WO2022249387A1 - 冷媒漏れ判定装置、制御装置、冷媒漏れ判定プログラム及び冷媒漏れ判定方法 - Google Patents

冷媒漏れ判定装置、制御装置、冷媒漏れ判定プログラム及び冷媒漏れ判定方法 Download PDF

Info

Publication number
WO2022249387A1
WO2022249387A1 PCT/JP2021/020162 JP2021020162W WO2022249387A1 WO 2022249387 A1 WO2022249387 A1 WO 2022249387A1 JP 2021020162 W JP2021020162 W JP 2021020162W WO 2022249387 A1 WO2022249387 A1 WO 2022249387A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pressure
refrigerant circuit
refrigeration cycle
pressure sensor
Prior art date
Application number
PCT/JP2021/020162
Other languages
English (en)
French (fr)
Inventor
雄誠 小野
康敬 落合
守 濱田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP21943036.0A priority Critical patent/EP4350257A1/en
Priority to JP2023523855A priority patent/JPWO2022249387A1/ja
Priority to CN202180098354.2A priority patent/CN117321360A/zh
Priority to PCT/JP2021/020162 priority patent/WO2022249387A1/ja
Priority to US18/553,347 priority patent/US20240191924A1/en
Publication of WO2022249387A1 publication Critical patent/WO2022249387A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present disclosure relates to a refrigerant leakage determination device, a control device, a refrigerant leakage determination program, and a refrigerant leakage determination method.
  • Patent Document 1 there is a technology for diagnosing the presence or absence of a refrigerant leak in a refrigeration system based on the pressure drop by comparing the vapor-liquid equilibrium pressure calculated from the measured ambient temperature with the pressure measured by the pressure detection means.
  • the distribution of refrigerating machine oil in the refrigerant circuit differs depending on, for example, the installation environment of the refrigerating machine.
  • the amount of oil and ambient temperature affect the amount of refrigerant dissolved in the oil. Therefore, depending on the oil distribution of the refrigerating machine oil, there is a possibility that the amount of pressure drop to be detected, which is the basis for determining refrigerant leakage, may become uncertain. Therefore, with the refrigerant leakage diagnosis method disclosed in Patent Document 1, the measured pressure may vary depending on the oil distribution in the refrigeration system, resulting in a pressure measurement error.
  • the present disclosure aims to reduce the measurement error of the measured pressure.
  • a refrigerant leakage determination device includes: a refrigeration cycle device having a refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are connected, and performing a refrigeration cycle in which refrigerant circulates in the refrigerant circuit; a connection device having a communication port communicating with the internal space of the refrigerant circuit and connected to a pressure sensor for measuring the refrigerant pressure in the internal space; An operation control unit that causes the refrigeration cycle device to perform an oil recovery operation in which the oil present in the refrigerant circuit is collected in the compressor, a reference pressure to be compared, and the pressure sensor after the oil recovery operation.
  • a control device comprising: a determination unit that determines leakage of the refrigerant from the refrigerant circuit based on comparison with the measured refrigerant pressure; Prepare.
  • the control device causes the refrigeration cycle device to perform the oil recovery operation. After the recovery operation, the pressure of the refrigerant is measured. Therefore, it is possible to suppress variations in the measured pressure and detect refrigerant leakage more reliably than in the past.
  • FIG. 2 is a diagram of the first embodiment, and is a configuration diagram of a refrigerant leakage determination device 300;
  • FIG. 2 is a diagram of the first embodiment, and is a block configuration diagram of the control device 200;
  • FIG. 2 is a diagram of the first embodiment, and is a hardware configuration diagram of the control device 200;
  • 4 is a diagram of the first embodiment and is a flow chart showing the operation of the refrigerant leakage determination device 300.
  • FIG. FIG. 10 is a view of the first embodiment, and is a configuration diagram of a refrigerant leakage determination device 300 of Modification 1;
  • FIG. 10 is a diagram of the first embodiment, and is a flow chart showing the operation of the modification 1;
  • FIG. 10 is a diagram of the first embodiment, and is a flow chart showing the operation of the modification 2;
  • unit may be read as “circuit”, “process”, “procedure”, “process” or “circuitry” as appropriate.
  • Embodiment 1 The refrigerating cycle device 100 shown in FIGS. 1 to 4 is assumed to be a refrigerating cycle device 100 in which the pressure in the refrigerant circuit is equalized when operation is stopped.
  • Modification 1 of FIGS. 5 and 6 assumes a refrigeration cycle device 100 in which the pressure in the refrigerant circuit is not equalized when operation is stopped.
  • Modification 2 shows a configuration in which saturation pressure is not calculated, whereas refrigerant leak determination device 300 shown in FIGS. 1 to 4 and refrigerant leak determination device 300 of Modification 1 calculate the saturation pressure.
  • FIG. 1 is a configuration diagram of a refrigerant leakage determination device 300 according to Embodiment 1.
  • the configuration of the refrigerant leakage determination device 300 will be described with reference to FIG.
  • Refrigerant leakage determination device 300 includes refrigeration cycle device 100 and control device 200 .
  • the refrigeration cycle device 100 consists of an indoor unit 100A and an outdoor unit 100B.
  • FIG. 1 shows the configuration of a refrigerant circuit 120 of a refrigerating cycle apparatus 100 and the installation locations of a temperature sensor 101 and a pressure sensor 104, which are detecting means.
  • the refrigeration cycle device 100 has a refrigerant circuit 120 to which a compressor 109, a condenser, expansion valves 107A and 107B, and an evaporator are connected.
  • the refrigerating cycle device 100 performs a refrigerating cycle in which a refrigerant circulates through a refrigerant circuit 120 .
  • the indoor heat exchanger 102 functions as an evaporator during cooling operation and as a condenser during heating operation.
  • the outdoor heat exchanger 103 functions as a condenser during cooling operation and as an evaporator during heating operation.
  • ⁇ Refrigerant circuit 120> In the refrigeration cycle device 100, a compressor 109, a four-way valve 110, an outdoor heat exchanger 103, an expansion valve 107B, an expansion valve 107A, and an indoor heat exchanger 102 are connected by piping to form a refrigerant circuit 120 in which refrigerant circulates. is doing. A plurality of temperature sensors 101 are arranged in the refrigerant circuit 120 . Connection devices 105A and 105B, which will be described later, are arranged in the refrigerant circuit 120 .
  • Indoor unit 100A includes temperature sensor 101A, indoor heat exchanger 102, expansion valve 107A, and temperature sensor 101B in refrigerant circuit 120 .
  • the outdoor unit 100B includes a connection device 105A, a compressor 109, a temperature sensor 101C, a four-way valve 110, a temperature sensor 101D, an outdoor heat exchanger 103, an expansion valve 107B, a temperature sensor 101E, a connection device 105B, a pressure a sensor 104;
  • Temperature sensors 101A to 101E measure the temperature of the refrigerant in refrigerant circuit 120 . Since the temperature sensors 101A to 101E have the same function, they may be referred to as the temperature sensor 101 when there is no need to distinguish between them. Temperature sensor 101 is preferably a thermistor. Moreover, the temperature sensor 101 is desirably covered with a heat insulating material to prevent it from being affected by the outside air temperature. As a measurement principle, when the temperature rises, the resistance value of the thermistor decreases by a certain value. The temperature can be detected by measuring this resistance value.
  • the indoor heat exchanger 102 In the indoor heat exchanger 102 , the indoor air exchanges heat with the refrigerant passing through the indoor heat exchanger 102 .
  • the indoor heat exchanger 102 functions as an evaporator during the cooling operation of the refrigeration cycle device 100 and functions as a condenser during the heating operation of the refrigeration cycle device 100 .
  • Outdoor heat exchanger 103 In the outdoor heat exchanger 103 , the outdoor air exchanges heat with the refrigerant passing through the outdoor heat exchanger 103 . By switching the four-way valve 110 , the outdoor heat exchanger 103 functions as a condenser during the cooling operation of the refrigeration cycle device 100 and functions as an evaporator during the heating operation of the refrigeration cycle device 100 .
  • a pressure sensor 104 measures the refrigerant pressure.
  • the pressure sensor 104 it is desirable to use a fine pressure sensor. It is assumed that the pressure drop due to a decrease in the solubility of refrigerating machine oil (hereinafter referred to as oil) is about several tens of kPa. Therefore, many of the pressure gauges of conventional gauge manifolds have a pressure range of 0 kPa to 5 MPa and a resolution of about 100 KPa. Therefore, a pressure drop of several tens of kPa cannot be detected. Therefore, as the pressure sensor 104, it is desirable to use a fine pressure sensor that maintains a resolution of 5 to 10 kPa. In Embodiment 1, the pressure sensor 104 has a resolution in the range of 5 kPa to 10 kPa.
  • connection device 105A and the connection device 105B have communication ports that communicate with the internal space of the refrigerant circuit 120, and are connected to the pressure sensor 104 that measures the refrigerant pressure in the internal space.
  • the connection device 105A and the connection device 105B are pressure sensor connection ports to which the pressure sensor 104 is connected. Since the connection device 105A and the connection device 105B have the same function, they are referred to as the connection device 105 when there is no need to distinguish between them.
  • the connection device 105 communicates with the inside of the refrigerant circuit.
  • the connection device 105 is preferably a service port, for example. Pressure measurement is performed in a pressure equalizing state in which the refrigeration cycle device 100 is stopped. Therefore, the location of the connection device 105, which is a service port to which the pressure sensor 104 is connected, does not matter. Either connection device 105 is utilized in the pressure equalization state.
  • the expansion valve 107A and the expansion valve 107B are electronic expansion valves. Since the contact expansion valve 107A and the expansion valve 107B have the same function, they are referred to as the expansion valve 107 when there is no need to distinguish between them.
  • the expansion valve 107 is controlled by the control device 200 and efficiently controls the refrigerant flow rate. During the oil recovery operation, which will be described later, the expansion valves 107A and 107B are opened to a certain degree of opening, and gas-liquid two-phase refrigerant containing liquid refrigerant flows through the gas pipe 121 .
  • the indoor unit 100A is assumed to be a refrigerator.
  • the cooling operation in which the indoor heat exchanger 102 functions as an evaporator is the normal operation.
  • the gas refrigerant flows out from the indoor heat exchanger 102 which is an evaporator, and flows into the compressor 109 via the gas pipe 121 and the four-way valve 110 .
  • Liquid refrigerant flows through the liquid pipe 122 shown below the gas pipe 121 from the outdoor unit 100B toward the indoor unit 100A during cooling operation.
  • Compressor 109 circulates the refrigerant in refrigerant circuit 120 by increasing the pressure of the refrigerant.
  • the four-way valve 110 is a valve that switches the refrigeration cycle device 100 between cooling operation and heating operation.
  • FIG. 1 shows a cooling operation in which the indoor heat exchanger 102 functions as an evaporator. During heating operation, the indoor heat exchanger 102 functions as a condenser.
  • FIG. 2 shows functional blocks of the control device 200 .
  • FIG. 3 shows the hardware configuration of the control device 200.
  • the control device 200 includes an operation control section 211 , a leak determination section 212 and a storage section 213 .
  • the operation control unit 211 causes the refrigeration cycle device 100 to perform an oil recovery operation in which oil existing in the refrigerant circuit 120 is collected in the compressor.
  • Leak determination unit 212 which is a determination unit, determines whether refrigerant leaks from refrigerant circuit 120 by comparing reference pressure P1, which is a comparison target, with refrigerant pressure P2 measured by pressure sensor 104 after the oil recovery operation.
  • reference pressure P1 which is a comparison target
  • the operation control unit 211 controls operation of the refrigeration cycle device 100 .
  • the operation control unit 211 controls the expansion valves 107A and 107B, the compressor 109 and the four-way valve 110 of the refrigeration cycle device 100 .
  • the operation control unit 211 controls, for example, the opening degrees of the expansion valves 107A and 107B.
  • the operation control unit 211 also acquires a stop signal for stopping the refrigeration cycle device 100 .
  • the operation control unit 211 acquires the rotation speed of the compressor 109 as a stop signal.
  • the stop signal means that the compressor 109 stops and the refrigerant does not circulate through the refrigerant circuit 120 .
  • the storage unit 213 stores various data such as an actual measurement value P2 measured by the pressure sensor 104 and a saturation pressure P1 which will be described later.
  • the leak determination unit 212 acquires the measurement data of the temperature sensor 101 and the pressure sensor 104 from the temperature sensor 101 and the pressure sensor 104 and stores them in the storage unit 213 .
  • Leak determination unit 212 extracts the lowest temperature data among the temperature data acquired by temperature sensor 101 .
  • Leak determination unit 212 calculates saturation pressure P1 from the lowest temperature among the temperature data acquired by temperature sensor 101 .
  • Leak determination unit 212 calculates the difference P1 ⁇ P2 between saturation pressure P1 and pressure value P2 measured by pressure sensor 104 .
  • the leak determining unit 212 determines that there is leakage if the difference between the saturation pressure P1 and the pressure value P2 is greater than the resolution of the differential pressure gauge, and that there is no leakage if it is smaller. In Embodiment 1, the resolution is assumed to be 5 kPa.
  • the leak determination unit 212 notifies the user or operator of the refrigerant leak abnormality.
  • Control device 200 is a computer.
  • the controller 200 comprises a processor 210 .
  • the control device 200 includes other hardware such as a main memory device 220 , an auxiliary memory device 230 , an input IF 240 , an output IF 250 and a communication IF 260 .
  • IF is an abbreviation for interface.
  • Processor 210 is connected to other hardware via signal line 270 and controls the other hardware.
  • the control device 200 includes an operation control section 211 and a leak determination section 212 as functional elements. Functions of the operation control unit 211 and the leak determination unit 212 are implemented by the refrigerant leak determination program 201 .
  • the processor 210 is a device that executes the refrigerant leakage determination program 201 .
  • the refrigerant leak determination program 201 is a program that implements the functions of the operation control unit 211 and the leak determination unit 212 .
  • the processor 210 is an IC (Integrated Circuit) that performs arithmetic processing. Specific examples of the processor 210 are a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
  • main storage device 220 is SRAM (Static Random Access Memory) and DRAM (Dynamic Random Access Memory).
  • the main memory device 220 holds the computation results of the processor 210 .
  • the auxiliary storage device 230 is a storage device that stores data in a non-volatile manner.
  • a specific example of the auxiliary storage device 230 is an HDD (Hard Disk Drive).
  • the auxiliary storage device 230 is a portable recording medium such as an SD (registered trademark) (Secure Digital) memory card, NAND flash, flexible disk, optical disk, compact disk, Blu-ray (registered trademark) disk, DVD (Digital Versatile Disk). There may be.
  • Auxiliary storage device 230 implements storage unit 213 . Further, the auxiliary storage device 230 stores the refrigerant leakage determination program 201 .
  • the input IF 240 is a port through which data is input from each device.
  • a temperature sensor 101 and a pressure sensor 104 are connected to the input IF 240 .
  • the output IF 250 is a port to which various devices are connected and data is output from the processor 210 to the various devices.
  • a notification device 500 is connected to the output IF 250 .
  • Communication IF 260 is a communication port for processor 210 to communicate with other devices.
  • the communication IF 260 is connected to the compressor 109, the four-way valve 110 and the expansion valves 107A and 107B.
  • the processor 210 loads the refrigerant leakage determination program 201 from the auxiliary storage device 230 to the main storage device 220, reads the refrigerant leakage determination program 201 from the main storage device 220, and executes it.
  • the main storage device 220 stores not only the refrigerant leakage determination program 201 but also an OS (Operating System).
  • the processor 210 executes the refrigerant leakage determination program 201 while executing the OS.
  • the control device 200 may include multiple processors that replace the processor 210 . These processors share the execution of the refrigerant leakage determination program 201 .
  • Each processor like the processor 210, is a device that executes the refrigerant leakage determination program 201.
  • FIG. Data, information, signal values, and variable values that are used, processed, or output by the refrigerant leakage determination program 201 are stored in the main memory device 220, the auxiliary memory device 230, or the register or cache memory within the processor 210.
  • Refrigerant leak determination program 201 is a program that causes a computer to execute each process, procedure, or process by replacing "part" of operation control unit 211 and leak determination unit 212 with "process,” “procedure,” or “process.” be.
  • the refrigerant leakage determination method is a method performed by the control device 200, which is a computer, executing the refrigerant leakage determination program 201.
  • the refrigerant leakage determination program 201 may be stored in a computer-readable recording medium and provided, or may be provided as a program product.
  • FIG. 4 is a flow chart showing the operation of the refrigerant leak determination device 300. As shown in FIG. The operation of the refrigerant leakage determination device 300 will be described with reference to FIG. An operation procedure of the control device 200 in the refrigerant leakage determination device 300 corresponds to a control method. A program that implements the operation of the control device 200 corresponds to the refrigerant leakage determination program 201 .
  • step S ⁇ b>300 the operation control unit 211 receives a signal to stop the cooling operation or the heating operation of the refrigeration cycle device 100 as the rotation speed of the compressor 109 of the refrigeration cycle device 100 .
  • FIG. 1 shows the state of cooling operation.
  • the operation control unit 211 opens the expansion valves 107A and 107B, and shifts from the heating operation mode or the cooling operation mode to the oil recovery operation mode.
  • Step S301 Oil Recovery Operation>
  • the operation control unit 211 causes the refrigeration cycle device 100 to continue to perform the oil recovery operation from the mode different from the oil recovery operation when the refrigeration cycle device 100 is being operated in a mode different from the oil recovery operation. After the execution of , the operation of the refrigeration cycle apparatus 100 is stopped. A specific description will be given below.
  • the operation control section 211 opens the expansion valves 107A and 107B to start the oil recovery operation.
  • the oil recovery operation will be explained. During cooling operation, some of the oil present inside the compressor 109 will flow out of the compressor 109 slightly along with the gas refrigerant.
  • a large amount of oil that has flowed out of the compressor 109 stays between the outlet of the indoor heat exchanger 102 that is the evaporator and the suction port of the compressor 109 . That is, a large amount of oil stays in the gas pipe 121 during the cooling operation.
  • gas refrigerant flows out from the outlet of the indoor heat exchanger 102, which is an evaporator. Therefore, in the oil recovery operation, the operation control unit 211 controls the opening degrees of the expansion valves 107A and 107B so that the gas-liquid two-phase refrigerant flows out from the indoor heat exchanger 102 .
  • the liquid refrigerant of the two gas-liquid phases recovers the oil to the compressor 109 by shearing force so that the oil existing in the gas pipe 121 is dragged. Although the liquid refrigerant also flows into the compressor 109, it is very small, so there is no problem such as failure of the compressor 109. Oil is recovered in the compressor 109 by the oil recovery operation, and troubles such as poor lubrication of the compressor 109 are avoided. In this manner, the operation control unit 211 collects the oil in the refrigerant circuit 120 in the compressor 109 arranged inside the outdoor unit 100B by the oil recovery operation.
  • the operation control unit 211 controls the degree of opening of the expansion valve during the oil recovery operation, so that in the refrigerant circuit 120, the piping in the area where the refrigerant flows from the evaporator to the compressor and the piping from the compressor to the condenser. , the liquid refrigerant flows.
  • the operation control unit 211 increases the opening degrees of the expansion valves 107A and 107B, increases the inverter frequency of the compressor 109, and increases the amount of liquid refrigerant supplied to the gas pipe, thereby recovering the oil. conduct.
  • the operation control unit 211 terminates the oil recovery operation 10 minutes after the start of the oil recovery operation.
  • Step S302 when 10 minutes have passed since the start of the oil recovery operation, the operation control unit 211 stops the oil recovery operation. That is, the operation control unit 211 stops the operation of the compressor 109 and stops the operation of the refrigeration cycle device 100 .
  • step S ⁇ b>303 the leak determination unit 212 measures the temperature with the temperature sensor 101 installed in the refrigerant circuit 120 and stores the measured temperature in the storage unit 213 .
  • step S304 the leakage determination unit 212 determines whether the temperature measured in the refrigerant circuit 120 has stabilized. For example, the leakage determining unit 212 periodically measures the temperature of the refrigerant circuit 120 and determines that the temperature is stable when the temperature change value is within ⁇ 0.5°C.
  • step S ⁇ b>305 the leakage determination unit 212 extracts the lowest measurement value in the refrigerant circuit 120 from the measured temperature data and stores it in the storage unit 213 .
  • the refrigeration cycle device 100 includes a temperature sensor 101 that measures the refrigerant temperature of the refrigerant circuit 120 .
  • Leak determination unit 212 which is a determination unit, calculates the saturation pressure of the refrigerant from the refrigerant temperature measured by temperature sensor 101, and uses the calculated saturation pressure as reference pressure P1.
  • leak determination unit 212 uses the lowest temperature stored in step S ⁇ b>305 to calculate saturation pressure P ⁇ b>1 and stores it in storage unit 213 .
  • the saturation pressure P1 is a function of temperature t.
  • Leak determination unit 212 uses P1(t) to calculate P1(tmin) of the lowest measured temperature tmin.
  • the formula for P1(t) is stored in auxiliary storage device 230 .
  • Step S307 the pressure sensor 104 is connected to the connection device 105 by maintenance personnel. It may be connected to either the connection device 105A or the connection device 105B.
  • Step S308> The leakage determination unit 212, which is a determination unit, uses the measurement value of the pressure sensor 104 in the stopped state of the refrigeration cycle device 100 after the oil recovery operation. A specific description will be given below.
  • the leak determination unit 212 acquires the pressure P ⁇ b>2 of the refrigerant when the operation of the refrigeration cycle device 100 is stopped from the pressure sensor 104 .
  • Leak determination unit 212 stores measured value P ⁇ b>2 in storage unit 213 .
  • step S309 the leak determination unit 212 calculates P1-P2, which is the difference between the saturated pressure P1 calculated in step S306 and the measured pressure P2 obtained in step S308.
  • Leak determination unit 212 determines whether the difference is greater than the resolution of pressure sensor 104 .
  • the resolution shall be 5 kPa. If the difference in pressure is greater than 5 kPa, which is the resolution, the leak determination unit 212 determines that "refrigerant leaks" in step S310.
  • the leak determination unit 212 determines whether or not one hour or more has passed since the pressure sensor 104 started measuring (step S311). If one hour or more has not passed, steps S308, S309, and S311 are repeated. If one hour or more has passed, the leak determining unit 212 determines that "no refrigerant leaks" in step S312.
  • step S313 the leakage determination unit 212 notifies the result of step S310 or step S312 using the notification device 500.
  • the refrigerant leakage determination device 300 has been described above.
  • the operation of the refrigerant leakage determination device 300 can be grasped as a refrigerant leakage determination method as follows. That is, the operation of the refrigerant leakage determination device 300 is "It has a refrigerant circuit 120 in which a compressor, a condenser, an expansion valve, and an evaporator are connected, performs a refrigeration cycle in which the refrigerant circulates in the refrigerant circuit 120, and communicates with the internal space of the refrigerant circuit 120.
  • Compressor 109 removes oil present in refrigerant circuit 120 implemented by refrigeration cycle apparatus 100 having connection devices 105A and 105B having a communication port and connected to pressure sensor 104 for measuring the refrigerant pressure in the internal space.
  • a step of connecting the pressure sensor 104 to the connection devices 105A and 105B after the oil recovery operation (step S300); a step of determining whether or not the refrigerant leaks from the refrigerant circuit 120 by comparing the reference pressure P1 to be compared with the refrigerant pressure P2 measured by the pressure sensor 104 (steps S309 and S311); Refrigerant leakage determination method comprising ", can be understood.
  • the leak determination unit 212 treats the measurement data of the only temperature sensor 101 as the lowest temperature.
  • the refrigerant leak determination device 300 calculates the saturation pressure from the lowest temperature data among the temperature data acquired by the temperature sensor 101 . Then, the refrigerant leakage determination device 300 diagnoses refrigerant leakage from the pressure difference between the calculated saturation pressure and the actual measurement value measured by the pressure sensor 104 . As a result, refrigerant leakage can be diagnosed even when the refrigeration cycle device 100 is stopped, so leakage can be determined throughout the year.
  • the refrigerant leakage determination device 300 performs an oil recovery operation before stopping the cooling operation or the heating operation, and stops the operation of the refrigeration cycle device 100 after the oil is collected in the compressor 109 by the oil recovery operation. .
  • the refrigerant leakage determination device 300 can reduce measurement errors caused by variations in oil distribution when measuring the pressure drop due to the dissolution of the refrigerant gas into the oil.
  • the pressure sensor 104 connected to the connection device 105 is capable of detecting even a minute pressure of several tens of kPa, and uses a high-precision sensor with a resolution of 5 kPa to 10 kPa. This makes it possible to detect even minute pressure changes due to the dissolution of the refrigerant gas into the oil.
  • the pressure sensor 104 connected to the connection device 105 starts pressure measurement when the operation of the refrigeration cycle device 100 is stopped, oil recovery in the refrigerant circuit 120 is completed, and the temperature of the refrigerant circuit 120 is stabilized. .
  • the expansion valves 107A and 107B provided in the refrigeration cycle apparatus 100 are opened at a certain degree of opening in the oil recovery operation, and the liquid refrigerant flows through the gas pipe, thereby returning the oil to the condenser together with the liquid refrigerant. As a result, the oil existing in the refrigerant circuit 120 can be recovered smoothly and in a short time.
  • At least one temperature sensor 101 is preferably provided in the refrigerant circuit 120 on the side of the indoor unit 100A and the side of the outdoor unit 100B.
  • the temperature sensor 101 acquires the temperature of the side surface of the pipe forming the refrigerant circuit 120 . Thereby, the temperature of the refrigerant existing in the refrigerant circuit 120 can be detected.
  • the leak determining unit 212 of the control device 200 determines that there is a refrigerant leak, it displays an error code on the notification device 500 to notify the user or operator. As a result, even when the refrigerating cycle apparatus 100 is stopped, the user or operator can be aware of an abnormality due to refrigerant leakage, and can take immediate action.
  • the control device 200 of Embodiment 1 determines the refrigerant leakage using the pressure. Therefore, in any one of the plurality of refrigeration systems, when the oil is collected in the compressor, the unevenness in the oil distribution is eliminated. Since there is no variation in , it is possible to determine refrigerant leakage with high accuracy.
  • FIG. Modification 1 assumes a refrigeration cycle device 100 in which the pressure in the refrigerant circuit 120 differs between the indoor unit 100A side and the outdoor unit 100B when the operation of the refrigeration cycle device 100 is stopped.
  • the refrigeration cycle device 100 such as a refrigerator
  • the pressure is separated between the outdoor unit 100B side and the indoor unit 100A side by pump-down operation, and the pressure is different between the high pressure side and the low pressure side.
  • the pressure measurement location is limited to the outdoor unit 100B side.
  • FIG. 5 shows the configuration of a refrigerant leakage determination device 300 according to an embodiment.
  • the refrigerant circuit configuration of the refrigeration cycle device 100 and the location of the temperature sensor 101 and the pressure sensor 104 in the refrigerant leak determination device 300 of Modification 1 are basically the same as those of the refrigerant leak determination device 300 of the first embodiment. be.
  • the configuration of FIG. 5 is the same as that of FIG.
  • the connection device 105 to which the pressure sensor 404 is to be connected is limited to the connection device 105B installed at the connection port that communicates with the inside of the system on the outdoor unit 100B side.
  • the connection device 105B is surrounded by a dashed frame 400 to clearly indicate this.
  • the control device 200 is also the same as in the first embodiment.
  • FIG. 6 is a flowchart showing the operation of the refrigerant leakage determination device 300 of Modification 1.
  • FIG. 6 The operation of the refrigerant leakage determination device 300 of Modification 1 will be described with reference to FIG.
  • the flowchart of FIG. 6 differs from the flowchart of FIG. 4 of Embodiment 1 in that step S301A is added and the content of step S307. Since other steps are the same as those in FIG. 4, description of the other steps is omitted.
  • Step S301A The refrigeration cycle apparatus 100 of the modification requires a pump-down operation before shutdown.
  • the connection device 105B to which the pressure sensor 104 is connected communicates with the system of the outdoor heat exchanger 103 functioning as a condenser.
  • the operation control unit 211 performs a pump-down operation to collect the liquid refrigerant in the compressor 109 arranged inside the outdoor unit 100B.
  • the operation control unit 211 fully opens the expansion valves 107A and 107B, performs forced cooling operation, and collects liquid refrigerant in the compressor 109 . After a certain period of time has passed since the start of operation, the operation ends.
  • step S302 the operation control unit 211 stops the operation of the refrigeration cycle device 100 after the pump-down operation is completed.
  • step S307 the maintenance personnel connects the pressure sensor 404 to the connection device 105B that communicates with the system on the outdoor unit 100B side.
  • the steps after step S307 are the same as in FIG.
  • the pressure sensor 104 communicates with the system on the side of the outdoor unit 100B when connected to a model that performs a pump-down operation before stopping the operation of the refrigeration cycle device 100. Connected to the connection device. As a result, in addition to the effect of the first embodiment, it is possible to prevent the pressure drop from not being detected in the model that performs the pump-down operation.
  • FIG. 7 is a flow chart showing the operation of the refrigerant leakage determination device 300 of Modification 2. As shown in FIG. Modification 2 will be described with reference to FIG.
  • the configuration of refrigerant leakage determination device 300 is the same as that of the first embodiment. That is, the refrigerating cycle device 100 and the control device 200 are the same as in the first embodiment.
  • the flowchart in FIG. 7 differs from the flowchart in FIG. 7 in that it does not have steps S305 and S306, and in the content of step S309. Other than this, it is the same as FIG. This is because the stop-time refrigerant pressure in the refrigerant circuit 120 at factory shipment is used instead of the saturation pressure P1 as follows.
  • a refrigerant leak may be detected from the pressure difference between the refrigerant pressure when the refrigerant circuit 120 of the refrigerating cycle device 100 is stopped when shipped from the factory and the refrigerant pressure measured by the pressure sensor 1004 .
  • the refrigerant pressure at the time of factory shipment is stored in the auxiliary storage device 230 at the time of shipment from the factory. Let this pressure be P1.
  • step S309 will be described, and description of other steps will be omitted.
  • Step S309 The leakage determination unit 212, which is a determination unit, uses the pre-stored refrigerant pressure at the time of shipment from the factory as the reference pressure P1. A specific description will be given below.
  • the leak determination unit 212 calculates the difference (P1-P2) between the factory-shipped pressure P1 stored in the auxiliary storage device 230 and the pressure P2 acquired in step S308. Steps after step S309 are the same as in FIG.
  • Modification 2 can determine refrigerant leakage more quickly.
  • Embodiment 1 including Modification 1 and Modification 2 has been described above. Of these embodiments, two or more technical matters may be combined for implementation. Alternatively, one technical matter in the first embodiment may be partially implemented.
  • 100 refrigerating cycle device 100A indoor unit, 100B outdoor unit, 101A, 101B, 101C, 101D, 101E temperature sensor, 102 indoor heat exchanger, 103 outdoor heat exchanger, 104 pressure sensor, 105A, 105B connection device, 107A, 107B expansion valve, 109 compressor, 110 four-way valve, 120 refrigerant circuit, 121 gas pipe, 122 liquid pipe, 200 control device, 201 refrigerant leak determination program, 210 processor, 211 operation control unit, 212 leak determination unit, 213 storage unit, 220 main storage device, 230 auxiliary storage device, 240 input IF, 250 Output IF, 260 Communication IF, 270 Signal line, 300 Refrigerant leak determination device, 400 Frame, 500 Notification device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

冷媒漏れ判定装置(300)は、冷凍サイクル装置(100)、接続装置(105A,105B)及び制御装置(200)を備える。冷凍サイクル装置(100)は室内機(100A)と室外機(100B)で構成される。冷凍サイクル装置(100)は冷媒回路(120)を有し、冷媒回路(120)を冷媒が循環する冷凍サイクルを行う。接続装置(105A,105B)は、冷媒回路(120)の内部空間に連通する連通口を有し、内部空間の冷媒圧力を計測する圧力センサ(104)が接続される。制御装置(200)は、冷媒回路(120)の油を圧縮機(109)に集める油回収運転を冷凍サイクル装置(100)に実施させ、基準圧力と、油回収運転の後に圧力センサ(104)で計測した冷媒圧力との比較から、冷媒回路(120)からの冷媒の漏れを判定する。

Description

冷媒漏れ判定装置、制御装置、冷媒漏れ判定プログラム及び冷媒漏れ判定方法
 本開示は、冷媒漏れ判定装置、制御装置、冷媒漏れ判定プログラム及び冷媒漏れ判定方法に関する。
 従来では、計測した周囲温度から算出される気液平衡圧力と、圧力検出手段で計測した圧力とを比較することで、圧力低下に基づき、冷凍装置における冷媒漏れの有無を診断する技術がある(例えば、特許文献1)。
特開平4-225769号公報
 運転停止時の冷凍装置に対して特許文献1の方法で冷媒の漏れ検知を行う場合、例えば冷凍機の設置環境によって、冷媒回路内の冷凍機油の油分布は異なる。油の量及び環境温度は、油への冷媒の溶け込み量に影響する。このため、冷凍機油の油分布状況によっては、冷媒漏れの判断の元となる、検知するべき圧力低下量が、不確実となる恐れがある。従って、特許文献1に開示されるような冷媒漏れ診断方法であると、冷凍装置内の油分布によっては、計測圧力のバラつきが生じ、圧力の測定誤差が生じるそれがあった。
 本開示は、計測圧力の測定誤差の低減を目的とする。
 本開示に係る冷媒漏れ判定装置は、
 圧縮機と、凝縮器と、膨張弁と、蒸発器とが接続される冷媒回路を有し、前記冷媒回路を冷媒が循環する冷凍サイクルを行う冷凍サイクル装置と、
 前記冷媒回路の内部空間に連通する連通口を有し、前記内部空間の冷媒圧力を計測する圧力センサが接続される接続装置と、
 前記冷媒回路の中に存在する油を前記圧縮機に集める油回収運転を、前記冷凍サイクル装置に実施させる運転制御部と、比較対象である基準圧力と、前記油回収運転の後に前記圧力センサで計測した前記冷媒圧力との比較から、前記冷媒回路からの前記冷媒の漏れを判定する判定部とを備える制御装置と、
を備える。
 本開示の冷媒漏れ判定装置では、制御装置が冷凍サイクル装置に油回収運転を実施させる。油回収運転の後に、冷媒の圧力を測定する。よって、計測圧力のバラつきを抑制し、従来よりも確実に冷媒漏れを検知することが可能になる。
実施の形態1の図で、冷媒漏れ判定装置300の構成図。 実施の形態1の図で、制御装置200のブロック構成図。 実施の形態1の図で、制御装置200のハードウェア構成図。 実施の形態1の図で、冷媒漏れ判定装置300の動作を示すフローチャート。 実施の形態1の図で、変形例1の冷媒漏れ判定装置300の構成図。 実施の形態1の図で、変形例1の動作を示すローチャート。 実施の形態1の図で、変形例2の動作を示すローチャート。
 実施の形態の説明及び図面において、同じ要素及び対応する要素には同じ符号を付している。同じ符号が付された要素の説明は、適宜に省略又は簡略化する。以下の実施の形態では、「部」を、「回路」、「工程」、「手順」、「処理」又は「サーキットリー」に適宜読み替えてもよい。
 実施の形態1.
 図1から図4に示す冷凍サイクル装置100は、運転停止時の冷媒回路内の圧力が均圧になる冷凍サイクル装置100を想定する。図5及び図6の変形例1では、運転停止時の冷媒回路内の圧力が均圧にならない冷凍サイクル装置100を想定する。また変形例2では、図1から図4に示す冷媒漏れ判定装置300及び変形例1の冷媒漏れ判定装置300では飽和圧力を計算するのに対して、飽和圧力を計算しない構成を示す。
 図1は、実施の形態1の冷媒漏れ判定装置300の構成図である。図1を用いて、冷媒漏れ判定装置300の構成を説明する。冷媒漏れ判定装置300は、冷凍サイクル装置100及び制御装置200を備えている。冷凍サイクル装置100は室内機100Aと室外機100Bとからなる。図1は冷凍サイクル装置100の冷媒回路120の構成と、検知手段である、温度センサ101と圧力センサ104との設置箇所を示している。
 冷凍サイクル装置100は、圧縮機109と、凝縮器と、膨張弁107A,107Bと、蒸発器とが接続される冷媒回路120を有する。冷凍サイクル装置100は、冷媒回路120を冷媒が循環する冷凍サイクルを行う。後述のように、室内熱交換器102は冷房運転では蒸発器、暖房運転では凝縮器として機能する。室外熱交換器103は、冷房運転では凝縮器、暖房運転では蒸発器として機能する。
<冷媒回路120>
 冷凍サイクル装置100は、圧縮機109、四方弁110、室外熱交換器103、膨張弁107B、膨張弁107A及び室内熱交換器102が、配管で接続されて、冷媒の循環する冷媒回路120を形成している。冷媒回路120には複数の温度センサ101が配置されている。また、冷媒回路120には、後述する接続装置105A、105Bが配置されている。
<室内機100A>
 室内機100Aは、冷媒回路120のうち、温度センサ101A、室内熱交換器102、膨張弁107A、温度センサ101Bを含む。
<室外機100B>
 室外機100Bは、冷媒回路120のうち、接続装置105A、圧縮機109、温度センサ101C、四方弁110、温度センサ101D、室外熱交換器103、膨張弁107B、温度センサ101E、接続装置105B、圧力センサ104、を含む。
<温度センサ101>
 温度センサ101Aから温度センサ101Eは、冷媒回路120の冷媒の温度を計測する。温度センサ101Aから温度センサ101Eは、機能が同じであるので区別の必要がない場合は温度センサ101と表記する場合がある。温度センサ101は、サーミスタが望ましい。また、外気温度の影響を受けることを防ぐため、温度センサ101は、断熱材で覆われていることが望ましい。測定原理として、温度が上昇するとサーミスタの抵抗値がある一定値で減少する。この抵抗値を計測することで温度を検知することが可能である。
<室内熱交換器102>
 室内熱交換器102では、室内空気が室内熱交換器102を通過する冷媒と熱交換する。室内熱交換器102は、冷凍サイクル装置100の冷房運転時は蒸発器として機能し、冷凍サイクル装置100の暖房運転時は凝縮器として機能する。
<室外熱交換器103>
 室外熱交換器103では、室外空気が室外熱交換器103を通過する冷媒と熱交換する。四方弁110の切り替えによって、室外熱交換器103は、冷凍サイクル装置100の冷房運転時は凝縮器として機能し、冷凍サイクル装置100の暖房運転時は蒸発器として機能する。
<圧力センサ104>
 圧力センサ104は、冷媒圧力を計測する。圧力センサ104としては、微圧力センサを使用することが望ましい。冷凍機油(以下、油と表記する)の溶解度低下による圧力低下は数10kPa程度であることが想定される。従って、従来のゲージマニホールドの圧力計は、圧力レンジ0kPaから5MPaで、分解能としては100KPa程度のものが多い。このため、数10kPaの圧力低下を検知できない。従って、圧力センサ104としては、5から10kPaの分解能を保持する、微圧力センサの使用が望ましい。実施の形態1では、圧力センサ104は、分解能が5kPa以上10kPa以下の範囲である。
<接続装置105A及び接続装置105B>
 接続装置105A及び接続装置105Bは、冷媒回路120の内部空間に連通する連通口を有し、内部空間の冷媒圧力を計測する圧力センサ104が接続される。
 接続装置105A及び接続装置105Bは、圧力センサ104が接続される圧力センサ接続口である。なお接続装置105A及び接続装置105Bは、機能が同じであるので区別の必要がない場合は接続装置105と表記する。接続装置105は冷媒回路の内部に連通している。接続装置105は、例えば、サービスポートが望ましい。圧力計測は、冷凍サイクル装置100が停止している均圧状態で実施される。このため、圧力センサ104が接続されるサービスポートである接続装置105の場所は問われない。均圧状態において、いずれかの接続装置105が利用される。
<膨張弁107A及び膨張弁107B>
 膨張弁107A及び膨張弁107Bは電子膨張弁である。接膨張弁107A及び膨張弁107Bは、機能が同じであるので区別の必要がない場合は膨張弁107と表記する。膨張弁107は、制御装置200から制御を受けて、冷媒流量を効率よく制御する。後述する油回収運転時には、膨張弁107A及び膨張弁107Bは、ある開度で開き、ガス管121に液冷媒を含む気液2相の冷媒を流す。ガス管121に液冷媒を流すことにより、油を液冷媒と共に、圧縮機109の内部へ回収する。
 ガス管について説明する。なお油回収運転は後述のステップS301で説明する。実施の形態1では室内機100Aは冷凍機を想定している。つまり室内熱交換器102が蒸発器として機能する冷房運転が、通常運転である。冷房運転では蒸発器である室内熱交換器102からガス冷媒が流出し、流出したガス冷媒は、ガス管121、四方弁110を介して圧縮機109へ流入する。ガス管121の下に示す液管122には、冷房運転時に、室外機100Bから室内機100Aに向かって液冷媒が流れる。
<圧縮機109>
 圧縮機109は冷媒の圧力を高めることで、冷媒回路120内の冷媒を循環させる。
<四方弁110>
 四方弁110は、冷凍サイクル装置100を、冷房運転または暖房運転に切り替える弁である。図1は、室内熱交換器102が蒸発器として機能する冷房運転時を示している。室内熱交換器102が凝縮器として機能する場合が暖房運転時である。
<制御装置200>
***構成の説明***
 図2は、制御装置200の機能ブロックを示す。図3は、制御装置200のハードウェア構成を示す。まず図2を説明する。制御装置200は、運転制御部211、漏れ判定部212及び記憶部213を備えている。
 運転制御部211は、冷媒回路120の中に存在する油を圧縮機に集める油回収運転を、冷凍サイクル装置100に実施させる。判定部である漏れ判定部212は、比較対象である基準圧力P1と、油回収運転の後に圧力センサ104で計測した冷媒圧力P2との比較から、冷媒回路120からの冷媒の漏れを判定する。以下に具体的に説明する。
<運転制御部211>
 運転制御部211は、冷凍サイクル装置100の運転を制御する。運転制御部211は、冷凍サイクル装置100の膨張弁107A、107B、圧縮機109及び四方弁110を制御する。運転制御部211は、例えば、膨張弁107A、107Bの開度を制御する。また、運転制御部211は、冷凍サイクル装置100が停止する停止信号を取得する。運転制御部211は、停止信号として、圧縮機109の回転数を取得する。停止信号における停止とは、圧縮機109が停止して冷媒が冷媒回路120を循環しない状態である。
<記憶部213>
 記憶部213は、圧力センサ104の計測した実測値P2及び後述する飽和圧力P1のような各種データを記憶する。
<漏れ判定部212>
 漏れ判定部212は、温度センサ101及び圧力センサ104の計測データを、温度センサ101及び圧力センサ104から取得し、記憶部213に格納する。漏れ判定部212は、温度センサ101で取得した温度データの中で、最も低い温度データを抽出する。漏れ判定部212は、温度センサ101で取得した温度データの中で最も低い温度から、飽和圧力P1を計算する。漏れ判定部212は、飽和圧力P1と圧力センサ104で計測した圧力値P2との差分P1-P2を計算する。漏れ判定部212は、飽和圧力P1と圧力値P2との差分が差圧計の分解能より大きければ漏洩あり、小さければ漏洩なしと判定する。実施の形態1では分解能を5kPaとする。漏れ判定部212は、冷媒漏れ異常をユーザーまたは作業者に報知する。
 図3を参照して制御装置200のハードウェア構成を説明する。制御装置200は、コンピュータである。制御装置200は、プロセッサ210を備える。制御装置200は、プロセッサ210の他に、主記憶装置220、補助記憶装置230、入力IF240、出力IF250及び通信IF260といった、他のハードウェアを備える。なおIFはインタフェースの略である。プロセッサ210は、信号線270を介して、他のハードウェアと接続され、他のハードウェアを制御する。
 制御装置200は、機能要素として、運転制御部211及び漏れ判定部212を備える。運転制御部211及び漏れ判定部212の機能は、冷媒漏れ判定プログラム201により実現される。
 プロセッサ210は、冷媒漏れ判定プログラム201を実行する装置である。冷媒漏れ判定プログラム201は、運転制御部211及び漏れ判定部212の機能を実現するプログラムである。プロセッサ210は、演算処理を行うIC(Integrated Circuit)である。プロセッサ210の具体例は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)である。
 主記憶装置220の具体例は、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)である。主記憶装置220は、プロセッサ210の演算結果を保持する。
 補助記憶装置230は、データを不揮発的に保管する記憶装置である。補助記憶装置230の具体例は、HDD(Hard Disk Drive)である。また、補助記憶装置230は、SD(登録商標)(Secure Digital)メモリカード、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD(Digital Versatile Disk)といった可搬記録媒体であってもよい。補助記憶装置230は、記憶部213を実現する。また補助記憶装置230は冷媒漏れ判定プログラム201が格納されている。
 入力IF240は、各装置からデータが入力されるポートである。入力IF240には、温度センサ101及び圧力センサ104が接続している。出力IF250は、各種機器が接続され、各種機器にプロセッサ210によりデータが出力されるポートである。出力IF250には、報知装置500が接続している。通信IF260は、プロセッサ210が他の装置と通信するための通信ポートである。通信IF260には、圧縮機109、四方弁110及び膨張弁107A、107Bが接続している。
 プロセッサ210は補助記憶装置230から冷媒漏れ判定プログラム201を主記憶装置220にロードし、主記憶装置220から冷媒漏れ判定プログラム201を読み込み実行する。主記憶装置220には、冷媒漏れ判定プログラム201だけでなく、OS(Operating System)も記憶されている。プロセッサ210は、OSを実行しながら、冷媒漏れ判定プログラム201を実行する。制御装置200は、プロセッサ210を代替する複数のプロセッサを備えていてもよい。これら複数のプロセッサは、冷媒漏れ判定プログラム201の実行を分担する。それぞれのプロセッサは、プロセッサ210と同じように、冷媒漏れ判定プログラム201を実行する装置である。冷媒漏れ判定プログラム201により利用、処理または出力されるデータ、情報、信号値及び変数値は、主記憶装置220、補助記憶装置230、または、プロセッサ210内のレジスタあるいはキャッシュメモリに記憶される。
 冷媒漏れ判定プログラム201は、運転制御部211及び漏れ判定部212の「部」を「処理」、「手順」あるいは「工程」に読み替えた各処理、各手順あるいは各工程をコンピュータに実行させるプログラムである。
 また、冷媒漏れ判定方法は、コンピュータである制御装置200が冷媒漏れ判定プログラム201を実行することにより行われる方法である。冷媒漏れ判定プログラム201は、コンピュータ読み取り可能な記録媒体に格納されて提供されてもよいし、プログラムプロダクトとして提供されてもよい。
***動作の説明***
 図4は、冷媒漏れ判定装置300の動作を示すフローチャートである。図4を用いて冷媒漏れ判定装置300の動作を説明する。冷媒漏れ判定装置300における制御装置200の動作手順は、制御方法に相当する。制御装置200の動作を実現するプログラムは、冷媒漏れ判定プログラム201に相当する。
<ステップS300>
 ステップS300において、運転制御部211が、冷凍サイクル装置100の圧縮機109の回転数として、冷凍サイクル装置100の冷房運転あるいは暖房運転の停止信号を受信する。図1は冷房運転の状態を示している。停止信号の受信後、運転制御部211が膨張弁107A及び膨張弁107Bを開き、暖房運転モードまたは冷房運転モードから、油回収運転モードに移る。
<ステップS301:油回収運転>
 運転制御部211は、冷凍サイクル装置100に、油回収運転とは異なるモードの運転を実施させているときに、油回収運転とは異なるモードから、引き続き、油回収運転を実施させ、油回収運転の実施後に、冷凍サイクル装置100の運転を停止させる。以下に具体的に説明する。
 ステップS301において、運転制御部211は、膨張弁107A,107Bを開き、油回収運転を開始する。
 ここで油回収運転を説明する。冷房運転中、圧縮機109の内部に存在する油の一部は、ガス冷媒とともにわずかに圧縮機109から流出する。圧縮機109を流出した油は、蒸発器である室内熱交換器102の出口と、圧縮機109の吸入口との間に特に多く滞留する。つまり、冷房運転時では、油がガス管121に多く滞留する。冷房運転では蒸発器である室内熱交換器102の出口からはガス冷媒が流出する。そこで、油回収運転では、運転制御部211が膨張弁107A,107Bの開度を制御することで、室内熱交換器102から気液2相の冷媒が流出する。気液2相のうちの液冷媒が、ガス管121に存在する油をひきずるように、せん断力で油を圧縮機109へ回収する。なお、圧縮機109へは液冷媒も流れ込むが、わずかであるので圧縮機109には故障のような問題はない。油回収運転により圧縮機109に油が回収されて、圧縮機109の潤滑不良のようなトラブルが回避される。
 このように、運転制御部211は、油回収運転によって、冷媒回路120内の油を、室外機100Bの内部に配置された圧縮機109に集める。運転制御部211は、油回収運転のときに膨張弁の開度を制御することで、冷媒回路120で冷媒が蒸発器から圧縮機に向かう領域の配管と、圧縮機から凝縮器に向かう配管とに、液冷媒を流す。以下に具体的に説明する。
 具体的には、運転制御部211は、膨張弁107A,107Bの開度を大きくし、圧縮機109のインバータ周波数を上げ、ガス管内への液冷媒の供給量を増加させることで、油回収を行う。運転制御部211は、油回収運転開始から10分経過後に、油回収運転を終了する。
<ステップS302>
 ステップS302において、油回収運転の開始から10分が経過した場合、運転制御部211は、油回収運転を停止する。つまり、運転制御部211は、圧縮機109の運転を停止し、冷凍サイクル装置100の運転を停止する。
<ステップS303>
 ステップS303において、漏れ判定部212は、冷媒回路120に設置される温度センサ101により温度を計測し、記憶部213に計測温度を記憶する。
<ステップS304>
 ステップS304において、漏れ判定部212は、冷媒回路120で計測される温度が安定したか判断する。漏れ判定部212は、例えば、周期的に冷媒回路120の温度を計測し、温度変化値±0.5℃以内のときに、安定したと判断する。
<ステップS305>
 ステップS305おいて、漏れ判定部212は、計測された温度データのうち、冷媒回路120内で最も低い計測値を抽出し、記憶部213に記憶する。
<ステップS306>
 冷凍サイクル装置100は、冷媒回路120の冷媒温度を計測する温度センサ101を備えている。判定部である漏れ判定部212は、温度センサ101の計測した冷媒温度から冷媒の飽和圧力を計算し、計算した飽和圧力を、基準圧力P1として使用する。以下に具体的に説明する。
 ステップS306おいて、漏れ判定部212は、ステップS305で記憶した最も低い温度を用いて、飽和圧力P1を計算し、記憶部213に記憶する。飽和圧力P1は温度のtの関数である。漏れ判定部212はP1(t)を用いて、計測された最も低い温度tminのP1(tmin)を計算する。P1(t)の式は補助記憶装置230に記憶されている。
<ステップS307>
 ステップS307おいて、圧力センサ104が、保守員によって、接続装置105に接続される。接続装置105A、接続装置105Bのどちらに接続されてもよい。
<ステップS308>
 判定部である漏れ判定部212は、油回収運転の実施後の冷凍サイクル装置100の停止状態における、圧力センサ104の計測値を使用する。以下に具体的に説明する。
 ステップS308おいて、漏れ判定部212は、圧力センサ104から、冷凍サイクル装置100の運転停止状態における冷媒の圧力P2を取得する。漏れ判定部212は、計測値P2を記憶部213に記憶する。
<ステップS309>
 ステップS309おいて、漏れ判定部212は、ステップS306で計算した飽和圧力P1と、ステップS308で取得した計測圧力P2との差分であるP1-P2を計算する。漏れ判定部212は、差分が圧力センサ104の分解能より大きいかどうかを判定する。分解能は5kPaとする。漏れ判定部212は、圧力の差分が分解能である5kPaより大きい場合、ステップS310において、「冷媒の漏れ有り」と判定する。圧力の差分が分解能以下の場合、漏れ判定部212は、圧力の差分が分解能以下の状態が、圧力センサ104による計測開始から1時間以上経過しているか判定する(ステップS311)。1時間以上経過していない場合は、ステップS308、ステップS309、ステップS311を繰り返す。1時間以上経過している場合は、漏れ判定部212は、ステップS312で「冷媒の漏れなし」と判定する。
<ステップS313>
 ステップS313おいて、漏れ判定部212は、ステップS310またはステップS312の結果を、報知装置500によって報知する。
 以上では冷媒漏れ判定装置300について説明した。冷媒漏れ判定装置300の動作は以下のように冷媒漏れ判定方法として把握できる。
つまり、冷媒漏れ判定装置300の動作は、
「圧縮機と、凝縮器と、膨張弁と、蒸発器とが接続された冷媒回路120を有し、冷媒回路120を冷媒が循環する冷凍サイクルを行うとともに、冷媒回路120の内部空間に連通する連通口を有し、内部空間の冷媒圧力を計測する圧力センサ104が接続される接続装置105A,105Bを有する冷凍サイクル装置100によって実施される、冷媒回路120の中に存在する油を圧縮機109に集める油回収運転の後に、圧力センサ104を接続装置105A,105Bに接続するステップ(ステップS300)と、
 比較対象である基準圧力P1と、圧力センサ104で計測された冷媒圧力P2との比較から、冷媒回路120からの冷媒の漏れを判定するステップ(ステップS309,S311)と、
を備える冷媒漏れ判定方法」、
と把握できる。
 なお、図1では複数の温度センサ101を示したが、温度センサ101は、ステップS306の飽和圧力の計算のために、少なくとも一つあればよい。温度センサ101が一つの場合、漏れ判定部212は、唯一の温度センサ101の計測データを最低温度として扱う。
***実施の形態1の効果の説明***
(1)冷媒漏れ判定装置300では、温度センサ101で取得した温度データの中で、最も低い温度データから飽和圧力を計算する。そして、冷媒漏れ判定装置300は、計算した飽和圧力を、圧力センサ104で計測した実測値との圧力差から冷媒漏洩を診断する。これにより、冷凍サイクル装置100が停止中でも、冷媒漏れを診断することができるため、通年で漏洩判定が可能である。
(2)冷媒漏れ判定装置300は、冷房運転または暖房運転を停止する前に油回収運転を実施し、油回収運転によって圧縮機109に油が集められてから冷凍サイクル装置100の運転を停止する。よって、冷媒漏れ判定装置300は、冷媒ガスの油への溶け込みによる圧力低下を測定する際の、油分布のバラつきを原因とする測定誤差を低減できる。
(3)接続装置105に接続された圧力センサ104は、数10kPa程度の微小な圧力も検知可能であり、分解能としては5kPaから10kPaを有する高精度のものを利用する。これにより、冷媒ガスの油への溶け込みによる、微小な圧力変化も検知できる。
(4)接続装置105に接続された圧力センサ104は、冷凍サイクル装置100の運転が停止し、冷媒回路120の油回収が完了し、冷媒回路120の温度が安定した段階で圧力計測を開始する。これにより、冷媒圧力低下検知が確実となり、冷媒漏れの誤検知あるいは未検出を防止することができる。
(5)冷凍サイクル装置100の備える膨張弁107A、107Bは、油回収運転において、ある開度で開き、ガス管に液冷媒を流すことで、液冷媒とともに凝縮器へ油を戻す。これにより、冷媒回路120に存在する油の回収を円滑に、かつ短時間で行うことができる。
(6)冷媒回路120に温度センサ101は、室内機100A側と室外機100B側にそれぞれ少なくとも1つ以上は備えることが好ましい。この場合、温度センサ101は冷媒回路120を形成する配管の側面の温度を取得する。これにより、冷媒回路120内に存在する冷媒の温度を検知することができる。
(7)制御装置200の漏れ判定部212は、冷媒の漏れありと判定した場合に、報知装置500に異常コードを表示し、ユーザーまたは作業者に報知する。これにより、冷凍サイクル装置100が停止期間中においても、冷媒漏れによる異常をユーザーや作業者は知ることができ、早急な対応が可能である。
(8)実施の形態1の制御装置200は、油を回収したのちに、圧力を用いた冷媒漏れの判定をおこなう。よって、複数の冷凍装置のいずれの冷凍装置においても、圧縮機に油を集めると油分布のバラツキがなくなるので、油回収の後に圧力を計測することで、それぞれの冷凍装置の間での計測圧力のバラツキがなくなるので、精度の高い冷媒漏れ判定が可能になる。
<変形例1>
 図5及び図6を用いて実施の形態1の冷媒漏れ判定装置300の変形例1を説明する。変形例1では、冷凍サイクル装置100の運転停止時において、冷媒回路120内の圧力が、室内機100A側と室外機100Bとで、異なる冷凍サイクル装置100を想定する。
 冷凍機のような冷凍サイクル装置100には、ポンプダウン運転により室外機100B側と室内機100A側とで圧力が分離され、高圧側と低圧側とで圧力が異なる機種が存在する。この場合、室内機100A側で圧力を計測すると、分解能を超える圧力低下が、未検出と判定される可能性がある。このため、圧力計測場所は、室外機100B側に限定される。
<冷媒回路構成と、温度センサ101および圧力センサ104の接続場所>
 図5は、実施の形態の冷媒漏れ判定装置300の構成を示す。変形例1の冷媒漏れ判定装置300における冷凍サイクル装置100の冷媒回路構成と、温度センサ101および圧力センサ104の配置場所とは、実施の形態1の冷媒漏れ判定装置300と基本的には同一である。図5の構成は図1と同一である。しかし、変形例1では、圧力センサ404が接続されるべき接続装置105は、室外機100B側の系内と連通する接続口に設置された、接続装置105Bに限定される。図5では接続装置105Bを破線の枠400で囲み、このことを明示した。
 制御装置200も実施の形態1と同一である。
 図6は、変形例1の冷媒漏れ判定装置300の動作を示すフローチャートである。図6を用いて変形例1の冷媒漏れ判定装置300の動作を説明する。図6のフローチャートは、実施の形態1の図4のフローチャートに対して、ステップS301Aが追加された点と、ステップS307の内容とが異なる。その他のステップは図4と同じであるので、その他のステップの説明は省略する。
<ステップS301A>
 変形例の冷凍サイクル装置100は、運転停止前にポンプダウン運転が必要である。圧力センサ104が接続された接続装置105Bは、凝縮器として機能する室外熱交換器103の系内と連通する。以下に具体的に説明する。
 ステップS301Aおいて、運転制御部211は、ポンプダウン運転を行い、液冷媒を室外機100Bの内部に配置されている圧縮機109に集める。運転制御部211は、膨張弁107A、107Bを全開にし、強制冷房運転を実施し、液冷媒を圧縮機109に集める。運転開始から一定時間経ったら終了する。
 ステップS302おいて、運転制御部211は、ポンプダウン運転が完了したら、冷凍サイクル装置100の運転を停止する。
 ステップS307おいて、室外機100B側の系内と連通する接続装置105Bに、圧力センサ404が保守員によって接続される。ステップS307より後のステップは図4と同じである。
***変形例1の効果***
  変形例1の冷媒漏れ判定装置300によれば、圧力センサ104は、冷凍サイクル装置100運転停止前にポンプダウン運転を実施する機種に接続する場合には、室外機100B側の系内と連通する接続装置へ接続される。
 これにより、実施の形態1の効果に加え、ポンプダウン運転を実施する機種において圧力低下の未検出を防止することができる。
<変形例2>
 図7は、変形例2の冷媒漏れ判定装置300の動作を示すフローチャートである。図7を参照して変形例2を説明する。冷媒漏れ判定装置300の構成は実施の形態1と同じである。つまり冷凍サイクル装置100及び制御装置200は、実施の形態1と同じである。図7のフローチャートは、図7のフローチャートおけるステップS305とステップS306とを持たないこと、及びステップS309の内容が異なる。これ以外は図4と同じである。これは以下のように飽和圧力P1に代えて工場出荷時の冷媒回路120における停止時冷媒圧力を用いるからである。
 冷凍サイクル装置100の冷媒回路120における工場出荷時の停止時冷媒圧と、圧力センサ1004で計測した冷媒圧力との圧力差により、冷媒漏れを検知してもよい。工場出荷時に補助記憶装置230に、工場出荷時の停止時冷媒圧力を記憶する。この圧力をP1とする。
 図7のフローチャートは、実施の形態1の図4のフローチャートのステップS305、S306が削除されたこと、及びステップS309の内容が異なる他は図4と同じである。このため、ステップS309を説明し、その他のステップの説明は省略する。
<ステップS309>
 判定部である漏れ判定部212は、基準圧力P1として、予め保有している工場出荷時の冷媒圧力を使用する。以下に具体的に説明する。
 ステップS309において、漏れ判定部212は、補助記憶装置230に記憶されている工場出荷時の圧力P1と、ステップS308で取得した圧力P2との差分(P1-P2)を計算する。ステップS309よりも後のステップは図4と同じである。
***変形例2の効果***
 変形例2では、冷媒回路120内で最も低い温度センサ値を抽出するステップS305と、飽和圧力を計算するステップS306とを省略することができる。このため、変形例2は、より早く、冷媒漏れを判定できる。
 以上、変形例1及び変形例2を含む実施の形態1について説明した。これらの実施の形態のうち、2つ以上の技術事項を組み合わせて実施しても構わない。あるいは、これらの実施の形態1のうち、1つの技術事項を部分的に実施しても構わない。
 100 冷凍サイクル装置、100A 室内機、100B 室外機、101A,101B,101C,101D,101E 温度センサ、102 室内熱交換器、103 室外熱交換器、104 圧力センサ、105A,105B 接続装置、107A、107B 膨張弁、109 圧縮機、110 四方弁、120 冷媒回路、
121 ガス管、122 液管、200 制御装置、201 冷媒漏れ判定プログラム、210 プロセッサ、211 運転制御部、212 漏れ判定部、213 記憶部、220 主記憶装置、230 補助記憶装置、240 入力IF、250 出力IF、260 通信IF、270 信号線、300 冷媒漏れ判定装置、400 枠、500 報知装置。

Claims (11)

  1.  圧縮機と、凝縮器と、膨張弁と、蒸発器とが接続される冷媒回路を有し、前記冷媒回路を冷媒が循環する冷凍サイクルを行う冷凍サイクル装置と、
     前記冷媒回路の内部空間に連通する連通口を有し、前記内部空間の冷媒圧力を計測する圧力センサが接続される接続装置と、
     前記冷媒回路の中に存在する油を前記圧縮機に集める油回収運転を、前記冷凍サイクル装置に実施させる運転制御部と、比較対象である基準圧力と、前記油回収運転の後に前記圧力センサで計測した前記冷媒圧力との比較から、前記冷媒回路からの前記冷媒の漏れを判定する判定部とを備える制御装置と、
    を備える冷媒漏れ判定装置。
  2.  圧縮機と、凝縮器と、膨張弁と、蒸発器とが接続される冷媒回路を有し、前記冷媒回路を冷媒が循環する冷凍サイクルを行うとともに、前記冷媒回路の内部空間に連通する連通口を有し、前記内部空間の冷媒圧力を計測する圧力センサが接続される接続装置を有する冷凍サイクル装置の、前記冷媒回路の中に存在する油を前記圧縮機に集める油回収運転を、前記冷凍サイクル装置に実施させる運転制御部と、
     比較対象である基準圧力と、前記油回収運転の後に前記圧力センサで計測した前記冷媒圧力との比較から、前記冷媒回路からの前記冷媒の漏れを判定する判定部と、
    を備える制御装置。
  3.  前記運転制御部は、
    前記冷凍サイクル装置に、前記油回収運転とは異なるモードの運転を実施させているときに、前記油回収運転とは異なるモードから、引き続き、前記油回収運転を実施させ、前記油回収運転の実施後に、前記冷凍サイクル装置の運転を停止させる請求項2に記載の制御装置。
  4.  前記圧力センサは、
    分解能が5kPa以上10kPa以下の範囲である請求項2または請求項3に記載の制御装置。
  5.  前記判定部は、
    前記油回収運転の実施後の前記冷凍サイクル装置の停止状態における、前記圧力センサの計測値を使用する請求項3に記載の制御装置。
  6.  前記冷凍サイクル装置は、
    運転停止前にポンプダウン運転が必要であり、
     前記圧力センサが接続される前記接続装置は、
    前記冷媒回路における前記凝縮器の系内と連通する請求項2から請求項5のいずれか1項に記載の制御装置。
  7.  前記運転制御部は、
    前記油回収運転のときに前記膨張弁の開度を制御することで、前記冷媒回路で前記冷媒が前記蒸発器から前記圧縮機に向かう領域の配管と、前記圧縮機から前記凝縮器に向かう配管とに、液冷媒を流す請求項2から請求項6のいずれか1項に記載の制御装置。
  8.  前記冷凍サイクル装置は、
    前記冷媒回路の冷媒温度を計測する温度センサを備え、
     前記判定部は、
    前記温度センサの計測した前記冷媒温度から前記冷媒の飽和圧力を計算し、計算した前記飽和圧力を、前記基準圧力として使用する請求項2から請求項7のいずれか1項に記載の制御装置。
  9.  前記判定部は、
    前記基準圧力として、予め保有している工場出荷時の冷媒圧力を使用する請求項2から請求項7のいずれか1項に記載の制御装置。
  10.  コンピュータに、
    圧縮機と、凝縮器と、膨張弁と、蒸発器とが接続される冷媒回路を有し、前記冷媒回路を冷媒が循環する冷凍サイクルを行うとともに、前記冷媒回路の内部空間に連通する連通口を有し、前記内部空間の冷媒圧力を計測する圧力センサが接続される接続装置を有する冷凍サイクル装置の、前記冷媒回路の中に存在する油を前記圧縮機に集める油回収運転を、前記冷凍サイクル装置に実施させる運転制御処理と、
     比較対象である基準圧力と、前記油回収運転の後に前記圧力センサで計測した前記冷媒圧力との比較から、前記冷媒回路からの前記冷媒の漏れを判定する判定処理と、
    を実施させる冷媒漏れ判定プログラム。
  11.  圧縮機と、凝縮器と、膨張弁と、蒸発器とが接続される冷媒回路を有し、前記冷媒回路を冷媒が循環する冷凍サイクルを行うとともに、前記冷媒回路の内部空間に連通する連通口を有し、前記内部空間の冷媒圧力を計測する圧力センサが接続される接続装置を有する冷凍サイクル装置によって実施される、前記冷媒回路の中に存在する油を前記圧縮機に集める油回収運転の後に、前記圧力センサを前記接続装置に接続し、
     比較対象である基準圧力と、前記圧力センサで計測される前記冷媒圧力との比較から、前記冷媒回路からの前記冷媒の漏れを判定する、
    冷媒漏れ判定方法。
PCT/JP2021/020162 2021-05-27 2021-05-27 冷媒漏れ判定装置、制御装置、冷媒漏れ判定プログラム及び冷媒漏れ判定方法 WO2022249387A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21943036.0A EP4350257A1 (en) 2021-05-27 2021-05-27 Refrigerant leakage determination device, control device, refrigerant leakage determination program, and refrigerant leakage determination method
JP2023523855A JPWO2022249387A1 (ja) 2021-05-27 2021-05-27
CN202180098354.2A CN117321360A (zh) 2021-05-27 2021-05-27 制冷剂泄漏判定装置、控制装置、制冷剂泄漏判定程序以及制冷剂泄漏判定方法
PCT/JP2021/020162 WO2022249387A1 (ja) 2021-05-27 2021-05-27 冷媒漏れ判定装置、制御装置、冷媒漏れ判定プログラム及び冷媒漏れ判定方法
US18/553,347 US20240191924A1 (en) 2021-05-27 2021-05-27 Refrigerant leak determination apparatus, control device, computer readable medium, and refrigerant leak determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020162 WO2022249387A1 (ja) 2021-05-27 2021-05-27 冷媒漏れ判定装置、制御装置、冷媒漏れ判定プログラム及び冷媒漏れ判定方法

Publications (1)

Publication Number Publication Date
WO2022249387A1 true WO2022249387A1 (ja) 2022-12-01

Family

ID=84229584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020162 WO2022249387A1 (ja) 2021-05-27 2021-05-27 冷媒漏れ判定装置、制御装置、冷媒漏れ判定プログラム及び冷媒漏れ判定方法

Country Status (5)

Country Link
US (1) US20240191924A1 (ja)
EP (1) EP4350257A1 (ja)
JP (1) JPWO2022249387A1 (ja)
CN (1) CN117321360A (ja)
WO (1) WO2022249387A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225769A (ja) 1990-12-26 1992-08-14 Mitsubishi Heavy Ind Ltd ガス漏れ診断装置付き冷凍装置
JPH07332806A (ja) * 1994-04-12 1995-12-22 Nippondenso Co Ltd 冷凍装置
JP2002213847A (ja) * 2000-12-11 2002-07-31 Behr Gmbh & Co 冷媒充填量を監視する方法
JP2007163107A (ja) * 2005-12-16 2007-06-28 Daikin Ind Ltd 空気調和装置
JP2009243719A (ja) * 2008-03-28 2009-10-22 Mitsubishi Heavy Ind Ltd マルチ形空気調和機の油戻し運転方法およびマルチ形空気調和機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225769A (ja) 1990-12-26 1992-08-14 Mitsubishi Heavy Ind Ltd ガス漏れ診断装置付き冷凍装置
JPH07332806A (ja) * 1994-04-12 1995-12-22 Nippondenso Co Ltd 冷凍装置
JP2002213847A (ja) * 2000-12-11 2002-07-31 Behr Gmbh & Co 冷媒充填量を監視する方法
JP2007163107A (ja) * 2005-12-16 2007-06-28 Daikin Ind Ltd 空気調和装置
JP2009243719A (ja) * 2008-03-28 2009-10-22 Mitsubishi Heavy Ind Ltd マルチ形空気調和機の油戻し運転方法およびマルチ形空気調和機

Also Published As

Publication number Publication date
CN117321360A (zh) 2023-12-29
EP4350257A1 (en) 2024-04-10
JPWO2022249387A1 (ja) 2022-12-01
US20240191924A1 (en) 2024-06-13

Similar Documents

Publication Publication Date Title
EP3486584B1 (en) Refrigeration system
EP1706684B1 (en) Diagnosing a loss of refrigerant charge in a refrigerant system
CN114353854B (zh) 用于在线定位异常传感器的方法、设备和介质
CN109983286A (zh) 用于在蒸气压缩系统中进行故障缓解的方法
JP2007255818A (ja) 冷凍サイクル装置の診断装置並びにその診断装置を有する熱源側ユニット、利用側ユニット及び冷凍サイクル装置
JP2008096002A (ja) 空気調和機
CN109654662A (zh) 检测元件控制方法、装置及空调机组
US12000604B2 (en) Failure diagnosis system configured to diagnose a state of an air-conditioning apparatus having a refrigerant circuit
JP2020091561A (ja) 異常診断装置及び異常診断方法
JP7231866B1 (ja) 異常検知装置、方法、およびプログラム
WO2022249387A1 (ja) 冷媒漏れ判定装置、制御装置、冷媒漏れ判定プログラム及び冷媒漏れ判定方法
JP6095155B2 (ja) 冷凍装置及び冷凍装置の冷媒漏れ検知方法
KR20200120118A (ko) 온도 센서의 고장을 검출하는 공기 조화기 및 방법
JP2005345046A (ja) 熱源機器の劣化診断システム
WO2024099000A1 (zh) 用于提高压缩机运行可靠性的方法及装置
JP4009288B2 (ja) フラッシュガスを検出するための方法と装置
CN117167900A (zh) 四通阀切换故障的检测方法、电子设备及空调机组
CN112361528A (zh) 空调的控制方法及控制装置、存储介质、处理器
JP2021162263A (ja) 空気調和機、制御方法及びプログラム
JP2019207105A (ja) 冷媒漏洩検知方法及び冷媒漏洩検知手段
US20240142125A1 (en) Air conditioning system, abnormality estimation method for air conditioning system, air conditioner, and abnormality estimation method for air conditioner
JP2009092268A (ja) 冷凍装置の冷媒漏れ検出方法
WO2023119604A1 (ja) 冷媒検知装置、冷媒検知プログラム及び冷媒検知方法
KR20060117712A (ko) 공기조화기의 진공검사장치
JP2566957B2 (ja) 運転支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023523855

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18553347

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180098354.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2021943036

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021943036

Country of ref document: EP

Effective date: 20240102