WO2022249529A1 - 建設機械システム - Google Patents

建設機械システム Download PDF

Info

Publication number
WO2022249529A1
WO2022249529A1 PCT/JP2022/000727 JP2022000727W WO2022249529A1 WO 2022249529 A1 WO2022249529 A1 WO 2022249529A1 JP 2022000727 W JP2022000727 W JP 2022000727W WO 2022249529 A1 WO2022249529 A1 WO 2022249529A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
construction machine
machine system
power
power supply
Prior art date
Application number
PCT/JP2022/000727
Other languages
English (en)
French (fr)
Inventor
小幡博志
関口政一
森本秀敏
馬場司
Original Assignee
日本国土開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本国土開発株式会社 filed Critical 日本国土開発株式会社
Priority to JP2022555865A priority Critical patent/JP7351021B2/ja
Publication of WO2022249529A1 publication Critical patent/WO2022249529A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F7/00Equipment for conveying or separating excavated material
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00

Definitions

  • the present invention relates to construction machine systems.
  • an object of the present invention is to provide a user-friendly construction machine system that reduces installation work time and wiring work time.
  • a first unit a second unit having a second power receiving unit that receives the power from the unit via a wire.
  • FIG. 1 is a plan view showing a construction machine system representing a first embodiment;
  • FIG. 1 is a side view showing a construction machine system representing a first embodiment;
  • FIG. 1 is a block diagram of main parts of a construction machine system of a first embodiment;
  • FIG. 1 is a side view showing an enlarged part of the construction machine system of the first embodiment;
  • FIG. 1 is an installation flow diagram of the construction machine system of the first embodiment;
  • FIG. FIG. 11 is a side view showing main parts of a construction machine system representing a second embodiment; It is a block diagram of the main part of the construction machine system of 2nd Embodiment.
  • FIG. 9 is a schematic diagram showing a state in which an emergency stop circuit of the construction machine system of the second embodiment is energized;
  • FIG. 9 is a schematic diagram showing a state in which an emergency stop circuit of the construction machine system of the second embodiment is energized;
  • FIG. 9 is a schematic diagram showing a state in which an emergency stop circuit of the construction machine
  • FIG. 11 is a schematic diagram showing a state in which an emergency stop circuit of the construction machine system of the second embodiment is interrupted;
  • FIG. 11 is a flow diagram showing operations from start to stop of the construction machine system of the second embodiment;
  • FIG. 11 is a side view showing a state of the rotary crusher unit and the input conveyor unit of the construction machine system of the third embodiment as seen from the ⁇ Y direction side;
  • FIG. 12 is an enlarged perspective view showing the vicinity of the front leg of the input conveyor unit of the construction machine system of the third embodiment;
  • FIG. 12 is an enlarged perspective view showing a spherical bearing mechanism of the input conveyor unit of the construction machine system of the third embodiment;
  • FIG. 1 is a plan view showing a construction machine system 1 representing this embodiment.
  • FIG. 2 is a side view showing the construction machine system 1 of this embodiment.
  • FIG. 3 is a block diagram of main parts of the construction machine system 1 of this embodiment.
  • the vertical direction is the Z direction
  • the two orthogonal directions in the horizontal plane are the X direction and the Y direction.
  • some components for example, a first power transmission device 26 described later are omitted for the sake of clarity.
  • the construction machine system 1 of the present embodiment is a device used to improve and effectively utilize raw material soil such as construction surplus soil.
  • the construction machine system 1 of this embodiment has a power supply unit 10, a control unit 20, a rotary crusher unit 30, an input conveyor unit 40, and an operation display unit 100. is set up.
  • the input conveyor unit 40 conveys the raw material soil toward the rotary crusher unit 30, and the rotary crusher unit 30 crushes the raw material soil.
  • the control unit 20 mainly controls the rotary crusher unit 30 and the feeding conveyor unit 40 in order to improve the raw material soil, and the power supply unit 10 supplies power to the control unit 20 .
  • the operation display unit 100 transmits/receives control signals to/from the control unit 20 .
  • the power supply unit 10, the control unit 20, the rotary crusher unit 30, the input conveyor unit 40, and the operation display unit 100 may be collectively referred to as five units.
  • the construction machine system 1 of the present embodiment is assembled in a factory for each of the five units described above, and is transported from the factory to a construction site in a divided state of the five units, where installation and wiring work is carried out at the construction site. is done.
  • the dimensions and weights of each of the five units described above are determined to comply with the transportation restrictions on general roads. It is assumed that each of the five units is connected with an electric wire.
  • power supply and control signal communication between the rotary crusher unit 30 and the input conveyor unit 40 are performed wirelessly, which will be described later.
  • the wire-connected portions of the five units described above may wirelessly transmit/receive electric power or transmit/receive control signals.
  • the construction machine system 1 of this embodiment is installed and wired based on the installation position of the rotary crusher unit 30 . This is because the construction machine system 1 is configured around the rotary crusher unit 30 .
  • the input conveyor unit 40 is installed on the ⁇ X direction side of the rotary crusher unit 30 .
  • the control unit 20 is installed between the rotary crusher unit 30 and the power supply unit 10 .
  • the power supply unit 10 is installed on the +X direction side of the control unit 20 .
  • the operation display unit 100 is a mobile tablet in this embodiment, and is within a wireless communication range. Note that the arrangement of each unit is not limited to the illustrated position. The placement of each unit is determined by the placement of other construction machines (not shown) and the placement of construction soil.
  • the installation surface 50 on which the construction machine system 1 of the present embodiment is installed is earth and sand, and the portion of the installation surface 50 in contact with the construction machine system 1 is preferably leveled flat at the same height. This is because the construction machine system 1 of this embodiment is designed to be installed horizontally on a plane of the same height. Moreover, it is preferable to fix the five units constituting the construction machine system 1 of the present embodiment to the ground or to a steel plate laid on the installation surface 50 . This is to prevent the positional relationship of each unit from being deviated due to an earthquake or the like. A method of assembling the five units constituting the construction machine system 1 of this embodiment will be described later with reference to FIG.
  • the power supply unit 10 supplies necessary power to the first motor 32 of the rotary crusher unit 30 and the second motor 42 of the input conveyor unit 40 .
  • the first motor 32 drives a shaft 32a of the rotary crusher unit 30, which will be described later.
  • the voltage of the first motor 32 is 200V, and the output of the first motor 32 is about 100kW.
  • the second motor 42 drives a later-described head pulley 43 of the input conveyor unit 40 .
  • the voltage of the second motor 42 is 200 V, and the output of the second motor 42 is approximately 10 kW. Therefore, the first motor 32 has a larger output than the second motor 42 .
  • the power supply unit 10 of this embodiment is a mobile diesel generator, and as shown in the block diagram of FIG.
  • the fuel tank 11 stores light oil and supplies the light oil to the internal combustion engine 12 by a supply mechanism (not shown).
  • the internal combustion engine 12 is a diesel engine in this embodiment, and transmits the generated rotational force to the generator 13 via an output shaft (not shown).
  • the generator 13 rotates a magnet (not shown) with rotational force from the diesel engine, and generates electric power in a fixed coil (not shown) through electromagnetic induction.
  • the generator 13 is wire-connected to the power transmission unit 14 and transmits the generated power to the power transmission unit 14 .
  • the power transmission unit 14 is a coil, and when electricity flows, a magnetic field is generated.
  • wireless power supply is realized by the electromagnetic induction method.
  • wireless power supply is used when the distance between the power transmission unit 14 and the power reception unit 21 is within 1 m, and wired connection is used when the distance exceeds 1 m.
  • the wired connection may be a connection by wiring or a connection by a connector.
  • the configuration of the power supply unit 10 is not limited to the configuration described above.
  • a generator with a mixed combustion engine, a generator with an ammonia single combustion engine, space solar power generation, or a commercial power supply may be used.
  • carbon dioxide (greenhouse gas) emissions from the construction machine system 1 can be reduced.
  • the control unit 20 includes, as shown in the block diagram of FIG. 26 , a second activation device 27 and a second power transmission device 28 .
  • the power receiving unit 21 is a coil and receives power from the power transmitting unit 14 by wireless power supply.
  • the transformer 22 is wire-connected to the power receiving unit 21, and transforms the power received by the power receiving unit 21 from 200V to 100V.
  • the transformer 22 transmits the transformed power to the wired first control device 23 and the first communication device 24 .
  • the voltages of the first control device 23 and the first communication device 24 are the same in this embodiment, they may be different. If the voltage is different (eg 24V), a transformer (not shown) may be provided.
  • the voltage associated with the first motor 32 of the rotary crusher unit 30 and the second motor 42 of the input conveyor unit 40 is 200 V
  • the voltage associated with the first control device 23 and the first communication device 24 is 100V.
  • the voltage is changed using the transformer 22 provided in the control unit 20, but multiple power supplies that generate the required voltage may be used. Alternatively, each of the five units may have a power supply.
  • the first controller 23 controls the rotary crusher unit 30 and the input conveyor unit 40 .
  • the first control device 23 controls the supply of electric power sent from the first activation device 25 to the first power transmission device 26 as control of the rotary crusher unit 30, and the stoppage of the electric power supply (hereinafter referred to as cutoff). . Since this controls the driving and stopping of the first motor 32, it controls the rotation and stopping of the shaft 32a.
  • the first control device 23 is wired to the first activation device 25 .
  • the first control device 23 controls the supply and cutoff of electric power sent from the second activation device 27 to the second power transmission device 28 as control of the input conveyor unit 40 . Since this controls the driving and stopping of the second motor 42 , it controls the rotation and stopping of the head pulley 43 . In this embodiment, it is wired to the second activation device 27 .
  • the first controller 23 When the load current of the first motor 32 is equal to or higher than the rated current (for example, when hard rocks are contained in the raw material soil), the first controller 23 gradually increases the rotation speed of the first motor 32. control to slow down.
  • the first control device 23 also stops the first motor 32 in an emergency situation such as when abnormal noise is generated from a bearing (not shown) that holds the shaft 32a of the rotary crusher unit 30, which will be described later. control.
  • the load current of the second motor 42 when the load current of the second motor 42 is equal to or higher than the rated current (for example, when the amount of material soil to be conveyed is large), the first control device 23 gradually increases the rotation speed of the second motor 42. Take control to slow down.
  • the first control device 23 stops the second motor 42 in an emergency situation such as when abnormal noise is generated from a bearing (not shown) that holds the head pulley 43 of the input conveyor unit 40, which will be described later. to control.
  • the first communication device 24 communicates control signals with a second communication device 105 of the operation display unit 100, which will be described later.
  • the communication may be wireless communication or wired communication.
  • the first activation device 25 is, for example, an inverter, is connected to the first power transmission device 26 by wire, and supplies and cuts off power to be sent to the first power transmission device 26 according to a control signal from the first control device 23 .
  • the first power transmission device 26 is similar to the coil described above, and transmits power from the first activation device 25 to the first power reception device 31 described later by wireless power supply.
  • Wireless power feeding is used when the distance between the first power transmitting device 26 and the first power receiving device 31 is within 1 m, and wired connection is used when the distance exceeds 1 m.
  • the wired connection may be a connection by wiring or a connection by a connector.
  • the second activation device 27 is, for example, an inverter, is connected to the second power transmission device 28 by wire, and supplies and cuts off power to be sent to the second power transmission device 28 according to a control signal from the first control device 23 .
  • the second power transmission device 28 is a coil, and transmits power from the second activation device 27 by wireless power supply to the second power reception device 33 of the rotary crusher unit 30, which will be described later.
  • Wireless power feeding is used when the distance between the second power transmitting device 28 and the second power receiving device 33 is within 1 m, and wired connection is used when the distance exceeds 1 m.
  • the wired connection may be a connection by wiring or a connection by a connector.
  • the rotary crusher unit 30 is a device that improves the raw material soil conveyed by the input conveyor unit 40 to the required quality.
  • the rotary crusher unit 30 has a first power receiving device 31, a first motor 32, a shaft 32a, an impact member 32b, a second power receiving device 33, a third power transmitting device 34, and a connecting pole 35. .
  • the first power receiving device 31 is a coil and receives power from the first power transmitting device 26 of the control unit 20 by wireless power supply.
  • the first motor 32 is wire-connected to the first power receiving device 31, and the power received by the first power receiving device 31 rotates the shaft 32a of the rotary crusher unit 30 via a belt (not shown).
  • a plurality of rod-shaped impact members 32b extending in a direction orthogonal to the Z-axis are attached to the shaft 32a.
  • the impact member 32b rotates around the Z-axis due to the rotation of the shaft 32a, crushes the material soil conveyed by the input conveyor unit 40, and improves the material soil.
  • the first control device 23 controls the rotary crusher unit 30 by supplying electric power sent from the first starting device 25 to the first power transmission device 26 and stopping the supply of electric power (hereinafter referred to as cutoff). is controlling As described above, the first control device 23 controls the rotation and stopping of the shaft 32 a by controlling the driving and stopping of the first motor 32 .
  • the second power receiving device 33 is a coil and receives power from the second power transmitting device 28 of the control unit 20 by wireless power supply.
  • the third power transmission device 34 is a coil and is wiredly connected to the second power reception device, and transmits power received by the second power reception device 33 to the third power reception device 41 of the input conveyor unit 40 described later by wireless power supply.
  • Wireless power feeding is used when the distance between the third power transmitting device 34 and the third power receiving device 41 is within 1 m, and wired connection is used when the distance exceeds 1 m.
  • the wired connection may be a connection by wiring or a connection by a connector.
  • connection post 35 has a columnar shape extending in the +Z-axis direction and the -X-axis direction, is provided on the -X side of the rotary crusher unit 30, and is joined to the front leg 46a of the input conveyor unit 40 described later via bolts.
  • a plurality of connection posts 35 having the same shape may be provided at locations separated in parallel in the Y-axis direction.
  • the input conveyor unit 40 is a device that conveys raw material soil supplied by a backhoe (not shown) or raw material soil supplied by a sand feeder (not shown) to the rotary crusher unit 30 .
  • the input conveyor unit 40 has a conveyor body 300, a third power receiving device 41, a second motor 42, a head pulley 43, a tail pulley 44, a belt 45, front legs 46a, and rear legs 46b.
  • the conveyor body 300 is a frame to which components of the input conveyor unit 40 described later are attached.
  • the third power receiving device 41 is a coil and receives power from the third power transmitting device 34 of the rotary crusher unit 30 by wireless power supply.
  • the second motor 42 is wire-connected to the third power receiving device 41, and the power received by the third power receiving device 41 rotates the head pulley 43 via a drive chain (not shown). That is, in this embodiment, the rotary crusher unit 30 corresponds to the first unit, the third power receiving device 41 corresponds to the first power receiving section, the second motor 42 corresponds to the second power receiving section, and the input conveyor unit 40 corresponds to the second unit.
  • the head pulley 43 has a cylindrical shape and is paired with a similarly cylindrical tail pulley 44, around which a seamless belt 45 is wound.
  • the belt 45 conveys raw material soil supplied by a backhoe (not shown) or raw material soil supplied by a sand feeder (not shown) to the rotary crusher unit 30 .
  • the first control device 23 controls the supply and cutoff of power sent from the second activation device 27 to the second power transmission device 28 as the control of the input conveyor unit 40 .
  • the first control device 23 controls the driving and stopping of the second motor 42 and thus controls the rotation and stopping of the head pulley 43 .
  • the front leg 46a is joined to the connecting column 35 of the rotary crusher unit 30 via bolts.
  • a plurality of the front legs 46a having the same shape and having the same shape as pairs with the connection posts 35 may be provided at locations separated in parallel in the Y-axis direction.
  • the rear leg 46b has a columnar shape extending in the -Z-axis direction, is provided on the -X-axis direction side of the input conveyor unit 40, and is brought into contact with the installation surface 50.
  • the operation display unit 100 is used by the operator of the construction machine system 1 of this embodiment to perform operation.
  • the operation display unit 100 communicates control signals between the second communication device 105 and the first communication device 24 of the control unit 20, which will be described later. Communication may be wired or wireless.
  • the operation display unit 100 is a tablet that can be carried and moved, and can be used at a remote location (not shown) within the range of wireless standards.
  • the wireless standard may be Wi-Fi (registered trademark) or Bluetooth (registered trademark).
  • the operation display unit 100 has a power source 101 , an operation section 102 , a display section 103 , a second control device 104 and a second communication device 105 .
  • the power supply 101 is a battery in this embodiment, and is connected to the operation unit 102, the display unit 103, the second control device 104, and the second communication device 105 by wire, and transmits power.
  • the operation unit 102 is wired to the second control device and generates an input signal.
  • the operation unit 102 of the present embodiment is a touch panel, but may be buttons or knobs.
  • the display unit 103 is wire-connected to the second control device, and displays the operating state of the first motor 32, for example.
  • the display unit 103 of this embodiment is a touch panel, but may be a liquid crystal monitor.
  • the second control device 104 is wired-connected to the second communication device 105 and controls input signals (control signals) generated from the operation unit 102 .
  • the second communication device 105 communicates control signals with the first communication device 24 of the control unit 20 .
  • the communication may be wireless communication or wired communication.
  • the configuration of the operation display unit 100 of this embodiment is not limited to that illustrated. Moreover, although the operation display unit 100 of the present embodiment is a mobile tablet, it may be a fixed tablet, or may be installed in an operation room (not shown) for use.
  • FIG. 4 is a diagram for explaining a method of installing and wiring the construction machine system 1 of this embodiment, showing an enlarged view of the joint between the connection post 35 and the front leg 46a in FIG.
  • FIG. 5 is an installation flowchart of the construction machine system 1.
  • the vertical direction is defined as the Z direction
  • the two orthogonal directions in the horizontal plane are defined as the X direction and the Y direction.
  • the procedure for installation and wiring will be described below with reference to FIGS. 4 and 5.
  • FIG. In this embodiment, the assembly is performed by a crane (not shown) and an operator, but the assembly may be fully automated without the intervention of an operator.
  • the installation location (construction site) of the construction machine system 1 of the present embodiment is set by using a construction machine such as a backhoe before the construction machine system 1 is installed. It is finished flat so that the difference between the height in the direction and the height in the -Z direction is approximately 5 cm or less.
  • a thin plate or the like is sandwiched between the construction machine system 1 and the installation surface 50, and the construction machine system 1 This is because it is possible to horizontally install the five units that constitute the .
  • a steel plate may be laid between the installation surface 50 and the construction machine system 1 in order to fix each unit so that it does not shift due to an earthquake or the like.
  • the rotary crusher unit 30 is lifted by a crane (not shown) and installed at a predetermined position on the installation surface 50 (step S1).
  • the input conveyor unit 40 is lifted by a crane (not shown), the front leg 46a of the input conveyor unit 40 is connected to the connection column 35 of the rotary crusher unit 30, and the rear leg 46b of the input conveyor unit 40 is in contact with the installation surface 50. (step S2).
  • the connecting post 35 and the front leg 46a are fastened with bolts, and the positional relationship between the rotary crusher unit 30 and the input conveyor unit 40 is uniquely determined. Therefore, by providing the third power transmission device 34 in the vicinity of the front leg 46a of the input conveyor unit 40 and providing the third power reception device 41 in the vicinity of the connecting pole 35 of the rotary crusher unit 30, the third power transmission device 34 and the third power reception The positional relationship with the device 41 is also uniquely determined. Furthermore, since the third power transmitting device 34 and the third power receiving device 41 are connected by wireless power supply, wiring work is not required at the construction site, and the work time can be shortened.
  • the control unit 20 is lifted by a crane (not shown) and installed at a predetermined position close to the rotary crusher unit 30 in the +X direction (step S3). Note that the installation position of the control unit is not limited to the position in the present embodiment.
  • the aforementioned predetermined close position is a position where the separation distance between the first power transmission device 26 and the first power reception device 31 is within 1 m, and the separation distance between the second power transmission device 28 and the second power reception device 33 is It is a position within 1m.
  • the power supply unit 10 is lifted by a crane (not shown) and installed at a predetermined position close to the +X direction side of the control unit 20 (step S4).
  • the installation position of the power supply unit 10 is not limited to the position of the present embodiment.
  • the aforementioned close predetermined position means a position where the distance between the power receiving unit 21 and the power transmitting unit 14 is within 1 m.
  • the inside of the unit is wired before it is brought into the construction site, and wireless power is supplied to locations where the distance between the units is 1 m or less. If the separation distance is 1 m or more, a wired connection is adopted because the attenuation of electric power becomes large. The separation distance does not have to be 1 m.
  • the construction machine system 1 of this embodiment is fixed to the ground or iron plate so that each unit will not shift due to an earthquake or the like.
  • the wireless connection point of the construction machine system 1 of this embodiment is covered for protection so that it is not easily touched by people or small animals.
  • the operation display unit 100 is a mobile tablet in this embodiment, and only needs to be within a wireless communication range (step S5). Moreover, the operation display unit 100 may be of a fixed type connected by wire, and in this case, may be installed in an indoor space (not shown) or outdoors.
  • the electric wiring of each of the five units is connected by wire. Power supply and communication are performed wirelessly to transmit and receive power and to transmit and receive control signals. As a result, it is possible to omit or reduce wired wiring between the rotary crusher unit 30 and the input conveyor unit 40 at the construction site, thereby realizing a safe and user-friendly construction machine system that shortens the time required for installation and wiring work. .
  • the first control device 23 controls the first motor 32 when the load current of the first motor 32 is equal to or higher than the rated current (for example, when the raw material soil contains hard rocks). Control to slow down the rotation speed step by step. Further, the first control device 23 stops the first motor 32 in an emergency situation such as when abnormal noise is generated from a bearing (not shown) that holds the shaft 32a of the rotary crusher unit 30, which will be described later. to control. In addition, when the load current of the second motor 42 is equal to or higher than the rated current (for example, when the amount of material soil to be conveyed is large), the first control device 23 gradually increases the rotation speed of the second motor 42. Take control to slow down. In addition, the first control device 23 stops the second motor 42 in an emergency situation such as when abnormal noise is generated from a bearing (not shown) that holds the head pulley 43 of the input conveyor unit 40, which will be described later. to control.
  • the load current of the second motor 42 is equal to or higher than the rated current (for example, when the raw material soil contains
  • the supply of electric power to the first motor 32 and the second motor 42 is stopped.
  • the operation of the first motor 32 and the second motor 42 can be stopped simultaneously.
  • the power supply to the first motor 32 is stopped, and the first motor 32 stops.
  • the power supply to the second motor 42 is stopped, and the second motor 42 Stop.
  • This embodiment includes a drone 200, which is an unmanned flying object, as will be described later.
  • the drone 200 monitors the operational status of five units and sends information to the first control device 23. 32 and the second motor 42 are stopped. Therefore, the present embodiment is a construction machine system in which the first control device 23 and the drone 200 perform cooperative control.
  • the control device (not shown) of the drone 200 captures the amount of earth and sand discharged from the rotary crusher unit 30 with an image pickup device such as a camera, and recognizes that the amount of earth and sand is larger (smaller) than usual by image recognition. If there is an abnormality, an abnormality signal may be sent to the first control device 23 .
  • the drone 200 may determine that there is an abnormality when a person enters and send an abnormality signal to the first control device 23 .
  • an abnormal signal is sent to the first controller 23.
  • the first control device 23 may stop the first motor 32 and the second motor 42 upon receiving an abnormal signal from a control device (not shown) of the drone 200 . In this manner, the first control device 23 and the drone 200 cooperate to control the construction machine system 1 as a whole.
  • FIG. 6 is a side view showing the main parts of the construction machine system 1 of this embodiment.
  • FIG. 7 is a block diagram of main parts of the construction machine system 1 of this embodiment.
  • 8 and 9 are enlarged side views of the vicinity of the emergency stop device 201, which will be described later.
  • X′ direction is the X′ direction.
  • two axial directions perpendicular to the X' direction are defined as the Y' direction and the Z' direction.
  • FIG. 8 is a schematic diagram showing a state in which the emergency stop circuit 49, which will be described later, is energized
  • FIG. 9 is a schematic diagram showing a state in which the emergency stop circuit 49, which will be described later, is cut off.
  • FIG. 10 is a flow chart showing the operation from start to stop of the construction machine system 1 of this embodiment.
  • the construction machine system 1 of this embodiment has a drone 200
  • the control unit 20 has a first transmitter 29a and a first receiver 29b, and rotates.
  • the type crusher unit 30 has a second receiver 36, a second transmitter 37, a third receiver 38, and a third transmitter 39
  • the input conveyor unit 40 has an emergency stop device 201, It has a fourth receiver 47 and a fourth transmitter 48 .
  • the first control device 23, the first transmitter 29a, the second receiver 36, the third transmitter 39, the fourth receiver 47, the fourth transmitter 48, the third The receiving device 38, the third transmitting device 39, and the first receiving device 29b are connected in series to form an emergency stop circuit 49 surrounded by a chain double-dashed line in FIG.
  • the operation section 102 of the operation display unit 100 of the construction machine system 1 of this embodiment has a plurality of buttons (not shown). For example, a first run button for running the first motor 32, a first stop button for stopping the first motor 32, a second run button for running the second motor 42, and the second motor a second stop button for stopping 42; When the first operation button is pressed, a first operation signal is generated; when the first stop button is pressed, a first stop signal is generated; when the second operation button is pressed, a second operation signal is generated; A second stop signal is generated when the second stop button is pressed.
  • a control device (not shown) of the drone 200 is for monitoring the situation of the construction machine system 1 of the present embodiment, and transfers an image captured by a mounted camera to a monitor (not shown) or the like, or detects an abnormality when an abnormality occurs.
  • a signal is sent to the first control device 23 .
  • the drone 200 operates an emergency stop device 201 to be described later in order to stop the first motor 32 and the second motor 42 . That is, the drone 200 corresponds to a mobile object.
  • the first transmitter 29a is a coil and is wired to the first controller 23, and transmits a control signal from the first controller 23 to the second receiver 36 of the rotary crusher unit 30 by wireless power supply.
  • the second receiving device 36 is a coil and receives the control signal from the first transmitting device 29a by wireless power supply.
  • the second transmission device 37 is a coil and is wired to the second reception device 36, and transmits a control signal from the second reception device 36 to the fourth reception device 47 of the input conveyor unit 40 by wireless power supply.
  • the fourth receiving device 47 is a coil and receives the control signal from the second transmitting device 37 by wireless power supply.
  • the fourth transmission device 48 is a coil and is connected to the fourth reception device 47 by wire, and transmits a control signal from the fourth reception device 47 to the third reception device 38 by wireless power supply.
  • the third receiver 38 is a coil and receives the control signal from the fourth transmitter 48 by wireless power supply.
  • the third transmitting device 39 is a coil and is wiredly connected to the third receiving device 38, and transmits a control signal from the third receiving device 38 to the first receiving device 29b by wireless power supply.
  • the first receiving device 29b is a coil and receives a control signal from the third transmitting device 39 by wireless power supply.
  • the first control device 23 is wire-connected to the first receiving device 29b and receives control signals.
  • the first control device 23, the first transmitter 29a, the second receiver 36, the third transmitter 39, the fourth receiver 47, the fourth transmitter 48, and the third receiver 38 , the third transmitter 39 , and the first receiver 29 b are connected wirelessly or by wire to form an emergency stop circuit 49 .
  • the emergency stop circuit 49 is used by the first controller 23 of the construction machine system 1 to determine whether the first motor 32 and the second motor 42 are operable.
  • the first control device 23 determines that the first motor 32 can be operated, and when the first operation button is pressed, the first motor 32 is operated according to the flow described later.
  • the emergency stop circuit 49 is not energized (when there is an interrupted portion in the connection section)
  • the first control device 23 determines that the first motor 32 cannot be operated, and the first operation button is pressed.
  • the first motor 32 does not operate. In other words, the first motor 32 does not operate when any part of the connection section of the emergency stop circuit 49 is cut off.
  • the second operation button is pushed, the second motor 42 is operated.
  • the second motor 42 When the emergency stop circuit 49 is not energized, the second motor 42 does not operate even if the second operation button is pressed. That is, the second motor 42 does not operate when any part of the connection section of the emergency stop circuit 49 is cut off. As a result, when any part of the connection section of the emergency stop circuit 49 is interrupted, the construction machine system 1 is stopped all at once.
  • FIG. 8 is an enlarged view of the vicinity of the emergency stop device 201, showing a part of the emergency stop circuit 49, and showing a state in which the emergency stop circuit 49 is energized.
  • FIG. 9 is an enlarged view of the vicinity of the emergency stop device 201, showing a part of the emergency stop circuit 49, showing a state in which the emergency stop device 201 is activated and the emergency stop circuit 49 is cut off.
  • the emergency stop device 201 has a movable portion 202 , a spring portion 500 and a guide portion 207 .
  • the movable portion 202 has an operation portion 203 , a blocking portion 204 and a guide rod 205 .
  • the operation unit 203 has a plate shape that extends in the X' direction and the Y' direction, so that the drone 200 can land on the +Z' direction side.
  • One end on the +X' direction side is provided with a blocking portion 204 extending in the -Z' direction side, and the other end is provided with a guide rod 205 and a spring portion 206 extending in the -Z' direction side.
  • a guide portion 207 is provided at the end of the spring portion 206 in the -Z′ direction.
  • the blocking part 204 has a bar shape extending in the -Z' direction, and blocks power and signals in the section connected by wireless power supply.
  • the guide rod 205 has a rod shape extending in the Z direction, and by moving along the inside of the guide portion 207, which will be described later, restricts the movement of the movable portion 202 only in the Z' direction.
  • the spring portion 206 is provided between the +Z′ direction side end of the guide portion 207 and the ⁇ Z′ direction bottom surface of the operation portion 203 and supports the weight of the movable portion 202 .
  • the spring portion 206 holds the movable portion 202 at a position where the ⁇ Z′ direction end portion of the guide portion 207 does not block the section connected by wireless power supply.
  • the guide part 207 has a block shape with a cylindrical hole inside, and limits the moving direction of the guide rod 205 .
  • FIG. 8 shows a state in which the emergency stop circuit 49 is energized. 9, when the drone 200 lands on the operation section 203, the weight of the drone 200 causes the spring section 206 to contract, and the movable section 202 starts moving in the -Z' direction. The guide rod 205 moves along the guide portion 207, and when the spring portion 206 contracts to the shortest length, the movable portion 202 stops.
  • the blocking part 204 prevents wireless power supply from the second transmitter 37 to the fourth receiver 47 and wireless power supply from the fourth transmitter 48 to the third receiver 38. and the emergency stop circuit 49 is cut off.
  • the movable section 202 rises due to the restoring force of the spring section 206, returns to the state shown in FIG. 8, and returns to the state in which the emergency stop circuit 49 is energized.
  • the operation of the movable portion 202 may be performed manually. Further, when the control device (not shown) of the drone 200 transmits an emergency stop signal to the first control device 23, the first control device 23 stops the first motor 32 and the second motor 42 all at once. For some reason, for example, if the communication state is not good, the drone 200 operates the emergency stop device 201 to stop the first motor 32 and the second motor 42 all at once.
  • the moving direction of the movable part 202 is the Z' direction, but it may be the X' direction or the Y' direction depending on the mounting state.
  • the installation location of the emergency stop device 201 is not limited to the position of this embodiment, and may be anywhere in the section connected by wireless power supply in the emergency stop circuit 49, and the number of installations may be one or more.
  • the emergency stop circuit 49 may include a light emitting section and a light receiving section.
  • the state in which light reaches the light receiving unit from the light emitting unit corresponds to, for example, the state in which wireless power is supplied from the second transmitting device 37 to the fourth receiving device 47 .
  • a drone port for charging and waiting may be provided.
  • the drone 200 if the drone 200 is installed in a place where the +Z direction position is the highest and the overall view is good, the drone 200 can be used as a fixed point camera while waiting at the drone port. You can shoot the driving situation of Also, the drone 200 may photograph the operating conditions of the construction machine system 1 while in flight. The drone 200 transmits a captured image to a monitor (not shown), so that the operator of the construction machine system 1 can check the operation status of the construction machine system 1 and find an abnormal location (for example, earth and sand spilled from the input conveyor unit 40). location) can be identified immediately and measures such as suspension can be taken.
  • the drone port may be provided with a switch for starting and stopping charging so that when the drone 200 lands, the switch is turned on to start charging, and when the drone 200 takes off, the switch is turned off. A plurality of drones 200 may be provided.
  • the drone 200 may monitor the situation where the five units are installed. For example, the state of bolt fastening between the connection column 35 of the rotary crusher unit and the front leg 46a of the input conveyor unit 40 may be photographed and transmitted to the monitor described above. As a result, the situation can be confirmed at a remote location during the fully automatic assembly described above.
  • the drone 200 may be equipped with an infrared camera. As a result, the drone 200 can take pictures even at night, can monitor the construction machine system 1 24 hours a day, and can operate the construction machine system 1 unmanned day and night.
  • FIG. 10 is a flowchart executed by the first controller 23 of the control unit 20 in this embodiment.
  • the first control device 23 establishes communication between the first communication device and the second communication device 105 of the operation display unit 100 (step S101).
  • the first control device 23 checks whether the emergency stop circuit 49 is energized and determines whether the first motor 32 and the second motor 42 are operable (step S102). If the emergency stop circuit 49 is not energized, the first control device 23 determines that operation is impossible, waits until energization can be confirmed, and determines that operation is possible if energized, and proceeds to step S103.
  • the first control device 23 determines the presence or absence of the first operation signal (step S103).
  • the first operation signal is a control signal, and is generated when the operator of the construction machine system 1 presses the first operation button of the operation section 102 of the operation display unit 100 described above.
  • the first operation signal is transmitted from the second communication device to the first communication device under the control of the second control device 104 and reaches the first control device 23 .
  • Other control signals for example, a first stop signal, which will be described later, also reach the first control device 23 in the same procedure.
  • the first controller 23 proceeds to step S104 when there is the first operation signal.
  • the first control device 23 transmits a first operation signal to the first activation device 25 .
  • the first activation device 25 Upon receiving the first operation signal, the first activation device 25 transmits power of 200 V to the first power transmission device 26 . Further, the electric power reaches the first motor 32 via the first power receiving device 31, and the first motor 32 operates.
  • step S105 the first controller 23 determines whether or not there is a second drive signal.
  • the first control device 23 proceeds to step S106 when there is the second operation signal.
  • the first control device 23 transmits a second operation signal to the second activation device 27 .
  • the second activation device 27 Upon receiving the second operation signal, the second activation device 27 transmits power of 200 V to the second power transmission device 28 . Further, the electric power reaches the second motor 42 via the second power receiving device 33, the third power transmitting device 34, and the third power receiving device 41, and the second motor 42 operates.
  • step S107 the first control device 23 determines whether the emergency stop circuit 49 is energized.
  • step S108 the first control device 23 determines the presence or absence of the first stop signal.
  • step S109 the first control device 23 transmits a first stop signal to the first activation device 25 .
  • the first activation device 25 receives the first stop signal, it cuts off the power being transmitted to the first power transmission device 26 .
  • the power received by the first motor 32 via the first power receiving device 31 is cut off, and the first motor 32 stops.
  • step S110 the first control device 23 determines the presence or absence of the second stop signal.
  • step S111 When the first control device 23 receives the second stop signal, it proceeds to step S111.
  • step S ⁇ b>111 the first control device 23 transmits a second stop signal to the second activation device 27 .
  • the second activation device 27 cuts off the power being transmitted to the second power transmission device 28 .
  • the power received by the second motor 42 via the second power receiving device 33, the third power transmitting device 34, and the third power receiving device 41 is cut off, the second motor 42 is stopped, and the present flowchart is executed. finish.
  • the first control device 23 When there is no second stop signal, the first control device 23 returns to step S103 and repeats the control.
  • step S112 the first control device 23 transmits a first stop signal to the first activation device 25 .
  • the first activation device 25 receives the first stop signal, it cuts off the power being transmitted to the first power transmission device 26 .
  • step S112 ends, the process proceeds to step S113.
  • step S ⁇ b>113 the first control device 23 transmits a second stop signal to the second activation device 27 .
  • the second activation device 27 Upon receiving the second stop signal, the second activation device 27 cuts off the power being transmitted to the second power transmission device 28 . As a result, the power received by the second motor 42 via the second power receiving device 33, the third power transmitting device 34, and the third power receiving device 41 is cut off, the second motor 42 is stopped, and the present flowchart is executed. finish.
  • the drone 200 monitors the operating conditions of the five units and sends information to the first control device 23, and the drone 200 performs the stop operation of the first motor 32 and the second motor 42. to do That is, since the first control device 23 and the drone 200 perform cooperative control, a safe and user-friendly construction machinery system can be realized.
  • the U-groove 313 of a pair of holding members 311A and 311B provided in the rotary crusher unit 30 described later and the front leg 307 provided in the input conveyor unit 40 described later are engaged at two points. .
  • the rotary crusher unit 30 and the input conveyor unit 40 are connected, the positional relationship between the rotary crusher unit 30 and the input conveyor unit 40 is less likely to shift, and the need for fixing to the ground or iron plate is eliminated.
  • the installation time of the construction machine system 1 of the embodiment can be shortened. Since the positional relationship is less likely to shift, the separation distance between sections connected by wireless power supply can be maintained at a constant distance, and a construction machine system that is easy to use can be realized.
  • FIG. 11 is a diagram showing a state of the rotary crusher unit 30 and input conveyor unit 40 of the construction machine system 1 of this embodiment viewed from the -Y direction side.
  • FIG. 12 is an enlarged perspective view showing the vicinity of the front leg 307 of the input conveyor unit 40 of the construction machine system 1 of this embodiment.
  • FIG. 13 is an enlarged perspective view showing the spherical bearing mechanism 301 of the input conveyor unit 40 of the construction machine system 1 of this embodiment.
  • the vertical direction is the Z direction
  • two orthogonal directions in the horizontal plane are the X direction and the Y direction.
  • ⁇ X, ⁇ Y, and ⁇ Z denote the directions of rotation about each axis.
  • the input conveyor unit 40 is connected to the rotary crusher unit 30 in the vicinity of its +X direction side end. That is, in this embodiment, the rotary crusher unit 30 corresponds to the first unit, and the input conveyor unit corresponds to the second unit.
  • the rotary crusher unit 30 has a pedestal 310 .
  • the pedestal 310 serves as a base for the rotary crusher unit 30 to come into contact with the installation surface 50, and has a pair of holding members 311A and 311B for connecting the input conveyor unit 40. Details of the holding members 311A and 311B will be described later.
  • the input conveyor unit 40 has front legs 307 and a tail mount 308 .
  • the front leg 307 is provided near the +X direction end of the bottom surface of the conveyor body 300 .
  • FIG. 12 shows an enlarged view of the vicinity of the front leg 307 .
  • the front leg 307 includes a first member 312 extending in the Y direction, a pair of legs 314A and 314B provided at both ends of the first member 312 in the Y direction, and legs 314A and 314B. and a columnar member 315 as a shaft member provided to connect between them.
  • a pair of holding members 311A and 311B are provided on the base 310 of the rotary crusher unit 30, and two cylindrical members 315 are provided in the U grooves 313 of the holding members 311A and 311B.
  • the front leg 307 is connected to the pedestal 310 (rotary crusher unit 30).
  • the front leg 307 has a degree of freedom in the rotational direction ( ⁇ y) around the Y axis with respect to the base 310 by engaging the cylindrical member 315 with the U groove 313 . That is, in this embodiment, the front leg 307 corresponds to the first portion of the input conveyor unit 40, which is the second unit, the U-groove 313 corresponds to the first engaging portion, and the cylindrical member 315 corresponds to the second engaging portion. Equivalent to.
  • the tail mount 308 has a leg portion 309 and a spherical bearing mechanism 301 provided on the +Z direction side of the leg portion 309 .
  • the spherical bearing mechanism 301 is provided on the bottom surface of the conveyor body 300 near the end on the -X direction side.
  • FIG. 13 is an enlarged perspective view of the spherical bearing mechanism 301.
  • the spherical bearing mechanism 301 includes a housing 302, a spherical bearing member 303 provided in the housing 302, a cylindrical member 304 passing through the spherical bearing member 303, and a cylindrical member 304. It has a fixing member 305 connecting the conveyor body 300 .
  • the housing 302 is fixed to the leg portion 309 with bolts or the like.
  • Housing 302 has a spherical internal space capable of accommodating spherical bearing member 303 .
  • the spherical bearing member 303 is a substantially ball-shaped member. A through-hole extending in the Y-axis direction is formed in the spherical bearing member 303, and the cylindrical member 304 passes through the through-hole.
  • the spherical bearing member 303 can rotate freely with respect to the housing 302 as long as the cylindrical member 304 and the housing 302 do not interfere mechanically. That is, the spherical bearing member 303 can rotate with respect to the housing 302 in the directions of rotation about the X axis, the direction of rotation about the Y axis, and the direction of rotation about the Z axis.
  • Fixing members 305 are provided at both ends of the columnar member 304 , and the columnar member 304 is fixed to the bottom surface of the conveyor body 300 via the fixing members 305 .
  • the spherical bearing mechanism 301 is provided between the leg portion 309 and the bottom surface of the conveyor body 300. That is, the spherical bearing mechanism 301 is in a state of being in contact with the installation surface with the upper surface of the leg portion 309 as the installation surface. Therefore, in this embodiment, the spherical bearing mechanism 301 corresponds to the second portion of the input conveyor unit 40, which is the second unit.
  • the spherical bearing mechanism 301 changes the attitude of the conveyor body 300 relative to the legs 309 in the rotation direction about the X axis ( ⁇ X), the attitude change in the rotation direction about the Y axis ( ⁇ Y), and the attitude in the rotation direction about the Z axis. A change ( ⁇ Z) is allowed.
  • the input conveyor unit 40 suspended by a crane or the like is installed at the position shown in FIG. 11 from above. Then, the cylindrical member 315 of the front leg 307 of the input conveyor unit 40 is engaged with the U grooves 313 (at two places) of the holding members 311A and 311B (see FIG. 12) provided on the base 310 of the rotary crusher unit 30. Let By doing so, the input conveyor unit 40 can be installed in a state of being connected to the rotary crusher unit 30 .
  • the front leg 307 has a degree of freedom in the .theta.Y direction with respect to the base 310. As shown in FIG.
  • the conveyor body 300 has degrees of freedom in the ⁇ X, ⁇ Y, and ⁇ Z directions with respect to the leg portion 309 .
  • the posture of the conveyor body 300 around the X-axis can be determined so as to follow the posture of the gantry 310 .
  • the tilt can be absorbed by the spherical bearing mechanism 301 .
  • the third power transmitting device 34 near the front leg 307 and the third power receiving device 41 near the holding member 311A or 311B, the positional relationship between the third power transmitting device 34 and the third power receiving device 41 is less likely to shift. Therefore, the separation distance between the sections connected by wireless power supply can be kept constant, and application to the first embodiment is possible.
  • the second transmitter 37 and the third receiver 38 in the vicinity of the front leg 307, and the fourth receiver 47 and the fourth transmitter 48 in the vicinity of the holding member 311A or 311B the second transmitter 37 and the fourth receiving device 47, and the positional relationship between the third receiving device 38 and the fourth transmitting device 48 are less likely to shift, and the separation distance between sections connected by wireless power supply can be kept constant. It can be applied to the second embodiment.
  • the U-grooves 313 of the pair of holding members 311A and 311B of the rotary crusher unit 30 and the front legs 307 of the input conveyor unit 40 are engaged at two points. are in agreement.
  • the rotary crusher unit 30 and the input conveyor unit 40 are connected and the positional relationship is less likely to shift. can save time.
  • the positional relationship is less likely to shift, the distance between sections connected by wireless power supply can be maintained at a constant distance, and a user-friendly construction machine system can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Food Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

設置作業時間や配線作業時間を短縮化した使い勝手の良い建設機械システムを提供するため、建設機械システム1は、回転式破砕装置ユニット30と、回転式破砕装置ユニット30とは別ユニットであり、回転式破砕装置ユニット30からの電力を無線給電により受け取る第3受電装置41と、第3受電装置41から有線を経由して前記電力を受電する第2モータ42とを有した投入コンベヤユニット40と、を備えている。 

Description

建設機械システム
 本発明は、建設機械システムに関する。
 従来、土砂改良機として、自走式装置やプラント型装置が知られている(例えば、特許文献1、2等参照)。
 プラント型装置の場合、複数のユニットを有しているため、これら複数のユニットを工事現場等まで運搬し、ユニットが適切な位置関係となるように設置した後、配線作業をするのが一般的である。
特開2000-335728号公報 特開2004-174448号公報
 しかしながら、設置後の配線作業は、配線材料が多くまた危険な高所作業を伴うこともあり、手間と時間を要する。また、土砂改良機に限らず、建設現場等に設置するその他の装置であっても、複数のユニットを有する場合には、同様の課題を有する。
 1つの側面では、本発明は、設置作業時間や配線作業時間を短縮化した使い勝手の良い建設機械システムを提供することを目的とする。
 本第1実施形態に係る建設機械システムでは、第1ユニットと、前記第1ユニットとは別ユニットであり、前記第1ユニットからの電力を無線給電により受け取る第1受電部と、前記第1受電部から有線を経由して前記電力を受電する第2受電部とを有した第2ユニットと、を備えている。
 設置作業時間や配線作業時間を短縮化した使い勝手の良い建設機械システムを提供することができる。
第1実施形態を表す建設機械システムを示す平面図である。 第1実施形態を表す建設機械システムを示す側面図である。 第1実施形態の建設機械システムの主要部分のブロック図である。 第1実施形態の建設機械システムの一部を拡大して示す側面図である。 第1実施形態の建設機械システムの設置フロー図である。 第2実施形態を表す建設機械システムの主要部分を示す側面図である。 第2実施形態の建設機械システムの主要部分のブロック図である。 第2実施形態の建設機械システムの非常停止回路が通電している状態を示す概略図である。 第2実施形態の建設機械システムの非常停止回路が遮断している状態を示す概略図である。 第2実施形態の建設機械システムの運転開始から停止までを示すフロー図である。 第3実施形態の建設機械システムの回転式破砕装置ユニット及び投入コンベヤユニットを-Y方向側から見た状態を示す側面図である。 第3実施形態の建設機械システムの投入コンベヤユニットの前脚近傍を拡大して示す斜視図である。 第3実施形態の建設機械システムの投入コンベヤユニットの球面軸受機構を拡大して示す斜視図である。
 以下に、本発明の第1実施形態の建設機械システム1を、添付の図面に基づいて詳細に説明する。なお、以下で説明する実施形態により、本発明が限定されるものではない。
(第1実施形態)
 まず以下、図1から図3を用いて建設機械システム1の構成について説明していく。図1は、本実施形態を表す建設機械システム1を示す平面図である。図2は、本実施形態の建設機械システム1を示す側面図である。図3は、本実施形態の建設機械システム1の主要部分のブロック図である。図1、図2では、説明の便宜上、鉛直方向をZ方向、水平面内において直交する二軸方向をX方向及びY方向とする。また図1では、図を見やすくするため、一部構成要素(例えば、後述する第1送電装置26)を省略している。
 本実施形態の建設機械システム1は、建設発生土などの原料土を改良して有効利用するために用いられる装置である。本実施形態の建設機械システム1は、電源ユニット10と、制御ユニット20と、回転式破砕装置ユニット30と、投入コンベヤユニット40と、操作表示ユニット100と、を有し、設置面50の上に設置されている。
 詳細は後述するものの、投入コンベヤユニット40は回転式破砕装置ユニット30に向けて原料土を搬送するものであり、回転式破砕装置ユニット30は原料土を破砕するものである。また、制御ユニット20は原料土を改良するために主に回転式破砕装置ユニット30と投入コンベヤユニット40とを制御するものであり、電源ユニット10は制御ユニット20に電力を供給するものである。また、操作表示ユニット100は制御ユニット20との間で制御信号を送信・受信するものである。電源ユニット10と、制御ユニット20と、回転式破砕装置ユニット30と、投入コンベヤユニット40と、操作表示ユニット100と、を総称して5つのユニットと記載することもある。
 本実施形態の建設機械システム1は、上述の5つのユニットごとに工場で組み立てられて、5つのユニットごとに分割された状態で工場から建設現場に運搬され、この建設現場にて設置・配線作業が行われる。
 本実施形態において、上述の5つのユニットのそれぞれの寸法及び重量は、一般道路の運搬制限を遵守した寸法・重量に決められている。なお、5つのユニットのそれぞれは電気配線が有線接続されているものとする。これに対して、回転式破砕装置ユニット30と、投入コンベヤユニット40との間の電力供給や制御信号の通信は、後述する無線で行うことにより、電力の送電・受電や制御信号の送信・受信を行う構成になっている。
 これにより、建設現場において回転式破砕装置ユニット30と、投入コンベヤユニット40との有線による配線を省略または減らすことができ、設置・配線作業の時間短縮をすることができる。なお、上述の5つのユニット内の有線接続されている箇所が無線により電力の送電・受電または制御信号の送信・受信がされても良い。
 本実施形態の建設機械システム1は、回転式破砕装置ユニット30の設置位置を基準に設置・配線が行われる。これは、建設機械システム1が回転式破砕装置ユニット30を中心として、構成されているからである。本実施形態では投入コンベヤユニット40は、回転式破砕装置ユニット30の-X方向側に設置される。制御ユニット20は、回転式破砕装置ユニット30と電源ユニット10との間に設置される。電源ユニット10は、制御ユニット20の+X方向側に設置される。操作表示ユニット100は、本実施形態では、移動式のタブレットあり、無線通信が可能な範囲内にある。なお、各ユニットの配置は、図示した位置に限らない。各ユニットの配置は、図示しないその他の建設機械の配置状況や建設発生土の配置状況により決定される。また、本実施形態の建設機械システム1が設置される設置面50は土砂であり、設置面50の建設機械システム1と接する箇所は、同じ高さで平らに整地されていることが好ましい。これは、本実施形態の建設機械システム1は、同じ高さの平面に水平に設置されるものとして設計されているからである。また本実施形態の建設機械システム1を構成する5つのユニットは、地面に固定したり設置面50に敷いた鉄板に固定したりすることが好ましい。これは、地震等で各ユニットの位置関係がずれることを防止するためである。
 本実施形態の建設機械システム1を構成する5つのユニットの組立方法については、図4を用いて後述する。
 電源ユニット10は、回転式破砕装置ユニット30の第1モータ32と投入コンベヤユニット40の第2モータ42とに必要な電力を供給するものである。第1モータ32は、回転式破砕装置ユニット30の後述するシャフト32aを駆動するものである。第1モータ32の電圧は200Vであり、第1モータ32の出力は100kW程度である。第2モータ42は、投入コンベヤユニット40の後述するヘッドプーリ43を駆動するものである。第2モータ42の電圧は200Vであり、第2モータ42の出力は10kW程度である。このため、第1モータ32は第2モータ42に比べて大出力である。
 本実施形態の電源ユニット10は移動式ディーゼル発電機であり、図3のブロック図に示すように、燃料タンク11と、内燃機関12と、発電機13と、送電部14と、を有する。
 燃料タンク11は、軽油を貯蔵して、不図示の供給機構により内燃機関12に軽油を供給するものである。
 内燃機関12は、本実施形態ではディーゼルエンジンであり、発生した回転力を不図示の出力軸を介し発電機13に伝える。
 発電機13は、ディーゼルエンジンからの回転力で、不図示の磁石を回転させ、電磁誘導により、不図示の固定コイルに電力を発生させる。発電機13は、送電部14と有線接続され、送電部14に発電した電力を送電する。
 送電部14は、コイルであり、電気が流れると磁界が発生し、その磁界を後述する受電部21が受けると誘導電流が流れ、受電部21に電気が発生する。このように、本実施例では、電磁誘導方式により電力の無線給電を実現している。本実施形態において無線給電は、送電部14と受電部21の距離が1m以内のときに用い、1mを超える時は、有線接続を用いる。なお有線接続は、配線による接続でも良いし、コネクタによる接続でも良い。
 電源ユニット10の構成は、上述の構成に限らず、太陽光発電システム、ペロブスカイト型太陽光発電システム、風力発電システム、水素燃料電池、鉛蓄電池、リチウムイオンバッテリー、全固体電池、全樹脂電池、アンモニア混焼エンジンによる発電機、アンモニア専焼エンジンによる発電機、宇宙太陽光発電、商用電源を用いても良い。再生可能エネルギーを用いた場合、建設機械システム1の二酸化炭素(温室効果ガス)排出を削減できる。
 制御ユニット20は、図3のブロック図に示すように、受電部21と、変圧器22と、第1制御装置23と、第1通信装置24と、第1起動装置25と、第1送電装置26と、第2起動装置27と、第2送電装置28と、を有する。
 受電部21はコイルであり、送電部14から無線給電により電力を受電する。
 変圧器22は、受電部21と有線接続されており、受電部21が受電した電力を200Vから100Vに変圧する。変圧器22は、有線接続された第1制御装置23と、第1通信装置24とに変圧した電力を送電する。なお本実施形態では、第1制御装置23と第1通信装置24との電圧は、同一としているが、異なっていても良い。電圧が異なる場合(例えば24V)は、図示しない変圧器を備えても良い。
 本実施形態では、回転式破砕装置ユニット30の第1モータ32と、投入コンベヤユニット40の第2モータ42とに関わる電圧が200V、第1制御装置23と第1通信装置24と、に関わる電圧が100Vである。
 本実施形態では、制御ユニット20に備えた変圧器22を用いて電圧を変更しているが、必要な電圧を発生する電源を複数台用いても良い。また、5つのユニットがそれぞれ電源を備えていても良い。
 第1制御装置23は、回転式破砕装置ユニット30と投入コンベヤユニット40とを制御するものである。
 第1制御装置23は、回転式破砕装置ユニット30の制御として、第1起動装置25から第1送電装置26へ送る電力の供給と、電力の供給の停止(以下、遮断という)とを制御する。これにより、第1モータ32の駆動と停止とを制御するので、シャフト32aの回転と停止とを制御している。本実施形態では、第1制御装置23は、第1起動装置25に有線接続されている。
 第1制御装置23は、投入コンベヤユニット40の制御として、第2起動装置27から第2送電装置28へ送る電力の供給と、遮断とを制御する。これにより、第2モータ42の駆動と停止とを制御するので、ヘッドプーリ43の回転と停止とを制御している。本実施形態では、第2起動装置27に有線接続されている。
 第1制御装置23は、第1モータ32の負荷電流が定格電流以上となるような場合(例えば原料土に硬い岩石が含まれている場合)には、第1モータ32の回転速度を段階的に遅くする制御を行う。また第1制御装置23は、後述する回転式破砕装置ユニット30のシャフト32aを保持する不図示のベアリングから異音発生している場合のような緊急的な状態では、第1モータ32を停止する制御を行う。また第1制御装置23は、第2モータ42の負荷電流が定格電流以上となるような場合(例えば搬送する原料土の量が多い場合)には、第2モータ42の回転速度を段階的に遅くする制御を行う。また、第1制御装置23は、後述する投入コンベヤユニット40のヘッドプーリ43を保持する不図示のベアリングから異音が発生している場合のような緊急的な状態では、第2モータ42を停止する制御を行う。
 第1通信装置24は、後述する操作表示ユニット100の第2通信装置105との間で制御信号の通信を行う。通信は、無線通信でも良く、有線通信でも良い。
 第1起動装置25は例えばインバータであり、第1送電装置26に有線接続され、第1制御装置23からの制御信号により、第1送電装置26へ送る電力の供給と遮断とを行う。
 第1送電装置26は、前述したコイルと同様のものであり、後述する第1受電装置31へ無線給電により、第1起動装置25からの電力を送電する。無線給電は、第1送電装置26と第1受電装置31との離隔距離が1m以内のときに用い、1mを超える時は、有線接続を用いる。なお有線接続は、配線による接続でも良いし、コネクタによる接続でも良い。
 第2起動装置27は例えばインバータであり、第2送電装置28に有線接続され、第1制御装置23からの制御信号により、第2送電装置28へ送る電力の供給と遮断とを行う。
 第2送電装置28は、コイルであり、後述する回転式破砕装置ユニット30の第2受電装置33へ無線給電により、第2起動装置27からの電力を送電する。無線給電は、第2送電装置28と第2受電装置33との離隔距離が1m以内のときに用い、1mを超える時は、有線接続を用いる。なお有線接続は、配線による接続でも良いし、コネクタによる接続でも良い。
 回転式破砕装置ユニット30は、投入コンベヤユニット40が搬送してきた原料土を要求品質に改良する装置である。
 回転式破砕装置ユニット30は、第1受電装置31と、第1モータ32と、シャフト32aとインパクト部材32bと、第2受電装置33と、第3送電装置34と、接続柱35と、を有する。
 第1受電装置31は、コイルであり制御ユニット20の第1送電装置26から、無線給電により電力を受電する。
 第1モータ32は、第1受電装置31と有線接続され、第1受電装置31が受電した電力により、図示しないベルトを介し回転式破砕装置ユニット30のシャフト32aを回転させる。
 本実施形態では、シャフト32aには、Z軸と直交する方向に伸びる棒状のインパクト部材32bが複数本取り付けられている。
 インパクト部材32bは、シャフト32aの回転によりZ軸周りに回転し、投入コンベヤユニット40が搬送してきた原料土を破砕して、原料土を改良する。
 このように第1制御装置23は、回転式破砕装置ユニット30の制御として、第1起動装置25から第1送電装置26へ送る電力の供給と、電力の供給の停止(以下、遮断という)とを制御している。前述したように、第1制御装置23は、第1モータ32の駆動と停止とを制御することにより、シャフト32aの回転と停止とを制御している。
 第2受電装置33は、コイルであり制御ユニット20の第2送電装置28から、無線給電により電力を受電する。
 第3送電装置34は、コイルであり第2受電装置と有線接続され、後述する投入コンベヤユニット40の第3受電装置41へ無線給電により、第2受電装置33が受電した電力を送電する。無線給電は、第3送電装置34と第3受電装置41との距離が1m以内のときに用い、1mを超える時は、有線接続を用いる。なお有線接続は、配線による接続でも良いし、コネクタによる接続でも良い。
 接続柱35は、+Z軸方向かつ-X軸方向に伸びる柱状形状で、回転式破砕装置ユニット30の-X側に備わり、後述する投入コンベヤユニット40の前脚46aとボルトを介し接合される。接続柱35は、Y軸方向に並行に離れた箇所に同じ形状のものが、複数備わっていてもよい。
 投入コンベヤユニット40は、不図示のバックホウにより供給された原料土や不図示の土砂供給機により供給された原料土を、回転式破砕装置ユニット30へ搬送する装置である。
 投入コンベヤユニット40は、コンベヤ本体300と、第3受電装置41と、第2モータ42と、ヘッドプーリ43と、テールプーリ44と、ベルト45と、前脚46aと、後脚46bと、を有する。
 コンベヤ本体300は、後述する投入コンベヤユニット40の構成要素が取り付くフレームである。
 第3受電装置41は、コイルであり回転式破砕装置ユニット30の第3送電装置34から無線給電により、電力を受電する。
 第2モータ42は、第3受電装置41と有線接続され、第3受電装置41が受電した電力により、図示しない駆動チェーンを介しヘッドプーリ43を回転する。すなわち、本実施形態において回転式破砕装置ユニット30が第1ユニットに相当し、第3受電装置41が第1受電部に相当し、第2モータ42が第2受電部に相当し、投入コンベヤユニット40が第2ユニットに相当する。
 ヘッドプーリ43は、円柱形状であり、同じく円柱形状のテールプーリ44と対になり、継ぎ目のないベルト45が巻きつけられている。
 ベルト45は、ヘッドプーリ43が回転すると、不図示のバックホウにより供給された原料土や不図示の土砂供給機により供給された原料土を、回転式破砕装置ユニット30へ搬送する。
 このように第1制御装置23は、投入コンベヤユニット40の制御として、第2起動装置27から第2送電装置28へ送る電力の供給と、遮断とを制御している。前述したように、第1制御装置23は、第2モータ42の駆動と停止とを制御するので、ヘッドプーリ43の回転と停止とを制御している。
 前脚46aは、前述した回転式破砕装置ユニット30の接続柱35と、ボルトを介し接合されている。前脚46aは、Y軸方向に並行に離れた箇所に同じ形状のものが、接続柱35と対になって、複数備わっていてもよい。
 後脚46bは、-Z軸方向に伸びる柱状形状で、投入コンベヤユニット40の-X軸方向側に備わり、設置面50に当接される。
 操作表示ユニット100は、本実施形態の建設機械システム1のオペレータが、運転操作を行うのに使用するものである。
 操作表示ユニット100は、後述する第2通信装置105と制御ユニット20の第1通信装置24との間で制御信号の通信を行う。通信は、有線でも良く、無線でも良い。
 操作表示ユニット100は、持ち運び移動ができるタブレットであり、無線規格の範囲内において、図示しない遠隔地での使用が可能である。無線規格は、Wi-Fi(登録商標)でもBluetooth(登録商標)でも良い。
 操作表示ユニット100は、電源101と、操作部102と、表示部103と、第2制御装置104と、第2通信装置105と、を有する。
 電源101は、本実施形態ではバッテリーであり、操作部102、表示部103、第2制御装置104、第2通信装置105と有線接続され、電力を送信する。
 操作部102は、第2制御装置と有線接続され、入力信号を発生する。本実施形態の操作部102は、タッチパネルであるが、ボタンやツマミであっても良い。
 表示部103は、第2制御装置と有線接続され、例えば第1モータ32の運転状態を表示する。本実施形態の表示部103は、タッチパネルであるが、液晶モニタであっても良い。
 第2制御装置104は、第2通信装置105と有線接続され、操作部102から発生した入力信号(制御信号)の制御を行う。
 第2通信装置105は、制御ユニット20の第1通信装置24との間で制御信号の通信を行う。通信は、無線通信でも良く、有線通信でも良い。
 本実施形態の操作表示ユニット100の構成は図示したものに限らない。また、本実施形態の操作表示ユニット100は、移動式のタブレットであるが、固定式のものでも良く、不図示の操作室内に設置し使用しても良い。
(設置・配線の説明)
 図4は、本実施形態の建設機械システム1を設置・配線する方法を説明する図であり、図2の接続柱35と前脚46aとの接合部を拡大している。図5は、建設機械システム1の設置フロー図である。図4では、説明の便宜上、鉛直方向をZ方向、水平面内において直交する二軸方向をX方向及びY方向とする。以下、図4と図5を用いて設置・配線の手順について説明していく。なお、本実施形態では、図示しないクレーンと作業者により組立が行われるが、作業者を介さない全自動による組立でも良い。
 本実施形態の建設機械システム1の設置場所(建設現場)は、建設機械システム1が設置される前に、バックホウ等の建設機械を用いて、設置面50の建設機械システム1と接する箇所の+Z方向の高さと-Z方向の高さの差が概ね5cm以下になるように、平らに仕上げられる。これは、経験的に+Z方向の高さと-Z方向の高さの差が概ね5cm以内であれば、建設機械システム1と設置面50との間に薄板等を挟み込むことで、建設機械システム1を構成する5つのユニットを同一平面上に水平に設置することが可能となるからである。また各ユニットが、地震等でずれないよう固定するために設置面50と建設機械システム1の間に鉄板を敷いてもよい。
 回転式破砕装置ユニット30は、図示しないクレーンで吊り上げられ、設置面50の所定の位置に設置される(ステップS1)。
 投入コンベヤユニット40は、図示しないクレーンで吊り上げられ、投入コンベヤユニット40の前脚46aが回転式破砕装置ユニット30の接続柱35と接続し、投入コンベヤユニット40の後脚46bが設置面50に当接される(ステップS2)。接続柱35と前脚46aとは、ボルトで締結され、回転式破砕装置ユニット30と投入コンベヤユニット40との位置関係は、一意に決まる。従って、投入コンベヤユニット40の前脚46a近傍に第3送電装置34を設け、回転式破砕装置ユニット30の接続柱35近傍に第3受電装置41を設けることで、第3送電装置34と第3受電装置41との位置関係も一意に決まる。さらに、第3送電装置34と第3受電装置41とは、無線給電により接続されるため、建設現場において、配線作業が不要となり作業時間の短縮をすることができる。
 制御ユニット20は、図示しないクレーンで吊り上げられ、回転式破砕装置ユニット30の+X方向側の近接した所定の位置に設置される(ステップS3)。なお、制御ユニットの設置位置は、本実施例の位置に限らない。
 上述の近接した所定の位置とは、第1送電装置26と第1受電装置31との離隔距離が1m以内となる位置であり、第2送電装置28と第2受電装置33との離隔距離が1m以内となる位置である。
 電源ユニット10は、図示しないクレーンで吊り上げられ、制御ユニット20の+X方向側の近接した所定の位置に設置される(ステップS4)。なお、電源ユニット10の設置位置は、本実施例の位置に限らない。
 上述の近接した所定の位置とは、受電部21と送電部14との離隔距離が1m以内となる位置をいう。
 上述したように、本実施形態では、ユニット内は、建設現場に搬入される前に有線配線がなされ、ユニット間の離隔距離が1m以内の箇所は、無線給電されている。なお、離隔距離が1m以上となる場合は、電力の減衰が大きくなるため有線接続を採用する。離隔距離は、1mでなくても良い。
 本実施形態の建設機械システム1は、すべてのユニットの設置が完了した後、各ユニットが地震等でずれないよう、地面や鉄板と固定される。
 本実施形態の建設機械システム1の無線接続箇所には、容易に人や小動物が触れないよう、保護のために覆いがされている。
 操作表示ユニット100は、本実施形態では移動式のタブレットであり、無線通信可能な範囲に存在すれば良い(ステップS5)。また、操作表示ユニット100は、有線接続された固定式でも良く、この場合は図示しない屋内空間や屋外に設置されても良い。
 以上説明したように、本実施形態によると、建設機械システム1は、5つのユニットのそれぞれの電気配線が有線接続され、これに対し、回転式破砕装置ユニット30と、投入コンベヤユニット40との間の電力供給や通信は、無線で行うことにより電力の送電・受電や制御信号の送信・受信を行う構成になっている。これにより、建設現場において回転式破砕装置ユニット30と、投入コンベヤユニット40との有線による配線を省略または減らすことができ、設置・配線作業の時間短縮した安全で使い勝手の良い建設機械システムを実現できる。
 また、本実施形態では、第1制御装置23は、第1モータ32の負荷電流が定格電流以上となるような場合(例えば原料土に硬い岩石が含まれ場合)には、第1モータ32の回転速度を段階的に遅くする制御を行う。また第1制御装置23は、後述する回転式破砕装置ユニット30のシャフト32aを保持する不図示のベアリングから異音が発生している場合のような緊急的な状態では、第1モータ32を停止する制御を行う。また第1制御装置23は、第2モータ42の負荷電流が定格電流以上となるような場合(例えば搬送する原料土の量が多い場合)には、第2モータ42の回転速度を段階的に遅くする制御を行う。また、第1制御装置23は、後述する投入コンベヤユニット40のヘッドプーリ43を保持する不図示のベアリングから異音が発生している場合のような緊急的な状態では、第2モータ42を停止する制御を行う。
 また、本実施形態では、人が電源ユニット10と制御ユニット20との無線給電により接続される区間に板等を挟み込むと、第1モータ32と第2モータ42とへの電力の供給が停止され、第1モータ32と第2モータ42との運転を一斉停止できる。
 また、人が第1送電装置26と第1受電装置31との無線給電により接続される区間に板等を挟み込むと第1モータ32への電力の供給が停止され、第1モータ32が停止する。あるいは、人が第2送電装置28と第2受電装置33との無線給電により接続される区間に板等を挟み込と、第2モータ42への電力の供給が停止され、第2モータ42が停止する。このように、本実施形態では、原料土が投入コンベヤユニット40のベルト45からこぼれている場合や、不図示のベアリングから異音が発生している場合のような緊急的な状態では、人が第1モータ32と第2モータ42との少なくとも一方を停止させることができる。
(第2実施形態)
 本実施形態は、後述するように無人飛行体であるドローン200を備えており、ドローン200が5つのユニットの運転状況を監視し第1制御装置23に情報を送ったり、ドローン200が第1モータ32と第2モータ42との停止操作をしたりする。このため、本実施形態は、第1制御装置23とドローン200とが協調制御を行う建設機械システムとなっている。
 協調制御の一例として、ドローン200の不図示の制御装置が回転式破砕装置ユニット30から排出される土砂の量をカメラなどの撮像装置で捉え、画像認識により土砂量が通常より多い(少ない)を判断し、異常の場合、第1制御装置23に異常信号を送ることがある。もう一つの例としてドローン200が人の立ち入った時を異常と判断し第1制御装置23に異常信号を送ることがある。さらにもう一つの例として、投入コンベヤユニット40や回転式破砕装置ユニット30からの土砂こぼれ等の時、異常と判断し第1制御装置23に異常信号を送る。第1制御装置23は、ドローン200の不図示の制御装置からの異常信号を受け、第1モータ32と第2モータ42を停止することがある。このように第1制御装置23とドローン200とが協調し、建設機械システム1全体の制御を行う。
 以下、図6から図10を用いて第2実施形態について説明する。なお、第1実施形態と同じ構成については同じ符号を付し、その説明を割愛もしくは簡略化する。
 図6は、本実施形態の建設機械システム1の主要部分を示す側面図である。図7は、本実施形態の建設機械システム1の主要部分のブロック図である。図8及び図9は、後述する非常停止装置201の近傍を拡大した側面図であるが、説明の便宜上、前述した投入コンベヤユニット40のコンベヤ本体300の長手方向(+X方向かつ+Y方向に伸びる方向)をX’方向としている。さらにX’方向と直交する二軸方向をY’方向及びZ’方向としている。図8は、後述する非常停止回路49が通電された状態を示す概略図であり、図9は、後述する非常停止回路49が遮断されている状態を示す概略図である。図10は、本実施形態の建設機械システム1の運転開始から停止までを示すフロー図である。
 図6と図7に示すように、本実施形態の建設機械システム1は、ドローン200を有し、制御ユニット20は、第1送信装置29aと、第1受信装置29bと、を有し、回転式破砕装置ユニット30は、第2受信装置36と、第2送信装置37と、第3受信装置38と、第3送信装置39とを有し、投入コンベヤユニット40は、非常停止装置201と、第4受信装置47と、第4送信装置48とを有している。また後述するように、第1制御装置23と、第1送信装置29aと、第2受信装置36と、第3送信装置39と、第4受信装置47と、第4送信装置48と、第3受信装置38と、第3送信装置39と、第1受信装置29bとは、直列に接続されており、図7の2点鎖線で囲んだ非常停止回路49を形成している。
 本実施形態の建設機械システム1の操作表示ユニット100の操作部102は、図示しない複数のボタンを有している。例えば、第1モータ32を運転するための第1運転ボタンと、第1モータ32を停止するための第1停止ボタンと、第2モータ42を運転するための第2運転ボタンと、第2モータ42を停止するための第2停止ボタンと、を有している。また、第1運転ボタンが押されると第1運転信号が発生し、第1停止ボタンが押されると第1停止信号が発生し、第2運転ボタンが押されると第2運転信号が発生し、第2停止ボタンが押されると第2停止信号が発生する。
 ドローン200の不図示の制御装置は、本実施形態の建設機械システム1の状況を監視するためのもので、搭載されたカメラで撮影した画像を、図示しないモニタ等に転送したり、異常時に異常信号を第1制御装置23に送信したりする。また、ドローン200は、第1モータ32や第2モータ42を停止するために、後述する非常停止装置201の操作を行う。すなわち、ドローン200が移動体に相当する。
 第1送信装置29aは、コイルであり第1制御装置23と有線接続され、回転式破砕装置ユニット30の第2受信装置36へ、無線給電により第1制御装置23からの制御信号を送信する。
 第2受信装置36は、コイルであり第1送信装置29aから無線給電により制御信号を受信する。
 第2送信装置37は、コイルであり第2受信装置36と有線接続され、投入コンベヤユニット40の第4受信装置47へ、無線給電により第2受信装置36からの制御信号を送信する。
 第4受信装置47は、コイルであり第2送信装置37から無線給電により制御信号を受信する。
 第4送信装置48は、コイルであり第4受信装置47と有線接続され、第3受信装置38へ、無線給電により、第4受信装置47からの制御信号を送信する。
 第3受信装置38は、コイルであり第4送信装置48から無線給電により制御信号を受信する。
 第3送信装置39は、コイルであり第3受信装置38と有線接続され、第1受信装置29bへ、無線給電により、第3受信装置38からの制御信号を送信する。
 第1受信装置29bは、コイルであり第3送信装置39から無線給電により制御信号を受信する。第1制御装置23は、第1受信装置29bと有線接続され、制御信号を受信する。
 このように、第1制御装置23と、第1送信装置29aと、第2受信装置36と、第3送信装置39と、第4受信装置47と、第4送信装置48と、第3受信装置38と、第3送信装置39と、第1受信装置29bと、は無線または有線で接続され、非常停止回路49を形成している。
 非常停止回路49は、建設機械システム1の第1制御装置23が、第1モータ32と第2モータ42とが運転可能かを判断することに用いられる。非常停止回路49が通電状態の時には、第1制御装置23は第1モータ32が運転可能と判断し、第1運転ボタンが押されると、後述するフローにより第1モータ32が運転する。非常停止回路49が通電状態でない時(接続区間に遮断されている箇所がある時)は、第1制御装置23は第1モータ32が運転不可能と判断し、第1運転ボタンが押されても第1モータ32は運転しない。つまり、非常停止回路49の接続区間のどこかが遮断されているときは、第1モータ32は運転しないこととなる。同様に第2運転ボタンが押されると、第2モータ42が運転する。非常停止回路49が通電状態でない時は、第2運転ボタンが押されても第2モータ42は運転しない。すなわち、非常停止回路49の接続区間のどこかが遮断されているときは、第2モータ42は運転しないこととなる。これにより、非常停止回路49の接続区間のどこかが遮断されているときは、建設機械システム1は一斉停止することとなる。
(非常停止方法の説明)
 図8と図9とを用いて、非常停止方法の一つとしてドローン200が非常停止装置201を操作する方法を説明する。図8は、非常停止装置201の近傍を拡大した図で、非常停止回路49の一部が示され、非常停止回路49は通電された状態を表している。図9は、非常停止装置201の近傍を拡大した図で、非常停止回路49の一部示されていて、非常停止装置201が作動し非常停止回路49が遮断されている状態を表している。
 図8を用いて、非常停止装置201の構成を説明する。非常停止装置201は、可動部202と、バネ部500と、ガイド部207を有する。可動部202は、操作部203と、遮断部204と、ガイド棒205とを有する。
 操作部203はX’方向とY’方向とに広がるプレート形状であり、+Z’方向側にドローン200が着陸できるようになっている。+X’方向側の一端には、-Z’方向側に伸びる遮断部204を備え、他端に-Z’方向側に伸びるガイド棒205とバネ部206とを備える。バネ部206の-Z’方向側端部には、ガイド部207を備えている。
 遮断部204は、-Z’方向に伸びる棒形状で、無線給電により接続される区間の電力や信号を遮断する。
 ガイド棒205は、Z方向に伸びる棒形状で、後述するガイド部207の内部に沿って移動することで可動部202の動作をZ’方向のみに制限する。
 バネ部206は、ガイド部207の+Z’方向側端部と、操作部203の-Z’方向側の底面との間に備わり、可動部202の重量を支える。バネ部206は、可動部202を、ガイド部207の-Z’方向側端部が無線給電により接続される区間を遮断しない位置で保持する。
 ガイド部207は、内部に円柱状の穴が開いたブロック形状で、ガイド棒205の移動方向を制限する。
 非常停止装置201の動作について、図8と図9を用いて説明する。図8は、非常停止回路49が通電された状態である。図9に移って、ドローン200が操作部203に着陸すると、ドローン200の重量によりバネ部206が縮み、可動部202が-Z’方向側へ移動を始める。ガイド棒205はガイド部207に沿って移動し、バネ部206が最短の長さまで縮むと、可動部202は停止する。
 可動部202が停止した状態(図9)では、遮断部204が、第2送信装置37から第4受信装置47への無線給電と、第4送信装置48から第3受信装置38への無線給電とを遮断していて、非常停止回路49が遮断された状態となる。
 ドローン200が操作部203から離陸すると、可動部202はバネ部206の復元力により上昇し、図8の状態に戻り、非常停止回路49が通電された状態に復帰する。
 なお、可動部202の操作は、人力によっても良い。また、ドローン200の不図示の制御装置が第1制御装置23に非常停止信号を送信すると、第1制御装置23は、第1モータ32と第2モータ42とを、一斉に停止する。何らの理由、例えば通信状態が良好でない場合は、ドローン200が非常停止装置201を操作して、第1モータ32と第2モータ42とを一斉に停止する。
 本実施形態において、可動部202の動作方向はZ’方向であるが、取付け状態によりX’方向でも良くY’方向でも良い。
 非常停止装置201の設置箇所は、本実施形態の位置に限らず、非常停止回路49内の無線給電により接続される区間であればどこでも良く、設置数量は一つ以上であれば良い。
 非常停止回路49は、発光部と受光部を備えてもよい。この場合、発光部から受光部へ光が到達している状態が、例えば第2送信装置37から第4受信装置47への無線給電が行われている状態に相当する。
 本実施形態では、充電や待機のためのドローンポートが、設けられていても良い。本実施形態の建設機械システム1の中で、+Z方向位置が一番高く全体の見通しが良い場所に設けられていれば、ドローン200は、ドローンポートに待機中に定点カメラとして、建設機械システム1の運転状況を撮影できる。またドローン200が飛行中に建設機械システム1の運転状況を撮影しても良い。ドローン200は、撮影した映像を図示しないモニタに送信することで、建設機械システム1のオペレータが、建設機械システム1の運転状況を確認し、異常箇所(例えば投入コンベヤユニット40から土砂がこぼれている箇所)を直ちに特定し、停止等の措置を行える。なお、ドローンポートに充電の開始・停止を行うスイッチを設け、ドローン200が着陸するとスイッチが入って充電が開始し、離陸するとスイッチが切れるようになっていてもよい。なお、ドローン200は、複数台備えても良い。
 またドローン200は、5つのユニットが設置される状況を監視しても良い。例えば回転式破砕装置ユニットの接続柱35と投入コンベヤユニット40の前脚46aとのボルト締結状態を撮影して、前述したモニタに送信しても良い。これにより、前述した全自動組立を行う時に遠隔地で状況を確認できるようになる。
 またドローン200は、赤外線カメラを備えても良い。これにより、ドローン200は、夜間でも撮影が可能となり、建設機械システム1を24時間監視でき、建設機械システム1は昼夜連続で無人運転が可能となる。
(運転・停止フローの説明)
 図10は、本実施形態における制御ユニット20の第1制御装置23により実行されるフローチャートである。
 第1制御装置23は、本フローチャートを開始すると、第1通信装置と操作表示ユニット100の第2通信装置105との通信を確立させる(ステップS101)
 第1制御装置23は、非常停止回路49が通電されている状態かどうかを確認し、第1モータ32と第2モータ42とが運転可能な状態かどうかを判断する(ステップS102)。第1制御装置23は、非常停止回路49が通電していなければ運転不可能と判断し、通電が確認できるまで待機し、通電していれば運転可能と判断しステップS103へ進む。
 第1制御装置23は、第1運転信号の有無を判断する(ステップS103)。ここで、第1運転信号は制御信号であり、建設機械システム1のオペレータが前述した操作表示ユニット100の操作部102の第1運転ボタンを押すと発生する。第1運転信号は、第2制御装置104の制御により、第2通信装置から第1通信装置に送信され、第1制御装置23に到達する。なお、後述するその他の制御信号(例えば第1停止信号)も同様の手順で、第1制御装置23に到達する。
 第1制御装置23は、第1運転信号がある場合、ステップS104へ進む。ステップS104では、第1制御装置23は、第1起動装置25へ第1運転信号を送信する。第1起動装置25は第1運転信号を受信すると、第1送電装置26へ200Vの電力を送電する。さらに電力は第1受電装置31を介し第1モータ32に到達し、第1モータ32が運転する。
 第1制御装置23は、第1運転信号がない場合、ステップS105へ進む。ステップS105では、第1制御装置23は、第2運転信号の有無を判断する。
 第1制御装置23は、第2運転信号がある場合、ステップS106へ進む。ステップS106では、第1制御装置23は、第2起動装置27へ第2運転信号を送信する。第2起動装置27は第2運転信号を受信すると、第2送電装置28へ200Vの電力を送電する。さらに電力は第2受電装置33と、第3送電装置34と第3受電装置41とを介し第2モータ42に到達し、第2モータ42が運転する。
 第1制御装置23は、第2運転信号がない場合、ステップS107へ進む。ステップS107では、第1制御装置23は、非常停止回路49の通電状態を判断する。
 第1制御装置23は、非常停止回路49が通電していればステップS108へ進む。ステップS108では、第1制御装置23は、第1停止信号の有無を判断する。
 第1制御装置23は、第1停止信号がある場合、ステップS109へ進む。ステップS109では、第1制御装置23は、第1起動装置25へ第1停止信号を送信する。第1起動装置25は第1停止信号を受信すると、第1送電装置26へ送電している電力を遮断する。これにより、第1受電装置31を介して第1モータ32が受信していた電力が遮断され、第1モータ32が停止する。
 第1制御装置23は、第1停止信号がない場合、ステップS110へ進む。ステップS110では、第1制御装置23は、第2停止信号の有無を判断する。
 第1制御装置23は、第2停止信号がある場合、ステップS111へ進む。ステップS111では、第1制御装置23は、第2起動装置27へ第2停止信号を送信する。第2起動装置27は第2停止信号を受信すると、第2送電装置28へ送電している電力を遮断する。これにより、第2受電装置33と、第3送電装置34と第3受電装置41とを介して第2モータ42が受信していた電力が遮断され、第2モータ42が停止し、本フローチャートを終了する。
 第1制御装置23は、第2停止信号がない場合、ステップS103へもどり、制御を繰り返す。
 ステップS107へ戻り、第1制御装置23は、非常停止回路49が通電していなければ、ステップS112へ進む。ステップS112では、第1制御装置23は、第1起動装置25へ第1停止信号を送信する。第1起動装置25は第1停止信号を受信すると、第1送電装置26へ送電している電力を遮断する。これにより、第1受電装置31を介して第1モータ32が受信していた電力が遮断され、第1モータ32が停止する。
 ステップS112が終了すると、ステップS113へ進む。ステップS113では、第1制御装置23は、第2起動装置27へ第2停止信号を送信する。第2起動装置27は第2停止信号を受信すると、第2送電装置28へ送電している電力を遮断する。これにより、第2受電装置33と、第3送電装置34と第3受電装置41とを介して第2モータ42が受信していた電力が遮断され、第2モータ42が停止し、本フローチャートを終了する。
 以上説明したように第2実施形態では、ドローン200が5つのユニットの運転状況を監視し第1制御装置23に情報を送ったり、ドローン200が第1モータ32と第2モータ42との停止操作をしたりする。すなわち、第1制御装置23とドローン200とは協調制御を行っているため、安全で使い勝手の良い建設機械システムを実現できる。
(第3実施形態)
 第3実施形態では、後述する回転式破砕装置ユニット30が備える一対の保持部材311A、311Bが有するU溝313と、後述する投入コンベヤユニット40が備える前脚307とが2箇所で係合している。これにより、回転式破砕装置ユニット30と投入コンベヤユニット40とが連結し、回転式破砕装置ユニット30と投入コンベヤユニット40との位置関係をずれにくくし、地面や鉄板への固定を不要とし、本実施形態の建設機械システム1の設置時間を短縮することができる。位置関係がずれにくいため無線給電により接続される区間の離隔距離も一定間隔に保つことができ、使い勝手の良い建設機械システムを実現できる。
 本実施形態について、図11から図13を用いて説明する。なお、第1実施形態と同じ構成については同じ符号を付し、その説明を割愛もしくは簡略化する。図11は、本実施形態の建設機械システム1の回転式破砕装置ユニット30及び投入コンベヤユニット40を-Y方向側からみた状態を示す図である。図12は、本実施形態の建設機械システム1の投入コンベヤユニット40の前脚307近傍を拡大して示す斜視図である。図13は、本実施形態の建設機械システム1の投入コンベヤユニット40の球面軸受機構301を拡大して示す斜視図である。図11から図13では、説明の便宜上、鉛直方向をZ方向、水平面内において直交する二軸方向をX方向及びY方向とする。また各軸周りの回転方向をθX、θY、θZとする。
 図11に示すように、投入コンベヤユニット40は、その+X方向側端部近傍において、回転式破砕装置ユニット30に連結されている。すなわち、本実施形態において回転式破砕装置ユニット30が第1ユニットに相当し、投入コンベアユニットが第2ユニットに相当する。
 回転式破砕装置ユニット30は、架台310を有している。
 架台310は、回転式破砕装置ユニット30が設置面50と接するベースとなるもので、投入コンベヤユニット40が連結するための一対の保持部材311A、311Bを有している。保持部材311A、311Bの詳細は後述する。
 投入コンベヤユニット40は、前脚307と、テール架台308と、を有している。
 前脚307は、コンベヤ本体300の底面の+X方向側端部近傍に設けられている。
 図12には、前脚307の近傍が拡大して示されている。図12に示すように、前脚307は、Y方向に延びる第1部材312と、第1部材312のY方向両端部に設けられた一対の脚部314A、314Bと、脚部314Aと314Bとの間を連結する状態で設けられた軸部材としての円柱状部材315と、を有する。
 回転式破砕装置ユニット30の架台310には、一対の保持部材311Aと保持部材311Bとが設けられており、保持部材311Aと保持部材311Bとが有するU溝313において円柱状部材315が2か所で係合することで、前脚307が架台310(回転式破砕装置ユニット30)に連結される。前脚307は、円柱状部材315がU溝313に係合することで、架台310に対して、Y軸回りの回転方向(θy)の自由度を有している。すなわち、本実施形態において前脚307が第2ユニットである投入コンベヤユニット40の第1部分に相当し、U溝313が第1係合部に相当し、円柱状部材315が第2係合部に相当する。
 図11に戻り、テール架台308は、脚部309と、脚部309の+Z方向側に設けられた球面軸受機構301と、を有する。
 球面軸受機構301は、コンベヤ本体300の底面の-X方向側端部近傍に設けられている。図13は、球面軸受機構301を拡大して示す斜視図である。図13に示すように、球面軸受機構301は、ハウジング302と、ハウジング302内に設けられた球面軸受部材303と、球面軸受部材303を貫通した状態の円柱状部材304と、円柱状部材304とコンベヤ本体300をつなぐ固定部材305を有する。
 ハウジング302は、脚部309に対してボルト等で固定される。ハウジング302は、球面軸受部材303を収容可能な球面状の内部空間を有する。
 球面軸受部材303は、略ボール状の部材である。球面軸受部材303には、Y軸方向に延びる貫通孔が形成されており、貫通孔には、円柱状部材304が貫通した状態となっている。球面軸受部材303は、円柱状部材304とハウジング302とが機械的に干渉しない限り、ハウジング302に対して自由に回転することができるようになっている。すなわち、球面軸受部材303は、ハウジング302に対して、X軸回りの回転方向、Y軸回りの回転方向、Z軸回りの回転方向に回転できるようになっている
 円柱状部材304の両端部には、固定部材305が設けられており、円柱状部材304は、固定部材305を介して、コンベヤ本体300の底面に固定されている。
 球面軸受機構301は、脚部309と、コンベヤ本体300の底面との間に設けられている。すなわち、球面軸受機構301は、脚部309上面を設置面とし、該設置面に当接した状態となっている。このため、本実施形態において球面軸受機構301が第2ユニットである投入コンベヤユニット40の第2部分に相当する。球面軸受機構301は、コンベヤ本体300の、脚部309に対するX軸回りの回転方向の姿勢変化(θX)、Y軸回りの回転方向の姿勢変化(θY)、及びZ軸回りの回転方向の姿勢変化(θZ)を許容している。
 本実施形態では、建設現場に回転式破砕装置ユニット30が設置された状態で、クレーン等で吊り下げた状態の投入コンベヤユニット40を、上方から図11の位置に設置する。そして、投入コンベヤユニット40の前脚307の円柱状部材315を回転式破砕装置ユニット30の架台310に設けられた保持部材311A,311B(図12参照)のU溝313(2か所)に係合させる。このようにすることで、投入コンベヤユニット40を回転式破砕装置ユニット30に連結した状態で設置することができる。ここで、投入コンベヤユニット40においては前脚307が架台310に対してθY方向に自由度を有している。また、コンベヤ本体300は、脚部309に対してθX、θY、θZ方向の自由度を有している。これにより、架台310の姿勢に倣うように、コンベヤ本体300のX軸回りの姿勢を定めることができる。また、脚部309が水平面に対して傾いているような場合であっても、その傾きを球面軸受機構301で吸収することができる。このように、回転式破砕装置ユニット30と、投入コンベヤユニット40と、を連結することにより、位置関係がずれにくくなっているので、地面や鉄板への固定が不要となり、本実施形態の建設機械システム1の設置時間を短縮することができる。また、前脚307の近傍に第3送電装置34を、保持部材311Aまたは311Bの近傍に第3受電装置41を設けることで、第3送電装置34と第3受電装置41との位置関係もずれにくくなり、無線給電により接続される区間の離隔距離も一定間隔に保つことができ、第1実施形態への適用が可能となる。同様に前脚307の近傍に第2送信装置37と第3受信装置38とを、保持部材311Aまたは311Bの近傍に第4受信装置47と第4送信装置48とを設けることで、第2送信装置37と第4受信装置47との位置関係、および第3受信装置38と第4送信装置48との位置関係もずれにくくなり、無線給電により接続される区間の離隔距離も一定間隔に保つことができ、第2実施形態への適用が可能となる。
 以上説明したように、第3実施形態では回転式破砕装置ユニット30が備える一対の保持部材311A、311Bが有するU溝313と、後述する投入コンベヤユニット40が備える前脚307と、が2箇所で係合している。これにより、回転式破砕装置ユニット30と、投入コンベヤユニット40と、が連結し位置関係がずれにくくなっているので、地面や鉄板への固定が不要となり、本実施形態の建設機械システム1の設置時間を短縮することができる。さらに、位置関係がずれにくいため無線給電により接続される区間の離隔距離も一定間隔に保つことができ、使い勝手の良い建設機械システムを実現できる。
 以上で説明した実施形態は、本発明を説明するための例示に過ぎず、本発明の要旨を逸脱しない範囲内において、種々変更を加え得ることは可能である。
  1 建設機械システム
  10 電源ユニット
  20 制御ユニット
  30 回転式破砕装置ユニット
  40 投入コンベヤユニット
  50 設置面
  100 操作表示ユニット
  200 ドローン
  201 非常停止装置
  301 球面軸受機構
 

Claims (11)

  1.  第1ユニットと、
     前記第1ユニットとは別ユニットであり、前記第1ユニットからの電力を無線給電により受け取る第1受電部と、前記第1受電部から有線を経由して前記電力を受電する第2受電部とを有した第2ユニットと、を備えた建設機械システム。
  2.  前記第1ユニットは電源を有し、
     前記第1受電部は、前記無線給電により前記電源からの電力を受電する請求項1記載の建設機械システム。
  3.  前記第1ユニットは、前記第1ユニットとは別ユニットである電源から無線給電により電力を受電する受電部を有する請求項1記載の建設機械システム。
  4.  前記有線の長さは、前記第1ユニットと前記第1受電部との距離よりも長い請求項1~3のいずれか一項に記載の建設機械システム。
  5.  電源に燃料電池を用いる請求項1~4のいずれか一項に記載の建設機械システム。
  6.  前記第1ユニットと前記第2ユニットとの運転状態を監視する飛行可能な移動体を備えた請求項1~5のいずれか一項に記載の建設機械システム。
  7.  前記移動体が、無線給電に接続される区間を遮断する請求項6に記載の建設機械システム。
  8.  前記移動体が、前記運転状態を撮影し、遠隔地に撮影したデータを送信する請求項6または7に記載の建設機械システム。
  9.  前記移動体が、前記第1ユニットと前記第2ユニットとの組立状況を監視する請求項6~8のいずれか一項に記載の建設機械システム。
  10.  前記第2ユニットの前記第1ユニットに係合される第1部分の回転に関する自由度の数と、前記第2ユニットの設置面に当接される第2部分の回転に関する自由度の数が異なる、請求項1~9のいずれか一項に記載の建設機械システム。
  11.  前記第1ユニットと前記第2ユニットとが連結し、前記第1ユニットと前記第2ユニットとのどちらか一方または両方の位置が移動しても、無線給電により接続される区間の離隔距離が一定間隔に保たれる請求項10に記載の建設機械システム。
     
PCT/JP2022/000727 2021-05-28 2022-01-12 建設機械システム WO2022249529A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022555865A JP7351021B2 (ja) 2021-05-28 2022-01-12 建設機械システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163194205P 2021-05-28 2021-05-28
US63/194,205 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022249529A1 true WO2022249529A1 (ja) 2022-12-01

Family

ID=84229735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000727 WO2022249529A1 (ja) 2021-05-28 2022-01-12 建設機械システム

Country Status (2)

Country Link
JP (1) JP7351021B2 (ja)
WO (1) WO2022249529A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088744A (ja) * 2001-09-19 2003-03-25 Hitachi Constr Mach Co Ltd 自走式混合機及びこれを用いた土砂混合システム
WO2014057587A1 (ja) * 2012-10-12 2014-04-17 株式会社日立エンジニアリング・アンド・サービス 非接触給電装置
JP2015068142A (ja) * 2013-09-30 2015-04-13 株式会社小松製作所 積込機械
US20170191246A1 (en) * 2016-01-04 2017-07-06 Caterpillar Inc. Excavation system having inter-machine monitoring and control
WO2017131194A1 (ja) * 2016-01-29 2017-08-03 住友建機株式会社 ショベル及びショベルの周囲を飛行する自律式飛行体
JP2020100997A (ja) * 2018-12-21 2020-07-02 ヤンマーパワーテクノロジー株式会社 電動式建設機械
JP2021031842A (ja) * 2019-08-14 2021-03-01 株式会社安藤・間 積込機、移動式破砕機及びベルトコンベアを用いた破砕物搬出方法に使用する破砕機運転管理方法、並びに積込機及び移動式破砕機を用いた破砕物搬出方法に使用する破砕機運転管理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6136049B2 (ja) * 2013-01-08 2017-05-31 五洋建設株式会社 浚渫土砂分別装置及び浚渫土砂の分別方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088744A (ja) * 2001-09-19 2003-03-25 Hitachi Constr Mach Co Ltd 自走式混合機及びこれを用いた土砂混合システム
WO2014057587A1 (ja) * 2012-10-12 2014-04-17 株式会社日立エンジニアリング・アンド・サービス 非接触給電装置
JP2015068142A (ja) * 2013-09-30 2015-04-13 株式会社小松製作所 積込機械
US20170191246A1 (en) * 2016-01-04 2017-07-06 Caterpillar Inc. Excavation system having inter-machine monitoring and control
WO2017131194A1 (ja) * 2016-01-29 2017-08-03 住友建機株式会社 ショベル及びショベルの周囲を飛行する自律式飛行体
JP2020100997A (ja) * 2018-12-21 2020-07-02 ヤンマーパワーテクノロジー株式会社 電動式建設機械
JP2021031842A (ja) * 2019-08-14 2021-03-01 株式会社安藤・間 積込機、移動式破砕機及びベルトコンベアを用いた破砕物搬出方法に使用する破砕機運転管理方法、並びに積込機及び移動式破砕機を用いた破砕物搬出方法に使用する破砕機運転管理方法

Also Published As

Publication number Publication date
JPWO2022249529A1 (ja) 2022-12-01
JP7351021B2 (ja) 2023-09-26

Similar Documents

Publication Publication Date Title
JP6019929B2 (ja) 移動式駐車設備
CN205534911U (zh) 电调系统及具有该电调系统的云台
US9580966B2 (en) All electric powered mobile jumbo drill machine
US20070285270A1 (en) Mobile surveillance and security system, surveillance and security system having a mobile surveillance and security unit, and methods of operating the same
KR101232036B1 (ko) 비접촉 전력전달 장치 및 자기유도 방식의 급전장치
CN101919011A (zh) 感应电能传输平台
JP2021509001A (ja) 充電用差込接続構造、充電杭、ロボット及びその自動充電システム
WO2014073298A1 (ja) 非接触給電システム
CN100507967C (zh) 技术设备和附属的遥控装置
WO2022249529A1 (ja) 建設機械システム
CN103887891A (zh) 机械的控制设备
KR20190114928A (ko) 벨트 타입 차단봉 및 벨트 타입 차단봉의 운용 효율성을 높일 수 있는 자동 제어 시스템
KR20140115790A (ko) 선박 또는 해양구조물용 무선 감시카메라 전원 공급/제어장치와 이의 제어 방법
Bouhraoua et al. Design and implementation of an unmanned ground vehicle for security applications
KR20130003792A (ko) 레일 카메라를 이용한 감시 시스템
KR102254921B1 (ko) 무인비행기의 무정전배터리 교체장치 및 방법
JP2011231586A (ja) 充電機能を備えた機械式駐車装置及びその制御方法
CN105972404A (zh) 一种自稳定云台及其无线组网方法
CN205545621U (zh) 工程作业车辆远程操控系统
US9068830B2 (en) Laser leveling device
CN116945205A (zh) 一种基于视觉辅助的tr机器人工作站及其使用方法
CN211388865U (zh) 一种具有自充电功能的机器人
JP2014230409A (ja) 遠隔作業自動機の充電システム及び方法
CN115516738A (zh) 无触点供电及数据通信装置和利用其的旋转驱动激光雷达系统
JP7070270B2 (ja) 充電システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022555865

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810815

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18557725

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810815

Country of ref document: EP

Kind code of ref document: A1