WO2022030437A1 - 数値制御装置、製造機械、および製造機械の制御方法 - Google Patents

数値制御装置、製造機械、および製造機械の制御方法 Download PDF

Info

Publication number
WO2022030437A1
WO2022030437A1 PCT/JP2021/028588 JP2021028588W WO2022030437A1 WO 2022030437 A1 WO2022030437 A1 WO 2022030437A1 JP 2021028588 W JP2021028588 W JP 2021028588W WO 2022030437 A1 WO2022030437 A1 WO 2022030437A1
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing machine
control
manufacturing
stop condition
stop
Prior art date
Application number
PCT/JP2021/028588
Other languages
English (en)
French (fr)
Inventor
徹 石井
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to US18/018,075 priority Critical patent/US20230280707A1/en
Priority to DE112021003614.9T priority patent/DE112021003614T5/de
Priority to JP2022541528A priority patent/JP7538228B2/ja
Priority to CN202180056678.XA priority patent/CN116324643A/zh
Publication of WO2022030437A1 publication Critical patent/WO2022030437A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4063Monitoring general control system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31368MAP manufacturing automation protocol
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34465Safety, control of correct operation, abnormal states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a numerical control device, a manufacturing machine, and a control method for the manufacturing machine.
  • an alarm indicating that the abnormality has been detected is issued.
  • the method of stopping the operation of the manufacturing machine is determined according to the degree of abnormality of the event causing the alarm.
  • Patent Document 1 the operation of the machine tool is immediately stopped, the operation is stopped after the operation related to the block during execution of the machining program is completed, or the machining program is terminated, depending on the level of the detected abnormality. Describes techniques for machine tools that determine whether to stop operation after running up to.
  • the method of stopping the manufacturing machine is predetermined according to the degree of abnormality of the event that has occurred, so it may not be possible to stop the operation at an appropriate timing according to the operating conditions of the machine. .. Therefore, there is a demand for a technique for stopping the operation of a manufacturing machine at a more appropriate timing according to the operating state of the machine when an alarm occurs.
  • An object of the present invention is to provide a numerical control device, a manufacturing machine, and a control method of the manufacturing machine, which can stop the manufacturing machine at an appropriate timing when an event causing an alarm occurs.
  • a numerical control device associates multiple stop conditions with a manufacturing process and event of a product to stop the manufacturing machine when an event that causes an alarm occurs in the manufacturing machine that manufactures the product using tools.
  • the storage unit to store, the reception unit that accepts the selection of at least one stop condition among the plurality of stop conditions stored in the storage unit, and the reception unit that accepts when an event occurs during the manufacturing of the product.
  • a control unit that executes operation control of the manufacturing machine until the stop condition of at least one of the stop conditions is satisfied is provided.
  • the control method of the manufacturing machine is stored in association with the manufacturing process and event of the product for stopping the manufacturing machine when an event causing an alarm occurs in the manufacturing machine that manufactures the product using a tool.
  • Accepting the selection of at least one stop condition among a plurality of stop conditions, and satisfying one of the accepted stop conditions when an event occurs during the manufacture of a product. Includes performing motion control of manufacturing machines up to.
  • the manufacturing machine when an event that causes an alarm occurs, the manufacturing machine can be stopped at an appropriate timing.
  • FIG. 1 is a diagram showing an example of a hardware configuration of a manufacturing machine.
  • the manufacturing machine 1 is a machine that manufactures a product using a tool.
  • the manufacturing machine 1 is, for example, a machine tool for cutting a product.
  • Machine tools are, for example, machining centers, lathes, and multi-tasking machines.
  • the tools are, for example, a drill, an end mill, a tool bit, and a thread cutting tool.
  • manufacturing means performing machining such as cutting.
  • the manufacturing machine 1 may be a wire electric discharge machine that performs electric discharge machining on a product. Further, the manufacturing machine 1 may be a 3D printer that performs adaptive manufacturing of manufactured products.
  • the manufacturing machine 1 When the manufacturing machine 1 is a wire electric discharge machine, the manufacturing machine 1 discharges between the wire and the product and cuts the product.
  • the manufacturing machine 1 When the manufacturing machine 1 is a wire electric discharge machine, manufacturing is to perform electric discharge machining on a work. Also, wire is a concept included in tools.
  • the manufacturing machine 1 manufactures a product by, for example, laminated modeling.
  • manufacturing means manufacturing a product by laminated modeling.
  • a head portion such as a laser head used in a 3D printer is a concept included in a tool.
  • the manufacturing machine 1 of the present embodiment will be described using a machine tool as an example.
  • the product is referred to as a work.
  • the manufacturing machine 1 includes a numerical control device 2, a display device 3, an input device 4, a servo amplifier 5, a servo motor 6, a spindle amplifier 7, a spindle motor 8, a sensor 9, and a peripheral device 10.
  • the numerical control device 2 is a device that controls the entire manufacturing machine 1.
  • the numerical control device 2 includes a CPU (Central Processing Unit) 11, a bus 12, a ROM (Read Only Memory) 13, a RAM (Random Access Memory) 14, and a non-volatile memory 15.
  • CPU Central Processing Unit
  • bus 12 a bus 12
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 11 is a processor that controls the entire numerical control device 2 according to a system program.
  • the CPU 11 reads a system program or the like stored in the ROM 13 via the bus 12. Further, the CPU 11 controls the servomotor 6 and the spindle motor 8 according to the machining program to execute the machining of the work.
  • the bus 12 is a communication path that connects each hardware in the numerical control device 2 to each other. Each piece of hardware in the numerical control device 2 exchanges data via the bus 12.
  • the ROM 13 is a storage device that stores a system program for controlling the entire numerical control device 2 and an analysis program for analyzing various data.
  • the RAM 14 is a storage device that temporarily stores various data.
  • the RAM 14 temporarily stores data related to the tool path calculated by analyzing the machining program, data for display, data input from the outside, and the like.
  • the RAM 14 functions as a work area for the CPU 11 to process various data.
  • the non-volatile memory 15 is a storage device that holds data even when the power of the manufacturing machine 1 is turned off and the power is not supplied to the numerical control device 2.
  • the non-volatile memory 15 is composed of, for example, an SSD (Solid State Drive).
  • the non-volatile memory 15 is, for example, a tool correction data input from the input device 4, tool life data, component life data of parts constituting the manufacturing machine 1, and a machining program input via a network (not shown). And so on.
  • the numerical control device 2 further includes a first interface 16, a second interface 17, an axis control circuit 18, a spindle control circuit 19, a third interface 20, and a PLC (Programmable Logic Controller) 21. It is equipped with an I / O unit 22.
  • the first interface 16 is an interface for connecting the bus 12 and the display device 3.
  • the first interface 16 sends, for example, various data processed by the CPU 11 to the display device 3.
  • the display device 3 is a device that receives various data via the first interface 16 and displays various data.
  • the display device 3 displays, for example, a machining program stored in the non-volatile memory 15, data related to a tool correction amount, and the like.
  • the display device 3 is a display such as an LCD (Liquid Crystal Display).
  • the second interface 17 is an interface for connecting the bus 12 and the input device 4.
  • the second interface 17 sends, for example, the data input from the input device 4 to the CPU 11 via the bus 12.
  • the input device 4 is a device for inputting various data.
  • the input device 4 receives, for example, input of data regarding the correction amount of the tool, and sends the input data to the non-volatile memory 15 via the second interface 17. Further, the input device 4 receives the selection input of the stop condition of the manufacturing machine 1 when the event causing the alarm occurs, and sends the selected input data to the non-volatile memory 15 via the second interface 17. ..
  • the input device 4 is, for example, a keyboard and a mouse.
  • the input device 4 and the display device 3 may be configured as one device such as a touch panel.
  • the axis control circuit 18 is a control circuit that controls the servomotor 6.
  • the axis control circuit 18 receives a control command from the CPU 11 and outputs a command for driving the servomotor 6 to the servo amplifier 5.
  • the axis control circuit 18 sends, for example, a torque command for controlling the torque of the servomotor 6 to the servo amplifier 5. Further, the axis control circuit 18 may send a rotation speed command for controlling the rotation speed of the servomotor 6 to the servo amplifier 5.
  • the servo amplifier 5 receives a command from the axis control circuit 18 and supplies electric power to the servomotor 6.
  • the servo motor 6 is a motor that receives power from the servo amplifier 5 and drives it.
  • the servomotor 6 is connected to, for example, a tool post, a spindle head, and a ball screw that drives a table.
  • the components of the manufacturing machine 1 such as the tool post, head shaft, and table move, for example, in the X-axis direction, the Y-axis direction, or the Z-axis direction.
  • the spindle control circuit 19 is a control circuit for controlling the spindle motor 8.
  • the spindle control circuit 19 receives a control command from the CPU 11 and outputs a command for driving the spindle motor 8 to the spindle amplifier 7.
  • the spindle control circuit 19 sends, for example, a torque command for controlling the torque of the spindle motor 8 to the spindle amplifier 7. Further, the spindle control circuit 19 may send a rotation speed command for controlling the rotation speed of the spindle motor 8 to the spindle amplifier 7.
  • the spindle amplifier 7 receives a command from the spindle control circuit 19 and supplies electric power to the spindle motor 8.
  • the spindle motor 8 is a motor that is driven by receiving electric power from the spindle amplifier 7.
  • the spindle motor 8 is connected to the spindle and rotates the spindle.
  • the third interface 20 is an interface for connecting the bus 12 and the sensor 9.
  • the third interface 20 sends the sensor data detected by the sensor 9 to the CPU 11 via the bus 12.
  • the sensor 9 is arranged in each component of the manufacturing machine 1 and detects various physical quantities from each component.
  • the sensor 9 is, for example, a temperature sensor that detects a temperature, a position detection sensor that detects a position, an acceleration sensor that detects an acceleration, a current detection sensor that detects a current, and a liquid meter.
  • the temperature sensor is arranged, for example, inside the control panel and in the cutting fluid tank, and detects the temperature inside the control panel and the cutting fluid.
  • the position detection sensor detects the positions of the components of the manufacturing machine 1, such as the tool post, spindle head, and table.
  • the axis control circuit 18 may perform feedback control using the sensor data detected by the position detection sensor.
  • the position detection sensor may be a position coder that detects the rotation angle of the spindle.
  • the position coder outputs a feedback pulse according to the rotation angle of the spindle.
  • the spindle control circuit 19 may perform feedback control using the feedback pulse output from the position coder.
  • the accelerometer is located near the spindle, for example, and detects the vibration generated near the spindle. For example, the degree of deterioration of the components constituting the manufacturing machine 1 is determined based on the magnitude of the vibration detected by the acceleration sensor.
  • the current detection sensor is arranged in, for example, the servo motor 6 and the spindle motor 8 and detects the current supplied to the servo motor 6 and the spindle motor 8. For example, an overload of the servo motor 6 or the spindle motor 8 is detected based on the current detected by the current detection sensor.
  • the liquid meter detects, for example, the amount of cutting fluid contained in the cutting fluid tank.
  • the PLC 21 is a control device that executes a ladder program to control the peripheral device 10.
  • the PLC 21 controls the peripheral device 10 via the I / O unit 22.
  • the I / O unit 22 is an interface for connecting the PLC 21 and the peripheral device 10.
  • the I / O unit 22 sends a command received from the PLC 21 to the peripheral device 10.
  • the peripheral device 10 is a device installed in the manufacturing machine 1 and performing an auxiliary operation when the manufacturing machine 1 processes a work.
  • the peripheral device 10 may be a device installed around the manufacturing machine 1.
  • the peripheral device 10 is a robot such as a tool changer and a manipulator, for example.
  • FIG. 2 is a block diagram showing an example of the function of the numerical control device 2.
  • the numerical control device 2 includes, for example, a control unit 31, a storage unit 32, a reception unit 33, a setting condition storage unit 34, a data acquisition unit 35, a determination unit 36, and a notification unit 37.
  • the control unit 31, the reception unit 33, the data acquisition unit 35, the determination unit 36, and the notification unit 37 are realized by, for example, the CPU 11 performing arithmetic processing using the system program stored in the ROM 13 and various data. ..
  • the CPU 11 uses the RAM 14 as a work area to execute arithmetic processing.
  • the storage unit 32 and the setting condition storage unit 34 are realized by storing the data input from the input device 4 or the like or the calculation result of the calculation process by the CPU 11 in the RAM 14 or the non-volatile memory 15.
  • the control unit 31 controls the servomotor 6 and the spindle motor 8 according to, for example, a machining program. As a result, the work is processed.
  • the control unit 31 controls the stop or operation of the manufacturing machine 1 when an event that causes an alarm occurs during machining of the work.
  • the stop control is a control for immediately stopping the manufacturing machine 1. That is, the stop control is a control for immediately stopping the operation of the manufacturing machine 1 even while the work is being machined by the tool.
  • the control unit 31 executes stop control when an event such as an overload occurs in the servomotor 6, for example.
  • Operation control includes miss control and continuous control.
  • Missing control is a control that stops machining of the work even while the work is being machined by the tool and moves the tool away from the work. When the stop condition is satisfied in the escape control, the operation of the manufacturing machine 1 is stopped.
  • Continuous control is control that continues machining of workpieces with tools until the stop condition is satisfied.
  • the stop condition is satisfied in the continuous control, the operation of the manufacturing machine 1 is stopped.
  • Whether the operation control of miss control or continuous control is executed is determined based on the stop condition selected by the user.
  • the storage unit 32 sets one or a plurality of stop conditions for stopping the operation of the manufacturing machine 1 when an event causing an alarm occurs in the manufacturing machine 1 in the manufacturing process and the alarm in which the manufacturing machine 1 performs.
  • the manufacturing process means, for example, a type of processing using various tools.
  • FIG. 3 is a diagram illustrating an example of a stop condition stored in the storage unit 32.
  • FIG. 3 shows the stop conditions when a fan abnormality, a tool life, a component life, or a coolant abnormality occurs during machining with an end mill.
  • the fan abnormality is, for example, that the air cooling fan installed in the control panel stops for some reason.
  • the tool life means that the total cutting time of the end mill performing cutting reaches a preset processing time.
  • the component life means that the operating time of a component such as a gear constituting the manufacturing machine 1 reaches a predetermined operating time.
  • the stop condition when a fan abnormality, tool life, or component life occurs is to reach the fast-forward start position or reach the machining end position.
  • the fast-forward start position is the position where fast-forwarding is performed first in the machining path of the end mill when viewed from the position of the end mill when an event that causes an alarm occurs.
  • the machining end position is the position where machining by the end mill used when an event that causes an alarm occurs ends.
  • the coolant abnormality is, for example, an abnormality in which the injection of coolant from the nozzle is stopped during processing.
  • the stop condition when an abnormality occurs in the coolant is to reach the fast-forward start position or reach the escape operation completion position.
  • the escape operation completion position is, for example, a position where the tip of the end mill is 100 [mm] away from the work.
  • the reception unit 33 accepts the selection of one of the plurality of stop conditions stored in the storage unit 32.
  • the reception unit 33 causes the display device 3 to display the stop condition setting screen, and receives from the input device 4 the selection input of one stop condition corresponding to the event causing the alarm and the manufacturing process.
  • FIG. 4 is a diagram showing an example of a stop condition setting screen displayed on the display device 3 by the reception unit 33.
  • a manufacturing process selection unit 41 for selecting a manufacturing process an event selection unit 42 for selecting an event, and a stop condition selection unit 43 for selecting a stop condition are displayed in a pull-down menu. Has been done.
  • the user selects the manufacturing process and the stop condition according to the event from the setting screen displayed on the display device 3.
  • the setting condition storage unit 34 stores the stop condition received by the reception unit 33. That is, the setting condition storage unit 34 stores the selected stop condition in association with the manufacturing process and the event, so that the stop condition when an event causing an alarm occurs in the predetermined manufacturing process is set. ..
  • the control unit 31 controls the end mill by continuous control. Continues machining until it reaches the position where fast-forwarding starts. When the stop condition is satisfied by the end mill reaching the fast-forward start position, the control unit 31 stops the operation of the manufacturing machine 1.
  • the control unit 31 When “reaching the machining end position" is set as a stop condition when a fan abnormality, tool life, or component life occurs during machining by the end mill (FIG. 3), the control unit 31 is in use by continuous control. Continue machining until the machining with the end mill is completed. When the stop condition is satisfied by the end mill reaching the machining end position, the control unit 31 stops the operation of the manufacturing machine 1.
  • the control unit 31 interrupts the machining of the end mill and controls the end mill to stop the end mill. Is separated from the work.
  • the control unit 31 stops the operation of the manufacturing machine 1.
  • FIG. 5 is a diagram illustrating another example of the stop condition stored in the storage unit 32.
  • FIG. 5 shows the stop conditions when a fan abnormality, a tool life, a component life, or a coolant abnormality occurs during drilling with a drill.
  • the stop condition when a fan abnormality, tool life, or component life occurs is to reach the R point (reference point) or to reach the end position of hole drilling.
  • the R point is a reference position when drilling a hole, and is a starting position of cutting feed in drilling.
  • the end position of hole drilling is the position of the R point of the last hole drilled by this drill when a plurality of holes are drilled by the drill.
  • the stop condition when an abnormality occurs in the coolant is to reach the R point or to reach the missed operation completion position.
  • the miss operation completion position is, for example, the R point.
  • the control unit 31 When “reaching point R” is set as a stop condition when a fan abnormality, tool life, or component life occurs during drilling with a drill (FIG. 5), the control unit 31 is machined by continuous control. After machining the hole inside to the end, the drill is pulled out by fast-forwarding. When the stop condition is satisfied when the drill reaches the R point, the control unit 31 stops the operation of the manufacturing machine 1.
  • the control unit 31 When “reaching the end position of hole drilling” is set as a stop condition when a fan abnormality, tool life, or component life occurs during drilling with a drill (FIG. 5), the control unit 31 continuously controls. Continues until all holes have been drilled with the drill in use. When the stop condition is satisfied by the drill reaching the R point of the last machined hole, the control unit 31 stops the operation of the manufacturing machine 1.
  • FIG. 6 is a diagram illustrating still another example of the stop condition stored in the storage unit 32.
  • FIG. 6 shows the stop conditions when a fan abnormality, a tool life, a component life, or a coolant abnormality occurs during thread cutting with a thread cutting tool.
  • the stop condition when a fan abnormality, tool life, or part life occurs is to reach the machining end position of the path being machined, or to reach the threading end position.
  • the threading end position is the processing end position of the last pass among all the passes in threading.
  • the stop condition when a coolant abnormality occurs is to reach the machining end position of the path being machined, or to reach the missed operation completion position.
  • the miss operation completion position is, for example, the end position of the round-up operation when the thread cutting tool interrupts the thread cutting process and performs rounding (champing).
  • the end position of the rounding up operation is, for example, a position where the tip of the thread cutting tool is 100 [mm] away from the work.
  • the control unit 31 When “reaching the machining end position of the path being threaded" is set as the stop condition when a fan abnormality, tool life, or component life occurs during thread cutting with a thread cutting tool, the control unit 31 completes the machining of the path being machined by continuous control. When the stop condition is satisfied by the thread cutting tool reaching the machining end position of the path being machined, the control unit 31 stops the operation of the manufacturing machine 1.
  • the control unit 31 When “reaching the threading end position" is set as a stop condition when a fan abnormality, tool life, or component life occurs during threading with a threading tool (FIG. 6), the control unit 31 continuously controls. Completes the machining of all paths of the thread being machined. When the stop condition is satisfied by the arrival of the thread cutting tool at the thread cutting end position, the control unit 31 stops the operation of the manufacturing machine 1.
  • the control unit 31 When “reaching the machining end position of the path being machined” is set as the stop condition when a coolant abnormality occurs during threading with a threading tool (FIG. 6), the control unit 31 is machined by continuous control. Complete the processing of the path inside. When the stop condition is satisfied by the thread cutting tool reaching the machining end position of the path being machined, the control unit 31 stops the operation of the manufacturing machine 1.
  • the control unit 31 controls the thread cutting tool to be rounded up by the escape control. conduct.
  • the control unit 31 stops the operation of the manufacturing machine 1.
  • the data acquisition unit 35 acquires data such as a machining program being executed, a tool used, and an event that causes an alarm.
  • the data acquisition unit 35 analyzes the machining program and acquires data related to the manufacturing process being executed.
  • the data acquisition unit 35 acquires data indicating, for example, which of the processing by the end mill, the drilling, and the threading by the threading tool is performed by the manufacturing process being executed. Further, the data acquisition unit 35 acquires the sensor data output from the sensor 9 arranged in the manufacturing machine 1 and the information regarding the generated alarm.
  • the determination unit 36 determines, for example, the manufacturing process being executed based on the data acquired by the data acquisition unit 35.
  • the determination unit 36 determines, for example, whether the manufacturing process being executed is machining by an end mill, drilling by a drill, or threading by a thread cutting tool.
  • the determination unit 36 determines whether or not an event causing an alarm has occurred in the manufacturing machine 1 based on the sensor data acquired by the data acquisition unit 35 from the sensor 9, and what kind of event has occurred. Is determined. The determination unit 36 determines whether or not, for example, a fan stop, tool life, component life, coolant abnormality, overload of the servomotor 6 or the like has occurred.
  • the notification unit 37 When the determination unit 36 determines that an event that causes an alarm has occurred, the notification unit 37 generates an alarm.
  • the notification unit 37 displays, for example, the type of alarm generated on the display device 3 to notify the user of the occurrence of the alarm.
  • FIG. 7 is a diagram illustrating an example of operation control when a fan abnormality occurs during machining by an end mill. Here, it is assumed that "reached the fast-forward start position" is set as the stop condition.
  • the determination unit 36 determines that a fan abnormality has occurred while the end mill 51 is processing the position Pe1 based on the sensor data acquired by the data acquisition unit 35.
  • the stop condition is to reach the fast forward start position. Therefore, the control unit 31 continues machining by cutting feed by continuous control.
  • the determination unit 36 determines that the stop condition is satisfied, and the control unit 31 stops the operation of the manufacturing machine 1.
  • FIG. 8 is a diagram illustrating an example of operation control when the drill reaches the tool life during drilling with a drill. Here, it is assumed that "reaching the R point" is set as the stop condition.
  • the determination unit 36 determines that the drilling tool has reached the end of the tool life at the position P d1 during the drilling process by the drill 52.
  • the stop condition is to reach the R point. Therefore, the control unit 31 continues the drilling by cutting feed to the drilling end position P d2 by continuous control.
  • the control unit 31 fast-forwards the drill 52 withdrawal operation.
  • the determination unit 36 determines that the stop condition is satisfied, and the control unit 31 stops the operation of the manufacturing machine 1.
  • FIG. 9 is a diagram illustrating an example of operation control when an abnormality of the coolant occurs during thread cutting with a thread cutting tool. Here, it is assumed that "reached the missed operation completion position" is set as the stop condition.
  • the determination unit 36 determines that an abnormality in the coolant has occurred at the position Ps1 during the thread cutting process by the thread cutting tool 53.
  • the stop condition is to reach the miss operation completion position P s2 . Therefore, the control unit 31 performs the threading tool 53's threading operation by the threading control.
  • the determination unit 36 determines that the stop condition is satisfied, and the control unit 31 stops the operation of the manufacturing machine 1.
  • FIG. 10 is a diagram illustrating a flow of operation control executed by the numerical control device 2. While the work is being machined in the manufacturing machine 1, the data acquisition unit 35 acquires data related to the occurrence of an event that causes an alarm (step S01).
  • the determination unit 36 determines whether or not an event causing an alarm has occurred based on the data acquired by the data acquisition unit 35 (step S02). When the event causing the alarm has not occurred (No in step S02), the data acquisition unit 35 continues to acquire the data.
  • step S03 When it is determined that an event causing the alarm has occurred (Yes in step S02), the notification unit 37 notifies the occurrence of the alarm (step S03).
  • the determination unit 36 determines whether or not to immediately stop the operation of the manufacturing machine 1 due to the event that has occurred (step S04).
  • the control unit 31 stops the operation of the manufacturing machine 1 (step S07) and ends the process.
  • step S04 When the determination unit 36 determines that the operation of the manufacturing machine 1 is not immediately stopped (No in step S04), the control unit 31 of the manufacturing machine 1 is based on the stop condition stored in the setting condition storage unit 34. The operation control is executed (step S05). That is, the control unit 31 executes continuous control or miss control.
  • the determination unit 36 determines whether or not the manufacturing machine 1 satisfies the stop condition by the operation control (step S06). When it is determined that the manufacturing machine 1 does not satisfy the stop condition (No in step S06), the control unit 31 continues to execute the operation control (step S05).
  • step S06 When the determination unit 36 determines that the manufacturing machine 1 satisfies the stop condition (Yes in step S06), the control unit 31 stops the operation of the manufacturing machine 1 (step S07).
  • the numerical control device 2 includes a reception unit 33 that receives an input of one of a plurality of stop conditions. Therefore, the user can set the optimum stop condition when an alarm is generated according to the type of tool, the type of manufacturing process, and the like.
  • the numerical control device 2 continuous control or miss control is performed to continue machining after the occurrence of an event that causes an alarm. Therefore, in the numerical control device 2 of the present embodiment, the operation of the manufacturing machine 1 can be stopped at an appropriate timing according to the event causing the alarm and the manufacturing process.
  • a plurality of stop conditions can be set as stop conditions, and operation control is performed until one of the plurality of stop conditions is satisfied. It is different from the manufacturing machine 1 of the first embodiment.
  • a configuration different from that of the first embodiment will be described, and a description of the same configuration as that of the first embodiment will be omitted.
  • FIG. 11 is a diagram illustrating an example when two stop conditions according to a manufacturing process and an event are selected and set by a user.
  • the reception unit 33 accepts the selection of two stop conditions among the plurality of stop conditions stored in the storage unit 32.
  • the setting condition storage unit 34 stores two stop conditions accepted by the reception unit 33.
  • the number of stop conditions received by the reception unit 33 and stored in the setting condition storage unit 34 may be three or more.
  • the temperature inside the control panel reaches a predetermined threshold value.
  • the threshold value is determined in consideration of the temperature in the control panel which may affect the operation control of the manufacturing machine 1.
  • the miss control is performed until the miss operation complete position is reached. Means to do.
  • FIG. 12 is a diagram illustrating an example of operation control when “reaching the fast-forward start position” and “immediately before overheating” are set as stop conditions when a fan abnormality occurs during machining by the end mill 51. Is.
  • the determination unit 36 determines whether or not an event causing an alarm has occurred based on the sensor data acquired by the data acquisition unit 35 during processing by the end mill 51.
  • an abnormality occurs in the fan while the end mill 51 is processing the position Pe3 .
  • the stop conditions when an abnormality occurs in the fan during machining by the end mill 51 are "reaching the fast-forward start position" and “immediately before overheating". Therefore, the control unit 31 continues machining by cutting feed until the end mill 51 reaches the fast-forward start position or immediately before overheating by continuous control.
  • the control unit 31 controls the escape of the end mill 51.
  • the control unit 31 stops the operation of the manufacturing machine 1.
  • control unit 31 continues processing by the end mill 51. After that, when the stop condition is satisfied by the end mill 51 reaching the fast-forward start position, the control unit 31 stops the operation of the manufacturing machine 1.
  • the reception unit 33 accepts a plurality of stop conditions, and the operation control of the manufacturing machine 1 is performed until one of the plurality of stop conditions accepted by the reception unit 33 is satisfied. Will be executed. Therefore, the operation of the manufacturing machine 1 can be stopped at an appropriate timing according to the operating state of the manufacturing machine 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Numerical Control (AREA)

Abstract

数値制御装置2が、工具を用いて製造物を製造する製造機械1においてアラームの原因となる事象が発生した場合に製造機械1を停止させるための複数の停止条件を製造物の製造工程および事象に関連付けて記憶する記憶部32と、記憶部32に記憶された複数の停止条件のうちの少なくとも1つの停止条件の選択を受け付ける受付部33と、製造物の製造中に事象が発生した場合に、受付部33が受け付けた少なくとも1つの停止条件のうちの一の停止条件が満たされるまで製造機械1の動作制御を実行する制御部31と、を備える。

Description

数値制御装置、製造機械、および製造機械の制御方法
 本発明は、数値制御装置、製造機械、および製造機械の制御方法に関する。
 製造機械の運転中に異常が検出された場合、異常が検出されたことを示すアラームが発せられる。アラームが発せられると、例えば、アラームの原因となる事象の異常の度合いに応じて、製造機械の運転の停止方法が決定される。
 特許文献1には、検出された異常のレベルに応じて、工作機械の運転を即時停止するか、加工プログラムの実行中のブロックに係る動作の終了後に運転を停止するか、または加工プログラムを最後まで実行した後に運転を停止するかを決定する工作機械に関する技術が記載されている。
特開2016-33705号公報
 従来の製造機械では、発生した事象の異常の度合いに応じて製造機械の停止方法があらかじめ定められているため、機械の動作状況に合わせて適切なタイミングで運転を停止することができない場合がある。そのため、アラームが発生した場合に、機械の動作状況に合わせてより適切なタイミングで製造機械の運転を停止させる技術が望まれている。
 本発明は、アラームの原因となる事象が発生した場合に、適切なタイミングで製造機械を停止させることができる数値制御装置、製造機械、および製造機械の制御方法を提供することを目的とする。
 数値制御装置が、工具を用いて製造物を製造する製造機械においてアラームの原因となる事象が発生した場合に製造機械を停止させるための複数の停止条件を製造物の製造工程および事象に関連付けて記憶する記憶部と、記憶部に記憶された複数の停止条件のうちの少なくとも1つの停止条件の選択を受け付ける受付部と、製造物の製造中に事象が発生した場合に、受付部が受け付けた少なくとも1つの停止条件のうちの一の停止条件が満たされるまで製造機械の動作制御を実行する制御部と、を備える。
 製造機械の制御方法が、工具を用いて製造物を製造する製造機械においてアラームの原因となる事象が発生した場合に製造機械を停止させるための、製造物の製造工程および事象に関連付けて記憶された複数の停止条件のうちの少なくとも1つの停止条件の選択を受け付けることと、製造物の製造中に事象が発生した場合に、受け付けた少なくとも1つの停止条件のうちの一の停止条件が満たされるまで製造機械の動作制御を実行することと、を含む。
 本発明により、アラームの原因となる事象が発生した場合に、適切なタイミングで製造機械を停止させることができる。
製造機械のハードウェア構成の一例を示す図である。 数値制御装置の機能の一例を示すブロック図である。 停止条件の一例を説明する図である。 停止条件の設定画面の表示例を示す図である。 停止条件の別の例を説明する図である。 停止条件のさらに別の例を説明する図である。 エンドミルによる加工中にファンの異常が発生した場合の動作制御の一例を説明する図である。 ドリルによる穴あけ加工中にドリルが工具寿命に到達した場合の動作制御の一例を説明する図である。 ねじ切り工具によるねじ切り加工中にクーラントの異常が発生した場合の動作制御の一例を説明する図である。 数値制御装置において実行される動作制御の流れを説明するフローチャートである。 複数の停止条件が設定された場合の例を説明する図である。 複数の停止条件が設定された場合の動作制御の一例を説明する図である。
[第1の実施形態]
 以下、第1の実施形態について図面を用いて説明する。
 図1は、製造機械のハードウェア構成の一例を示す図である。製造機械1は、工具を用いて製造物の製造を行う機械である。製造機械1は、例えば、製造物を切削加工する工作機械である。工作機械は、例えば、マシニングセンタ、旋盤、複合加工機である。
 製造機械1が工作機械である場合、工具は、例えば、ドリル、エンドミル、バイト、および、ねじ切り工具である。製造機械1が工作機械である場合、製造とは切削などの機械加工を行うことである。
 製造機械1は、製造物に対して放電加工を行うワイヤ放電加工機であってもよい。また、製造機械1は、製造物を積層造形(Additive Manufacturing)する3Dプリンタであってもよい。
 製造機械1がワイヤ放電加工機である場合、製造機械1はワイヤと製造物との間で放電を行い製造物の切断などを行う。製造機械1がワイヤ放電加工機である場合、製造とはワークに対して放電加工を行うことである。また、ワイヤは工具に含まれる概念である。
 製造機械1が3Dプリンタである場合、製造機械1は、例えば、製造物を積層造形により製造する。製造機械1が3Dプリンタである場合、製造とは積層造形により製造物を製造することである。3Dプリンタに用いられる、例えば、レーザヘッドなどのヘッド部分は工具に含まれる概念である。
 以下では、工作機械を例に本実施形態の製造機械1について説明する。なお、以下の説明では、製造物をワークと称する。
 製造機械1は、数値制御装置2と、表示装置3と、入力装置4と、サーボアンプ5およびサーボモータ6と、スピンドルアンプ7およびスピンドルモータ8と、センサ9と、周辺機器10とを備える。
 数値制御装置2は、製造機械1の全体を制御する装置である。
 数値制御装置2は、CPU(Central Processing Unit)11と、バス12と、ROM(Read Only Memory)13と、RAM(Random Access Memory)14と、不揮発性メモリ15とを備えている。
 CPU11は、システムプログラムに従って数値制御装置2の全体を制御するプロセッサである。CPU11は、バス12を介してROM13に格納されたシステムプログラムなどを読み出す。また、CPU11は、加工プログラムに従って、サーボモータ6およびスピンドルモータ8などを制御し、ワークの切削加工を実行する。
 バス12は、数値制御装置2内の各ハードウェアを互いに接続する通信路である。数値制御装置2内の各ハードウェアはバス12を介してデータをやり取りする。
 ROM13は、数値制御装置2全体を制御するためのシステムプログラム、および各種データを解析するための解析プログラムなどを記憶する記憶装置である。
 RAM14は、各種データを一時的に格納する記憶装置である。RAM14は、加工プログラムを解析して算出される工具経路に関するデータ、表示用のデータ、外部から入力されるデータなどを一時的に記憶する。RAM14は、CPU11が各種データを処理するための作業領域として機能する。
 不揮発性メモリ15は、製造機械1の電源が切られ、数値制御装置2に電源が供給されていない状態でもデータを保持する記憶装置である。不揮発性メモリ15は、例えば、SSD(Solid State Drive)で構成される。不揮発性メモリ15は、例えば、入力装置4から入力された工具補正データ、工具寿命データ、製造機械1を構成する部品の部品寿命データ、および、ネットワーク(不図示)を介して入力される加工プログラムなどを記憶する。
 数値制御装置2は、さらに、第1のインタフェース16と、第2のインタフェース17と、軸制御回路18と、スピンドル制御回路19と、第3のインタフェース20と、PLC(Programmable Logic Controller)21と、I/Oユニット22とを備えている。
 第1のインタフェース16は、バス12と表示装置3とを接続するインタフェースである。第1のインタフェース16は、例えば、CPU11が処理した各種データを表示装置3に送る。
 表示装置3は、第1のインタフェース16を介して各種データを受け、各種データを表示する装置である。表示装置3は、例えば、不揮発性メモリ15に記憶された加工プログラム、工具補正量に関するデータなどを表示する。表示装置3は、LCD(Liquid Crystal Display)などのディスプレイである。
 第2のインタフェース17は、バス12と入力装置4とを接続するインタフェースである。第2のインタフェース17は、例えば、入力装置4から入力されたデータをバス12を介してCPU11に送る。
 入力装置4は、各種データを入力するための装置である。入力装置4は、例えば、工具の補正量に関するデータの入力を受け、入力されたデータを第2のインタフェース17を介して不揮発性メモリ15に送る。また、入力装置4は、アラームの原因となる事象が発生したときの製造機械1の停止条件の選択入力を受け、選択入力されたデータを第2のインタフェース17を介して不揮発性メモリ15に送る。入力装置4は、例えば、キーボード、およびマウスである。なお、入力装置4と表示装置3とは、例えば、タッチパネルのように1つの装置として構成されてもよい。
 軸制御回路18は、サーボモータ6を制御する制御回路である。軸制御回路18は、CPU11からの制御指令を受けてサーボモータ6を駆動させるための指令をサーボアンプ5に出力する。軸制御回路18は、例えば、サーボモータ6のトルクを制御するトルクコマンドをサーボアンプ5に送る。また、軸制御回路18は、サーボモータ6の回転速度を制御する回転速度コマンドをサーボアンプ5に送ってもよい。
 サーボアンプ5は、軸制御回路18からの指令を受けて、サーボモータ6に電力を供給する。
 サーボモータ6は、サーボアンプ5から電力の供給を受けて駆動するモータである。サーボモータ6は、例えば、刃物台、主軸頭、テーブルを駆動させるボールねじに連結される。サーボモータ6が駆動することにより、刃物台、主軸頭、テーブルなどの製造機械1の構成要素は、例えば、X軸方向、Y軸方向、またはZ軸方向に移動する。
 スピンドル制御回路19は、スピンドルモータ8を制御するための制御回路である。加工プログラムに基づいて穴の加工が行われる際、スピンドル制御回路19は、CPU11からの制御指令を受けてスピンドルモータ8を駆動させるための指令をスピンドルアンプ7に出力する。スピンドル制御回路19は、例えば、スピンドルモータ8のトルクを制御するトルクコマンドをスピンドルアンプ7に送る。また、スピンドル制御回路19は、スピンドルモータ8の回転速度を制御する回転速度コマンドをスピンドルアンプ7に送ってもよい。
 スピンドルアンプ7は、スピンドル制御回路19からの指令を受けて、スピンドルモータ8に電力を供給する。
 スピンドルモータ8は、スピンドルアンプ7から電力の供給を受けて駆動するモータである。スピンドルモータ8は、スピンドルに連結され、スピンドルを回転させる。
 第3のインタフェース20は、バス12とセンサ9とを接続するインタフェースである。第3のインタフェース20は、センサ9が検出したセンサデータをバス12を介してCPU11に送る。
 センサ9は、製造機械1の各構成要素に配置され、各構成要素から各種物理量を検出する。センサ9は、例えば、温度を検出する温度センサ、位置を検出する位置検出センサ、加速度を検出する加速度センサ、電流を検出する電流検出センサ、および液量計である。
 温度センサは、例えば、制御盤の内部、および切削液タンクに配置され、制御盤の内部、および切削液の温度を検出する。
 位置検出センサは、刃物台、主軸頭、テーブルなどの製造機械1の構成要素の位置を検出する。位置検出センサが検出するセンサデータを利用して、軸制御回路18はフィードバック制御を行ってもよい。
 また、位置検出センサは、スピンドルの回転角を検出するポジションコーダであってもよい。ポジションコーダは、スピンドルの回転角に応じて帰還パルスを出力する。スピンドル制御回路19は、ポジションコーダから出力される帰還パルスを利用してフィードバック制御を行ってもよい。
 加速度センサは、例えば、スピンドル付近に配置され、スピンドル付近に生じる振動を検出する。加速度センサが検出する振動の大きさに基づいて、例えば、製造機械1を構成する構成部品の劣化の度合いが判断される。
 電流検出センサは、例えばサーボモータ6およびスピンドルモータ8に配置され、サーボモータ6およびスピンドルモータ8に供給される電流を検出する。電流検出センサが検出する電流に基づいて、例えば、サーボモータ6、またはスピンドルモータ8の過負荷が検出される。
 液量計は、例えば、切削液タンクに収容されている切削液の液量を検出する。
 PLC21は、ラダープログラムを実行して周辺機器10を制御する制御装置である。PLC21は、I/Oユニット22を介して周辺機器10を制御する。
 I/Oユニット22は、PLC21と周辺機器10とを接続するインタフェースである。I/Oユニット22は、PLC21から受けた指令を周辺機器10に送る。
 周辺機器10は、製造機械1に設置され、製造機械1がワークの加工を行う際の補助的な動作を行う装置である。周辺機器10は、製造機械1の周辺に設置される装置であってもよい。周辺機器10は、例えば、工具交換装置、およびマニピュレータなどのロボットである。
 次に、数値制御装置2の機能について説明する。
 図2は、数値制御装置2の機能の一例を示すブロック図である。数値制御装置2は、例えば、制御部31と、記憶部32と、受付部33と、設定条件記憶部34と、データ取得部35と、判定部36と、報知部37とを備えている。
 制御部31、受付部33、データ取得部35、判定部36、および報知部37は、例えば、CPU11がROM13に記憶されているシステムプログラム、および各種データを用いて演算処理することにより実現される。CPU11は、作業領域としてRAM14を用いて演算処理を実行する。また、記憶部32、および設定条件記憶部34は、入力装置4などから入力されたデータ、またはCPU11による演算処理の演算結果がRAM14、または不揮発性メモリ15に記憶されることにより実現される。
 制御部31は、例えば、加工プログラムに従ってサーボモータ6、およびスピンドルモータ8を制御する。これにより、ワークの加工が行なわれる。
 制御部31は、ワークの加工中にアラームの原因となる事象が発生した場合、製造機械1の停止制御または動作制御を行う。
 停止制御は、製造機械1を即時停止させる制御である。つまり、停止制御は、工具によってワークの加工が実行されている途中であっても、製造機械1の運転を即時停止させる制御である。制御部31は、例えば、サーボモータ6において過負荷などの事象が生じた場合、停止制御を実行する。
 動作制御は、逃し制御と、継続制御とを含む。
 逃し制御は、工具によるワークの加工中であってもワークの加工を中止し、工具をワークから離間させる動作を行う制御である。逃し制御において停止条件が満たされた場合に製造機械1の運転が停止される。
 継続制御は、工具によるワークの加工を停止条件が満たされるまで継続する制御である。継続制御において停止条件が満たされた場合に製造機械1の運転が停止される。
 逃し制御または継続制御のいずれの動作制御が実行されるかは、ユーザによって選択された停止条件に基づいて決定される。
 記憶部32は、製造機械1においてアラームの原因となる事象が発生した場合に製造機械1の運転を停止させるための一または複数の停止条件を、製造機械1が行っている製造工程およびアラームの原因となる事象に関連付けて記憶する。ここで、製造工程とは、例えば、各種工具を用いた加工の種類を意味する。
 図3は、記憶部32に記憶された停止条件の一例を説明する図である。
 図3は、エンドミルによる加工中に、ファンの異常、工具寿命、部品寿命、またはクーラントの異常が発生した場合の停止条件を示している。ここで、ファンの異常とは、例えば、制御盤に設置された空冷用のファンが何らかの理由により停止することである。工具寿命とは、切削を行っているエンドミルの切削加工時間の合計があらかじめ設定された加工時間に到達することである。部品寿命とは、製造機械1を構成する、歯車などの部品の稼働時間があらかじめ定められた稼働時間に到達することである。
 ファンの異常、工具寿命、または部品寿命が発生した場合の停止条件は、早送り開始位置に到達すること、または加工終了位置に到達することである。
 早送り開始位置とは、エンドミルの加工経路において、アラームの原因となる事象の発生時のエンドミルの位置から見て、最初に早送りが行われる位置である。
 加工終了位置とは、アラームの原因となる事象の発生時に使用されているエンドミルによる加工が終了する位置である。
 クーラントの異常とは、例えば、加工中にノズルからのクーラントの噴射が停止する異常である。
 クーラントの異常が発生した場合の停止条件は、早送り開始位置に到達すること、または逃し動作完了位置に到達することである。
 逃し動作完了位置とは、例えば、エンドミルの先端がワークから100[mm]離間した位置である。
 ここで、図2の説明に戻る。受付部33は、記憶部32に記憶された複数の停止条件のうちの1つの停止条件の選択を受け付ける。受付部33は、例えば、表示装置3に停止条件の設定画面を表示させ、入力装置4からアラームの原因となる事象および製造工程に対応する1つの停止条件の選択入力を受け付ける。
 図4は、受付部33が表示装置3に表示させる停止条件の設定画面の一例を示す図である。設定画面には、製造工程を選択するための製造工程選択部41と、事象を選択するための事象選択部42と、停止条件を選択するための停止条件選択部43とがプルダウンメニューにて表示されている。
 ユーザは、表示装置3に表示された設定画面により、製造工程、および事象に応じた停止条件を選択する。
 ここで、再び、図2の説明に戻る。設定条件記憶部34は、受付部33が受け付けた停止条件を記憶する。つまり、設定条件記憶部34が、選択入力された停止条件を製造工程、および事象に関連付けて記憶することにより、所定の製造工程においてアラーム原因となる事象が発生した場合における停止条件が設定される。
 エンドミルによる加工中にファンの異常、工具寿命、および部品寿命が発生した場合の停止条件として「早送りの開始位置に到達」が設定された場合(図3)、制御部31は継続制御によって、エンドミルがワークから離間し、早送りが開始される位置に到達するまで加工を継続する。エンドミルが早送り開始位置に到達することによって停止条件が満たされると、制御部31は、製造機械1の運転を停止させる。
 エンドミルによる加工中にファンの異常、工具寿命、および部品寿命が発生した場合の停止条件として「加工終了位置に到達」が設定された場合(図3)、制御部31は継続制御によって、使用中のエンドミルによる加工が終了するまで加工を継続する。エンドミルが加工終了位置に到達することによって停止条件が満たされると、制御部31は、製造機械1の運転を停止させる。
 エンドミルによる加工中にクーラントの異常が発生した場合の停止条件として「早送り開始位置に到達」が設定された場合(図3)、制御部31は継続制御によって、エンドミルがワークから離間し、早送りが開始される位置に到達するまで加工を継続する。エンドミルが早送り開始位置に到達することによって停止条件が満たされると、制御部31は、製造機械1の運転を停止させる。
 エンドミルによる加工中にクーラントの異常が発生した場合の停止条件として「逃し動作完了位置に到達」が設定された場合(図3)、制御部31は、エンドミルの加工を中断し、逃し制御によってエンドミルをワークから離間させる動作を行う。エンドミルが逃し動作完了位置に到達することによって停止条件が満たされると、制御部31は、製造機械1の運転を停止させる。
 図5は、記憶部32に記憶された停止条件の別の例を説明する図である。
 図5は、ドリルによる穴あけ加工中に、ファンの異常、工具寿命、部品寿命、またはクーラントの異常が発生した場合の停止条件を示している。
 ファンの異常、工具寿命、または部品寿命が発生した場合の停止条件は、R点(リファレンス点)に到達すること、または穴加工の終了位置に到達することである。
 R点とは、穴を加工する際の基準となる位置であり、穴あけ加工における切削送りの開始位置である。
 穴加工の終了位置とは、ドリルによって複数の穴の加工が行われる場合に、このドリルによって加工される最後の穴のR点の位置である。
 クーラントの異常が発生した場合の停止条件は、R点に到達すること、または逃し動作完了位置に到達することである。逃し動作完了位置とは、例えば、R点である。
 ドリルによる穴あけ加工中にファンの異常、工具寿命、および部品寿命が発生した場合の停止条件として、「R点に到達」が設定された場合(図5)、制御部31は継続制御によって、加工中の穴の加工を最後まで加工した後、早送りでドリルの引き抜き動作を行う。ドリルがR点に到達することによって停止条件が満たされると、制御部31は、製造機械1の運転を停止させる。
 ドリルによる穴あけ加工中にファンの異常、工具寿命、および部品寿命が発生した場合の停止条件として、「穴加工の終了位置に到達」が設定された場合(図5)、制御部31は継続制御によって、使用中のドリルによるすべての穴の加工が完了するまで加工を継続する。ドリルが最後に加工された穴のR点に到達することによって停止条件が満たされると、制御部31は、製造機械1の運転を停止させる。
 ドリルによる穴あけ加工中にクーラントの異常が発生した場合の停止条件として、「R点に到達」が設定された場合(図5)、制御部31は継続制御によって、加工中の穴を最後まで加工した後、ドリルをR点まで早送りにより移動させる。
 ドリルによる穴あけ加工中にクーラントの異常が発生した場合の停止条件として、「逃し動作完了位置に到達」が設定された場合(図5)、制御部31は逃し制御により、加工中の穴の加工を中断し、ドリルを早送りにてR点に移動させる。
 図6は、記憶部32に記憶された停止条件のさらに別の例を説明する図である。
 図6は、ねじ切り工具によるねじ切り加工中に、ファンの異常、工具寿命、部品寿命、またはクーラントの異常が発生した場合の停止条件を示している。
 ファンの異常、工具寿命、または部品寿命が発生した場合の停止条件は、加工中のパスの加工終了位置に到達すること、または、ねじ切り加工終了位置に到達することである。
 ねじ切り加工終了位置とは、ねじ切り加工におけるすべてのパスのうち、最後のパスの加工終了位置である。
 クーラントの異常が発生した場合の停止条件は、加工中のパスの加工終了位置に到達すること、または逃し動作完了位置に到達することである。
 逃し動作完了位置とは、例えば、ねじ切り工具がねじ切り加工を中断して切り上げ(チャンファリング)を行ったときの切り上げ動作の終了位置である。切り上げ動作の終了位置は、例えば、ねじ切り工具の先端がワークから100[mm]離れた位置である。
 ねじ切り工具によるねじ切り加工中にファンの異常、工具寿命、または部品寿命が発生した場合の停止条件として、「加工中のパスの加工終了位置に到達」が設定された場合(図6)、制御部31は継続制御によって、加工中のパスの加工を完了させる。ねじ切り工具が加工中のパスの加工終了位置に到達することによって停止条件が満たされると、制御部31は、製造機械1の運転を停止させる。
 ねじ切り工具によるねじ切り加工中にファンの異常、工具寿命、または部品寿命が発生した場合の停止条件として、「ねじ切り加工終了位置に到達」が設定された場合(図6)、制御部31は継続制御によって、加工中のねじのすべてのパスの加工を完了させる。ねじ切り加工終了位置にねじ切り工具が到達することによって停止条件が満たされると、制御部31は、製造機械1の運転を停止させる。
 ねじ切り工具によるねじ切り加工中にクーラントの異常が発生した場合の停止条件として、「加工中のパスの加工終了位置に到達」が設定された場合(図6)、制御部31は継続制御によって、加工中のパスの加工を完了させる。ねじ切り工具が加工中のパスの加工終了位置に到達することによって停止条件が満たされると、制御部31は、製造機械1の運転を停止させる。
 ねじ切り工具によるねじ切り加工中にクーラントの異常が発生した場合の停止条件として「逃し動作完了位置に到達」が設定された場合(図6)、制御部31は逃し制御によって、ねじ切り工具の切り上げ動作を行う。ねじ切り工具が逃し動作完了位置に到達することによって停止条件が満たされると、制御部31は、製造機械1の運転を停止させる。
 図2に戻って数値制御装置2の各部の説明を続ける。
 データ取得部35は、実行中の加工プログラム、使用工具、アラームの原因となる事象などのデータを取得する。データ取得部35は、加工プログラムを解析し、実行中の製造工程に関するデータを取得する。データ取得部35は、例えば、実行中の製造工程がエンドミルによる加工、ドリルによる穴あけ加工、および、ねじ切り工具によるねじ切り加工のうちいずれの加工を行っているかを示すデータを取得する。また、データ取得部35は、製造機械1に配置されたセンサ9から出力されるセンサデータ、および発生したアラームに関する情報を取得する。
 判定部36は、例えば、データ取得部35によって取得されたデータに基づいて、実行中の製造工程を判定する。判定部36は、例えば、実行中の製造工程が、エンドミルによる加工であるか、ドリルによる穴あけ加工であるか、またはねじ切り工具によるねじ切り加工であるかを判定する。
 また、判定部36は、データ取得部35がセンサ9から取得したセンサデータに基づいて、製造機械1においてアラームの原因となる事象が発生したか否か、また、どのような事象が発生したかを判定する。判定部36は、例えば、ファンの停止、工具寿命、部品寿命、クーラントの異常、サーボモータ6の過負荷などが起こったか否かを判定する。
 報知部37は、判定部36によってアラームの原因となる事象が発生したと判定された場合、アラームを発生させる。報知部37は、例えば、表示装置3に発生したアラームの種類を表示させてユーザにアラームの発生を報知する。
 次に、ワークの加工中にアラームの原因となる事象が発生した場合における製造機械1の動作例について説明する。
 図7は、エンドミルによる加工中にファンの異常が発生した場合の動作制御の例を説明する図である。ここで、停止条件には、「早送り開始位置に到達」が設定されているものとする。
 判定部36は、データ取得部35が取得するセンサデータに基づいて、エンドミル51が位置Pe1を加工中にファンの異常が発生したと判定する。停止条件は、早送り開始位置に到達することである。そのため、制御部31は、継続制御によって切削送りによる加工を継続する。エンドミル51が早送り開始位置Pe2に到達すると、判定部36は停止条件が満たされたと判定し、制御部31は製造機械1の運転を停止させる。
 図8は、ドリルによる穴あけ加工中にドリルが工具寿命に到達した場合の動作制御の例を説明する図である。ここで、停止条件には、「R点に到達」が設定されているものとする。
 判定部36は、データ取得部35が取得するセンサデータに基づいて、ドリル52による穴あけ加工中に位置Pd1において穴あけ工具が工具寿命に到達したと判定する。停止条件は、R点に到達することである。そのため、制御部31は、継続制御によって穴あけ加工終了位置Pd2まで切削送りによる穴あけ加工を継続する。ドリル52が加工終了位置Pd2まで到達すると、制御部31は、早送りでドリル52の引き抜き動作を行う。ドリル52がR点に到達すると、判定部36は停止条件が満たされたと判定し、制御部31は製造機械1の運転を停止させる。
 図9は、ねじ切り工具によるねじ切り加工中にクーラントの異常が発生した場合の動作制御の例を説明する図である。ここで、停止条件には、「逃し動作完了位置に到達」が設定されているものとする。
 判定部36は、データ取得部35が取得するセンサデータに基づいて、ねじ切り工具53によるねじ切り加工中に位置Ps1においてクーラントの異常が発生したと判定する。停止条件は、逃し動作完了位置Ps2に到達することである。そのため、制御部31は、逃し制御によりねじ切り工具53の逃し動作を行う。ねじ切り工具53が逃し動作完了位置Ps2まで到達すると、判定部36は停止条件が満たされたと判定し、制御部31は製造機械1の運転を停止させる。
 次に、数値制御装置2において実行される動作制御の流れについて説明する。
 図10は、数値制御装置2において実行される動作制御の流れを説明する図である。製造機械1においてワークが加工されている間、データ取得部35は、アラームの原因となる事象の発生に係るデータを取得する(ステップS01)。
 次に、判定部36は、データ取得部35が取得したデータに基づいて、アラームの原因となる事象が発生しているか否かを判定する(ステップS02)。アラームの原因となる事象が発生していない場合(ステップS02においてNoの場合)、データ取得部35はデータの取得を続ける。
 アラームの原因となる事象が発生していると判定された場合(ステップS02においてYesの場合)、報知部37は、アラームの発生を報知する(ステップS03)。
 次に、判定部36は、発生した事象によって製造機械1の運転を即時停止させるか否かを判定する(ステップS04)。判定部36が製造機械1の運転を即時停止させると判定した場合(ステップS04においてYesの場合)、制御部31は製造機械1の運転を停止させ(ステップS07)、処理を終了させる。
 判定部36が製造機械1の運転を即時停止させないと判定した場合(ステップS04においてNoの場合)、制御部31は、設定条件記憶部34に記憶された停止条件に基づいて、製造機械1の動作制御を実行する(ステップS05)。つまり、制御部31は、継続制御、または逃し制御を実行する。
 次に、判定部36は、動作制御により、製造機械1が停止条件を満たしたか否かを判定する(ステップS06)。製造機械1が停止条件を満たしていないと判定された場合(ステップS06においてNoの場合)、制御部31は引き続き、動作制御を実行する(ステップS05)。
 判定部36によって製造機械1が停止条件を満たしたと判定された場合(ステップS06においてYes)、制御部31は製造機械1の運転を停止させる(ステップS07)。
 以上説明したように、本実施形態に係る数値制御装置2は、複数の停止条件のうちの1つの停止条件の入力を受け付ける受付部33を備えている。そのため、ユーザが、工具の種類、および製造工程の種類などに応じて、アラーム発生時の最適な停止条件を設定することができる。
 また、数値制御装置2では、アラームの原因となる事象の発生後に加工を継続する継続制御、または、逃し制御が行われる。したがって、本実施形態の数値制御装置2では、アラームの原因となる事象、および製造工程に応じて、適切なタイミングで製造機械1の運転を停止させることができる。
[第2の実施形態]
 次に、第2の実施形態について図面を用いて説明する。
 第2の実施形態の製造機械1では、停止条件として複数の停止条件を設定することが可能であり、複数の停止条件のうちの一の停止条件が満たされるまで動作制御が行われる点で、第1の実施形態の製造機械1とは異なる。以下では、第1の実施形態と異なる構成について説明し、第1の実施形態と同じ構成については説明を省略する。
 図11は、製造工程、および事象に応じた2つの停止条件がユーザによって選択され設定された場合の例を説明する図である。
 図11に示す例では、エンドミルによる加工中のファンの異常が発生した場合の複数の停止条件として、「早送り開始位置に到達」、および「オーバーヒート直前」が選択されている。つまり、受付部33は、記憶部32に記憶された複数の停止条件のうち2つの停止条件の選択を受け付ける。設定条件記憶部34は、受付部33によって受け付けられた2つの停止条件を記憶する。ただし、受付部33が受け付け、設定条件記憶部34に記憶される停止条件は、3つ以上であってもよい。
 オーバーヒート直前とは、例えば、制御盤内の温度が所定のしきい値に達することを意味する。しきい値は、製造機械1の動作制御に影響を及ぼす可能性のある制御盤内の温度を考慮して決定される。なお、図11に示す「(逃し動作完了位置に到達)」、「(逃し制御)」は、「オーバーヒート直前」の停止条件が満たされた場合に、逃し動作完了位置に到達するまで逃し制御を行うことを意味する。
 次に、エンドミルによる加工中のファンの異常が発生した場合の停止条件として、「早送り開始位置に到達」、および「オーバーヒート直前」が選択されている場合の動作制御の例について説明する。
 図12は、エンドミル51による加工中にファンの異常が発生した場合における停止条件として、「早送り開始位置に到達」、および「オーバーヒート直前」が設定されている場合の動作制御の一例を説明する図である。
 判定部36は、エンドミル51による加工中、データ取得部35が取得するセンサデータに基づいて、アラームの原因となる事象が発生したか否かを判定する。ここで、エンドミル51が位置Pe3を加工中にファンの異常が発生したとする。また、エンドミル51による加工中にファンの異常が発生した場合の停止条件は、「早送り開始位置に到達」、および「オーバーヒート直前」である。そのため、制御部31は、継続制御により、エンドミル51が早送り開始位置に到達するか、または、オーバーヒート直前になるまで、切削送りによる加工を継続する。
 その後、エンドミル51が位置Pe4の加工中に、判定部36によって制御盤内の温度がオーバーヒート直前まで達したと判定されたとする。この場合、制御部31はエンドミル51の逃し制御を行う。逃し制御においてエンドミル51が逃げ完了位置Pe5に到達することによって停止条件が満たされると、制御部31は、製造機械1の運転を停止させる。
 一方、制御盤内の温度がオーバーヒート直前まで達しない場合、制御部31はエンドミル51による加工を続ける。その後、エンドミル51が早送り開始位置に到達することによって停止条件が満たされると、制御部31は、製造機械1の運転を停止させる。
 以上説明したように、本実施形態では、受付部33が複数の停止条件を受け付け、受付部33が受け付けた複数の停止条件のうちの一の停止条件が満たされるまで製造機械1の動作制御が実行される。そのため、製造機械1の動作状況に合わせて適切なタイミングで製造機械1の運転を停止させることができる。
  1   製造機械
  2   数値制御装置
  3   表示装置
  4   入力装置
  5   サーボアンプ
  6   サーボモータ
  7   スピンドルアンプ
  8   スピンドルモータ
  9   センサ
  10  周辺機器
  11  CPU
  12  バス
  13  ROM
  14  RAM
  15  不揮発性メモリ
  16  第1のインタフェース
  17  第2のインタフェース
  18  軸制御回路
  19  スピンドル制御回路
  20  第3のインタフェース
  21  PLC
  22  I/Oユニット
  31  制御部
  32  記憶部
  33  受付部
  34  設定条件記憶部
  35  データ取得部
  36  判定部
  37  報知部
  41  製造工程選択部
  42  事象選択部
  43  停止条件選択部
  51  エンドミル
  52  ドリル
  53  ねじ切り工具

Claims (5)

  1.  工具を用いて製造物を製造する製造機械においてアラームの原因となる事象が発生した場合に前記製造機械を停止させるための複数の停止条件を前記製造物の製造工程および前記事象に関連付けて記憶する記憶部と、
     前記記憶部に記憶された前記複数の停止条件のうちの少なくとも1つの停止条件の選択を受け付ける受付部と、
     前記製造物の製造中に前記事象が発生した場合に、前記受付部が受け付けた前記少なくとも1つの停止条件のうちの一の停止条件が満たされるまで前記製造機械の動作制御を実行する制御部と、
    を備えた数値制御装置。
  2.  前記動作制御は、前記製造を継続する継続制御、または前記製造物から前記工具を逃がす逃し制御のいずれかである請求項1に記載の数値制御装置。
  3.  前記少なくとも1つの停止条件は、複数の停止条件である請求項1または2に記載の数値制御装置。
  4.  請求項1~3のいずれか1項に記載された数値制御装置を備えた製造機械。
  5.  工具を用いて製造物を製造する製造機械においてアラームの原因となる事象が発生した場合に前記製造機械を停止させるための、前記製造物の製造工程および前記事象に関連付けて記憶された複数の停止条件のうちの少なくとも1つの停止条件の選択を受け付けることと、
     前記製造物の製造中に前記事象が発生した場合に、受け付けた前記少なくとも1つの停止条件のうちの一の停止条件が満たされるまで前記製造機械の動作制御を実行することと、
    を含む製造機械の制御方法。
PCT/JP2021/028588 2020-08-05 2021-08-02 数値制御装置、製造機械、および製造機械の制御方法 WO2022030437A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/018,075 US20230280707A1 (en) 2020-08-05 2021-08-02 Numerical controller, manufacturing machine, and method of controlling manufacturing machine
DE112021003614.9T DE112021003614T5 (de) 2020-08-05 2021-08-02 Numerische regelung, fertigungsmaschine und verfahren zur regelung der fertigungsmaschine
JP2022541528A JP7538228B2 (ja) 2020-08-05 2021-08-02 数値制御装置、製造機械、および製造機械の制御方法
CN202180056678.XA CN116324643A (zh) 2020-08-05 2021-08-02 数值控制装置、制造机械以及制造机械的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020132799 2020-08-05
JP2020-132799 2020-08-05

Publications (1)

Publication Number Publication Date
WO2022030437A1 true WO2022030437A1 (ja) 2022-02-10

Family

ID=80118025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028588 WO2022030437A1 (ja) 2020-08-05 2021-08-02 数値制御装置、製造機械、および製造機械の制御方法

Country Status (5)

Country Link
US (1) US20230280707A1 (ja)
JP (1) JP7538228B2 (ja)
CN (1) CN116324643A (ja)
DE (1) DE112021003614T5 (ja)
WO (1) WO2022030437A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675618A (ja) * 1992-08-27 1994-03-18 Okuma Mach Works Ltd 加工中断機能を有する数値制御装置
JP2015197684A (ja) * 2014-03-31 2015-11-09 ブラザー工業株式会社 数値制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016033705A (ja) 2014-07-31 2016-03-10 ブラザー工業株式会社 数値制御装置、制御方法、記憶媒体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675618A (ja) * 1992-08-27 1994-03-18 Okuma Mach Works Ltd 加工中断機能を有する数値制御装置
JP2015197684A (ja) * 2014-03-31 2015-11-09 ブラザー工業株式会社 数値制御装置

Also Published As

Publication number Publication date
DE112021003614T5 (de) 2023-04-27
JP7538228B2 (ja) 2024-08-21
US20230280707A1 (en) 2023-09-07
CN116324643A (zh) 2023-06-23
JPWO2022030437A1 (ja) 2022-02-10

Similar Documents

Publication Publication Date Title
JP5520979B2 (ja) 衝突監視装置を備えた工作機械
US7847506B2 (en) Machine tool controller
CN109308052B (zh) 数值控制装置以及数值控制方法
JP7524230B2 (ja) 数値制御工作機械で使用するための制御装置、および制御装置を含む工作機械
CN101109947A (zh) 具备干扰检查功能的数值控制装置
WO2020085451A1 (ja) 工作機械及び制御装置
JP2015036833A (ja) 干渉確認装置
WO2022050209A1 (ja) 工作機械および情報処理装置
JP2000317710A (ja) 工作機械における工具異常検出方法および装置
KR930010589B1 (ko) 절삭공구의 정지 제어장치
US20200026255A1 (en) Abnormality detection device of machine tool
JP4639058B2 (ja) ねじ切り加工装置
CN112743392B (zh) 机床中的主轴转速的监视装置及监视方法、机床
WO2022030437A1 (ja) 数値制御装置、製造機械、および製造機械の制御方法
KR100548874B1 (ko) 공구의 날 빠짐 검지기능을 갖는 수치제어장치
US10108173B2 (en) Numerical control device
TWI647058B (zh) 隨刀具自動更換的加工系統與方法
KR102507986B1 (ko) 공작기계의 사이클 가공시 공구경로 변경장치
JP7343365B2 (ja) タレット最適化システム
JPH11170105A (ja) 工具折損停止機能を有するnc装置
US20230033414A1 (en) Numerical controller
JP7131454B2 (ja) 数値制御装置、工作機械、制御プログラム、及び記憶媒体
WO2022039142A1 (ja) 数値制御装置、工作機械、および工作機械の制御方法
WO2023181301A1 (ja) 表示装置およびコンピュータ読み取り可能な記憶媒体
WO2023203724A1 (ja) 表示装置およびコンピュータ読み取り可能な記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541528

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21853529

Country of ref document: EP

Kind code of ref document: A1