石灰、天然骨材(粗骨材)、ホウ素含有物質、高性能減水剤及び水を、それぞれ本発明の範囲内の単位量で配合し、硬化体を製造した(本発明例)。本発明例では、B換算の単位ホウ素含有物質量を0.5kg/m、1.0kg/m、2.0kg/m、3.5kg/m、4.0kg/mとし、それぞれに対して単位消石灰量を12kg/m、15kg/m、44kg/m、59kg/m、100kg/m、144kg/m、160kg/mとした。
 また、比較のために、消石灰を配合しないで普通ポルトランドセメントを配合した硬化体、単位消石灰量を本発明の範囲外とした硬化体、ホウ素含有物質を配合しない硬化体、及び、B換算の単位ホウ素含有物質量を4.5kg/mとする硬化体も製造(比較例)した。
 本実施例では、ホウ素含有物質として試薬の三酸化二ホウ素(B)を使用し、硬化体の製造に使用する水に溶解させた。
 硬化体は強度測定用と膨張判定用との二種類を製造した。強度測定用の硬化体は、硬化後に脱枠し、材齢3日まで20℃で水中養生した時点で、JIS A 1108に準じて圧縮強度を測定した。ここで、材齢とは、スラグ硬化体を打設してからの経過日数である。膨張判定用の硬化体は、硬化後に脱枠し、材齢14日まで20℃で水中養生した。養生後、80℃の水に浸漬させた。浸漬してから45日後に硬化体を観察し、大きな割れの有無を確認した。圧縮強度は3.0N/mm以上を合格とした。また、3日後までに固化せず、圧縮強度を測定できなかったものを「測定不可」と表示した。膨張判定は、割れが確認されなかったものを「合格」、割れが確認されたものを「不合格」とした。膨張判定の欄が「測定不可」とは、固化しない、または、水和膨張して硬化体が形成されないことを示す。
 スラグAを用いて製造した供試体の配合表並びに圧縮強度及び膨張判定の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 消石灰を配合せずに普通ポルトランドセメントを配合した比較例1~3では、3日強度が3.0N/mm未満であった。また、膨張測定においても45日経過後に割れが確認され、遊離MgOが膨張していることが確認された。
 また、単位消石灰量を6kg/mとした比較例4~6では、供試体が固化せず、圧縮強度及び膨張判定は測定不能であった。ホウ素を添加していない比較例7~13では、45日経過後に割れが確認され、遊離MgOが膨張していることが確認された。B換算の単位ホウ素含有物質量を4.5kg/mとした比較例14~20では、供試体が固化せず、圧縮強度及び膨張判定は測定不能であった。
 これに対し、単位消石灰量を12kg/m以上160kg/m以下とし、B換算の単位ホウ素含有物質量を0.5kg/m以上4.0kg/m以下とした本発明例1~35では、3日圧縮強度が3.0N/mm以上であり、且つ、膨張判定においても割れはなく、健全な状態であることが確認された。
 スラグBを用いて製造した供試体の配合表並びに圧縮強度及び膨張判定の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 消石灰を配合せずに普通ポルトランドセメントを配合した比較例21~23では、3日強度が3.0N/mm未満のものが存在し、また、膨張測定においても45日経過後に割れが確認され、遊離MgOが膨張していることが確認された。
 また、単位消石灰量を6kg/mとした比較例24~26では、硬化体が固化せず、圧縮強度及び膨張判定は測定不能であった。ホウ素を添加していない比較例27~33では、45日経過後に割れが確認され、遊離MgOが膨張していることが確認された。B換算の単位ホウ素含有物質量を4.5kg/mとした比較例34~40では、硬化体が固化せず、圧縮強度及び膨張判定は測定不能であった。
 これに対し、単位消石灰量を12kg/m以上160kg/m以下とし、B換算の単位ホウ素含有物質量を0.5kg/m以上4.0kg/m以下とした本発明例36~70では、3日圧縮強度が3.0N/mm以上であり、且つ、膨張判定においても割れはなく、健全な状態であることが確認された。
 スラグCを用いて製造した供試体の配合表並びに圧縮強度及び膨張判定の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 単位消石灰量を6kg/mとし、スラグCの単位量を3060kg/mとした比較例41~43では、硬化体が固化せず、圧縮強度及び膨張判定は測定不能であった。ホウ素を添加していない比較例44~50では、45日経過後に割れが確認され、遊離MgOが膨張していることが確認された。また、B換算の単位ホウ素含有物質量を4.5kg/mとした比較例51~57では、硬化体が固化せず、圧縮強度及び膨張判定は測定不能であった。
 これに対して、スラグCの単位量を2720kg/m以下とし、且つ、単位消石灰量を12kg/m以上160kg/m以下、単位ホウ素含有物質量をB換算で0.5kg/m以上4.0kg/m以下の範囲とした本発明例71~105では、3日圧縮強度が3.0N/mm以上であり、且つ、膨張判定においても割れはなく、健全な状態であることが確認された。
 表1に示す3種類のスラグ(スラグA~C)とホウ素含有物質とを接触させ、スラグ表面にホウ素含有物質を予め付着させたスラグを用いて硬化体を製造する試験を行った。ホウ素含有物質としては、試薬の三酸化二ホウ素(B)を使用し、この三酸化二ホウ素の試薬を50倍の質量の水に溶解させて水溶液(ホウ酸水溶液)とし、この水溶液を霧状にしてスラグに吹き付け、スラグ表面にホウ素含有物質(ホウ酸)を付着させた。その後、スラグを乾燥させて、硬化体の材料として使用した。
 予めB換算で0.10質量%以上のホウ素含有物質を付着させたスラグに、高炉スラグ微粉末、消石灰、天然骨材(粗骨材)、高性能減水剤及び水を、それぞれ本発明の範囲内の単位量で配合し、硬化体を製造した(本発明例)。本発明例では、スラグでのホウ素含有物質のB換算の付着量は、スラグ質量に対して0.1質量%、0.3質量%、0.5質量%、1.0質量%とした。また、比較のために、スラグ表面のホウ素含有物質の付着量が本発明の範囲外の硬化体も製造した(比較例)。
 また、硬化体は強度測定用と膨張判定用との二種類を製造し、製造した硬化体について、上述の実施例1と同一の条件で圧縮強度測定及び膨張判定を行った。
 スラグAを用いて製造した供試体の配合表並びに圧縮強度及び膨張判定の結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 単位消石灰量を12kg/m以上160kg/m以下とし、スラグ表面に付着させるホウ素含有物質をB換算でスラグの0.10質量%以上とし、且つ、単位スラグ量と付着したホウ素含有物質のB換算の質量割合との積から計算される硬化体中のB換算の単位ホウ素含有物質量(硬化体中のB換算の単位ホウ素含有物質量(kg/m)=単位スラグ量(kg/m)×ホウ素含有物質付着量のB換算の質量割合(質量%)/100)を、0.5kg/m以上4.0kg/m以下とした本発明例106~125では、3日圧縮強度が3.0N/mm以上であり、且つ、80℃の水に浸漬して45日後にも、硬化体は健全な状態を保ったままであることが確認された。
 一方、スラグ表面に付着させるホウ素含有物質をB換算でスラグの0.05質量%とした比較例58~64では、単位スラグ量と付着したホウ素含有物質のB換算の質量割合との積から計算される硬化体中のB換算の単位ホウ素含有物質量が0.5kg/m以上にならず、膨張判定において、45日経過後に割れが確認され、遊離MgOが膨張していることが確認された。
 スラグBを用いて製造した供試体の配合表並びに圧縮強度及び膨張判定の結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 単位消石灰量を12kg/m以上160kg/m以下とし、スラグ表面に付着させるホウ素含有物質をB換算でスラグの0.10質量%以上とし、且つ、単位スラグ量と付着したホウ素含有物質のB換算の質量割合との積から計算される硬化体中のB換算の単位ホウ素含有物質量を0.5kg/m以上4.0kg/m以下とした本発明例126~145では、3日圧縮強度が3.0N/mm以上であり、80℃の水に浸漬して45日後にも、硬化体は健全な状態を保ったままであることが確認された。
 一方、スラグ表面に付着させるホウ素含有物質をB換算でスラグの0.05質量%とした比較例65~71では、単位スラグ量と付着したホウ素含有物質のB換算の質量割合との積から計算される硬化体中のB換算の単位ホウ素含有物質量が0.5kg/m以上にならず、膨張判定において、45日経過後に割れが確認され、遊離MgOが膨張していることが確認された。
 スラグCを用いて製造した供試体の配合表並びに圧縮強度及び膨張判定の結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 単位消石灰量を12kg/m以上160kg/m以下とし、スラグ表面に付着させるホウ素含有物質をB換算でスラグの0.10質量%以上とし、且つ、単位スラグ量と付着したホウ素含有物質のB換算の質量割合との積から計算される硬化体中のB換算の単位ホウ素含有物質量を0.5kg/m以上4.0kg/m以下とした本発明例146~154では、3日圧縮強度が3.0N/mm以上であり、80℃の水に浸漬して45日後にも、硬化体は健全な状態を保ったままであることが確認された。
 一方、スラグ表面に付着させるホウ素含有物質がB換算でスラグの0.10質量%以上であるものの、単位スラグ量と付着したホウ素含有物質のB換算の質量割合との積から計算される硬化体中のB換算の単位ホウ素含有物質量が4.0kg/mを超える比較例72~78では、供試体は固化しなかった。

 

Claims (3)

  1.  遊離MgOを含有するスラグを利用した硬化体であって、
     前記硬化体において、遊離MgOを含有するスラグの単位量が2720kg/m以下、単位高炉スラグ微粉末量が250kg/m以上800kg/m以下、単位消石灰量が12kg/m以上160kg/m以下、単位ホウ素含有物質量がB換算で0.5kg/m以上4.0kg/m以下であることを特徴とする、スラグを利用した硬化体。
  2.  遊離MgOを含有するスラグを材料として利用した硬化体の製造方法であって、
     遊離MgOを含有するスラグの単位量を2720kg/m以下、単位高炉スラグ微粉末量を250kg/m以上800kg/m以下、単位消石灰量を12kg/m以上160kg/m以下、単位ホウ素含有物質量をB換算で0.5kg/m以上4.0kg/m以下として混合物を形成し、
     形成した混合物に水を加えて混練し、その後、混練した混合物を固化させることを特徴とする、スラグを利用した硬化体の製造方法。
  3.  遊離MgOを含有するスラグを材料として利用した硬化体の製造方法であって、
     遊離MgOを含有するスラグをホウ素含有物質が溶解した溶液に浸漬させる、または、遊離MgOを含有するスラグにホウ素含有物質が溶解した溶液を吹き付けて、遊離MgOを含有するスラグの表面にB換算で0.10質量%以上のホウ素含有物質を予め付着させ、
     予めホウ素含有物質を付着させた、前記遊離MgOを含有するスラグの単位量を2720kg/m以下、且つ、当該スラグの表面に付着したホウ素含有物質の単位量をB換算で0.5kg/m以上4.0kg/m以下、単位高炉スラグ微粉末量を250kg/m以上800kg/m以下、単位消石灰量を12kg/m以上160kg/m以下として混合物を形成し、
     形成した混合物に水を加えて混練し、その後、混練した混合物を固化させることを特徴とする、スラグを利用した硬化体の製造方法。

     
PCT/JP2022/020890 2021-05-28 2022-05-19 スラグを利用した硬化体及び硬化体の製造方法 WO2022249977A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022549245A JP7195502B1 (ja) 2021-05-28 2022-05-19 スラグを利用した硬化体及び硬化体の製造方法
CN202280036682.4A CN117355494A (zh) 2021-05-28 2022-05-19 利用了炉渣的硬化体及硬化体的制造方法
KR1020237039486A KR20230169360A (ko) 2021-05-28 2022-05-19 슬래그를 이용한 경화체 및 경화체의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021090038 2021-05-28
JP2021-090038 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022249977A1 true WO2022249977A1 (ja) 2022-12-01

Family

ID=84230103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020890 WO2022249977A1 (ja) 2021-05-28 2022-05-19 スラグを利用した硬化体及び硬化体の製造方法

Country Status (4)

Country Link
JP (1) JP7195502B1 (ja)
KR (1) KR20230169360A (ja)
CN (1) CN117355494A (ja)
WO (1) WO2022249977A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013006743A (ja) * 2011-06-24 2013-01-10 Nippon Steel & Sumitomo Metal Corp 鉄鋼スラグ水和固化体
JP2020196636A (ja) * 2019-05-31 2020-12-10 日本製鉄株式会社 鉄鋼スラグ水和固化体の製造方法
WO2021065215A1 (ja) * 2019-09-30 2021-04-08 Jfeスチール株式会社 スラグ中のフリーMgOの水和抑制方法、スラグ粒、スラグ粒の製造方法及び人工石の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08169783A (ja) 1994-12-16 1996-07-02 Kurosaki Refract Co Ltd 塩基性耐火煉瓦の消化防止方法
JP3582263B2 (ja) 1996-11-21 2004-10-27 Jfeスチール株式会社 製鋼スラグを利用した水和硬化体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013006743A (ja) * 2011-06-24 2013-01-10 Nippon Steel & Sumitomo Metal Corp 鉄鋼スラグ水和固化体
JP2020196636A (ja) * 2019-05-31 2020-12-10 日本製鉄株式会社 鉄鋼スラグ水和固化体の製造方法
WO2021065215A1 (ja) * 2019-09-30 2021-04-08 Jfeスチール株式会社 スラグ中のフリーMgOの水和抑制方法、スラグ粒、スラグ粒の製造方法及び人工石の製造方法

Also Published As

Publication number Publication date
KR20230169360A (ko) 2023-12-15
CN117355494A (zh) 2024-01-05
JPWO2022249977A1 (ja) 2022-12-01
JP7195502B1 (ja) 2022-12-26

Similar Documents

Publication Publication Date Title
Jiang et al. Characteristics of steel slags and their use in cement and concrete—A review
JP5189119B2 (ja) セメント混和材として好適に使用される高炉徐冷スラグ粉末を選択する方法
JP6080340B2 (ja) 鉄鋼スラグ水和固化体
JPH10152364A (ja) 製鋼スラグを利用した水和硬化体
JP2003306359A (ja) セメント組成物及び水和硬化体
JP3970201B2 (ja) セメント組成物、コーティング材料、及びそれを用いた遮塩方法
KR20170118581A (ko) 염화칼슘이 첨가된 고로슬래그 기반의 무시멘트 결합재
JP2002308662A (ja) スラグ硬化体の製造方法
KR101189503B1 (ko) 순산소 전로 슬래그를 건설 재료로 변환하는 방법
JP5259094B6 (ja) 鉄筋を有する耐中性化に優れた水和硬化体
JP5098505B2 (ja) 鉄鋼スラグの処理方法
JP7195502B1 (ja) スラグを利用した硬化体及び硬化体の製造方法
JP7205674B1 (ja) 遊離MgOを含有するスラグを利用した硬化体及び硬化体の製造方法
JP2002179451A (ja) スラグ骨材を用いたコンクリートまたはモルタル
JP6292257B2 (ja) 脱硫スラグを用いた水和固化体
TWI682916B (zh) 膠結材、砂漿固化物的製造方法及藉由其所形成的砂漿固化物
KR20220089454A (ko) 제강 슬래그를 포함하는 슬래그 혼합 시멘트, 모르타르 조성물, 및 콘크리트 조성물
JP3823815B2 (ja) 製鋼スラグ硬化体の製造方法
JP2013227185A (ja) モルタルまたはコンクリート用組成物およびそれを成形してなる成形品
JP6015585B2 (ja) 水和硬化体
JP2024018944A (ja) 硬化体及び硬化体の製造方法
KR101591288B1 (ko) 전기로 산화 슬래그 및 환원 슬래그를 함유한 고로 슬래그 시멘트 조성물
KR101958911B1 (ko) 시멘트계 경화체용 결합재, 이를 포함하는 콘크리트 및 이를 이용하여 제조되는 콘크리트 구조체
EP4098634A1 (en) Iron-containing binder
JP4827548B2 (ja) 水和硬化体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022549245

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237039486

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237039486

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE