WO2022249303A1 - 産業機械の制御装置 - Google Patents

産業機械の制御装置 Download PDF

Info

Publication number
WO2022249303A1
WO2022249303A1 PCT/JP2021/019880 JP2021019880W WO2022249303A1 WO 2022249303 A1 WO2022249303 A1 WO 2022249303A1 JP 2021019880 W JP2021019880 W JP 2021019880W WO 2022249303 A1 WO2022249303 A1 WO 2022249303A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
control device
override value
value
display
Prior art date
Application number
PCT/JP2021/019880
Other languages
English (en)
French (fr)
Other versions
WO2022249303A9 (ja
Inventor
秀雄 荻野
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to DE112021007320.6T priority Critical patent/DE112021007320T5/de
Priority to PCT/JP2021/019880 priority patent/WO2022249303A1/ja
Priority to CN202180098318.6A priority patent/CN117321517A/zh
Priority to JP2023523778A priority patent/JPWO2022249303A1/ja
Publication of WO2022249303A1 publication Critical patent/WO2022249303A1/ja
Publication of WO2022249303A9 publication Critical patent/WO2022249303A9/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/409Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using manual data input [MDI] or by using control panel, e.g. controlling functions with the panel; characterised by control panel details or by setting parameters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35409DPC direct programming at the console
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39438Direct programming at the console

Definitions

  • the present disclosure relates to a control device for industrial machinery.
  • An override switch that adjusts the rotation speed of the spindle and the feed speed of the feed shaft is provided on the control panel of the control device that controls the industrial machine (for example, Patent Document 1).
  • An object of the present disclosure is to provide a control device for industrial machinery that can reduce the manufacturing cost of the operation panel.
  • the control device includes an image display unit for displaying an operation image for changing the override value of the drive shaft on a display screen, a determination unit for determining the override value based on the operation on the operation image, and the override determined by the determination unit. a controller for controlling the drive shaft based on the value.
  • FIG. 10 is a diagram showing an example of an operation image
  • FIG. 10 is a diagram illustrating an example of an operation on an operation image
  • FIG. 10 is a diagram illustrating an example of an operation on an operation image
  • FIG. 10 is a diagram illustrating an example of an operation for an actual speed image and an operation image
  • FIG. 4 is a flowchart showing an example of the flow of processing executed by a control device
  • It is a figure which shows an example of an actual speed image.
  • FIG. 10 is a diagram showing an example of an operation image;
  • FIG. FIG. 10 is a diagram illustrating an example of an operation on an operation image;
  • FIG. 10 is a diagram illustrating an example of an operation on an operation image;
  • FIG. 10 is a diagram illustrating an example of an operation for an actual speed image and an operation image;
  • FIG. It is a figure which shows an example of a display mode setting table.
  • FIG. 10 is a diagram showing an example of an increase/decrease width
  • FIG. 10 is a diagram showing an example of an override value setting table;
  • FIG. 10 is a diagram showing an example of an override value setting table;
  • FIG. 1 is a diagram showing an example of the hardware configuration of an industrial machine.
  • the industrial machine 1 is, for example, a machine tool, a wire electric discharge machine, or a robot.
  • Machine tools include lathes, machining centers and multi-task machines.
  • the robot is, for example, an industrial robot such as a manipulator.
  • the industrial machine 1 includes a control device 2, an input/output device 3, a servo amplifier 4 and a servo motor 5, a spindle amplifier 6 and a spindle motor 7, and an auxiliary device 8.
  • the control device 2 is a device that controls the entire industrial machine 1.
  • the control device 2 is, for example, a numerical control device that controls the industrial machine 1 .
  • the control device 2 includes a CPU (Central Processing Unit) 201 , a bus 202 , a ROM (Read Only Memory) 203 , a RAM (Random Access Memory) 204 and a non-volatile memory 205 .
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 201 is a processor that controls the entire control device 2 according to the system program.
  • the CPU 201 reads a system program or the like stored in the ROM 203 via the bus 202 and performs various processes based on the system program. Also, the CPU 201 controls the servo motor 5 and the spindle motor 7 based on the machining program.
  • the CPU 201 analyzes the machining program and outputs control commands to the servo motor 5 and the spindle motor 7 for each control cycle.
  • a bus 202 is a communication path that connects each piece of hardware within the control device 2 to each other. Each piece of hardware within the control device 2 exchanges data via the bus 202 .
  • the ROM 203 is a storage device that stores system programs and the like for controlling the control device 2 as a whole.
  • a ROM 203 is a computer-readable storage medium.
  • the RAM 204 is a storage device that temporarily stores various data.
  • a RAM 204 functions as a work area for the CPU 201 to process various data.
  • the nonvolatile memory 205 is a storage device that retains data even when the industrial machine 1 is powered off and power is not supplied to the control device 2 .
  • the nonvolatile memory 205 stores, for example, machining programs and various parameters input from the input/output device 3 .
  • Non-volatile memory 205 is a computer-readable storage medium.
  • the nonvolatile memory 205 is composed of, for example, an SSD (Solid State Drive).
  • the control device 2 further includes an interface 206 , an axis control circuit 207 , a spindle control circuit 208 , a PLC (Programmable Logic Controller) 209 and an I/O unit 210 .
  • an interface 206 an interface 206 , an axis control circuit 207 , a spindle control circuit 208 , a PLC (Programmable Logic Controller) 209 and an I/O unit 210 .
  • the interface 206 connects the bus 202 and the input/output device 3 .
  • the interface 206 sends various data processed by the CPU 201 to the input/output device 3, for example.
  • the input/output device 3 is a device that receives various data via the interface 206 and displays various data. The input/output device 3 also accepts input of various data and sends the various data to the CPU 201 via the interface 206 .
  • the input/output device 3 is, for example, a touch panel.
  • the touch panel is, for example, a capacitive touch panel. Note that the touch panel is not limited to the capacitive type, and may be a touch panel of another type.
  • the input/output device 3 is attached to, for example, a control panel (not shown) in which the control device 2 is stored.
  • the axis control circuit 207 is a circuit that controls the servo motor 5 .
  • the axis control circuit 207 receives a control command from the CPU 201 and outputs a command for driving the servo motor 5 to the servo amplifier 4 .
  • the axis control circuit 207 sends a torque command for controlling the torque of the servo motor 5 to the servo amplifier 4, for example.
  • the servo amplifier 4 receives a command from the axis control circuit 207 and supplies current to the servo motor 5 .
  • the servo motor 5 is driven by being supplied with current from the servo amplifier 4 .
  • the servomotor 5 is connected to, for example, a ball screw that drives the tool post.
  • the servomotor 5 may incorporate a speed detector (not shown) for detecting the feed speed of each feed shaft.
  • a spindle control circuit 208 is a circuit for controlling the spindle motor 7 .
  • a spindle control circuit 208 receives a control command from the CPU 201 and outputs a command for driving the spindle motor 7 to the spindle amplifier 6 .
  • the spindle control circuit 208 for example, sends a torque command for controlling the torque of the spindle motor 7 to the spindle amplifier 6 .
  • the spindle amplifier 6 receives a command from the spindle control circuit 208 and supplies current to the spindle motor 7 .
  • the spindle motor 7 is driven by being supplied with current from the spindle amplifier 6 .
  • a spindle motor 7 is connected to the main shaft and rotates the main shaft.
  • the PLC 209 is a device that executes the ladder program and controls the auxiliary equipment 8. PLC 209 sends commands to auxiliary equipment 8 via I/O unit 210 .
  • the I/O unit 210 is an interface that connects the PLC 209 and the auxiliary device 8.
  • the I/O unit 210 sends commands received from the PLC 209 to the auxiliary equipment 8 .
  • the auxiliary equipment 8 is equipment that is installed in the industrial machine 1 and performs auxiliary operations in the industrial machine 1 .
  • the auxiliary equipment 8 may be equipment installed around the industrial machine 1 .
  • the auxiliary equipment 8 operates based on commands received from the I/O unit 210 .
  • the auxiliary device 8 is, for example, a tool changer, a cutting fluid injection device, or an opening/closing door drive. Next, an example of functions of the control device 2 will be described.
  • FIG. 2 is a block diagram showing an example of the functions of the control device 2. As shown in FIG.
  • the control device 2 includes an image display section 211 , a detection section 212 , a determination section 213 and a control section 214 .
  • the image display unit 211, the detection unit 212, the determination unit 213, and the control unit 214 are operated by the CPU 201 using, for example, a system program stored in the ROM 203 and various data stored in the nonvolatile memory 205. It is realized by
  • the image display unit 211 displays an actual speed image showing the actual speed of the drive shaft on the display screen.
  • a drive shaft is a shaft for driving each part of the industrial machine 1 .
  • the drive shaft includes a main shaft.
  • Drive axes also include feed axes such as the X-axis, Y-axis and Z-axis. Further, the drive shafts may include rotation axes such as A-axis, B-axis, C-axis.
  • Actual speed is the speed at which the drive shaft is actually driving.
  • the display screen is, for example, the display screen of the input/output device 3 .
  • the actual speed of the drive shaft is the rotational speed of the main shaft. If the drive shaft is a feed shaft, the actual speed of the drive shaft includes cutting feed rate and rapid feed rate.
  • FIG. 3 is a diagram showing an example of the actual speed image displayed on the display screen.
  • the actual speed image 31 shown in FIG. 3 is an image showing the rotational speed of the main shaft.
  • Actual speed image 31 is displayed in a predetermined area of display screen 30 of input/output device 3 .
  • a figure simulating a hand indicates that the actual speed image 31 is touch-operated, and is not displayed on the display screen 30 .
  • the figures simulating hands drawn in the figures to be described later are not displayed on the display screen 30 . Illustrations of images other than the actual speed image 31 are omitted.
  • the detection unit 212 detects a touch operation on the display screen 30 .
  • the detection unit 212 detects, for example, a touch operation on the actual speed image 31 .
  • a touch operation on the actual speed image 31 is an operation of touching the actual speed image 31 .
  • the touch operation on the actual speed image 31 may be not only an operation of touching the actual speed image 31 but also an operation of touching the vicinity of the actual speed image 31 .
  • the detection unit 212 may detect a touch operation on a predetermined position on the display screen 30 .
  • Touch operations include tap operations, long press operations, and slide operations. Also, the tap operation may be a tap operation multiple times.
  • a touch operation is an operation performed by an operator's finger. Also, the touch operation may be an operation using a touch pen.
  • the image display unit 211 causes the display screen 30 to display an operation image for changing the override value of the drive axis.
  • the override value is a ratio to the command value when the command value is 100%, and is a value that changes the command value. For example, if the command value of the cutting feed speed is 1000 [mm/min], and the override value is 50%, the actual speed of the cutting feed is 500 [mm/min].
  • the image display unit 211 displays the operation image adjacent to the actual speed image 31 when the detection unit 212 detects a touch operation on the actual speed image 31 .
  • the image display unit 211 displays the operation image and the actual speed image 31 side by side.
  • the operation image and the actual speed image 31 may be displayed partially overlapping each other.
  • one end of the operation image and one end of the actual speed image 31 may be displayed so as to be in contact with each other.
  • the operation image and the actual speed image 31 may be displayed separately.
  • FIG. 4 is a diagram showing an example of an operation image.
  • the operation image 32 includes a scale image 321 indicating the magnitude of the override value and an instruction image 322 indicating a position in the scale image 321.
  • FIG. 4 the intersection of the circumference portion of the circular image and the scale image 321 indicates the current override value, ie, 100%. That is, in the example shown in FIG. 4, the circular image 322 is the circumferential portion of the circular image. Note that the current override value may also be indicated numerically in the central portion of the circular image.
  • the determination unit 213 determines the override value of the drive shaft based on the operation on the operation image 32.
  • FIG. 5 is a diagram explaining an example of an operation on the operation image 32.
  • the operations for increasing the override value include (1) a pinch-out operation, (2) an operation to move the instruction image 322 in the direction of the maximum value of the scale image 321, and (3) touching the maximum value display portion of the scale image 321. Includes operations.
  • a pinch-out operation is an operation in which two fingers touch the display screen 30 and are moved in a direction to separate the fingers from each other. If the operation on the operation image 32 is, for example, a pinch-out operation on a circular image, the determination unit 213 determines to increase the override value. Note that the determination unit 213 determines the amount of increase in the override value according to the amount of change in the distance between the two fingers. Further, the image display unit 211 changes the position of the scale image 321 indicated by the instruction image 322 according to the amount of increase in the override value. In the example shown in FIG. 5, the outer diameter of the circular image increases according to the amount of increase in the override value.
  • the operation of moving the instruction image 322 in the direction of the maximum value of the scale image 321 is, for example, an operation of touching the instruction image 322 with the finger and sliding the finger outward in the radial direction of the circular image.
  • the determination unit 213 determines to increase the override value.
  • the determination unit 213 determines the amount of increase in the override value according to the sliding distance of the finger when the instruction image 322 is touched with the finger. Further, the image display unit 211 changes the position of the scale image 321 indicated by the instruction image 322 according to the amount of increase in the override value.
  • the operation of touching the maximum value display portion of the scale image 321 is, for example, an operation of touching the portion displaying the maximum value of the override value indicated by the scale image 321 or the vicinity of the portion displaying the maximum value. is.
  • the maximum value display portion is the portion displayed as "120%" and the area around it.
  • the determination unit 213 determines the amount of increase in the override value according to the number of taps in the maximum value display unit. For example, when the maximum value display is tapped once, the decision unit 213 decides to increase the override value by 10%. Further, when the maximum value display portion is tapped twice, the determination portion 213 determines to increase the override value by 20%. Note that the determination unit 213 may determine the increase amount of the override value according to the long-pressing time of the maximum value display unit.
  • the image display unit 211 changes the position of the scale image 321 indicated by the instruction image 322 according to the amount of increase in the override value.
  • the image display unit 211 may change the display mode of the circular image along the radial direction according to the position of the scale image 321 indicated by the instruction image 322 .
  • the area showing the override value of 100% to 120% may be displayed so that the color changes continuously.
  • the vicinity of the region showing the maximum override value of 120% may be displayed in red, and the vicinity of the region showing the override value of 100% may be displayed in yellow. Thereby, the operator can recognize by the color whether the override value is being operated on the safe side.
  • FIG. 6 is a diagram explaining an example of an operation on the operation image 32.
  • Operations for decreasing the override value include, for example, (4) a pinch-in operation, (5) an operation to move the instruction image 322 toward the minimum value of the scale image 321, and (6) a touch on the minimum value display portion of the scale image 321. This includes operations to
  • a pinch-in operation is an operation in which two fingers touch the display screen 30 and are moved in a direction to bring them closer to each other. If the operation on the operation image 32 is, for example, a pinch-in operation on a circular image, the determination unit 213 determines to decrease the override value. Note that the determination unit 213 determines the amount of decrease in the override value according to the amount of change in the distance between the two fingers.
  • the image display unit 211 changes the position of the scale image 321 indicated by the instruction image 322 according to the amount of decrease in the override value.
  • the circumferential portion of the circular image becomes smaller according to the amount of decrease in the override value.
  • the circumferential portion is the inner diameter portion.
  • the operation of moving the instruction image 322 in the direction of the minimum value of the scale image 321 is, for example, an operation of touching the instruction image 322 with the finger and sliding the finger radially inward along the circumference of the circular image.
  • the determination unit 213 determines to decrease the override value.
  • the determining unit 213 determines the amount of decrease in the override value according to the sliding distance of the finger while touching the instruction image 322 with the finger.
  • the image display unit 211 changes the position of the scale image 321 indicated by the instruction image 322 according to the amount of decrease in the override value.
  • the operation of touching the minimum value display portion of the scale image 321 is, for example, an operation of touching the portion displaying the minimum value of the override value indicated by the scale image 321 or the vicinity of the portion displaying the minimum value. is.
  • the portion displaying the minimum value is the portion displayed as "50%" and the area around it.
  • the determination unit 213 determines the amount of decrease in the override value according to the number of taps in the minimum value display unit. For example, when the minimum value display is tapped once, the decision unit 213 decides to decrease the override value by 10%. Also, when the minimum value display portion is tapped twice, the determination unit 213 determines to decrease the override value by 20%. Note that the determination unit 213 may determine the amount of decrease in the override value according to the length of time the minimum value display unit is pressed.
  • the image display unit 211 changes the position of the scale image 321 indicated by the instruction image 322 according to the amount of decrease in the override value.
  • the image display unit 211 may change the display mode of the circular image along the radial direction according to the position of the scale image 321 indicated by the instruction image 322 .
  • the area showing the override values of 100% to 50% may be displayed so that the color changes continuously.
  • the vicinity of the region showing the minimum override value of 50% may be displayed in blue, and the vicinity of the region showing the override value of 100% may be displayed in yellow. Thereby, the operator can recognize whether or not the override value is operated on the safe side by the color.
  • the determination unit 213 determines to hide the operation image 32 when conditions (7) to (9) described below are met.
  • the image display unit 211 erases the operation image 32 from the display screen 30 .
  • FIG. 7 is a diagram explaining an example of an operation for the actual speed image 31 and the operation image 32.
  • the determination unit 213 determines whether (7) an operation is performed on the actual speed image 31 while the operation image 32 is displayed on the display screen 30, or (8) an operation on the operation image 32 deletes the operation image 32. If it is an operation, or (9) if an operation on the operation image 32 is not detected for a predetermined time, it is determined to hide the operation image 32 .
  • the operations on the actual speed image 31 are, for example, a tap operation, a long press operation, and a slide operation on the actual speed image 31.
  • the erasing operation of the operation image 32 is a flick operation on the operation image.
  • a flick operation is an operation of quickly moving a finger on the display screen 30 or an operation of flicking the display screen 30 .
  • the direction of the flick operation may be any direction.
  • the predetermined time is, for example, 20 seconds. That is, when there is no operation on the operation image 32 for 20 seconds, the determination unit 213 determines to hide the operation image 32 .
  • the control unit 214 controls the drive shaft based on the override value determined by the determination unit 213.
  • the control section 214 controls the feed axis in real time based on the override value determined by the determination section 213 .
  • FIG. 8 is a flowchart showing an example of the flow of processing executed by the control device 2.
  • FIG. First when control by the control device 2 is started, the image display unit 211 displays the actual speed image 31 on the display screen 30 (step S1).
  • the detection unit 212 detects the touch operation on the display screen 30 (step S2). At this time, the detection unit 212 detects, for example, a touch operation on the actual speed image 31 .
  • the image display unit 211 displays the operation image 32 on the display screen 30 (step S3).
  • the detection unit 212 detects the touch operation on the operation image 32 (step S4).
  • the determination unit 213 determines an override value based on the touch operation on the operation image 32 . (Step S5).
  • control unit 214 controls the drive shaft based on the override value determined by the determination unit 213 (step S6).
  • the image display unit 211 hides the operation image 32 (step S7), and ends the process.
  • control device 2 determines the override value based on the image display unit 211 that displays the operation image 32 for changing the override value of the drive axis on the display screen 30 and the operation on the operation image 32.
  • a determination unit 213 and a control unit 214 that controls the drive shaft based on the override value determined by the determination unit 213 are provided.
  • the manufacturing cost of the control device 2 can be reduced.
  • the number of parts of the operation panel can be reduced, the assembly of the operation panel is facilitated, and the assembly time of the operation panel can be reduced.
  • design changes such as the display mode of the operation image 32 can be facilitated.
  • the display mode can be designed according to the model of the industrial machine 1 .
  • the control device 2 further includes a detection unit 212 that detects a touch operation on the display screen 30, and the image display unit 211 displays the operation image 32 on the display screen 30 when the detection unit 212 detects a touch operation. Therefore, the operation image 32 can be displayed on the display screen 30 only when it is necessary to operate the override value. In other words, it is possible to prevent the display screen 30 from becoming overloaded with information and improve the visibility of the display screen 30 .
  • the image display unit 211 displays the actual speed image 31 indicating the actual speed of the drive shaft. Display on the display screen 30 . Further, the image display unit 211 displays the operation image 32 adjacent to the actual speed image 31 . Therefore, the operator can visually recognize the actual speed image 31 and the operation image 32 at the same time. Alternatively, the operator does not need to move his line of sight significantly between the actual speed image 31 and the operation image 32 . Therefore, it is possible to reduce the burden on the operator in operating the override of the drive shaft.
  • the detection unit 212 detects an operation on the actual speed image 31 or an erase operation on the operation image 32 while the operation image 32 is displayed on the display screen 30, or an operation on the operation image 32 is detected for a predetermined time. If not detected, the determining unit 213 determines to hide the operation image 32 . Therefore, visibility of the display screen 30 can be improved by hiding the operation image 32 when the operation of the override value is unnecessary.
  • the determining unit 213 also determines to increase the override value when the operation on the operation image 32 is a pinch-out operation, and to decrease the override value when the operation on the operation image 32 is a pinch-in operation.
  • the operation image 32 includes a scale image 321 indicating the magnitude of the override value, and an instruction image 322 indicating a position in the scale image 321. If the operation is to move the image 321 in the direction of the maximum value, the override value is increased. Decide to decrease. Further, when the operation on the operation image 32 is the operation of touching the maximum value display portion of the scale image 321, the determination unit 213 increases the override value, and the operation on the operation image 32 touches the minimum value portion of the scale image 321. If it is a touch operation, decide to decrease the override value. Therefore, the operator can change the override value with a simple operation.
  • the operation image 32 includes a circular image
  • the instruction image 322 is a circumferential portion of the circular image.
  • the image display unit 211 changes the display mode of the circular image along the radial direction according to the position indicated by the instruction image 322 . Therefore, the operator can confirm the override value with an image other than the scale image. That is, the visibility of the operation image 32 can be improved.
  • the feed speed of the feed axis includes cutting feed speed and rapid feed speed.
  • FIG. 9 is a diagram showing an example of an actual speed image.
  • the actual speed image 33 shown in FIG. 9 is an image showing the actual cutting feed speed of the feed shaft.
  • the actual speed image 33 is displayed in a predetermined area of the display screen 30 of the input/output device 3 .
  • the detection unit 212 detects, for example, a touch operation on the actual speed image 33 .
  • the image display unit 211 causes the display screen 30 to display an operation image for changing the override value of the drive shaft when the detection unit 212 detects a touch operation on the actual speed image 33 .
  • FIG. 10 is a diagram showing an example of an operation image.
  • the operation image 34 includes an arc-shaped slide bar image 341 , a scale image 342 indicating the magnitude of the override value, and an indication image 343 indicating a position within the scale image 342 .
  • an elongated pentagonal slider drawn at the 100% position is the indication image 343 .
  • the current override value may also be indicated numerically in the central portion of the slide bar image 341 .
  • the determination unit 213 determines the override value of the drive shaft based on the operation on the operation image 34.
  • FIG. 11 is a diagram explaining an example of an operation on the operation image 34.
  • the operations for increasing the override value include, for example, (10) a pinch-out operation, (11) an operation to move the instruction image 343 in the direction of the maximum value of the scale image 342, and (12) a touch on the maximum value display portion of the scale image 342. and (13) touching the increase button 344 to increase the override value.
  • the determination unit 213 determines to increase the override value.
  • the image display unit 211 changes the position of the scale image 342 indicated by the indication image 343 according to the amount of increase in the override value. In the example shown in FIG. 11, the indication image 343 moves toward the maximum value of the slide bar image 341 in accordance with the amount of increase in the override value.
  • the determination unit 213 determines to increase the override value.
  • the determination unit 213 determines the amount of increase in the override value according to the position of the scale image 342 indicated by the designation image 343 .
  • the determination unit 213 determines to increase the override value.
  • the maximum value display portion of the scale image 342 is, in the example shown in FIG. 11, the portion displaying "200%" and the area therearound.
  • the determination unit 213 determines the amount of increase of the override value, for example, according to the number of taps in the maximum value display unit.
  • the determination unit 213 may determine the increase amount of the override value according to the long press time of the maximum value display unit.
  • the image display unit 211 changes the position of the scale image 342 indicated by the instruction image 343 according to the amount of increase in the override value.
  • the determining unit 213 determines to increase the override value.
  • An operation of touching the increase button 344 includes an operation of tapping the increase button 344 and an operation of long-pressing the increase button 344 .
  • the increase button 344 is displayed adjacent to the maximum value display portion of the slide bar image 341, for example. In the example shown in FIG. 11, the increase button 344 is an image of a triangle displaying a "+" character.
  • the image display unit 211 may change the display mode of the slide bar image 341 along the longitudinal direction of the slide bar image 341 according to the position indicated by the instruction image 343 .
  • the area showing the override values of 100% to 200% may be displayed so that the color changes continuously.
  • the vicinity of the region showing the maximum override value of 200% may be displayed in red, and the vicinity of the region showing the override value of 100% may be displayed in yellow. Thereby, the operator can recognize by the color whether the override value is being operated on the safe side.
  • FIG. 12 is a diagram explaining an example of an operation on the operation image 34.
  • Operations for decreasing the override value include, for example, (14) pinch-in operation, (15) operation of moving the instruction image 343 toward the minimum value of the scale image 342, and (16) touching the minimum value display portion of the scale image 342. and (17) touching the decrease button 345 to decrease the override value.
  • the determination unit 213 determines to decrease the override value.
  • the image display unit 211 changes the position of the scale image 342 indicated by the instruction image 343 according to the amount of decrease in the override value. In the example shown in FIG. 12, the instruction image 343 moves toward the minimum value of the slide bar image 341 according to the amount of decrease in the override value.
  • the determination unit 213 determines to decrease the override value.
  • the determination unit 213 determines the amount of decrease in the override value according to the sliding distance of the finger while touching the instruction image 343 with the finger.
  • the determination unit 213 determines to decrease the override value.
  • the minimum value display portion of the scale image 342 is, in the example shown in FIG. 12, the portion displaying "0%" and the area around it.
  • the determination unit 213 determines the amount of decrease in the override value according to, for example, the number of taps in the minimum value display unit. Further, the image display unit 211 changes the position of the scale image 342 indicated by the instruction image 343 according to the amount of decrease in the override value. Note that the determination unit 213 may determine the amount of decrease in the override value according to the length of time the minimum value display unit is pressed.
  • the determining unit 213 determines to decrease the override value.
  • the decrease button 345 is displayed adjacent to the minimum value display portion of the slide bar image 341, for example.
  • the decrease button 345 is an image of a triangle displaying a "-" character.
  • the image display unit 211 may change the display mode along the longitudinal direction of the slide bar image 341 according to the position indicated by the instruction image 343 . For example, as shown in FIG. 12, it may be displayed such that the color continuously changes in the region showing the override value from 100% to 0%.
  • blue may be displayed in the vicinity of the area indicating the minimum value of the override value.
  • the vicinity of the area showing the minimum override value of 0% may be displayed in blue, and the vicinity of the area showing the override value of 100% may be displayed in yellow. Thereby, the operator can recognize by the color whether the override value is being operated on the safe side.
  • the determination unit 213 determines to hide the operation image 34 when the conditions (18) to (20) described below are satisfied.
  • the image display unit 211 erases the operation image 34 from the display screen 30 .
  • FIG. 13A and 13B are diagrams illustrating an example of an operation for the actual speed image 33 and the operation image 34.
  • the determining unit 213 determines whether (18) an operation is performed on the actual speed image 33 while the operation image 34 is displayed on the display screen 30, or (19) an operation on the operation image 34 deletes the operation image 34. If it is an operation, or (20) if an operation on the operation image 34 is not detected for a predetermined time, it is determined to hide the operation image 34 .
  • the operations on the actual speed image 33 are, for example, a tap operation, a long press operation, and a slide operation on the actual speed image 33.
  • the erasing operation of the operation image 34 is a flick operation on the operation image.
  • a flick operation is an operation of quickly moving a finger on the display screen 30 or an operation of flicking the display screen 30 .
  • the direction of the flick operation may be any direction.
  • the predetermined time is, for example, 20 seconds. That is, when there is no operation on the operation image 34 for 20 seconds, the determination unit 213 determines to hide the operation image 34 .
  • the color of the operation image 34 is continuously changed according to the override value.
  • the color is not limited to being changed continuously, and may be changed stepwise.
  • the color may be selected from a continuously changing mode and a stepwise changing mode.
  • the control device 2 further includes a storage section (not shown) and a reception section (not shown).
  • the storage unit stores, for example, a display mode setting table in which a plurality of display modes of the operation image 34 are set.
  • the reception unit also receives a selection operation for selecting one display mode from the display mode setting table.
  • FIG. 14 is a diagram showing an example of a display mode setting table.
  • the display mode setting table for example, a display mode in which the display mode of the operation image 32 or the operation image 34 is changed continuously and a display mode in which the display mode is changed step by step are set.
  • the receiving unit receives, for example, an operation for selecting a display mode. As a result, the display mode can be adjusted to suit the preference of the operator.
  • the override value increases or decreases by a predetermined percentage when one tap operation is performed.
  • the amount of increase or the amount of decrease may be changed according to the number of tap operations.
  • the control device 2 includes an increase/decrease setting table storage unit, and the increase/decrease setting table storage unit stores an increase/decrease setting table in which the number of tap operations is associated with an increase amount and a decrease amount.
  • FIG. 15 is a diagram showing an example of an increase/decrease width setting table.
  • a 1% increase/decrease range is associated with a single tap
  • a 10% increase/decrease range is associated with a double tap
  • a 20% increase/decrease range is associated with a triple tap. Therefore, when the maximum value display portion of the scale image 342 is tapped once, the determination unit 213 determines to increase the override value by 1%. Also, when the maximum value display portion of the scale image 342 is tapped twice in succession, the determination unit 213 determines to increase the override value by 10%.
  • the determination unit 213 determines to increase the override value by 20%.
  • the determining unit 213 determines to decrease the override value by the same decrease width when the minimum value display portion of the scale image 342 is tapped.
  • the control device 2 may be provided with a receiving section, and the receiving section may receive the range of increase/decrease set in the range of increase/decrease setting table.
  • control device 2 may include a storage unit, and the storage unit may store an override value setting table for setting the maximum and minimum values of the override values.
  • FIG. 16 is a diagram showing an example of an override value setting table.
  • the override value setting table for example, a minimum value of 50% and a maximum value of 120% are set for the override value of the rotational speed of the spindle. A minimum value of 0% and a maximum value of 200% are set for the feed axis override value.
  • the control device 2 may be provided with a reception unit, and the reception unit may receive the maximum value and minimum value of each override value set in the override value setting table. In this case, the operator can set the override value according to the workpiece, machine tool, and the like.
  • control device 201 CPU 202 bus 203 ROM 204 RAMs 205 non-volatile memory 206 interface 207 axis control circuit 208 spindle control circuit 209 PLC 210 I/O unit 211 image display unit 212 detection unit 213 determination unit 214 control unit 3 input/output device 30 display screen 31 actual speed image 32 operation image 321 scale image 322 instruction image 33 actual speed image 34 operation image 341 slide bar image 342 Scale image 343 Instruction image 344 Increase button 345 Decrease button 4 Servo amplifier 5 Servo motor 6 Spindle amplifier 7 Spindle motor 8 Auxiliary device

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

制御装置が、駆動軸のオーバライド値を変更するための操作画像を表示画面に表示させる画像表示部と、操作画像に対する操作に基づいてオーバライド値を決定する決定部と、決定部によって決定されたオーバライド値に基づいて駆動軸を制御する制御部と、を備える。

Description

産業機械の制御装置
 本開示は、産業機械の制御装置に関する。
 産業機械を制御する制御装置の操作盤には、主軸の回転速度、および送り軸の送り速度を調整するオーバライドスイッチが設けられる(例えば、特許文献1)。
特開2019-63914号公報
 しかし、操作盤に各速度を調整する専用のオーバライドスイッチを設けると、操作盤の製造コストの増加を招く。
 本開示は、操作盤の製造コストを抑えることが可能な産業機械の制御装置を提供することを目的とする。
 制御装置が、駆動軸のオーバライド値を変更するための操作画像を表示画面に表示させる画像表示部と、操作画像に対する操作に基づいてオーバライド値を決定する決定部と、決定部によって決定されたオーバライド値に基づいて駆動軸を制御する制御部と、を備える。
 本開示の一態様により、制御装置の操作盤のコストを低減することが可能になる。
制御装置のハードウェア構成の一例を示すブロック図である。 制御装置の機能の一例を示すブロック図である。 実速度画像の一例を示す図である。 操作画像の一例を示す図である。 操作画像に対する操作の一例を説明する図である。 操作画像に対する操作の一例を説明する図である。 実速度画像および操作画像に対する操作の一例を説明する図である。 制御装置が実行する処理の流れの一例を示すフローチャートである。 実速度画像の一例を示す図である。 操作画像の一例を示す図である。 操作画像に対する操作の一例を説明する図である。 操作画像に対する操作の一例を説明する図である。 実速度画像および操作画像に対する操作の一例を説明する図である。 表示態様設定テーブルの一例を示す図である。 増減幅設定テーブルの一例を示す図である。 オーバライド値設定テーブルの一例を示す図である。
 以下、本開示の一実施形態について図面を用いて説明する。なお、以下の実施形態で説明する特徴のすべての組み合わせが課題解決に必ずしも必要であるとは限らない。また、必要以上の詳細な説明を省略する場合がある。また、以下の実施形態の説明、および図面は、当業者が本開示を十分に理解するために提供されるものであり、特許請求の範囲を限定することを意図していない。
 図1は、産業機械のハードウェア構成の一例を示す図である。産業機械1は、例えば、工作機械、ワイヤ放電加工機、ロボットである。工作機械には、旋盤、マシニングセンタおよび複合加工機が含まれる。ロボットは、例えば、マニピュレータなどの産業用ロボットである。
 産業機械1は、制御装置2と、入出力装置3と、サーボアンプ4およびサーボモータ5と、スピンドルアンプ6およびスピンドルモータ7と、補助機器8とを備える。
 制御装置2は、産業機械1全体を制御する装置である。制御装置2は、例えば、産業機械1を制御する数値制御装置である。制御装置2は、CPU(Central Processing Unit)201と、バス202と、ROM(Read Only Memory)203と、RAM(Random Access Memory)204と、不揮発性メモリ205とを備えている。
 CPU201は、システムプログラムに従って制御装置2全体を制御するプロセッサである。CPU201は、バス202を介してROM203に格納されたシステムプログラムなどを読み出し、システムプログラムに基づいて、各種処理を行う。また、CPU201は、加工プログラムに基づいて、サーボモータ5およびスピンドルモータ7を制御する。
 CPU201は、制御周期ごとに、例えば、加工プログラムの解析、ならびに、サーボモータ5およびスピンドルモータ7に対する制御指令の出力を行う。
 バス202は、制御装置2内の各ハードウェアを互いに接続する通信路である。制御装置2内の各ハードウェアはバス202を介してデータをやり取りする。
 ROM203は、制御装置2全体を制御するためのシステムプログラムなどを記憶する記憶装置である。ROM203は、コンピュータ読み取り可能な記憶媒体である。
 RAM204は、各種データを一時的に格納する記憶装置である。RAM204は、CPU201が各種データを処理するための作業領域として機能する。
 不揮発性メモリ205は、産業機械1の電源が切られ、制御装置2に電力が供給されていない状態でもデータを保持する記憶装置である。不揮発性メモリ205は、例えば、加工プログラム、および入出力装置3から入力される各種パラメータを記憶する。不揮発性メモリ205は、コンピュータ読み取り可能な記憶媒体である。不揮発性メモリ205は、例えば、SSD(Solid State Drive)で構成される。
 制御装置2は、さらに、インタフェース206と、軸制御回路207と、スピンドル制御回路208と、PLC(Programmable Logic Controller)209と、I/Oユニット210とを備えている。
 インタフェース206は、バス202と入出力装置3とを接続する。インタフェース206は、例えば、CPU201が処理した各種データを入出力装置3に送る。
 入出力装置3は、インタフェース206を介して各種データを受け、各種データを表示する装置である。また、入出力装置3は、各種データの入力を受け付けてインタフェース206を介して各種データをCPU201に送る。入出力装置3は、例えば、タッチパネルである。入出力装置3がタッチパネルである場合、タッチパネルは、例えば、静電容量方式のタッチパネルである。なお、タッチパネルは、静電容量方式に限らず、他の方式のタッチパネルであってもよい。入出力装置3は、例えば、制御装置2が格納される操作盤(不図示)に取り付けられる。
 軸制御回路207は、サーボモータ5を制御する回路である。軸制御回路207は、CPU201からの制御指令を受けてサーボモータ5を駆動させるための指令をサーボアンプ4に出力する。軸制御回路207は、例えば、サーボモータ5のトルクを制御するトルクコマンドをサーボアンプ4に送る。
 サーボアンプ4は、軸制御回路207からの指令を受けて、サーボモータ5に電流を供給する。
 サーボモータ5は、サーボアンプ4から電流の供給を受けて駆動する。サーボモータ5は、例えば、刃物台を駆動させるボールねじに連結される。サーボモータ5が駆動することにより、刃物台などの産業機械1の構造物は、例えば、X軸方向、Y軸方向、またはZ軸方向に移動する。なお、サーボモータ5は、各送り軸の送り速度を検出する速度検出器(不図示)を内蔵していてもよい。
 スピンドル制御回路208は、スピンドルモータ7を制御するための回路である。スピンドル制御回路208は、CPU201からの制御指令を受けてスピンドルモータ7を駆動させるための指令をスピンドルアンプ6に出力する。スピンドル制御回路208は、例えば、スピンドルモータ7のトルクを制御するトルクコマンドをスピンドルアンプ6に送る。
 スピンドルアンプ6は、スピンドル制御回路208からの指令を受けて、スピンドルモータ7に電流を供給する。
 スピンドルモータ7は、スピンドルアンプ6から電流の供給を受けて駆動する。スピンドルモータ7は、主軸に連結され、主軸を回転させる。
 PLC209は、ラダープログラムを実行して補助機器8を制御する装置である。PLC209は、I/Oユニット210を介して補助機器8に対して指令を送る。
 I/Oユニット210は、PLC209と補助機器8とを接続するインタフェースである。I/Oユニット210は、PLC209から受けた指令を補助機器8に送る。
 補助機器8は、産業機械1に設置され、産業機械1において補助的な動作を行う機器である。補助機器8は、産業機械1の周辺に設置される機器であってもよい。補助機器8は、I/Oユニット210から受けた指令に基づいて動作する。補助機器8は、例えば、工具交換装置、切削液噴射装置、または開閉ドア駆動装置である。次に、制御装置2の機能の一例について説明する。
 図2は、制御装置2の機能の一例を示すブロック図である。制御装置2は、画像表示部211と、検出部212と、決定部213と、制御部214とを備える。
 画像表示部211、検出部212、決定部213、および制御部214は、例えば、CPU201が、ROM203に記憶されているシステムプログラムおよび不揮発性メモリ205に記憶されている各種データを用いて演算処理することにより実現される。
 画像表示部211は、駆動軸の実速度を示す実速度画像を表示画面に表示する。駆動軸とは、産業機械1の各部を駆動させるための軸である。駆動軸は、主軸を含む。また、駆動軸は、X軸、Y軸およびZ軸などの送り軸を含む。さらに、駆動軸は、A軸、B軸、C軸などの回転軸を含んでもよい。実速度とは、駆動軸が実際に駆動している速度である。表示画面は、例えば、入出力装置3の表示画面である。
 駆動軸が主軸である場合、駆動軸の実速度とは主軸の回転速度である。駆動軸が送り軸である場合、駆動軸の実速度には、切削送り速度、および早送り速度が含まれる。
 図3は、表示画面に表示された実速度画像の一例を示す図である。図3に示す実速度画像31は、主軸の回転速度を示す画像である。実速度画像31は、入出力装置3の表示画面30の所定の領域に表示される。なお、図3中、手を模した図は、実速度画像31がタッチ操作されることを示すものであり、表示画面30に表示されるものではない。これ以降に説明する図に描かれている手を模した図も同様に、表示画面30に表示されるものではない。また、実速度画像31以外の画像の図示は省略している。
 検出部212は、表示画面30に対するタッチ操作を検出する。検出部212は、例えば、実速度画像31に対するタッチ操作を検出する。実速度画像31に対するタッチ操作とは、実速度画像31をタッチする操作である。実速度画像31に対するタッチ操作は、実速度画像31をタッチする操作だけではなく、実速度画像31付近をタッチする操作であってもよい。あるいは、検出部212は、表示画面30の所定の位置に対するタッチ操作を検出してもよい。
 タッチ操作には、タップ操作、長押し操作、スライド操作が含まれる。また、タップ操作は、複数回のタップ操作であってもよい。タッチ操作は、作業者の指による操作である。また、タッチ操作は、タッチペンによる操作であってもよい。
 画像表示部211は、検出部212が表示画面30に対するタッチ操作を検出した場合、駆動軸のオーバライド値を変更するための操作画像を表示画面30に表示させる。オーバライド値とは、指令値を100%としたときの指令値に対する割合であって、指令値を変化させる値である。例えば、切削送り速度の指令値が1000[mm/min]である場合、オーバライド値を50%とすると、切削送りの実速度は500[mm/min]となる。
 画像表示部211は、検出部212が実速度画像31に対するタッチ操作を検出した場合、操作画像を、実速度画像31に隣接させて表示させる。言い換えれば、画像表示部211は、操作画像と実速度画像31とを並べて表示させる。この場合、操作画像と実速度画像31とは、一部が重なって表示されてもよい。また、操作画像の1つの端部と実速度画像31の1つの端部とが接触するように表示されてもよい。また、操作画像と実速度画像31とは、離れて表示されてもよい。
 図4は、操作画像の一例を示す図である。操作画像32は、オーバライド値の大きさを示す目盛画像321と、目盛画像321中の位置を指し示す指示画像322とを含む。図4では、円形の画像の円周部分と目盛画像321との交点が現在のオーバライド値、すなわち、100%を示している。つまり、図4に示す例において、円形の画像の円周部分が指示画像322である。なお、現在のオーバライド値は、円形の画像の中心部分にも数値で示されてもよい。
 決定部213は、操作画像32に対する操作に基づいて駆動軸のオーバライド値を決定する。
 図5は、操作画像32に対する操作の一例について説明する図である。オーバライド値を増加させる操作には、(1)ピンチアウト操作、(2)指示画像322を目盛画像321の最大値方向に移動させる操作、および(3)目盛画像321の最大値表示部をタッチする操作が含まれる。
 ピンチアウト操作とは、2本の指が表示画面30に触れた状態で、それらの指を互いに離間させる方向に動かす操作である。操作画像32に対する操作が、例えば、円形の画像上におけるピンチアウト操作である場合、決定部213は、オーバライド値を増加させると決定する。なお、決定部213は、2本の指の間の距離の変化量に応じて、オーバライド値の増加量を決定する。また、画像表示部211は、オーバライド値の増加量に応じて、指示画像322が指し示す目盛画像321の位置を変化させる。図5に示す例のでは、オーバライド値の増加量に応じて円形の画像の外径が大きくなる。
 指示画像322を目盛画像321の最大値方向に移動させる操作とは、例えば、指示画像322を指でタッチした状態で指を円形の画像の半径方向外側にスライドさせる操作である。操作画像32に対する操作が、指示画像322を目盛画像321の最大値方向に移動させる操作である場合、決定部213は、オーバライド値を増加させると決定する。決定部213は、指示画像322が指でタッチされた状態での指のスライド距離に応じて、オーバライド値の増加量を決定する。また、画像表示部211は、オーバライド値の増加量に応じて、指示画像322が指し示す目盛画像321の位置を変化させる。
 目盛画像321の最大値表示部をタッチする操作とは、例えば、目盛画像321が示すオーバライド値の最大値を表示している部分、あるいは、最大値を表示している部分の近傍をタッチする操作である。図5に示す例では、最大値表示部は、「120%」と表示されている部分およびその付近の領域である。操作画像32に対する操作が、目盛画像321の最大値表示部をタッチする操作である場合、決定部213は、オーバライド値を増加させると決定する。
 決定部213は、最大値表示部のタップ回数に応じて、オーバライド値の増加量を決定する。例えば、最大値表示部が1回タップされると、決定部213はオーバライド値を10%増加させると決定する。また、最大値表示部が2回タップされると、決定部213はオーバライド値を20%増加させると決定する。なお、決定部213は、最大値表示部の長押し時間に応じて、オーバライド値の増加量を決定してもよい。
 画像表示部211は、オーバライド値の増加量に応じて、指示画像322が指し示す目盛画像321の位置を変化させる。画像表示部211は、指示画像322が指し示す目盛画像321の位置に応じて、半径方向に沿って円形の画像の表示態様を変化させてもよい。例えば、図5に示すように、100%~120%のオーバライド値を示す領域において、色が連続的に変化するように表示させてもよい。また、オーバライド値の最大値120%を示す領域付近を赤色で表示し、オーバライド値100%を示す領域付近を黄色で表示してもよい。これにより、作業者は、オーバライド値を安全側に操作しているか否かを色によって認識することができる。
 図6は、操作画像32に対する操作の一例について説明する図である。オーバライド値を減少させる操作には、例えば、(4)ピンチイン操作、(5)指示画像322を目盛画像321の最小値方向に移動させる操作、および(6)目盛画像321の最小値表示部をタッチする操作が含まれる。
 ピンチイン操作とは、2本の指が表示画面30に触れた状態で、それらの指を互いに近接させる方向に動かす操作である。操作画像32に対する操作が、例えば、円形の画像上におけるピンチイン操作である場合、決定部213は、オーバライド値を減少させると決定する。なお、決定部213は、2本の指の間の距離の変化量に応じて、オーバライド値の減少量を決定する。
 画像表示部211は、オーバライド値の減少量に応じて、指示画像322が指し示す目盛画像321の位置を変化させる。図6に示す例の場合、オーバライド値の減少量に応じて円形の画像の円周部分が小さくなる。ここで、円周部分とは内径部分である。
 指示画像322を目盛画像321の最小値方向に移動させる操作とは、例えば、指示画像322を指でタッチした状態で指を円形の画像の円周部分を半径方向内側にスライドさせる操作である。操作画像32に対する操作が指示画像322を目盛画像321の最小値方向に移動させる操作である場合、決定部213は、オーバライド値を減少させると決定する。決定部213は、指示画像322を指でタッチした状態での指のスライド距離に応じて、オーバライド値の減少量を決定する。また、画像表示部211は、オーバライド値の減少量に応じて、指示画像322が指し示す目盛画像321の位置を変化させる。
 目盛画像321の最小値表示部をタッチする操作とは、例えば、目盛画像321が示すオーバライド値の最小値を表示している部分、あるいは、最小値を表示している部分の近傍をタッチする操作である。図6に示す例では、最小値を表示している部分は「50%」と表示されている部分、およびその付近の領域である。操作画像32に対する操作が、目盛画像321の最小値表示部をタッチする操作である場合、決定部213は、オーバライド値を減少させると決定する。
 決定部213は、最小値表示部のタップ回数に応じて、オーバライド値の減少量を決定する。例えば、最小値表示部が1回タップされると、決定部213はオーバライド値を10%減少させると決定する。また、最小値表示部が2回タップされると、決定部213はオーバライド値を20%減少させると決定する。なお、決定部213は、最小値表示部の長押し時間に応じて、オーバライド値の減少量を決定してもよい。
 画像表示部211は、オーバライド値の減少量に応じて、指示画像322が指し示す目盛画像321の位置を変化させる。画像表示部211は、指示画像322が指し示す目盛画像321の位置に応じて、半径方向に沿って円形の画像の表示態様を変化させてもよい。例えば、図6に示すように、100%~50%のオーバライド値を示す領域において、色が連続的に変化するように表示させてもよい。また、オーバライド値の最小値50%を示す領域付近を青色で表示し、オーバライド値100%を示す領域付近を黄色で表示してもよい。これにより、作業者は、オーバライド値を安全側に操作しているか否か色によって認識することができる。
 決定部213は、次に説明する(7)~(9)の条件が成立した場合、操作画像32を非表示にすると決定する。決定部213が操作画像32を非表示にすると決定した場合、画像表示部211は操作画像32を表示画面30から消去する。
 図7は、実速度画像31および操作画像32に対する操作の一例を説明する図である。決定部213は、例えば、(7)操作画像32が表示画面30に表示されている状態で実速度画像31に対する操作がなされた場合、または(8)操作画像32に対する操作が操作画像32の消去操作である場合、もしくは、(9)操作画像32に対する操作が所定時間検出されない場合、操作画像32を非表示にすると決定する。
 実速度画像31に対する操作とは、例えば、実速度画像31に対するタップ操作、長押し操作、スライド操作である。また、操作画像32の消去操作とは、操作画像に対するフリック操作である。フリック操作とは、表示画面30上において指を素早く動かす操作、または表示画面30を弾く操作である。なお、フリック操作の方向は、いずれの方向であってもよい。所定時間とは、例えば、20秒間である。つまり、操作画像32に対する操作が、20秒間ない場合、決定部213は、操作画像32を非表示にすると決定する。
 制御部214は、決定部213によって決定されたオーバライド値に基づいて駆動軸を制御する。制御部214は、決定部213によって決定されたオーバライド値に基づいて、送り軸をリアルタイムに制御する。
 次に、制御装置2がオーバライド値を変更する際に実行する処理の流れについて説明する。
 図8は、制御装置2が実行する処理の流れの一例を示すフローチャートである。まず、制御装置2による制御が開始されると、画像表示部211が、表示画面30に実速度画像31を表示させる(ステップS1)。
 次に、作業者が表示画面30に対するタッチ操作を行った場合、検出部212が、表示画面30に対するタッチ操作を検出する(ステップS2)。このとき、検出部212は、例えば、実速度画像31に対するタッチ操作を検出する。
 次に、検出部212が表示画面30に対するタッチ操作を検出した場合、画像表示部211が操作画像32を表示画面30に表示させる(ステップS3)。
 次に、作業者が操作画像32に対するタッチ操作を行った場合、検出部212が、操作画像32に対するタッチ操作を検出する(ステップS4)。
 検出部212が操作画像32に対するタッチ操作を検出すると、決定部213は、操作画像32に対するタッチ操作に基づいて、オーバライド値を決定する。(ステップS5)。
 次に、制御部214は、決定部213によって決定されたオーバライド値に基づいて、駆動軸を制御する(ステップS6)。
 オーバライド値を変更するためのタッチ操作が終了すると、画像表示部211は、操作画像32を非表示にして(ステップS7)、処理を終了する。
 以上説明したように、制御装置2は、駆動軸のオーバライド値を変更するための操作画像32を表示画面30に表示させる画像表示部211と、操作画像32に対する操作に基づいてオーバライド値を決定する決定部213と、決定部213によって決定されたオーバライド値に基づいて駆動軸を制御する制御部214と、を備える。
 したがって、制御装置2の操作盤には駆動軸の速度を調整するための専用のオーバライドスイッチを設ける必要がなく、制御装置2の製造コストを抑えることができる。また、操作盤の部品点数を減らすことができ、操作盤の組み立てが容易になるとともに、操作盤の組立時間を減らすことができる。また、操作画像32の表示態様などの設計変更を容易にすることができる。この場合、例えば、産業機械1のモデルに合わせて表示態様を設計することができる。
 また、制御装置2は、表示画面30に対するタッチ操作を検出する検出部212をさらに備え、検出部212がタッチ操作を検出した場合、画像表示部211が操作画像32を表示画面30に表示させる。したがって、オーバライド値の操作が必要なときだけ操作画像32を表示画面30に表示させることができる。つまり、表示画面30が情報過多になることを防ぎ、表示画面30に対する視認性を向上させることができる。
 また、画像表示部211は、さらに、駆動軸の実速度を示す実速度画像31を表示し、検出部212が実速度画像31に対するタッチ操作を検出した場合、画像表示部211が操作画像32を表示画面30に表示させる。また、画像表示部211は、操作画像32を実速度画像31に隣接させて表示させる。したがって、作業者は、実速度画像31と操作画像32とを同時に視認することができる。あるいは、作業者は、実速度画像31と操作画像32との間で視線を大きく動かす必要がない。そのため、駆動軸のオーバライドの操作における作業者の負担を軽減することができる。
 また、検出部212が、操作画像32が表示画面30に表示されている状態で実速度画像31に対する操作、または操作画像32に対する消去操作を検出した場合、もしくは、操作画像32に対する操作を所定時間検出しない場合、決定部213は、操作画像32を非表示にすると決定する。そのため、オーバライド値の操作が不要なときには、操作画像32を非表示にすることにより、表示画面30の視認性を向上させることができる。
 また、決定部213は、操作画像32に対する操作がピンチアウト操作である場合に、オーバライド値を増加させ、操作画像32に対する操作がピンチイン操作である場合に、オーバライド値を減少させることを決定する。また、操作画像32は、オーバライド値の大きさを示す目盛画像321と、目盛画像321中の位置を指し示す指示画像322とを含み、決定部213は、操作画像32に対する操作が指示画像322を目盛画像321の最大値方向に移動させる操作である場合に、オーバライド値を増加させ、操作画像32に対する操作が指示画像322を目盛画像321の最小値方向に移動させる操作である場合に、オーバライド値を減少させることを決定する。また、決定部213は、操作画像32に対する操作が目盛画像321の最大値表示部をタッチする操作である場合に、オーバライド値を増加させ、操作画像32に対する操作が目盛画像321の最小値部分をタッチする操作である場合に、オーバライド値を減少させることを決定する。したがって、作業者は簡単な操作でオーバライド値を変更させることができる。
 また、操作画像32は、円形の画像を含み、指示画像322は、円形の画像の円周部分である。また、画像表示部211は、指示画像322が指し示す位置に応じて、半径方向に沿って円形の画像の表示態様を変化させる。したがって、作業者は、目盛画像以外の画像でオーバライド値を確認することができる。つまり、操作画像32に対する視認性を高めることができる。
 次に、送り軸の送り速度のオーバライド値を変更する例について説明する。送り軸の送り速度には切削送り速度と早送り速度が含まれる。
 図9は、実速度画像の一例を示す図である。図9に示す実速度画像33は、送り軸の切削送り速度の実速度を示す画像である。実速度画像33は、入出力装置3の表示画面30の所定の領域に表示される。検出部212は、例えば、実速度画像33に対するタッチ操作を検出する。画像表示部211は、検出部212が実速度画像33に対するタッチ操作を検出した場合、駆動軸のオーバライド値を変更するための操作画像を表示画面30に表示させる。
 図10は、操作画像の一例を示す図である。操作画像34は、円弧状のスライドバー画像341と、オーバライド値の大きさを示す目盛画像342と、目盛画像342中の位置を指し示す指示画像343とを含む。図10では、100%の位置に描かれた細長の5角形のスライダが指示画像343である。なお、現在のオーバライド値は、スライドバー画像341の中心部分にも数値で示されてもよい。
 決定部213は、操作画像34に対する操作に基づいて駆動軸のオーバライド値を決定する。
 図11は、操作画像34に対する操作の一例について説明する図である。オーバライド値を増加させる操作には、例えば、(10)ピンチアウト操作、(11)指示画像343を目盛画像342の最大値方向に移動させる操作、(12)目盛画像342の最大値表示部をタッチする操作、および(13)オーバライド値を増加させる増加ボタン344をタッチする操作が含まれる。
 操作画像34に対する操作が、スライドバー画像341付近におけるピンチアウト操作である場合、決定部213は、オーバライド値を増加させると決定する。画像表示部211は、オーバライド値の増加量に応じて、指示画像343が指し示す目盛画像342の位置を変化させる。図11に示す例では、オーバライド値の増加量に応じて指示画像343がスライドバー画像341の最大値の方向に向かって移動する。
 操作画像34に対する操作が、指示画像343を目盛画像342の最大値方向に移動させる操作である場合、決定部213は、オーバライド値を増加させると決定する。決定部213は、指示画像343が指し示す目盛画像342の位置に応じて、オーバライド値の増加量を決定する。
 操作画像34に対する操作が、目盛画像342の最大値表示部をタッチする操作である場合、決定部213は、オーバライド値を増加させると決定する。目盛画像342の最大値表示部とは、図11に示す例では、「200%」と表示されている部分、およびその付近の領域である。決定部213は、例えば、最大値表示部のタップ回数に応じて、オーバライド値の増加量を決定する。決定部213は、最大値表示部の長押し時間に応じて、オーバライド値の増加量を決定してもよい。また、画像表示部211は、オーバライド値の増加量に応じて、指示画像343が指し示す目盛画像342の位置を変化させる。
 操作画像34に対する操作が、オーバライド値を増加させる増加ボタン344をタッチする操作である場合、決定部213は、オーバライド値を増加させると決定する。増加ボタン344をタッチする操作は、増加ボタン344をタップする操作、増加ボタン344を長押しする操作を含む。増加ボタン344は、例えば、スライドバー画像341の最大値表示部に隣接させて表示される。図11に示す例では、増加ボタン344は、「+」の文字を表示する三角形の画像である。
 画像表示部211は、指示画像343が指し示す位置に応じて、スライドバー画像341の長手方向に沿ってスライドバー画像341の表示態様を変化させてもよい。例えば、図11に示すように100%~200%のオーバライド値を示す領域において、色が連続的に変化するように表示させてもよい。また、オーバライド値の最大値200%を示す領域付近を赤色で表示し、オーバライド値100%を示す領域付近を黄色で表示してもよい。これにより、作業者は、オーバライド値を安全側に操作しているか否かを色によって認識することができる。
 図12は、操作画像34に対する操作の一例について説明する図である。オーバライド値を減少させる操作には、例えば、(14)ピンチイン操作、(15)指示画像343を目盛画像342の最小値方向に移動させる操作、(16)目盛画像342の最小値表示部をタッチする操作、および(17)オーバライド値を減少させる減少ボタン345をタッチする操作が含まれる。
 操作画像34に対する操作が、例えば、スライドバー画像341付近におけるピンチイン操作である場合、決定部213は、オーバライド値を減少させると決定する。画像表示部211は、オーバライド値の減少量に応じて、指示画像343が指し示す目盛画像342の位置を変化させる。図12に示す例の場合、オーバライド値の減少量に応じて指示画像343がスライドバー画像341の最小値の方向に向かって移動する。
 操作画像34に対する操作が、指示画像343を目盛画像342の最小値方向に移動させる操作である場合、決定部213は、オーバライド値を減少させると決定する。決定部213は、指示画像343を指でタッチした状態での指のスライド距離に応じて、オーバライド値の減少量を決定する。
 操作画像34に対する操作が、目盛画像342の最小値表示部をタッチする操作である場合、決定部213は、オーバライド値を減少させると決定する。目盛画像342の最小値表示部とは、図12に示す例では、「0%」と表示されている部分、およびその付近の領域である。決定部213は、例えば、最小値表示部のタップ回数に応じて、オーバライド値の減少量を決定する。また、画像表示部211は、オーバライド値の減少量に応じて、指示画像343が指し示す目盛画像342の位置を変化させる。なお、決定部213は、最小値表示部の長押し時間に応じて、オーバライド値の減少量を決定してもよい。
 操作画像34に対する操作が、オーバライド値を減少させる減少ボタン345をタッチする操作である場合、決定部213は、オーバライド値を減少させると決定する。減少ボタン345は、例えば、スライドバー画像341の最小値表示部に隣接させて表示される。図12に示す例では、減少ボタン345は、「-」の文字を表示する三角形の画像である。
 画像表示部211は、指示画像343が指し示す位置に応じて、スライドバー画像341の長手方向に沿って表示態様を変化させてもよい。例えば、図12に示すように、100%~0%のオーバライド値を示す領域において色が連続的に変化するように表示させてもよい。また、オーバライド値の最小値を示す領域付近は、例えば、青色が表示されるようにしてもよい。また、オーバライド値の最小値0%を示す領域付近を青色で表示し、オーバライド値100%を示す領域付近を黄色で表示してもよい。これにより、作業者は、オーバライド値を安全側に操作しているか否かを色によって認識することができる。
 決定部213は、次に説明する(18)~(20)の条件が成立した場合、操作画像34を非表示にすると決定する。決定部213が操作画像34を非表示にすると決定した場合、画像表示部211は操作画像34を表示画面30から消去する。
 図13は、実速度画像33および操作画像34に対する操作の一例を説明する図である。決定部213は、例えば、(18)操作画像34が表示画面30に表示されている状態で実速度画像33に対する操作がなされた場合、または(19)操作画像34に対する操作が操作画像34の消去操作である場合、もしくは、(20)操作画像34に対する操作が所定時間検出されない場合、操作画像34を非表示にすると決定する。
 実速度画像33に対する操作とは、例えば、実速度画像33に対するタップ操作、長押し操作、スライド操作である。また、操作画像34の消去操作とは、操作画像に対するフリック操作である。フリック操作とは、表示画面30上において指を素早く動かす操作、または表示画面30を弾く操作である。なお、フリック操作の方向は、いずれの方向であってもよい。所定時間とは、例えば、20秒間である。つまり、操作画像34に対する操作が、20秒間ない場合、決定部213は、操作画像34を非表示にすると決定する。
 上述した実施形態では、オーバライド値に応じて操作画像34の色を連続的に変化させる。しかし、色は、連続的に変化させる態様に限らず、段階的に変化させるようにしてもよい。あるいは、色は、連続的に変化させる態様および段階的に変化させる態様から選択できるようにしてもよい。この場合、制御装置2は、記憶部(不図示)、および受付部(不図示)をさらに備える。
 記憶部は、例えば、操作画像34の複数の表示態様が設定された表示態様設定テーブル記憶する。また、受付部は、表示態様設定テーブルから一の表示態様を選択する選択操作を受け付ける。
 図14は、表示態様設定テーブルの一例を示す図である。表示態様設定テーブルには、例えば、操作画像32、または操作画像34の表示態様を連続的に変化させる表示態様と、段階的に変化させる表示態様とが設定される。受付部は、例えば、表示態様の選択操作を受け付ける。これにより、作業者の好みに合わせた表示態様とすることができる。
 上述した実施形態では、1回のタップ操作がされるとあらかじめ定められた割合だけオーバライド値が増加または減少する。しかし、タップ操作の回数に応じて増加幅または減少幅を変更するようにしてもよい。この場合、例えば、制御装置2は増減幅設定テーブル記憶部を備え、増減幅設定テーブル記憶部はタップ操作回数と増加幅および減少幅とを関連付けた増減幅設定テーブルを記憶する。
 図15は、増減幅設定テーブルの一例を示す図である。増減幅設定テーブルには、シングルタップには増減幅1%、ダブルタップには増減幅10%、トリプルタップには増減幅20%が関連付けられている。したがって、目盛画像342の最大値表示部が1回タップされたとき、決定部213は、オーバライド値を1%増加させると決定する。また、目盛画像342の最大値表示部が2回連続でタップされたとき、決定部213は、オーバライド値を10%増加させると決定する。また、目盛画像342の最大値表示部が3回連続でタップされたとき、決定部213は、オーバライド値を20%増加させると決定する。決定部213は、目盛画像342の最小値表示部がタップされたときも同様の減少幅でオーバライド値を減少させると決定する。なお、制御装置2が受付部を備え、受付部が増減幅設定テーブルに設定される増減幅を受け付けるようにしてもよい。
 また、制御装置2が記憶部を備え、記憶部がオーバライド値の最大値および最小値を設定するオーバライド値設定テーブルを記憶するようにしてもよい。
 図16は、オーバライド値設定テーブルの一例を示す図である。オーバライド値設定テーブルには、例えば、主軸の回転速度のオーバライド値に対して最小値50%、最大値120%が設定されている。また、送り軸のオーバライド値に対して最小値0%、最大値200%が設定されている。なお、制御装置2が受付部を備え、受付部がオーバライド値設定テーブルに設定される各オーバライド値の最大値および最小値を受け付けるようにしてもよい。この場合、作業者は加工対象物、工作機械などに応じて、オーバライド値を設定することができる。
 なお、本開示は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。本開示では、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
  1     産業機械
  2     制御装置
  201   CPU
  202   バス
  203   ROM
  204   RAM
  205   不揮発性メモリ
  206   インタフェース
  207   軸制御回路
  208   スピンドル制御回路
  209   PLC
  210   I/Oユニット
  211   画像表示部
  212   検出部
  213   決定部
  214   制御部
  3     入出力装置
  30    表示画面
  31    実速度画像
  32    操作画像
  321   目盛画像
  322   指示画像
  33    実速度画像
  34    操作画像
  341   スライドバー画像
  342   目盛画像
  343   指示画像
  344   増加ボタン
  345   減少ボタン
  4     サーボアンプ
  5     サーボモータ
  6     スピンドルアンプ
  7     スピンドルモータ
  8     補助機器

Claims (15)

  1.  駆動軸のオーバライド値を変更するための操作画像を表示画面に表示させる画像表示部と、
     前記操作画像に対する操作に基づいて前記オーバライド値を決定する決定部と、
     前記決定部によって決定された前記オーバライド値に基づいて前記駆動軸を制御する制御部と、
    を備えた制御装置。
  2.  前記表示画面に対するタッチ操作を検出する検出部をさらに備え、
     前記検出部が前記タッチ操作を検出した場合、前記画像表示部が前記操作画像を前記表示画面に表示させる請求項1に記載の制御装置。
  3.  前記画像表示部は、さらに、前記駆動軸の実速度を示す実速度画像を前記表示画面に表示し、
     前記検出部が前記実速度画像に対する前記タッチ操作を検出した場合、前記画像表示部が前記操作画像を前記表示画面に表示させる請求項2に記載の制御装置。
  4.  前記画像表示部は、前記操作画像を前記実速度画像に隣接させて表示させる請求項3に記載の制御装置。
  5.  前記検出部が、前記操作画像が前記表示画面に表示されている状態で前記実速度画像に対する操作、または前記操作画像に対する消去操作を検出した場合、もしくは、前記操作画像に対する操作を所定時間検出しない場合、前記決定部は、前記操作画像を非表示にすると決定する請求項3または4に記載の制御装置。
  6.  前記決定部は、前記操作画像に対する前記操作がピンチアウト操作である場合に、前記オーバライド値を増加させ、前記操作画像に対する前記操作がピンチイン操作である場合に、前記オーバライド値を減少させると決定する請求項1~5のいずれか1項に記載の制御装置。
  7.  前記操作画像は、前記オーバライド値の大きさを示す目盛画像と、前記目盛画像中の位置を指し示す指示画像とを含み、
     前記決定部は、前記操作画像に対する操作が前記指示画像を前記目盛画像の最大値方向に移動させる操作である場合に、前記オーバライド値を増加させ、前記操作画像に対する操作が前記指示画像を前記目盛画像の最小値方向に移動させる操作である場合に、前記オーバライド値を減少させると決定する請求項1~6のいずれか1項に記載の制御装置。
  8.  前記操作画像は、円形の画像を含み、
     前記指示画像は、前記円形の画像の円周部分である請求項7項に記載の制御装置。
  9.  前記画像表示部は、前記指示画像が指し示す前記位置に応じて、半径方向に沿って前記円形の画像の表示態様を変化させる請求項8に記載の制御装置。
  10.  前記操作画像は、スライドバー画像を含み、
     前記画像表示部は、前記指示画像が指し示す前記位置に応じて、前記スライドバー画像の長手方向に沿って前記スライドバー画像の表示態様を変化させる請求項7に記載の制御装置。
  11.  複数の表示態様を記憶する記憶部をさらに備え、
     前記表示態様は、前記記憶部に記憶された前記複数の表示態様のうちの一の表示態様である請求項9または10に記載の制御装置。
  12.  前記決定部は、前記操作画像に対する前記操作が前記目盛画像の最大値表示部をタッチする操作である場合に前記オーバライド値を増加させ、前記操作画像に対する前記操作が前記目盛画像の最小値表示部をタッチする操作である場合に前記オーバライド値を減少させると決定する請求項7~11のいずれか1項に記載の制御装置。
  13.  前記決定部は、前記最大値表示部のタップ回数に基づいて、前記オーバライド値の増加幅を決定し、前記最小値表示部のタップ回数に基づいて、前記オーバライド値の減少幅を決定する請求項12に記載の制御装置。
  14.  前記タップ回数と前記オーバライド値の前記増加幅および前記減少幅との関係が設定された増減幅設定テーブルを記憶する増減幅設定テーブル記憶部をさらに備える請求項13に記載の制御装置。
  15.  前記操作画像は、前記オーバライド値を増加させる増加ボタンと、前記オーバライド値を減少させる減少ボタンとを含み、
     前記決定部は、前記操作画像に対する操作が前記増加ボタンをタッチする操作である場合に前記オーバライド値を増加させ、前記操作画像に対する操作が前記減少ボタンをタッチする操作である場合に前記オーバライド値を減少させると決定する請求項1~14のいずれか1項に記載の制御装置。
PCT/JP2021/019880 2021-05-25 2021-05-25 産業機械の制御装置 WO2022249303A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021007320.6T DE112021007320T5 (de) 2021-05-25 2021-05-25 Steuerung für industriemaschinen
PCT/JP2021/019880 WO2022249303A1 (ja) 2021-05-25 2021-05-25 産業機械の制御装置
CN202180098318.6A CN117321517A (zh) 2021-05-25 2021-05-25 工业机械的控制装置
JP2023523778A JPWO2022249303A1 (ja) 2021-05-25 2021-05-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/019880 WO2022249303A1 (ja) 2021-05-25 2021-05-25 産業機械の制御装置

Publications (2)

Publication Number Publication Date
WO2022249303A1 true WO2022249303A1 (ja) 2022-12-01
WO2022249303A9 WO2022249303A9 (ja) 2023-10-19

Family

ID=84228589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019880 WO2022249303A1 (ja) 2021-05-25 2021-05-25 産業機械の制御装置

Country Status (4)

Country Link
JP (1) JPWO2022249303A1 (ja)
CN (1) CN117321517A (ja)
DE (1) DE112021007320T5 (ja)
WO (1) WO2022249303A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014186751A (ja) * 2013-02-20 2014-10-02 Panasonic Intellectual Property Corp Of America プログラム及び制御方法
JP2015056114A (ja) * 2013-09-13 2015-03-23 Dmg森精機株式会社 Nc工作機械の操作装置
WO2017149667A1 (ja) * 2016-03-01 2017-09-08 富士機械製造株式会社 工作機械管理装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6570592B2 (ja) 2017-09-29 2019-09-04 株式会社牧野フライス製作所 工作機械の機上測定方法および制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014186751A (ja) * 2013-02-20 2014-10-02 Panasonic Intellectual Property Corp Of America プログラム及び制御方法
JP2015056114A (ja) * 2013-09-13 2015-03-23 Dmg森精機株式会社 Nc工作機械の操作装置
WO2017149667A1 (ja) * 2016-03-01 2017-09-08 富士機械製造株式会社 工作機械管理装置

Also Published As

Publication number Publication date
JPWO2022249303A1 (ja) 2022-12-01
WO2022249303A9 (ja) 2023-10-19
CN117321517A (zh) 2023-12-29
DE112021007320T5 (de) 2024-01-04

Similar Documents

Publication Publication Date Title
US9436365B2 (en) Operating device for NC machine tool
US20150105900A1 (en) Numerical controller provided with operation setting screen
JP2017211956A (ja) マルチタッチジェスチャによる機械操作が可能な数値制御装置
JP6266268B2 (ja) 表示装置
JP2004126956A (ja) 数値制御装置
US20170312912A1 (en) Robot control apparatus which displays operation program including state of additional axis
WO2022249303A1 (ja) 産業機械の制御装置
JP2000305614A (ja) タッチパネルによる機械制御装置
JP5601949B2 (ja) ロボット制御システム
WO2016185948A1 (ja) 工作機械の操作盤
WO2022249305A1 (ja) 産業機械の制御装置
US10303155B2 (en) Numerical controller having manual handle feed function
WO2022249304A9 (ja) 産業機械の制御装置
US11360454B2 (en) Ladder display device for circuit generation using touch panel
US20230076571A1 (en) Device for controlling wire electrical discharge machining apparatus
KR20190068858A (ko) 공작기계의 사이클 가공시 공구경로 변경장치 및 변경방법
JP2799323B2 (ja) 手動送り運転処理装置
WO2023203724A1 (ja) 表示装置およびコンピュータ読み取り可能な記憶媒体
JP2559273B2 (ja) 数値制御装置および数値制御装置の画面表示方法
WO2022039142A1 (ja) 数値制御装置、工作機械、および工作機械の制御方法
JP2014018939A (ja) ロボット制御装置
WO2023037418A1 (ja) インタロック機能を有する制御装置及び制御方法
JP5912054B2 (ja) ロボット制御装置
WO2022030437A1 (ja) 数値制御装置、製造機械、および製造機械の制御方法
JP6730365B2 (ja) 軸送り装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942957

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023523778

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18289147

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112021007320

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 202180098318.6

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21942957

Country of ref document: EP

Kind code of ref document: A1