WO2022247593A1 - 测距方法和装置 - Google Patents

测距方法和装置 Download PDF

Info

Publication number
WO2022247593A1
WO2022247593A1 PCT/CN2022/090952 CN2022090952W WO2022247593A1 WO 2022247593 A1 WO2022247593 A1 WO 2022247593A1 CN 2022090952 W CN2022090952 W CN 2022090952W WO 2022247593 A1 WO2022247593 A1 WO 2022247593A1
Authority
WO
WIPO (PCT)
Prior art keywords
ranging
signal
parameter
distance
accuracy
Prior art date
Application number
PCT/CN2022/090952
Other languages
English (en)
French (fr)
Inventor
周保建
罗嘉金
彭晓辉
侯晓乐
刘辰辰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22810322.2A priority Critical patent/EP4332611A1/en
Publication of WO2022247593A1 publication Critical patent/WO2022247593A1/zh
Priority to US18/517,770 priority patent/US20240111017A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/08Position of single direction-finder fixed by determining direction of a plurality of spaced sources of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/30Systems for measuring distance only using transmission of interrupted, pulse modulated waves using more than one pulse per radar period

Definitions

  • the present application relates to the communication field, and more specifically, to a ranging method and device.
  • the ranging signal may be a single carrier signal, a dual carrier signal, or a signal including multiple subcarriers, for example, an orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) signal.
  • OFDM orthogonal frequency division multiplexing
  • phase-based ranging suffers from ambiguity problems. For an observation value, there are multiple phase ambiguity points, and the interval between phase ambiguity points is 2 ⁇ . Phase ambiguity leads to distance ambiguity, i.e., one observed distance corresponds to multiple potential true distances.
  • phase ranging to support unambiguous ranging in a large distance range, it is required that the frequency interval of the carrier is small, resulting in a decrease in ranging accuracy. It can be seen that there is a conflict between the ranging range and the ranging accuracy at present.
  • the present application provides a ranging method and device, which can realize high-precision ranging while avoiding distance ambiguity through multi-stage ranging.
  • a ranging method includes: the sending end receives the first ranging parameter from the receiving end, the first ranging parameter is received in the Nth ranging, and the first ranging parameter includes The first ranging accuracy of the ranging signal and/or the first signal-to-noise ratio of the ranging signal; the sending end determines the first ranging waveform according to the first ranging parameter; the sending end sends the first ranging waveform to the receiving end; sending The end receives the second ranging parameter from the receiving end, the second ranging parameter is determined according to the first ranging waveform, and the second ranging parameter includes the second ranging accuracy of the ranging signal and/or the second ranging signal of the ranging signal.
  • the second ranging accuracy is less than the first ranging accuracy; when the value of the second ranging parameter does not meet the threshold of the system, the sending end performs the N+1th ranging, or; when the second ranging parameter When the value of satisfies the threshold of the system, the sending end ends the ranging; wherein, N is an integer greater than 0.
  • the receiving end of the present application realizes high-precision ranging while avoiding distance ambiguity through multi-stage ranging.
  • the sending end may be a network device (for example, a base station) or a terminal device (for example, a user equipment).
  • a network device for example, a base station
  • a terminal device for example, a user equipment
  • the ranging parameters in this application can be used to determine the accuracy of ranging, that is to say, the ranging parameters mentioned in this application include but are not limited to ranging accuracy and signal-to-noise ratio, and can also include other measuring parameters. Distance parameters, as long as the distance measurement accuracy can be determined (or can be understood as obtained) through these parameters are within the protection scope of the present application.
  • the sending end determines the first ranging waveform according to the first ranging parameter, including: the sending end determines according to the first ranging parameter The first distance of the ranging signal; the sending end generates a first ranging waveform according to the type of the ranging signal and the first distance.
  • the type of ranging signal in this application may be single carrier, dual carrier or multi-carrier, and this application does not limit the type of ranging signal.
  • the bandwidth of the ranging signal can be obtained according to the type of the ranging signal and the first distance, so as to generate a ranging waveform and perform ranging on the sending end and the receiving end.
  • the ranging process ends.
  • situations where the ranging waveform cannot be generated include the frequency of the single-carrier signal reaching the limit of the system capability, the frequency difference between the two-carrier signals reaching the limit of the system capability, or the bandwidth of the multi-carrier signal reaching the limit of the system capability, etc.
  • the transmitter can end the ranging.
  • the transmitting end determines the ranging signal according to the first ranging parameter
  • the first distance includes: the sending end determines the first ranging accuracy according to the first signal-to-noise ratio; the sending end determines the first distance of the ranging signal according to the first ranging accuracy .
  • the first ranging distance may be an integer multiple of the first ranging accuracy.
  • the sending end of the present application can flexibly determine the ranging accuracy according to the ranging parameters, and gradually reduce the first ranging distance (also can be understood as the maximum unambiguous distance) according to the ranging accuracy, thereby increasing the bandwidth of the ranging signal , which solves the conflict between ranging range and ranging accuracy, and improves ranging accuracy while avoiding distance ambiguity.
  • the method further includes: the transmitting end according to the second signal-to-noise ratio Determine the second ranging accuracy; when the value of the second ranging accuracy is greater than the first threshold, the sending end performs the N+1th ranging, or; when the value of the second ranging accuracy When it is less than or equal to the first threshold, the sending end ends ranging.
  • the sending end can flexibly determine the ranging accuracy according to the ranging parameters.
  • the ranging accuracy is greater than the first threshold of the ranging accuracy specified by the system, the next stage of ranging is performed; when the ranging accuracy is less than When it is equal to the first threshold of the distance measurement accuracy specified by the system, the distance measurement process ends.
  • the signal-to-noise ratio and ranging accuracy may have a certain mapping relationship.
  • the method further includes: the sending end determines a second distance of the ranging signal, and the second distance does not exist within the ranging range supported by the system The distance is ambiguous; the sending end generates a second ranging waveform according to the type of the ranging signal and the second distance; the sending end sends the second ranging waveform to the receiving end, and the first A ranging parameter is determined according to the second ranging waveform; wherein the second distance is greater than the first distance.
  • the number of subcarriers of the ranging signal is M
  • the M is 2 to the K power
  • the K ⁇ 3 and the ranging signal
  • the number of zero-power subcarriers of is P
  • the number of non-zero power subcarriers of the ranging signal is Q
  • the root mean square bandwidth of the ranging signal is improved, and the ranging accuracy can be further improved.
  • the present application provides a ranging method, which includes: the receiving end sends a first ranging parameter to the sending end, the first ranging parameter is sent in the Nth ranging, and the first ranging parameter
  • a ranging parameter includes the first ranging accuracy of the ranging signal and/or the first signal-to-noise ratio of the ranging signal
  • the receiving end receives the first ranging waveform from the sending end, and the first ranging waveform generated according to the first ranging parameter
  • the receiving end determines the second ranging parameter according to the first ranging waveform
  • the second ranging parameter includes the second ranging signal of the ranging signal range accuracy and/or the second signal-to-noise ratio of the ranging signal, the second ranging accuracy is smaller than the first ranging accuracy
  • the receiving end performs the N+1th ranging, or; when the value of the second ranging parameter meets the threshold of the system, the receiving end ends the ranging; wherein, the N is an
  • the receiving end of the present application can realize high-precision ranging while avoiding distance ambiguity through multi-stage ranging.
  • the first ranging waveform is generated according to the first ranging parameter, including: the first ranging waveform is generated according to the ranging The signal type and the first distance are generated, and the first distance is generated according to the first ranging parameter.
  • the first distance is generated according to the first ranging parameter, including : The first distance is generated according to the first ranging accuracy, and the first ranging accuracy is generated according to the first signal-to-noise ratio.
  • the method further includes: the receiving end according to the second The second signal-to-noise ratio determines the second ranging accuracy; when the value of the second ranging accuracy is greater than the first threshold, the receiving end performs the N+1th ranging, or; when the second ranging accuracy When the value of the distance accuracy is less than or equal to the first threshold, the receiving end ends the distance measurement.
  • the receiving end receives a second ranging waveform from the transmitting end, and the second ranging waveform is based on the type of the ranging signal and the first Two distances are generated, the second distance does not have distance ambiguity points within the ranging range supported by the system, and the second distance is greater than the first distance; the receiving end determines the second distance according to the second ranging waveform The first ranging parameter; when the value of the first ranging parameter does not meet the threshold of the system, the receiving end performs the N+1th ranging, or; when the value of the first ranging parameter meets the system threshold When the threshold is , the receiving end ends the ranging.
  • the number of subcarriers of the ranging signal is M
  • the M is 2 to the K power
  • K ⁇ 3 the number of zero-power subcarriers of the ranging signal
  • P the number of non-zero power subcarriers of the ranging signal
  • a ranging device is provided, and the device is configured to implement the ranging method in the first aspect or any possible implementation manner of the first aspect.
  • a ranging device is provided, and the device is used to implement the ranging method in the second aspect or any possible implementation manner of the second aspect.
  • a ranging device including a processor.
  • the processor is coupled with the memory, and may be used to execute instructions in the memory, so as to implement the method in any possible implementation manner of the above first aspect.
  • the ranging device further includes a memory.
  • the ranging device further includes a communication interface, and the processor is coupled to the communication interface.
  • the ranging device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the ranging device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface.
  • the ranging device is a host node device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the ranging device is a chip configured in the host node.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a ranging device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory, so as to implement the method in any possible implementation manner of the second aspect above.
  • the ranging device further includes a memory.
  • the ranging device further includes a communication interface, and the processor is coupled to the communication interface.
  • the ranging device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the ranging device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface.
  • the ranging device is a host node device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the ranging device is a chip configured in the host node device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in any one possible implementation manner of the first aspect and the second aspect.
  • the above-mentioned processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop and various logic circuits, etc.
  • the input signal received by the input circuit may be received and input by, for example but not limited to, a transceiver
  • the output signal of the output circuit may be, for example but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and may receive signals through the transceiver and transmit signals through the transmitter, so as to execute the method in any possible implementation manner of the first aspect and the second aspect.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory may be set separately from the processor.
  • the memory can be a non-transitory (non-transitory) memory, such as a read-only memory (read only memory, ROM), which can be integrated with the processor on the same chip, or can be respectively arranged in different On the chip, the embodiment of the present application does not limit the type of the memory and the configuration of the memory and the processor.
  • a non-transitory memory such as a read-only memory (read only memory, ROM)
  • ROM read only memory
  • sending indication information may be a process of outputting indication information from a processor
  • receiving capability information may be a process of receiving input capability information from a processor.
  • the data output by the processor may be output to the transmitter, and the input data received by the processor may be from the transceiver.
  • the transmitter and the transceiver may be collectively referred to as a transceiver.
  • the processing device in the above eighth aspect may be one or more chips.
  • the processor in the processing device may be implemented by hardware or by software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor may be a general-purpose processor, which is implemented by reading software codes stored in a memory, which can Integrated in a processor, it can exist independently of that processor.
  • a computer program product including: a computer program (also referred to as code, or an instruction), when the computer program is executed, the computer executes the above-mentioned first aspect and the first aspect A method in any possible implementation manner in the two aspects.
  • a computer program also referred to as code, or an instruction
  • a computer-readable medium stores a computer program (also referred to as code, or an instruction), and when it is run on a computer, it causes the computer to execute the above-mentioned first aspect and The method in any possible implementation manner in the second aspect.
  • a computer program also referred to as code, or an instruction
  • a system-on-a-chip including a processor, configured to call and run a computer program from a memory, so that a device installed with the system-on-a-chip executes the methods in each implementation manner of the above-mentioned first aspect and the second aspect .
  • a ranging system in a twelfth aspect, includes any one of the above-mentioned devices in the third aspect and the device in the fourth aspect.
  • Fig. 1 is a schematic diagram of a scene applicable to the embodiment of the present application.
  • Fig. 2 is a schematic diagram of a scene applicable to the embodiment of the present application.
  • Fig. 3 is a schematic block diagram of a ranging method provided by the present application.
  • Fig. 4 is a schematic block diagram of a ranging method provided by the present application.
  • FIG. 5 is a schematic diagram of a distance measuring method provided by the present application.
  • Fig. 6 is a schematic diagram of a distance measuring method provided by the present application.
  • Fig. 7 is a schematic block diagram of a ranging method provided by the present application.
  • Fig. 8 is a schematic diagram of ranging signals provided by the present application.
  • Fig. 9 is a schematic block diagram of a ranging device provided in the present application.
  • Fig. 10 is a schematic block diagram of a ranging device provided in the present application.
  • the wireless communication systems applicable to the embodiments of the present application include but are not limited to: global system of mobile communication (GSM) system, long term evolution (long term evolution, LTE) frequency division duplex (frequency division duplex, FDD) system , LTE time division duplex (time division duplex, TDD), LTE system, advanced long-term evolution (LTE-Advanced, LTE-A) system, next-generation communication system (for example, 5G, 6G communication system), multiple access systems A converged system, or an evolved system.
  • GSM global system of mobile communication
  • LTE long term evolution
  • FDD frequency division duplex
  • FDD frequency division duplex
  • LTE time division duplex time division duplex
  • LTE-A advanced long-term evolution
  • next-generation communication system for example, 5G, 6G communication system
  • 5G, 6G communication system multiple access systems A converged system
  • evolved system evolved system.
  • the technical solution provided by this application can also be applied to machine type communication (machine type communication, MTC), inter-machine communication long-term evolution technology (Long Term Evolution-machine, LTE-M), device to device (device to device, D2D) network , machine to machine (machine to machine, M2M) network, Internet of things (internet of things, IoT) network or other networks.
  • MTC machine type communication
  • LTE-M inter-machine communication long-term evolution technology
  • D2D device to device
  • machine to machine machine to machine
  • M2M machine to machine
  • IoT Internet of things
  • the IoT network may include, for example, the Internet of Vehicles.
  • the communication methods in the Internet of Vehicles system are collectively referred to as vehicle to other devices (vehicle to X, V2X, X can represent anything), for example, the V2X can include: vehicle to vehicle (vehicle to vehicle, V2V) communication, vehicle and Infrastructure (vehicle to infrastructure, V2I) communication, vehicle to pedestrian (vehicle to pedestrian, V2P) or vehicle to network (vehicle to network, V2N) communication, etc.
  • vehicle to vehicle vehicle to vehicle
  • V2V vehicle to vehicle
  • V2I vehicle to infrastructure
  • V2P vehicle to pedestrian
  • V2N vehicle to network
  • the terminal equipment involved in the embodiment of the present application is an entrance for mobile users to interact with the network, and can provide basic computing capabilities and storage capabilities, display service windows to users, and accept user operation inputs.
  • Terminal equipment in 5G can use new air interface technology to establish signal and data connections with wireless access network equipment, thereby transmitting control signals and business data to the mobile network.
  • the terminal equipment involved in the embodiments of the present application may include various access terminals, mobile equipment, user terminals or user devices with wireless communication functions.
  • the terminal device may be user equipment (user equipment, UE), for example, a mobile phone (mobile phone), a tablet computer (pad), a desktop computer, a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, TV, augmented reality (augmented reality, AR) terminal equipment, etc.
  • UE user equipment
  • a mobile phone mobile phone
  • a tablet computer pad
  • a desktop computer a computer with a wireless transceiver function
  • VR virtual reality
  • TV augmented reality
  • AR augmented reality
  • Terminal equipment can also be wireless terminals in industrial control (industrial control), machine type communication (machine type communication, MTC) terminals, customer premise equipment (CPE), wireless terminals in self-driving , wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, smart home ), smart speakers, electronic door locks, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs) , handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, automatic guided vehicles (automatic guided vehicle, AGV), drones, cars, vehicle-mounted devices, wearable devices, 5G network Terminal equipment or terminal equipment in the future evolved public land mobile network (public land mobile network, PLMN) or non-public network (non-public network, NPN), etc.
  • industrial control industrial control
  • MTC machine type communication
  • CPE customer premise equipment
  • wireless terminals in self-driving wireless terminals in remote medical,
  • the wireless access network equipment involved in the embodiment of this application is similar to the base station in the traditional network, and is deployed close to the terminal equipment to provide network access functions for authorized users in a specific area, and can be based on user levels, business needs, etc. Determine transmission tunnels of different qualities to transmit user data.
  • Wireless access network equipment can manage its own resources, use them reasonably, provide access services for terminal equipment on demand, and be responsible for forwarding control signals and user data between terminal equipment and the core network.
  • the radio access network device involved in the embodiment of the present application may be an access device for a terminal device to access the mobile communication system through wireless means.
  • the radio access network device may be: a base station, an evolved base station (evolved node B, eNB), a home base station, an access point (access point, AP) in a wireless fidelity (wireless fidelity, WiFi) system, a station (station , STA), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), macro base station or micro base station, high frequency base station, etc.
  • eNB evolved base station
  • AP access point in a wireless fidelity (wireless fidelity, WiFi) system
  • station station (station , STA), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), macro base station or micro base station, high frequency base station, etc.
  • the wireless access network equipment can also be a next generation base station (next generation node B, gNB) in the NR system, or it can also be a component or a part of equipment that constitutes a base station, such as a central unit (CU), distributed Unit (distributed unit, DU) or baseband unit (baseband unit, BBU), etc.
  • CU central unit
  • DU distributed unit
  • BBU baseband unit
  • wireless access network equipment is referred to as network equipment for short.
  • network equipment refers to wireless access network equipment.
  • the network device may refer to the network device itself, or may be a chip applied to the network device to complete the wireless communication processing function.
  • the ranging method of the present application can be applied to various devices supporting the ranging function, including the above-mentioned various terminal devices and wireless access network devices.
  • the present application can be applied to the scene of active target ranging.
  • one or more senders 100 for example, transmitters
  • active devices 110 for example, receivers
  • the sender 100 can be the aforementioned wireless interface
  • a network access device or a terminal device; the active device 110 may also be the above wireless access network device or terminal device.
  • the present application can be applied to a scenario of passive device ranging.
  • the present application may be applied to a scenario where one or more devices 100 (for example, transmitters and receivers) perform ranging or positioning on one or more passive devices 120, and the device 100 may have both a transmitter and a receiver, There may also be only one of the transmitter and the receiver; the passive device 120 may be, for example, a person.
  • the transmitter and receiver belong to different devices; in passive target ranging, the transmitter and receiver can belong to the same device or different devices.
  • Active equipment in this application may refer to equipment with the function of sending and receiving signals, such as base stations, mobile phones, routers, radio frequency identification (radio frequency identification, RFID) equipment, etc.
  • Passive equipment in this application may refer to devices that do not have A device with the function of sending or receiving signals, such as people, animals, cars, airplanes, buildings, etc.
  • Root mean square bandwidth (root mean square bandwidth): For a time domain signal s(t), its root mean square bandwidth is defined as:
  • Angular frequency The unit of angular frequency is rad/s (radian per second), and the relationship with frequency f is:
  • Cramer-Rao lower bound It is a lower bound of the variance of the unbiased estimator, which describes the best performance that the unbiased estimator can achieve.
  • the lower bound of the accuracy ⁇ of ranging using the signal S(t) is inversely proportional to the root mean square bandwidth of S(t), and is also related to the signal-to-noise ratio (SNR ) is inversely proportional to the square root, that is,
  • is a constant
  • c is the signal propagation speed
  • the Ranging can be performed based on the phase of the received signal.
  • the ranging signal may be a single-carrier signal, a dual-carrier signal, or a signal including multiple sub-carriers (for example, orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM)).
  • OFDM orthogonal frequency division multiplexing
  • the distance can be estimated as:
  • phase ambiguity there is an ambiguity problem with phase-based ranging.
  • phase ambiguity points there are multiple phase ambiguity points, and the interval between phase ambiguity points is 2 ⁇ .
  • phase ambiguity leads to distance ambiguity, that is, one distance observation corresponds to multiple potential true distances.
  • the transmitted signal is an OFDM signal, and its subcarrier frequencies ⁇ f i ⁇ are evenly distributed with an interval of ⁇ f.
  • the receiving end knows the initial phase of each subcarrier at the sending end, and detects the variation ⁇ i ⁇ of the phase of each subcarrier relative to the initial phase, and performs a linear simulation of the phase variation ⁇ i ⁇ and frequency ⁇ f i ⁇ Together, the delay is estimated by fitting the slope of the straight line, thereby estimating the distance.
  • the linear relationship between the amount of phase change and frequency is as follows:
  • phase ranging to support unambiguous ranging in a large distance range, it is required that the frequency interval of the carrier is small, resulting in a decrease in ranging accuracy.
  • the carrier frequency interval is required to be small, resulting in a decrease in ranging accuracy; in phase ranging based on single-carrier signals
  • the frequency of the carrier is required to be small, resulting in a decrease in ranging accuracy. It can be seen that there is a conflict between the ranging range and the ranging accuracy at present.
  • This application proposes a ranging method, which can gradually reduce the maximum unambiguous distance of the ranging signal by using the relationship between the maximum unambiguous distance and the wavelength of the single-carrier signal, the frequency difference of the double-carrier signal, and the frequency interval of the frequency components of the multi-carrier signal. Achieve high-precision ranging while avoiding distance ambiguity.
  • FIG. 3 is a schematic diagram of a ranging method 300 according to an embodiment of the present application.
  • the method in FIG. 3 includes:
  • Step S310 the sending end receives the first ranging parameter from the receiving end, the first ranging parameter is received in the Nth (N is an integer greater than 0) ranging, and the first ranging parameter includes the first ranging signal A ranging accuracy and/or a first signal-to-noise ratio of the ranging signal.
  • the sending end may be a network device (for example, a base station) or a terminal device (for example, a user equipment).
  • a network device for example, a base station
  • a terminal device for example, a user equipment
  • the ranging parameters in this application can be used to determine the accuracy of ranging, that is to say, the ranging parameters mentioned in this application include but are not limited to ranging accuracy and signal-to-noise ratio, and can also include other measuring parameters. Distance parameters, as long as the distance measurement accuracy can be determined (or can be understood as obtained) through these parameters are within the protection scope of the present application.
  • the first ranging parameter may be a first ranging accuracy, and the first ranging parameter may also be a first signal-to-noise ratio.
  • the first ranging parameter may also include the first ranging accuracy and the first signal-to-noise ratio at the same time.
  • step S320 the transmitting end determines a first ranging waveform according to the first ranging parameter.
  • the type of ranging signal in this application may be single carrier, dual carrier or multi-carrier, and this application does not limit the type of ranging signal.
  • the first distance may be determined according to the first ranging parameter.
  • the first distance may be determined according to the first ranging accuracy.
  • the first distance may be an integer multiple of the first precision. If the first ranging parameter includes both the first ranging accuracy and the first signal-to-noise ratio, the sending end can determine which parameter to use to determine the first distance; The distance accuracy determines the first distance and so on. In other words, when the ranging parameters received by the sending end include two or more parameters, the sending end can flexibly choose which parameter to use to determine the first distance, which is not limited in this application.
  • the bandwidth of the ranging signal can be obtained according to the type of the ranging signal and the first distance, so as to generate a ranging waveform and perform ranging on the sending end and the receiving end.
  • the bandwidth of the ranging signal may refer to the frequency of a single-carrier signal; the carrier spacing (bandwidth) of a dual-carrier signal; or the non-zero sub-carrier frequency spacing of a multi-carrier signal.
  • the calculation formula of the bandwidth of the dual-carrier can be used (for example, For details, refer to the description of method 400) to calculate the bandwidth of the dual-carrier ranging signal; as another example, for a multi-carrier ranging signal, it can be based on the bandwidth of the multi-carrier (also can be understood as the bandwidth of two adjacent non-zero subcarriers frequency interval) calculation formula (for example, For details, refer to the description of method 400) to calculate the bandwidth of the multi-carrier ranging signal.
  • the ranging process ends.
  • situations where the ranging waveform cannot be generated include the frequency of the single-carrier signal reaching the limit of the system capability, the frequency difference between the two-carrier signals reaching the limit of the system capability, or the bandwidth of the multi-carrier signal reaching the limit of the system capability, etc.
  • the transmitter can end the ranging.
  • Step S330 the sending end sends the first ranging waveform to the receiving end.
  • the sending end may send the first ranging waveform to the receiving end.
  • Step S340 the sending end receives a second ranging parameter from the receiving end, the second ranging parameter is determined according to the first ranging waveform, and the second ranging parameter includes the second ranging accuracy and/or The second signal-to-noise ratio of the ranging signal, and the second ranging accuracy is smaller than the first ranging accuracy.
  • the receiving end may determine the second ranging parameter according to the first ranging waveform, for example, the second ranging parameter may be the second ranging accuracy, or the second ranging parameter may be the second SNR. It should be understood that the second ranging parameter may also include the second ranging accuracy and the second signal-to-noise ratio at the same time.
  • step S350 the sending end determines whether to perform the next ranging according to the second ranging parameter and the system threshold.
  • the sending end may perform the N+1th ranging, or; when the value of the second ranging parameter meets the threshold of the system , the sender can end the ranging.
  • the next stage of ranging can be performed; when the second ranging accuracy is less than or equal to the first threshold of ranging accuracy specified by the system , end the ranging process.
  • the ranging of the next stage may be performed; when the second SNR is greater than the second threshold of the SNR specified by the system
  • the threshold is reached, the ranging process ends. That is to say, in this application, the SNR and the ranging accuracy may have a certain mapping relationship, and by determining the relationship between the second SNR and the SNR threshold (for example, the second threshold), it is also obtained whether the ranging accuracy satisfies The ranging accuracy stipulated by the system improves the flexibility.
  • the sending end may preferentially use the second ranging accuracy to judge whether the ranging accuracy meets the ranging accuracy specified by the system, or the sending end may At the same time, it is judged according to the second ranging accuracy and the second signal-to-noise ratio whether the ranging accuracy meets the ranging accuracy specified by the system.
  • the sending end can preferentially use the second ranging accuracy Judgment result, or, as long as one of the ranging parameters is judged to have met the ranging accuracy specified by the system, the sending end determines that the ranging process can be ended, or, as long as one of the ranging parameters is judged to not meet the ranging accuracy specified by the system When the accuracy is high, the sending end determines that it can perform the N+1th ranging and so on. That is to say, if two kinds of ranging parameters are fed back at the same time, those skilled in the art can flexibly set judgment rules, so that the sending end can determine whether the ranging accuracy specified by the system is satisfied.
  • the conflict between the ranging range and the ranging accuracy is resolved through the step-by-step ranging, and the ranging accuracy is improved while avoiding distance ambiguity.
  • FIG. 4 is a schematic diagram of a ranging method 400 according to an embodiment of the present application.
  • the method in FIG. 4 includes:
  • Step S410 the sending end determines the maximum unambiguous distance #A of the ranging signal.
  • the sending end (for example, the transmitter) can determine the maximum unambiguous distance D m of the ranging signal according to the ranging range D supported by the system, D m ⁇ D .
  • D m the maximum unambiguous distance
  • the sending end may initialize the number of the ranging phase, for example, set m to 1.
  • Step S420 the transmitting end generates a ranging waveform #W m .
  • the transmitting end may generate the ranging waveform W m according to the ranging signal type and the determined relationship between the maximum unambiguous distance D m and the waveform parameters.
  • the sending end may generate the ranging waveform W 1 according to the ranging signal type and the determined relationship between the maximum unambiguous distance D 1 and the waveform parameters .
  • the ranging waveform W m in this application refers to a certain signal type, for example, a specific implementation of single carrier, dual carrier or multi-carrier, and corresponds to a segment of waveform W m(t) in continuous time.
  • the key parameters of the ranging waveform are signal type, duration and wavelength (for single carrier) or frequency spacing (for dual and multi-carrier).
  • the ranging signal is a single carrier ranging signal
  • c is the speed of light
  • f is the frequency of the single carrier signal
  • the ranging signal is a dual carrier ranging signal
  • c is the speed of light
  • f 1 and f 2 are the frequencies of the two carrier signals, respectively.
  • the ranging signal is a multi-carrier signal (such as an OFDM signal)
  • c is the speed of light
  • K is the minimum number of intervals between subcarriers whose power is not zero
  • ⁇ f is the interval frequency of subcarriers.
  • the above wavelength (for single carrier) or frequency interval (for dual carrier and multi-carrier) can be calculated according to D m .
  • the ranging waveform W m can be determined.
  • Step S430 the sending end sends the ranging waveform #W m to the receiving end.
  • the sending end may send the ranging waveform W 1 to the receiving end (for example, a receiver).
  • the ranging procedure ends.
  • the situation where the ranging waveform cannot be generated in this application may include but not limited to: the frequency of a single carrier signal reaches the limit of the system capability, the frequency difference of the dual carrier signals reaches the limit of the system capability, the bandwidth of the multi-carrier signal reaches the limit of the system capability, etc.
  • Step S440 the receiving end receives the ranging waveform #W m , and estimates the ranging accuracy #A.
  • the receiving end may calculate the ranging accuracy ⁇ m according to the formula according to the ranging signal type and the signal-to-noise ratio.
  • the signal-to-noise ratio can be estimated by the receiver based on the strength and noise level of the received ranging signal; it can also be estimated by the receiver based on other signals other than the ranging signal, for example, the Signal-to-noise ratio of the preamble in the header.
  • is a constant greater than 0, which can be pre-calibrated according to the measured performance;
  • c is the propagation speed of the signal;
  • f is the frequency of the single carrier signal.
  • is a constant greater than 0, which can be pre-calibrated according to the measured performance
  • c is the propagation speed of the signal
  • f 1 and f 2 are the frequencies of the two carrier signals, respectively.
  • the ranging signal is a multi-carrier signal (such as an OFDM signal)
  • is a constant greater than 0, which can be pre-calibrated according to the measured performance
  • c is the propagation speed of the signal
  • B RMS is the root mean square bandwidth of the signal.
  • the receiving end can obtain an estimated ranging accuracy ⁇ m by looking up a pre-calibrated table according to the ranging signal type, parameters, and SNR.
  • the receiving end can use the nearest neighbor value or interpolation method to determine the SNR value, thereby determining the ranging accuracy.
  • this table is stored in the receiving end, and subsequently the receiving end may feed back the queried ranging accuracy to the transmitting end. It can also be understood that, in this embodiment, Table 1 is configured in the receiving end.
  • the receiving end receives the ranging waveform #W m
  • the signal type is determined to be multi-carrier according to the ranging waveform #W m
  • the root-mean-square bandwidth of the multi-carrier is 1MHz
  • the standard deviation of the ranging result ⁇ R i ⁇ samples is taken as the estimated ranging accuracy ⁇ m .
  • Step S441 the receiving end determines whether the current ranging accuracy #A satisfies the requirement of the system ranging accuracy ⁇ .
  • the receiving end judges whether the current ranging accuracy ⁇ m meets the requirements of the system ranging accuracy ⁇ , and when ⁇ ⁇ ⁇ m , the ranging process can be ended; when ⁇ ⁇ ⁇ m , continue to execute the following steps described above.
  • the sending end may also determine whether the current ranging accuracy #A satisfies the requirement of the system ranging accuracy ⁇ .
  • the receiving end can directly send the ranging accuracy #A to the sending end, and the sending end determines whether to end the ranging process or perform the next ranging.
  • step S441 may not be performed by the receiving end at this time, that is, step S441 is an optional step.
  • Step S450 the receiving end sends the ranging accuracy #A to the sending end.
  • step S451 is also included, the sending end determines whether the current ranging accuracy #A satisfies the requirement of the system ranging accuracy ⁇ .
  • step S451 is an optional step.
  • Step S460 the sending end determines the maximum unambiguous distance #B of the ranging signal according to the ranging accuracy #A.
  • the sending end can determine the maximum unambiguous distance #B of the ranging signal according to the ranging accuracy fed back, that is, D m+1 ⁇ ⁇ m , where ⁇ is a value greater than A constant of 0, a typical value can be 3.
  • the maximum unambiguous distance of the ranging signal may be re-determined according to the accuracy obtained by each ranging.
  • the re-determined maximum unambiguous distance may be an integer multiple of the ranging accuracy. It can also be understood that by gradually reducing the maximum unambiguous distance of the ranging signal, the bandwidth of the ranging signal is increased (for example, for a single carrier, the wavelength of the single carrier signal is reduced; for dual carriers and multi-carriers, Increased bandwidth of dual-carrier or multi-carrier signals), thereby improving ranging accuracy.
  • step S470 the transmitting end generates a ranging waveform #W m+1 .
  • the transmitting end may generate the ranging waveform W m+1 according to the ranging signal type and the determined relationship between the maximum unambiguous distance D m+1 and the waveform parameters.
  • step S420 which will not be repeated here.
  • Step S480 the sending end sends the ranging waveform #W m+1 to the receiving end.
  • step S430 please refer to step S430, and will not go into details
  • Step S490 the receiving end receives the ranging waveform #W m+1 , and determines the ranging accuracy #B.
  • the receiving end receives the ranging waveform #W m+1 , and may refer to the method in step S440 to determine the ranging accuracy #B, which will not be repeated here.
  • step S420 to step S490 may be repeatedly executed until the sending end (or receiving end) determines that the ranging accuracy at the current stage satisfies the ranging accuracy ⁇ of the system, and the ranging process may end.
  • the transmitting end is a base station
  • the receiving end is a user equipment (UE).
  • steps S410 to S490 As described above in steps S410 to S490:
  • the ranging results of the first stage are shown in Fig. 5. That is, the UE obtains that the distance between the ranging sending end and the receiving end is 90m, and determines that the ranging accuracy is 50m.
  • the ranging results of the second stage are shown in Fig. 6. That is, the UE obtains that the distance between the ranging sending end and the receiving end is 84m, and determines that the ranging accuracy is 5m.
  • the receiving end can directly feed back the ranging accuracy, and gradually reduce the distance of the ranging signal through multiple stages of ranging.
  • the maximum unambiguous distance achieves high-precision ranging while avoiding distance ambiguity.
  • FIG. 7 is a schematic diagram of a ranging method 700 according to an embodiment of the present application.
  • the method in FIG. 7 includes:
  • Step S710 to step S730 refer to step S410-step S430 in the step method 400, which will not be repeated here.
  • Step S740 the receiving end receives the ranging waveform #W 1 , and determines the signal-to-noise ratio #A of the ranging waveform.
  • the receiving end can estimate the signal-to-noise ratio according to the strength and noise level of the ranging signal; the receiver can also estimate the signal-to-noise ratio based on signals other than the ranging signal, for example, a The signal-to-noise ratio of the preamble at the head of the frame.
  • step S741 is also included, the receiving end determines the ranging accuracy #A according to the signal-to-noise ratio #A of the ranging waveform.
  • the sending end may calculate the ranging accuracy according to the foregoing manner 1.
  • the specific calculation formula refer to the method 1 in step S440 of the method 400, and details are not repeated here.
  • the sending end may determine the ranging accuracy according to the foregoing manner 2. That is, the sending end can also look up the pre-calibrated table according to the ranging signal type, parameters, and SNR to obtain the estimated ranging accuracy ⁇ m . For details, reference may be made to the manner 2 in step S440 in the method 400, which will not be repeated here.
  • step S742 is also included, the receiving end judges whether the ranging accuracy #A meets the ranging accuracy specified by the system.
  • the receiving end judges whether the current ranging accuracy ⁇ m meets the requirements of the system ranging accuracy ⁇ , and when ⁇ ⁇ ⁇ m , the ranging process can be ended; when ⁇ ⁇ ⁇ m , continue to execute the following steps described above.
  • the receiving end can also directly send the signal-to-noise ratio #A to the sending end, and the sending end determines the ranging accuracy #A according to the signal-to-noise ratio #A and the sending end judges whether the ranging accuracy #A satisfies The ranging accuracy specified by the system.
  • step S741 and step S742 are optional steps.
  • Step S750 the receiving end sends the signal-to-noise ratio SNR to the sending end.
  • step S751 is also included, the transmitting end determines the ranging accuracy #A of the ranging signal according to the received signal-to-noise ratio SNR.
  • the sending end may calculate the ranging accuracy according to the foregoing manner 1. That is, the sending end can also calculate the ranging accuracy ⁇ m according to the formula according to the ranging signal type and SNR. For the specific calculation formula, refer to the method 1 in step S440 in the method 400, which will not be repeated here.
  • the sending end may determine the ranging accuracy according to the foregoing manner 2. That is, the sending end can also look up the pre-calibrated table according to the ranging signal type, parameters, and SNR to obtain the estimated ranging accuracy ⁇ m . For details, reference may be made to the manner 2 in step S440 in the method 400, which will not be repeated here. It should be noted that, in this embodiment, Table 1 is stored at the sending end. It can also be understood that, in this embodiment, Table 1 is stored and configured in the sending end.
  • step S752 is also included, the sending end determines whether the current ranging accuracy #A satisfies the requirement of the system ranging accuracy ⁇ .
  • the sending end judges whether the current ranging accuracy ⁇ m meets the requirements of the system ranging accuracy ⁇ , and when ⁇ ⁇ ⁇ m , the ranging process can be ended; when ⁇ ⁇ ⁇ m , continue to execute the following steps described above.
  • step S751 and step S752 are also included.
  • Step S760 the sending end determines the maximum unambiguous distance #B of the ranging signal.
  • the sending end can determine the maximum unambiguous distance #B of the ranging signal according to the ranging accuracy #A, D m+1 ⁇ ⁇ m , where ⁇ is a value greater than 0 Constant, whose typical value can be 3.
  • step S770 the transmitting end generates a ranging waveform #W m+1 .
  • step S720 which will not be repeated here.
  • Step S780 the sending end sends the ranging waveform #W m+1 to the receiving end.
  • step S730 which will not be repeated here.
  • Step S790 the receiving end receives the ranging waveform #W m+1 , and determines the signal-to-noise ratio of the ranging waveform #B.
  • step S740 which will not be repeated here.
  • step S720 to step S790 may be repeatedly executed until the sending end (or receiving end) determines that the ranging accuracy of the current stage satisfies the ranging accuracy ⁇ of the system, and the ranging process may end.
  • the receiving end feeds back the signal-to-noise ratio, so that the sending end can determine the ranging accuracy, through multiple stages. Ranging gradually reduces the maximum unambiguous distance of the ranging signal, and realizes high-precision ranging while avoiding distance ambiguity.
  • Method 800 is a ranging method provided in this application.
  • a special OFDM waveform can be used as the ranging signal, that is, the signal power is mainly distributed on the left and right sides of the signal frequency band.
  • the ranging signal described in this embodiment has a larger root mean square bandwidth, and therefore has higher ranging accuracy.
  • the OFDM waveform described in this embodiment is used as a ranging signal, and a typical waveform may be as shown in (a) in FIG. 8 , (b) in FIG. 8 or (c) in FIG. 8 .
  • f is the frequency
  • S(f) is the Fourier transform (ie, frequency spectrum) of the signal.
  • the power distribution of the OFDM waveform in the frequency domain is more concentrated than that of the waveform in (a) of FIG. 8 . That is, the frequency interval G between two groups of subcarriers whose power is not zero is smaller. It should be noted that a larger maximum unambiguous distance can be obtained at this time.
  • the power distribution of the OFDM waveform in the frequency domain is asymmetrical. That is, its power distribution can only be on [0,f].
  • ranging waveform shown in (a) of FIG. 8 , (b) of FIG. 8 or (c) of FIG. 8 in this application is just an example and not limited. Any ranging signal with the characteristic that "signal power is mainly distributed on the left and right sides of the signal frequency band" falls within the scope of protection of this application.
  • N is the number of subcarriers in the fast Fourier transform (FFT)
  • N 0 is the number of zero-power subcarriers in the interval area
  • N e is the number of non-zero-power subcarriers.
  • ranging is carried out in multiple stages to gradually reduce the maximum unambiguous distance of the ranging signal, It achieves high-precision ranging while avoiding distance ambiguity. And by adjusting the frequency domain power distribution of the signal, the root mean square bandwidth of the ranging signal is improved, thereby further improving the ranging accuracy.
  • the communication method provided by the embodiment of the present application is described in detail with reference to FIG. 3 to FIG. 8 .
  • the following describes the communication device provided by the embodiment of the present application with reference to FIG. 9 and FIG. 10 . It should be understood that the descriptions of the device embodiments correspond to the descriptions of the method embodiments. Therefore, for details that are not described in detail, reference may be made to the method embodiments above. For brevity, details are not repeated here.
  • each node such as a transmitting end device or a receiving end device, includes a corresponding hardware structure and/or software module for performing each function.
  • each node such as a transmitting end device or a receiving end device
  • each node includes a corresponding hardware structure and/or software module for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiment of the present application can divide the functional modules of the transmitting end device or the receiving end device according to the above method example, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation. In the following, description will be made by taking the division of each functional module corresponding to each function as an example.
  • Fig. 9 is a schematic block diagram of a distance measuring device 100 provided by an embodiment of the present application.
  • the apparatus 100 may include: a transceiver unit 110 and a processing unit 120 .
  • the ranging device 100 may be the sending end in the above method embodiment, or may be a chip for realizing the function of the sending end in the above method embodiment. It should be understood that the device 100 may correspond to the sending end in the method 300, the method 400, and the method 700 according to the embodiment of the present application, and the device 100 may execute the sending end in the method 300, the method 400, and the method 700 of the embodiment of the present application corresponding steps. It should be understood that the specific process for each unit to perform the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, details are not repeated here.
  • the transceiver unit is used to receive the first ranging parameter, the first ranging parameter is received in the Nth (N is an integer greater than 0) ranging, and the first ranging parameter includes ranging The first ranging accuracy of the signal and/or the first signal-to-noise ratio of the ranging signal; the processing unit is used to determine the first ranging waveform according to the first ranging parameter; the transceiver unit is used to send the The first ranging waveform; the transceiver unit is configured to receive a second ranging parameter, the second ranging parameter is determined by the processing unit according to the first ranging waveform, and the second ranging parameter includes The second ranging accuracy of the ranging signal and/or the second signal-to-noise ratio of the ranging signal, the second ranging accuracy is smaller than the first ranging accuracy; when the value of the second ranging parameter does not satisfy When the threshold of the system is reached, the device performs the N+1th ranging, or; when the value of the second ranging parameter meets the threshold of the system,
  • the ranging device 100 may be the receiving end in the above method embodiment, or may be a chip for realizing the function of the receiving end in the above method embodiment. It should be understood that the device 100 may correspond to the receiving end in the method 300, the method 400, and the method 700 according to the embodiment of the present application, and the device 100 may execute the receiving end in the method 300, the method 400, and the method 700 of the embodiment of the present application corresponding steps. It should be understood that the specific process for each unit to perform the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, details are not repeated here.
  • the transceiver unit is used to send the first ranging parameter, the first ranging parameter is sent in the Nth (N is an integer greater than 0) ranging, and the first ranging parameter includes the ranging signal The first ranging accuracy and/or the first signal-to-noise ratio of the ranging signal; the transceiver unit is used to receive a first ranging waveform, and the first ranging waveform is generated according to the first ranging parameter
  • the processing unit is configured to determine the second ranging parameter according to the first ranging waveform, the second ranging parameter includes the second ranging accuracy of the ranging signal and/or the ranging
  • the second signal-to-noise ratio of the signal, the second ranging accuracy is smaller than the first ranging accuracy; when the value of the second ranging parameter does not meet the threshold of the system, the device performs the N+1th time distance measurement, or; when the value of the second distance measurement parameter satisfies the threshold of the system, the device ends the distance measurement.
  • Fig. 10 is a schematic block diagram of a distance measuring device 200 provided by an embodiment of the present application.
  • the apparatus 200 includes: at least one processor 220 .
  • the processor 220 is coupled with the memory for executing instructions stored in the memory to send signals and/or receive signals.
  • the device 200 further includes a memory 230 for storing instructions.
  • the apparatus 200 further includes a transceiver 210, and the processor 220 controls the transceiver 210 to send signals and/or receive signals.
  • processor 220 and the memory 230 may be combined into one processing device, and the processor 220 is configured to execute the program codes stored in the memory 230 to implement the above functions.
  • the memory 230 may also be integrated in the processor 220 , or be independent of the processor 220 .
  • the transceiver 210 may include a transceiver (or a receiver) and a transmitter (or a transmitter).
  • the transceiver may further include antennas, and the number of antennas may be one or more.
  • the transceiver 210 may be a communication interface or an interface circuit.
  • the transceiver 210 in the device 200 may correspond to the transceiver unit 110 in the device 100
  • the processor 220 in the device 200 may correspond to the processing unit 120 in the device 200 .
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, no detailed description is given here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • static RAM static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory direct ram-bus RAM, DR RAM
  • direct ram-bus RAM direct ram-bus RAM
  • the present application also provides a computer program product, the computer program product stores computer program code, and when the computer program code is run on the computer, the computer executes method 300 and method 400 .
  • the present application also provides a computer-readable medium, the computer-readable medium stores program code, and when the program code is run on the computer, the computer is made to execute the method 300, method 400, The method in any one of the embodiments of the method 700.
  • the present application further provides a system, which includes the foregoing apparatus or equipment.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disc, SSD)
  • the network-side equipment in each of the above device embodiments corresponds to the terminal equipment and the network-side equipment or terminal equipment in the method embodiments, and the corresponding modules or units perform corresponding steps, for example, the communication unit (transceiver) executes the receiving method in the method embodiments. Or the step of sending, other steps besides sending and receiving may be performed by a processing unit (processor). For the functions of the specific units, reference may be made to the corresponding method embodiments. Wherein, there may be one or more processors.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more packets of data (e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems). Communicate through local and/or remote processes.
  • packets of data e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种测距方法、测距装置、计算机可读存储介质和计算机程序产品,测距方法(300)包括:发送端从接收端接收第一测距参数,第一测距参数是在第N次测距中接收的,第一测距参数包括测距信号的第一测距精度和/或测距信号的第一信噪比(S310);发送端根据第一测距参数确定第一测距波形(S320);发送端向接收端发送第一测距波形(S330);发送端从接收端接收第二测距参数,第二测距参数是根据第一测距波形确定的,第二测距参数包括测距信号的第二测距精度和/或测距信号的第二信噪比,第二测距精度小于第一测距精度(S340);当第二测距参数的值不满足系统的阈值时,发送端执行第N+1次测距,或者;当第二测距参数的值满足系统的阈值时,发送端结束测距(S350);其中,N为大于0的整数。该测距方法提高了测距精度。

Description

测距方法和装置
本申请要求于2021年5月28日提交中国专利局、申请号为202110591894.6、申请名称为“测距方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种测距方法和装置。
背景技术
目前,基于接收信号的相位可以进行测距。测距信号可以是单载波信号、双载波信号、或者包含多个子载波的信号,例如,正交频分复用(orthogonal frequency division multiplexing,OFDM)信号。然而,基于相位的测距会存在模糊问题。对于一个观测值,存在多个相位模糊点,相位模糊点之间间隔为2π。相位模糊会导致距离模糊,即,一个观测距离对应多个潜在的真实距离。
目前,在相位测距中,要支持大距离范围的无模糊测距,要求载波的频率间隔小,导致测距精度的降低。由此可知,目前测距范围和测距精度存在冲突。
因此,在避免距离模糊的同时,如何提高测距精度成为目前需要解决的技术问题。
发明内容
本申请提供一种测距方法和装置,通过多阶段测距,避免距离模糊的同时实现高精度的测距。
第一方面,提供了一种测距方法,该方法包括:发送端从接收端接收第一测距参数,第一测距参数是在第N次测距中接收的,第一测距参数包括测距信号的第一测距精度和/或测距信号的第一信噪比;发送端根据第一测距参数确定第一测距波形;发送端向接收端发送第一测距波形;发送端从接收端接收第二测距参数,第二测距参数是根据第一测距波形确定的,第二测距参数包括测距信号的第二测距精度和/或测距信号的第二信噪比,第二测距精度小于第一测距精度;当第二测距参数的值不满足系统的阈值时,发送端执行第N+1次测距,或者;当第二测距参数的值满足系统的阈值时,发送端结束测距;其中,N为大于0的整数。
基于上述技术方案,本申请接收端通过多阶段测距,避免距离模糊的同时实现高精度的测距。
需要说明的是,本申请中发送端可以是网络设备(例如,基站)也可以是终端设备(例如,用户设备)。
需要说明的是,本申请中的测距参数可以用于确定测距的精度,也就是说本申请所提到的测距参数包括但不限于测距精度以及信噪比,也可以包括其它测距参数,只要是可以通过这些参数确定(或者可以理解为得到)测距精度的都在本申请的保护范围之内。
结合第一方面,在第一方面的某些实施方式中,所述发送端根据所述第一测距参数确定第一测距波形,包括:所述发送端根据所述第一测距参数确定所述测距信号的第一距离;所述发送端根据所述测距信号的类型和所述第一距离生成第一测距波形。
本申请中测距信号的类型可以是单载波、双载波或者是多载波,本申请对测距信号的类型不做限定。
本申请中可以根据测距信号的类型以及第一距离得到测距信号的带宽,从而生成测距波形,对发送端和接收端进行测距。
应理解,如果由于系统规格限制无法生成测距波形,则结束测距流程。例如,无法生成测距波形的情形包括单载波信号的频率达到系统能力极限、双载波信号频率差达到系统能力极限或者多载波信号带宽达到系统能力极限等,此时发送端可以结束测距。
结合第一方面,在第一方面的某些实施方式中,当所述第一测距参数为第一信噪比时,所述发送端根据所述第一测距参数确定所述测距信号的第一距离,包括:所述发送端根据所述第一信噪比确定所述第一测距精度;所述发送端根据所述第一测距精度确定所述测距信号的第一距离。
需要说明的是,本申请中,第一测距距离可以是第一测距精度的整数倍。
基于上述技术方案,本申请发送端可以灵活根据测距参数确定测距精度,并且根据测距精度逐步缩小测距第一距离(也可以理解为最大不模糊距离),从而提高测距信号的带宽,解决了测距范围和测距精度的冲突,在避免产生距离模糊的同时,提高了测距精度。
结合第一方面,在第一方面的某些实施方式中,当所述第二测距参数为第二信噪比时,所述方法还包括:所述发送端根据所述第二信噪比确定所述第二测距精度;当所述第二测距精度的值大于第一阈值时,所述发送端执行第N+1次测距,或者;当所述第二测距精度的值小于等于第一阈值时,所述发送端结束测距。
也就是说,本申请中发送端可以灵活根据测距参数确定测距精度,当测距精度大于系统规定的测距精度的第一阈值时,执行下一阶段的测距;当测距精度小于等于系统规定的测距精度的第一阈值时,结束测距流程。
应理解,本申请中也可以是,当信噪比小于等于系统规定的信噪比的第二阈值时,可以执行下一阶段的测距;当信噪比大于系统规定的信噪比的第二阈值时,结束测距流程。也就是说,本申请中信噪比和测距精度可以具有一定的映射关系,通过确定信噪比的数值和阈值的关系,也得到测距精度是否满足系统规定的测距精度,提高了灵活性。
结合第一方面,在第一方面的某些实施方式中,所述方法还包括:所述发送端确定测距信号的第二距离,所述第二距离在系统支持的测距范围内不存在距离模糊点;所述发送端根据所述测距信号的类型和所述第二距离生成第二测距波形;所述发送端向所述接收端发送所述第二测距波形,所述第一测距参数是根据所述第二测距波形确定的;其中,所述第二距离大于所述第一距离。
结合第一方面,在第一方面的某些实施方式中所述测距信号的子载波个数为M,所述M为2的K次方,所述K≥3,且所述测距信号的零功率子载波个数为P个,
Figure PCTCN2022090952-appb-000001
Figure PCTCN2022090952-appb-000002
且所述测距信号的非零功率子载波个数为Q个,
Figure PCTCN2022090952-appb-000003
基于上述技术方案,根据本申请中提供的测距信号,提高了测距信号的均方根带宽, 进一步可以提高测距精度。
第二方面,本申请提供了一种测距方法,该方法包括:接收端向发送端发送第一测距参数,所述第一测距参数在第N次测距中发送的,所述第一测距参数包括测距信号的第一测距精度和/或测距信号的第一信噪比;所述接收端从所述发送端接收第一测距波形,所述第一测距波形是根据所述第一测距参数生成的;所述接收端根据所述第一测距波形确定所述第二测距参数,所述第二测距参数包括所述测距信号的第二测距精度和/或所述测距信号的第二信噪比,所述第二测距精度小于所述第一测距精度;当所述第二测距参数的值不满足系统的阈值时,所述接收端执行第N+1次测距,或者;当所述第二测距参数的值满足系统的阈值时,所述接收端结束测距;其中,所述N为大于0的整数。
基于上述技术方案,本申请接收端可以通过多阶段测距,避免距离模糊的同时实现高精度的测距。
结合第二方面,在第二方面的某些实施方式中,所述第一测距波形是根据所述第一测距参数生成的,包括:所述第一测距波形是根据所述测距信号的类型和所述第一距离生成的,所述第一距离是根据所述第一测距参数生成的。
结合第二方面,在第二方面的某些实施方式中,当所述第一测距参数为第一信噪比时,所述第一距离是根据所述第一测距参数生成的,包括:所述第一距离是根据所述第一测距精度生成的,所述第一测距精度是根据所述第一信噪比生成的。
结合第二方面,在第二方面的某些实施方式中,其特征在于,当所述第二测距参数为第二信噪比时,所述方法还包括:所述接收端根据所述第二信噪比确定所述第二测距精度;当所述第二测距精度的值大于第一阈值时,所述接收端执行第N+1次测距,或者;当所述第二测距精度的值小于等于第一阈值时,所述接收端结束测距。
结合第二方面,在第二方面的某些实施方式中,所述接收端从所述发送端接收第二测距波形,所述第二测距波形是根据所述测距信号的类型和第二距离生成,所述第二距离在系统支持的测距范围内不存在距离模糊点,所述第二距离大于所述第一距离;所述接收端根据所述第二测距波形确定所述第一测距参数;当所述第一测距参数的值不满足系统的阈值时,所述接收端执行第N+1次测距,或者;当所述第一测距参数的值满足系统的阈值时,所述接收端结束测距。
结合第二方面,在第二方面的某些实施方式中,其特征在于,所述测距信号的子载波个数为M,所述M为2的K次方,所述K≥3,且所述测距信号的零功率子载波个数为P个,
Figure PCTCN2022090952-appb-000004
且所述测距信号的非零功率子载波个数为Q个,
Figure PCTCN2022090952-appb-000005
第三方面,提供了一种测距装置,该装置用于执行第一方面或第一方面中任意一种可能的实现方式中的测距方法。
第四方面,提供了一种测距装置,该装置用于执行第二方面或第二方面中任意一种可能的实现方式中的测距方法。
第五方面,提供了一种测距装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面中任一种可能实现方式中的方法。可选地,该测距装置还包括存储器。可选地,该测距装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该测距装置为终端设备。当该测距装置为终端设备时,该通信接 口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该测距装置为配置于终端设备中的芯片。当该测距装置为配置于终端设备中的芯片时,该通信接口可以是输入/输出接口。
在一种实现方式中,该测距装置为宿主节点设备。当该测距装置为宿主节点设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该测距装置为配置于宿主节点中的芯片。当该测距装置为配置于宿主节点中的芯片时,该通信接口可以是输入/输出接口。可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第六方面,提供了一种测距装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面中任一种可能实现方式中的方法。可选地,该测距装置还包括存储器。可选地,该测距装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该测距装置为终端设备。当该测距装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该测距装置为配置于终端设备中的芯片。当该测距装置为配置于终端设备中的芯片时,该通信接口可以是输入/输出接口。
在一种实现方式中,该测距装置为宿主节点设备。当该测距装置为宿主节点设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该测距装置为配置于宿主节点设备中的芯片。当该测距装置为配置于宿主节点设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第七方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面和第二方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于收发器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过收发器接收信号,通过发射器发射信号,以执行第一方面和第二方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程, 接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自收发器。其中,发射器和收发器可以统称为收发器。
上述第八方面中的处理装置可以是一个或多个芯片。该处理装置中的处理器可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面和第二方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令),当其在计算机上运行时,使得计算机执行上述第一方面和第二方面中任一种可能实现方式中的方法。
第十一方面,提供了一种芯片系统,包括处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片系统的设备执行上述第一方面和第二方面各实现方式中的方法。
第十二方面,提供了一种测距系统,所述测距系统包括上述任一项第三方面涉及的装置、第四方面涉及的装置。
附图说明
图1是适用于本申请实施例的场景示意图。
图2是适用于本申请实施例的场景示意图。
图3是本申请提供的测距方法的示意性框图。
图4是本申请提供的测距方法的示意性框图。
图5是本申请提供的测距方法的示意图。
图6是本申请提供的测距方法的示意图。
图7是本申请提供的测距方法的示意性框图。
图8是本申请提供的测距信号的示意图。
图9是本申请提供的测距装置的示意性框图。
图10是本申请提供的测距装置的示意性框图。
具体实施方式
本申请实施例可应用的无线通信系统包括但不限于:全球移动通信(global system of mobile communication,GSM)系统、长期演进(long term evolution,LTE)频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、LTE系统、先进的长期演进(LTE-Advanced,LTE-A)系统、下一代通信系统(例如,5G、6G通信系统)、多种接入系统的融合系统,或演进系统。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(Long Term Evolution-machine,LTE-M)、设备到设备(device to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet  of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请实施例中所涉及到的终端设备是移动用户与网络交互的入口,能够提供基本的计算能力,存储能力,向用户显示业务窗口,接受用户操作输入。5G中的终端设备可以采用新空口技术,与无线接入网设备建立信号连接和数据连接,从而传输控制信号和业务数据到移动网络。本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的接入终端、移动设备、用户终端或用户装置。例如,终端设备可以为用户设备(user equipment,UE),例如,手机(mobile phone)、平板电脑(pad)、台式机、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、电视、增强现实(augmented reality,AR)终端设备等。终端设备也可是工业控制(industrial control)中的无线终端、机器类型通信(machine type communication,MTC)终端、客户终端设备(customer premise equipment,CPE)、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)、智能音箱、电子门锁、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、自动导引车(automatic guided vehicle,AGV)、无人机、汽车、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)或非公共用途网络(non-public network,NPN)中的终端设备等。
本申请实施例中所涉及到无线接入网设备类似于传统网络里面的基站,部署在靠近终端设备的位置,为特定区域的授权用户提供入网功能,并能够根据用户的级别,业务的需求等确定不同质量的传输隧道来传输用户数据。无线接入网设备能够管理自身的资源,合理利用,按需为终端设备提供接入服务,并负责把控制信号和用户数据在终端设备和核心网之间转发。本申请实施例中所涉及到无线接入网设备可以是终端设备通过无线方式接入到该移动通信系统中的接入设备。该无线接入网设备可以是:基站、演进型基站(evolved node B,eNB)、家庭基站、无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、站点(station,STA)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)、宏基站或微基站、高频基站等。该无线接入网设备还可以为NR系统中的下一代基站(next generation node B,gNB),或者,还可以是构成基站的组件或一部分设备,如汇聚单元(central unit,CU)、分布式单元(distributed unit,DU)或基带单元(baseband unit,BBU)等。应理解,本申请的实施例中,对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,在本申请中,网络设备均指无线接入网设备。在本申请中,网络设备可以是指网络设备本身,也可以是应用于网络设备中完成无线通信处理功能的芯片。
下面结合图1和图2详细介绍本申请实施例适用的场景。
本申请的测距方法可以应用在各种支持测距功能的设备中,包括上述提到的各种终端设备和无线接入网设备。如图1所示,本申请可以应用于有源目标测距的场景。例如,可以应用于一个或多个发送端100(例如,发射机)对一个或多个有源设备110(例如,接收机)进行测距或定位的场景,发送端100可以是上述的无线接入网设备或终端设备;有源设备110也可以是上述的无线接入网设备或终端设备。如图2所示,本申请可以应用于无源设备测距的场景。例如,本申请可以应用于一个或多个设备100(例如,发射机、接收机)对一个或多个无源设备120进行测距或定位的场景,设备100可以同时具备发射机和接收机,也可以只具备发射机或者接收机中的一个;无源设备120,例如可以是人等。在有源测距场景中,发射机和接收机属于不同设备;在无源目标测距中,发射机和接收机可以属于同一设备或者不同设备。本申请中的有源设备可以指具有发送和接收信号的功能的设备,例如基站、手机、路由器、无线射频识别(radio frequency identification,RFID)设备等,本申请中的无源设备可以指不具有发送或接收信号的功能的设备,例如人、动物、汽车、飞机、建筑物等。
为了便于理解,下面对本申请所涉及的术语进行简要说明。
均方根带宽(root mean square bandwidth):对于时域信号s(t),其均方根带宽定义为:
Figure PCTCN2022090952-appb-000006
其中,f是频率,S(f)是信号的傅里叶变换(即,频谱),|S(f)| 2信号的功率谱密度。应理解,功率相同或者最大频率相同的信号,其均方根带宽不一定相等。
角频率:角频率单位为rad/s(弧度每秒),与频率f的关系为:
ω=2πf
克拉默-拉奥下界(Cramer-Rao lower bound,CRLB):是无偏估计器的方差的一个下界,描述了无偏估计器所能达到的最好性能。根据CRLB,高斯白噪声条件下,使用信号S(t)进行测距的精度δ的下界与S(t)的均方根带宽成反比,也与信噪比(signal-to-noise ratio,SNR)的平方根成反比,即,
Figure PCTCN2022090952-appb-000007
其中,α为一个常数,其中c为信号传播速度。
基于接收信号的相位可以进行测距。测距信号可以是单载波信号、双载波信号、或者包含多个子载波的信号(例如,正交频分复用(orthogonal frequency division multiplexing,OFDM))。以单载波信号为例,设发送信号为:
x(t)=e jωt
其中为ω载波角频率,t为时间。假设信号传输时延为τ,则接收信号为:
y(t)=x(t-τ)=e jω(t-τ)=e -jωτx(t)=e jφ(τ)x(t)
其中,φ(τ)=-ωt为接收信号相对发送信号的相位延迟。
假设传播速度为c,则距离可以估计为:
d=cτ
基于相位的测距存在模糊问题。对于一个相位观测值,存在多个相位模糊点,相位模 糊点之间间隔为2π。对应地,相位模糊会导致距离模糊,即一个距离观测值对应多个潜在的真实距离。
在双载波相位差测距中,测距范围和测距精度存在冲突。更大的测距范围要求系统支持更大的不模糊距离,也就要求更小的双载波频率差。而更小的频率差意味着更小的带宽,根据CRLB,带宽变小的情况下,测距精度会下降。虽然可以通过提高信号功率提高精度,但这也增加了系统的功率消耗。
双载波相位差测距方法中,发送频率间隔为Δf=f 1-f 2的两个载波信号。接收端已知发送端两个载波的初始相位,并检测两个载波的相位相对于初始相位的变化量{φ i}(i=1,2),并计算变化量之间的差Δφ=φ 12,并通过如下公式估计信号传输时延τ:
Figure PCTCN2022090952-appb-000008
并估计距离为d=cτ,其中,传播速度为c。
OFDM多载波相位测距方法中,发送信号为OFDM信号,其子载波频率{f i}均匀分布,间隔为Δf。接收端已知发送端各个子载波的初始相位,并检测各个子载波的相位相对于初始相位的变化量{φ i},并对相位变化量{φ i}和频率{f i}进行线性拟合,通过拟合直线的斜率估计时延,从而估计距离。相位变化量和频率之间的线性关系如下:
φ i=-2πf iτ
由此估计信号传输时延τ,并估计距离为d=cτ,其中,传播速度为c。
目前,在相位测距中,要支持大距离范围的无模糊测距,要求载波的频率间隔小,导致测距精度的降低。例如,在基于双载波和多载波信号的相位测距中,要支持大距离范围的无模糊测距,要求载波的频率间隔小,导致测距精度的降低;在基于单载波信号的相位测距中,要支持大距离范围的无模糊测距,要求载波的频率小,导致测距精度的降低。由此可知,目前测距范围和测距精度存在冲突。
本申请提出一种测距方法,可以利用最大不模糊距离与单载波信号波长、双载波信号频率差、多载波信号频率成分的频率间隔的关系,逐步缩小测距信号的最大不模糊距离,在避免距离模糊的同时实现高精度的测距。
图3是本申请实施例测距方法300的示意图,图3的方法包括:
步骤S310,发送端从接收端接收第一测距参数,第一测距参数是在第N(N为大于0的整数)次测距中接收的,第一测距参数包括测距信号的第一测距精度和/或测距信号的第一信噪比。
需要说明的是,本申请中发送端可以是网络设备(例如,基站)也可以终端设备(例如,用户设备)。
需要说明的是,本申请中的测距参数可以用于确定测距的精度,也就是说本申请所提到的测距参数包括但不限于测距精度以及信噪比,也可以包括其它测距参数,只要是可以通过这些参数确定(或者可以理解为得到)测距精度的都在本申请的保护范围之内。
在一种可能的实施方式中,第一测距参数可以是第一测距精度,第一测距参数也可以是第一信噪比。第一测距参数也可以同时包括第一测距精度和第一信噪比。
步骤S320,发送端根据第一测距参数确定第一测距波形。
需要说明的是,本申请中测距信号的类型可以是单载波、双载波或者是多载波,本申 请对测距信号的类型不做限定。
本申请中,第一距离可以根据第一测距参数确定。例如,可以根据第一测距精度确定第一距离。本申请中第一距离可以是第一精度的整数倍。如果第一测距参数同时包括第一测距精度和第一信噪比,发送端可以自己确定采用哪个参数确定第一距离;也可以是系统预先设定好优先级,例如优先采用第一测距精度确定第一距离等等。换言之,当发送端接收的测距参数包括两种或者两种以上的参数时,发送端可以灵活选择采用哪个参数确定第一距离,本申请对此不做任何限定。
本申请中可以根据测距信号的类型以及第一距离得到测距信号的带宽,从而生成测距波形,对发送端和接收端进行测距。本申请中,“测距信号的带宽”可以是指单载波信号的频率;双载波信号的载波间隔(带宽);多载波信号的非零子载波频率间隔。
作为一个示例,对于双载波的测距信号,可以根据双载波的带宽计算公式(例如,
Figure PCTCN2022090952-appb-000009
具体参见方法400的描述)计算双载波测距信号的带宽;作为另一个示例,对于多载波测距信号,可以根据多载波的带宽(也可以理解为,两个相邻的非零子载波的频率间隔)计算公式(例如,
Figure PCTCN2022090952-appb-000010
具体参见方法400的描述)计算多载波测距信号的带宽。
应理解,如果由于系统规格限制无法生成测距波形,则结束测距流程。例如,无法生成测距波形的情形包括单载波信号的频率达到系统能力极限、双载波信号频率差达到系统能力极限或者多载波信号带宽达到系统能力极限等,此时发送端可以结束测距。
步骤S330,发送端向接收端发送第一测距波形。
在一种可能的实现方式中,发送端可以向接收端发送第一测距波形。
步骤S340,发送端从接收端接收第二测距参数,第二测距参数是根据所述第一测距波形确定的,第二测距参数包括测距信号的第二测距精度和/或测距信号的第二信噪比,第二测距精度小于第一测距精度。
在一种可能的实现方式中,接收端可以根据第一测距波形确定第二测距参数,例如,第二测距参数可以是第二测距精度,第二测距参数也可以是第二信噪比。应理解,第二测距参数也可以同时包括第二测距精度和第二信噪比。
步骤S350,发送端根据第二测距参数和系统的阈值确定是否执行下一次测距。
在一种可能的实现方式中,当第二测距参数的值不满足系统的阈值时,发送端可以执行第N+1次测距,或者;当第二测距参数的值满足系统的阈值时,发送端可以结束测距。
作为一个示例,当第二测距精度大于系统规定的测距精度的第一阈值时,可以执行下一阶段的测距;当第二测距精度小于等于系统规定的测距精度的第一阈值时,结束测距流程。
作为另一个示例,当第二信噪比小于等于系统规定的信噪比的第二阈值时,可以执行下一阶段的测距;当第二信噪比大于系统规定的信噪比的第二阈值时,结束测距流程。也就是说,本申请中信噪比和测距精度可以具有一定的映射关系,通过确定第二信噪比和信噪比阈值(例如,第二阈值)的关系,也得到测距精度是否满足系统规定的测距精度,提高了灵活性。
应理解,如果第二测距参数同时包括第二测距精度和第二信噪比,发送端可以优先采 用第二测距精度判断测距精度是否满足系统规定的测距精度,发送端也可以同时根据第二测距精度以及第二信噪比判断测距精度是否满足系统规定的测距精度。如果发送端根据第二信噪比判断测距精度是否满足系统规定的测距精度的结果与发送端直接根据第二测距精度判断的结果不一致时,发送端可以优先采用第二测距精度的判断结果,或者,只要有其中一个测距参数判断已经满足系统规定的测距精度时,发送端确定可以结束测距流程,又或者,只要有其中一个测距参数判断不满足系统规定的测距精度时,发送端确定可以执行第N+1次测距等等。也就是说,如果同时反馈两种测距参数时,本领域技术人员可以灵活设定判断规则,从而使得发送端确定是否满足系统规定的测距精度。
根据本申请提供的方法,通过分阶段测距,解决了测距范围和测距精度的冲突,在避免产生距离模糊的同时,提高了测距精度。
图4是本申请实施例测距方法400的示意图,图4的方法包括:
步骤S410,发送端确定测距信号的最大不模糊距离#A。
在一种可能的实现方式中,假设系统支持的测距范围为D,发送端(例如,发射机)可以根据系统支持的测距范围D,确定测距信号的最大不模糊距离D m,D m≥D。例如,D 1≥D。可选的,在一些实施例中,发送端可以初始化测距阶段的编号,例如,将m设置为1。
步骤S420,发送端生成测距波形#W m
在一种可能的实现方式中,发送端可以根据测距信号类型以及所确定的最大不模糊距离D m与波形参数的关系,生成测距波形W m。例如,发送端可以根据测距信号类型以及所确定的最大不模糊距离D 1与波形参数的关系,生成测距波形W 1。
应理解,本申请中测距波形W m是指某种信号类型,例如,单载波、双载波或多载波的一种具体实现,并且是对应连续时间上的一段波形W m(t),该测距波形的关键参数是信号类型、时长和波长(对于单载波)或频率间隔(对于双载波和多载波)。
作为一个示例,如果测距信号是单载波测距信号,则
Figure PCTCN2022090952-appb-000011
其中c为光速,f为单载波信号的频率。
作为一个示例,如果测距信号是双载波测距信号,则
Figure PCTCN2022090952-appb-000012
其中c为光速,f 1和f 2分别为两个载波信号的频率。
作为一个示例,如果测距信号是多载波信号(例如OFDM信号),则
Figure PCTCN2022090952-appb-000013
其中c为光速,K为功率不为零的子载波之间的最小间隔数,Δf为子载波间隔频率。
根据D m可以计算上述波长(对于单载波)或频率间隔(对于双载波和多载波),确定波长和频率间隔后,再确定波形的时长即可确定测距波形W m
步骤S430,发送端向接收端发送测距波形#W m
在一种可能的实现方式中,发送端可以向接收端(例如,接收机)发送测距波形W 1
在一些实施例中,如果由于系统规格限制无法生成测距波形,则结束测距流程。例如,本申请中无法生成测距波形的情形可以包括但不限于:单载波信号频率达到系统能力极限、双载波信号频率差达到系统能力极限、多载波信号带宽达到系统能力极限等。
步骤S440,接收端接收测距波形#W m,估计测距精度#A。
方式1:
在一种可能的实现方式中,接收端可以根据测距信号类型和信噪比,按照公式计算测距精度δ m
本申请中,信噪比可以是接收机根据所接收的测距信号的强度和噪声水平估计出来的;也可以是接收机根据测距信号以外的其他信号估计出来,例如,可以估计一个帧的头部的前导序列码(preamble)的信噪比。
作为一个示例,如果测距信号是单载波测距信号,则
Figure PCTCN2022090952-appb-000014
其中α是一个大于0的常数,可以根据实测性能进行预先校准;c是信号的传播速度;f为单载波信号的频率。
作为一个示例,如果测距信号是双载波测距信号,则
Figure PCTCN2022090952-appb-000015
其中α是一个大于0的常数,可以根据实测性能进行预先校准;c是信号的传播速度;f 1和f 2分别为两个载波信号的频率。
作为一个示例,如果测距信号是多载波信号(例如OFDM信号),则
Figure PCTCN2022090952-appb-000016
其中α是一个大于0的常数,可以根据实测性能进行预先校准;c是信号的传播速度;B RMS是信号均方根带宽。
方式2:
在一种可能的实现方式中,接收端可以根据测距信号类型、参数、以及SNR,由预先校准的表格查表,得到预估的测距精度δ m
需要说明的是,本申请中,如果发射端反馈的信噪比的值在表格中不存在,则接收端可以采用最近邻的值或插值法,确定SNR的值,从而确定测距精度。
在本实施例中,此表格是存储在接收端中的,后续接收端可以将查询的测距精度反馈给发射端。也可以理解为,在本实施例中,表格1是配置在接收端中的。
作为一个示例,假设接收端接收到测距波形#W m,根据测距波形#W m确定信号类型为多载波,并且多载波的均方根带宽为1MHz,接收端根据所接收的测距信号的强度和噪声水平估计信噪比为30dB,系统规定校准参数α=2,则接收端可以确定测距精度为19m。
表格1测距精度查询表格
Figure PCTCN2022090952-appb-000017
Figure PCTCN2022090952-appb-000018
方式3:
在一种可能的实现方式中,接收端可以与发送端协议规定,使用测距波形#W m进行多次测距,根据测距结果{R i}(i=1,2,3,…,N)估计测距精度δ m。例如,将测距结果{R i}样本的标准差作为估计的测距精度δ m
步骤S441,接收端确定当前测距精度#A是否满足系统测距精度δ的要求。
在一种可能的实现方式中,接收端判断当前测距精度δ m是否满足系统测距精度δ的要求,当δ≥δ m时可以结束测距流程;当δ<δ m时,继续执行下述步骤。
需要说明的是,本申请中也可以是发送端确定当前测距精度#A是否满足系统测距精度δ的要求。此时,接收端可以直接向发送端发送测距精度#A,由发送端确定结束测距流程还是执行下一次测距。应理解,此时接收端可以不用执行步骤S441,即步骤S441为可选的步骤。
步骤S450,接收端向发送端发送测距精度#A。
在一些实施例中,还包括步骤S451,发送端确定当前测距精度#A是否满足系统测距精度δ的要求。
如上所述,接收端可以直接向发送端发送测距精度#A,此时,发送端可以确定当前测距精度#A是否满足系统测距精度δ的要求。因此,步骤S451为可选的步骤。
步骤S460,发送端根据测距精度#A,确定测距的测距信号的最大不模糊距离#B。
在一种可能的实现方式中,发送端可以根据所反馈的测距精度,确定测距的测距信号的最大不模糊距离#B,即,D m+1≥γδ m,其中γ是一个大于0的常数,典型值可以为3。
也就是说,本申请中,可以根据每次测距得到的精度重新确定测距信号的最大不模糊距离。具体的,重新确定的最大不模糊距离可以是测距精度的整数倍。也可以理解为,通过逐步减小测距信号的最大不模糊距离,增加测距信号的带宽(例如,对于单载波而言,缩小了单载波信号的波长;对于双载波和多载波而言,增加了双载波或多载波信号的带宽),从而提高了测距精度。
步骤S470,发送端生成测距波形#W m+1
在一种可能的实现方式中,发送端可以根据测距信号类型以及所确定的最大不模糊距离D m+1与波形参数的关系,生成测距波形W m+1
具体可以参照步骤S420,不再赘述。
步骤S480,发送端向接收端发送测距波形#W m+1
具体可以参照步骤S430,不再赘述
步骤S490,接收端接收测距波形#W m+1,确定测距精度#B。
应理解,本步骤中,接收端接收测距波形#W m+1,具体可以参照步骤S440中的方式,确定测距精度#B,不再赘述。
应理解,本申请中,步骤S420至步骤S490可以多次重复执行,直到发送端(或者接收端)确定当前阶段的测距精度满足系统的测距精度δ时,可以结束测距流程。
应理解,在重复执行步骤S420至步骤S490时,每重复执行一次测距流程,编号m就加1,即m=m+1。
作为一个示例,假设发送端为基站,接收端为用户设备(user equipment,UE),以测距信号是OFDM多载波信号为例,假设子载波间隔Δf=15KHz,系统支持的最大测距范围为D=1000m,系统要求的测距精度为δ=10m,基站和UE的真实距离为R=85m。如前面步骤S410至步骤S490所述:
第一阶段:基站可以根据系统支持的测距范围D=1000m确定测距信号的最大不模糊距离D 1≥D,根据多载波的公式
Figure PCTCN2022090952-appb-000019
得到功率不为零的子载波之间的最小间隔数K为20,则基站可以确定在索引[0,20]的子载波上发送测距信号。UE可以按照前述多载波的测距方法进行测距,得到距离R 1=90m。此时,多载波信号的均方根带宽B RMS为K·Δf=300KHz,假设α为2,UE确定测距信号的信噪比为SNR为32dB,此时,根据上述方式1中多载波精度计算的公式
Figure PCTCN2022090952-appb-000020
得到测距精度δ 1=50m。UE判断系统要求的测距精度δ=10m小于UE估计测距精度δ 1=50m,确定需要进行下一阶段的测距。第一阶段的测距结果如图5所示。即,UE得到测距发送端可接收端之间的距离为90m,并且确定测距精度为50m。
第二阶段:UE向基站发送第一阶段的测距精度δ 1=50m。基站确定本阶段测距信号的最大不模糊距离D 2,如上所述,D 2≥γδ 1,本实施例中假设γ的取值为2,则基站确定D 2≥γδ 1=2×50m=100m。根据多载波的公式
Figure PCTCN2022090952-appb-000021
得到功率不为零的子载波之间的最小间隔数K为200,则基站可以确定在索引[0,200]的子载波上发送测距信号。UE进行测距,得到距离R 2=84m。本阶段中,多载波信号的均方根带宽B RMS为K·Δf=3MHz,假设α为2,UE确定测距信号的信噪比为SNR为32dB,此时,根据上述方式1中多载波精度计算的公式
Figure PCTCN2022090952-appb-000022
得到测距精度δ 2=5m。UE判断系统要求的测距精度δ=10m大于UE估计测距精度δ 2=5m,决定结束测距流程。第二阶段的测距结果如图6所示。即,UE得到测距发送端可接收端之间的距离为84m,并且确定测距精度为5m。
根据本实施提供的方法,根据测距信号最大不模糊距离与测距信号的波长、频率成分间隔的关系,接收端可以直接反馈测距精度,通过多个阶段进行测距逐步缩小测距信号的最大不模糊距离,在避免产生距离模糊的同时实现了高精度的测距。
图7是本申请实施例测距方法700的示意图,图7的方法包括:
步骤S710到步骤S730参考步骤方法400中的步骤S410-步骤S430,此处不再赘述。
步骤S740,接收端接收测距波形#W 1,确定测距波形信噪比#A。
在一种可能的实现方式中,接收端可以根据测距信号的强度和噪声水平估计出信噪比;也可以是接收机根据测距信号以外的其他信号估计信噪比,例如,可以估计一个帧的头部 的前导序列码(preamble)的信噪比。
在一些实施例中,还包括步骤S741,接收端根据测距波形信噪比#A确定测距精度#A。
在一种可能的实现方式中,发送端可以按照上述方式1计算测距精度。具体的计算公式可参照方法400中步骤S440中的方式1,此处不再赘述。
在一种可能的实现方式中,发送端可以按照上述方式2确定测距精度。即,发送端也可以根据测距信号类型、参数、以及SNR,由预先校准的表格查表,得到预估的测距精度δ m。具体可参照方法400中步骤S440中的方式2,此处不再赘述。
在一些实施例中,还包括步骤S742,接收端判断测距精度#A是否满足系统规定的测距精度。
在一种可能的实现方式中,接收端判断当前测距精度δ m是否满足系统测距精度δ的要求,当δ≥δ m时可以结束测距流程;当δ<δ m时,继续执行下述步骤。
需要说明的是,本申请中,接收端也可以直接向发送端发送信噪比#A,由发送端根据信噪比#A确定测距精度#A以及发送端判断测距精度#A是否满足系统规定的测距精度。此时,步骤S741和步骤S742为可选步骤。
步骤S750,接收端向发送端发送信噪比SNR。
在一些实施例中,还包括步骤S751,发送端根据接收的信噪比SNR,确定测距信号的测距精度#A。
在一种可能的实现方式中,发送端可以按照上述方式1计算测距精度。即,发送端也可以根据测距信号类型和SNR,按照公式计算测距精度δ m,具体的计算公式可参照方法400中步骤S440中的方式1,此处不再赘述。
在一种可能的实现方式中,发送端可以按照上述方式2确定测距精度。即,发送端也可以根据测距信号类型、参数、以及SNR,由预先校准的表格查表,得到预估的测距精度δ m。具体可参照方法400中步骤S440中的方式2,此处不再赘述。需要说明的是,在本实施例中,表格1是存储在发送端。也可以理解为,在本实施例中,表格1是存配置在发送端中。
在一些实施例中,还包括步骤S752,发送端确定当前测距精度#A是否满足系统测距精度δ的要求。
在一种可能的实现方式中,发送端判断当前测距精度δ m是否满足系统测距精度δ的要求,当δ≥δ m时可以结束测距流程;当δ<δ m时,继续执行下述步骤。
也就是说,如果接收端直接向发送端发送信噪比时,发送端可以根据信噪比确定测距精度并且判断测距精度是否满足系统的要求。此时还包括步骤S751和步骤S752。
步骤S760,发送端确定测距信号的最大不模糊距离#B。
在一种可能的实现方式中,发送端可以根据所测距精度#A,确定测距的测距信号的最大不模糊距离#B,D m+1≥γδ m,其中γ是一个大于0的常数,其典型值可以为3。
步骤S770,发送端生成测距波形#W m+1
具体可以参考步骤S720,不再赘述。
步骤S780,发送端向接收端发送测距波形#W m+1
具体可以参考步骤S730,不再赘述。
步骤S790,接收端接收测距波形#W m+1,确定测距波形信噪比#B。
具体可以参考步骤S740,不再赘述。
应理解,本申请中,步骤S720至步骤S790可以多次重复执行,直到发送端(或者接收端)确定当前阶段的测距精度满足系统的测距精度δ时,可以结束测距流程。
根据本实施提供的方法,根据测距信号最大不模糊距离与测距信号的波长、频率成分间隔的关系,接收端通过反馈信噪比,使得发送端可以确定测距精度,通过多个阶段进行测距逐步缩小测距信号的最大不模糊距离,在避免产生距离模糊的同时实现了高精度的测距。
OFDM多载波相位测距中,信号功率均匀分布在整个频带内,其均方根带宽比占用的带宽小(约为信号带宽的
Figure PCTCN2022090952-appb-000023
)。根据CRLB,这将导致测距精度比同等功率的双载波测距低。方法800是本申请提供的一种测距方法。在本实施例中,可以采用特殊的OFDM波形作为测距信号,即,信号功率主要分布在信号频段的左右两侧。相比功率在频段上平均分布的普通OFDM波形,本实施例中所述的测距信号具有更大的均方根带宽,因此,具备更高的测距精度。
本实施例中所述的OFDM波形作为测距信号,典型的波形可以如图8中(a),图8中(b)或图8中(c)所示。其中,f是频率,S(f)是信号的傅里叶变换(即,频谱)。
作为一个示例,在图8中(a)中,假设OFDM波形的带宽为B,但其功率在频域上只分布在频带最左和最右的少数子载波上,频带中间带宽为G的范围内的子载波的功率为零。
作为一个示例,在图8中(b)中,OFDM波形的功率在频域的分布相比图8中(a)的波形更为集中。即,其功率不为零的两组子载波之间的频率间隔G更小。需要说明的是,此时可以获得更大的最大不模糊距离。
作为一个示例,在图8中(c)中,OFDM波形的功率在频域的分布是不对称的。即,其功率分布可以只在[0,f]上。
应理解,本申请中图8中(a),图8中(b)或图8中(c)所示的测距波形,仅仅为一种示例,不做限定。任何具有“信号功率主要分布在信号频段的左右两侧”特征的测距信号均在本申请的保护范围之内。
如上所述,本申请实施例所提供的该OFDM测距波形的典型参数如下表格2所示。其中,N为快速傅立叶变换(fast Fourier transform,FFT)中子载波的个数,N 0为间隔区域零功率子载波个数,N e为非零功率子载波个数。
表格2 OFDM测距波形的典型参数
Figure PCTCN2022090952-appb-000024
Figure PCTCN2022090952-appb-000025
应理解,表格2中的各个参数的典型仅仅是示例性的,不做任何限定。
应理解,本实施例中具体的测距步骤仍然可以按照方法400和方法700中的步骤进行测距,不再赘述。
根据本申请实施例所述提供的方法,根据测距信号最大不模糊距离与测距信号的波长、频率成分间隔的关系,通过多个阶段进行测距逐步缩小测距信号的最大不模糊距离,在避免产生距离模糊的同时实现了高精度的测距。并且通过调整信号的频域功率分布,提高了测距信号的均方根带宽,从而进一步提高了测距精度。
以上,结合图3至图8详细说明了本申请实施例提供的通信方法。下面结合图9和图10介绍本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个节点之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个节点,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图9是本申请实施例提供的测距装置100的示意性框图。如图所示,该装置100可以包括:收发单元110和处理单元120。
在一种可能的设计中,该测距装置100可以是上文方法实施例中的发送端,也可以是用于实现上文方法实施例中发送端的功能的芯片。应理解,该装置100可对应于根据本申请实施例的方法300、方法400、方法700中的发送端,该装置100可以执行本申请实施例的方法300、方法400、方法700中的发送端所对应的步骤。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
具体的,收发单元用于接收第一测距参数,所述第一测距参数是在第N次(N为大于0的整数)测距中接收的,所述第一测距参数包括测距信号的第一测距精度和/或测距信号的第一信噪比;所述处理单元用于根据所述第一测距参数确定第一测距波形;所述收发单元用于发送所述第一测距波形;所述收发单元用于接收第二测距参数,所述第二测距参数是所述处理单元根据所述第一测距波形确定的,所述第二测距参数包括测距信号的第二测距精度和/或测距信号的第二信噪比,所述第二测距精度小于所述第一测距精度;当所述第二测距参数的值不满足系统的阈值时,所述装置执行第N+1次测距,或者;当所述第二测距参数的值满足系统的阈值时,所述装置结束测距。
在一种可能的设计中,该测距装置100可以是上文方法实施例中的接收端,也可以是用于实现上文方法实施例中接收端的功能的芯片。应理解,该装置100可对应于根据本申请实施例的方法300、方法400、方法700中的接收端,该装置100可以执行本申请实施例的方法300、方法400、方法700中的接收端所对应的步骤。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
具体的,收发单元用于发送第一测距参数,所述第一测距参数在第N次(N为大于0的整数)测距中发送的,所述第一测距参数包括测距信号的第一测距精度和/或测距信号的第一信噪比;所述收发单元用于接收第一测距波形,所述第一测距波形是根据所述第一测距参数生成的;所述处理单元用于根据所述第一测距波形确定所述第二测距参数,所述第二测距参数包括所述测距信号的第二测距精度和/或所述测距信号的第二信噪比,所述第二测距精度小于所述第一测距精度;当所述第二测距参数的值不满足系统的阈值时,所述装置执行第N+1次测距,或者;当所述第二测距参数的值满足系统的阈值时,所述装置结束测距。
图10是本申请实施例提供的测距装置200的示意性框图。如图所示,该装置200包括:至少一个处理器220。该处理器220与存储器耦合,用于执行存储器中存储的指令,以发送信号和/或接收信号。可选地,该装置200还包括存储器230,用于存储指令。可选的,该装置200还包括收发器210,处理器220控制收发器210发送信号和/或接收信号。
应理解,上述处理器220和存储器230可以合成一个处理装置,处理器220用于执行存储器230中存储的程序代码来实现上述功能。具体实现时,该存储器230也可以集成在处理器220中,或者独立于处理器220。
还应理解,收发器210可以包括收发器(或者称,接收机)和发射器(或者称,发射机)。收发器还可以进一步包括天线,天线的数量可以为一个或多个。收发器210有可以是通信接口或者接口电路。
具体的,该装置200中的收发器210可以对应于装置100中的收发单元110,该装置200中的处理器220可对应于装置200中的处理单元120。
应理解,各收发器处理器执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结 合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch-link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct ram-bus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品上存储有计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行方法300、方法400、方法700实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行方法300、方法400、方法700实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的装置或设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络侧设备与终端设备和方法实施例中的网络侧设备或终端设备对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施 例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所述领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖 在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种测距方法,其特征在于,包括:
    发送端从接收端接收第一测距参数,所述第一测距参数是在第N次测距中接收的,所述第一测距参数包括测距信号的第一测距精度和/或测距信号的第一信噪比;
    所述发送端根据所述第一测距参数确定第一测距波形;
    所述发送端向所述接收端发送所述第一测距波形;
    所述发送端从所述接收端接收第二测距参数,所述第二测距参数是根据所述第一测距波形确定的,所述第二测距参数包括测距信号的第二测距精度和/或测距信号的第二信噪比,所述第二测距精度小于所述第一测距精度;
    当所述第二测距参数的值不满足系统的阈值时,所述发送端执行第N+1次测距,或者;当所述第二测距参数的值满足系统的阈值时,所述发送端结束测距,
    其中,所述N为大于0的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述发送端根据所述第一测距参数确定第一测距波形,包括:
    所述发送端根据所述第一测距参数确定所述测距信号的第一距离;
    所述发送端根据所述测距信号的类型和所述第一距离生成第一测距波形。
  3. 根据权利要求2所述的方法,其特征在于,当所述第一测距参数为第一信噪比时,所述发送端根据所述第一测距参数确定所述测距信号的第一距离,包括:
    所述发送端根据所述第一信噪比确定所述第一测距精度;
    所述发送端根据所述第一测距精度确定所述测距信号的第一距离。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,当所述第二测距参数为第二信噪比时,所述方法还包括:
    所述发送端根据所述第二信噪比确定所述第二测距精度;
    当所述第二测距精度的值大于第一阈值时,所述发送端执行第N+1次测距,或者;当所述第二测距精度的值小于等于第一阈值时,所述发送端结束测距。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述发送端确定测距信号的第二距离,所述第二距离在系统支持的测距范围内不存在距离模糊点;
    所述发送端根据所述测距信号的类型和所述第二距离生成第二测距波形;
    所述发送端向所述接收端发送所述第二测距波形,所述第一测距参数是根据所述第二测距波形确定的;
    其中,所述第二距离大于所述第一距离。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述测距信号的子载波个数为M,所述M为2的K次方,所述K≥3,且所述测距信号的零功率子载波个数为P个,
    Figure PCTCN2022090952-appb-100001
    且所述测距信号的非零功率子载波个数为Q个,
    Figure PCTCN2022090952-appb-100002
  7. 一种测距方法,其特征在于,包括:
    接收端向发送端发送第一测距参数,所述第一测距参数在第N次测距中发送的,所述 第一测距参数包括测距信号的第一测距精度和/或测距信号的第一信噪比;
    所述接收端从所述发送端接收第一测距波形,所述第一测距波形是根据所述第一测距参数生成的;
    所述接收端根据所述第一测距波形确定所述第二测距参数,所述第二测距参数包括所述测距信号的第二测距精度和/或所述测距信号的第二信噪比,所述第二测距精度小于所述第一测距精度;
    当所述第二测距参数的值不满足系统的阈值时,所述接收端执行第N+1次测距,或者;当所述第二测距参数的值满足系统的阈值时,所述接收端结束测距,
    其中,所述N为大于0的整数。
  8. 根据权利要求7所述的方法,其特征在于,所述第一测距波形是根据所述第一测距参数生成的,包括:
    所述第一测距波形是根据所述测距信号的类型和所述第一距离生成的,所述第一距离是根据所述第一测距参数生成的。
  9. 根据权利要求8所述的方法,其特征在于,当所述第一测距参数为第一信噪比时,所述第一距离是根据所述第一测距参数生成的,包括:
    所述第一距离是根据所述第一测距精度生成的,所述第一测距精度是根据所述第一信噪比生成的。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,当所述第二测距参数为第二信噪比时,所述方法还包括:
    所述接收端根据所述第二信噪比确定所述第二测距精度;
    当所述第二测距精度的值大于第一阈值时,所述接收端执行第N+1次测距,或者;当所述第二测距精度的值小于等于第一阈值时,所述接收端结束测距。
  11. 根据权利要求7至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述接收端从所述发送端接收第二测距波形,所述第二测距波形是根据所述测距信号的类型和第二距离生成,所述第二距离在系统支持的测距范围内不存在距离模糊点,所述第二距离大于所述第一距离;
    所述接收端根据所述第二测距波形确定所述第一测距参数;
    当所述第一测距参数的值不满足系统的阈值时,所述接收端执行第N+1次测距,或者;当所述第一测距参数的值满足系统的阈值时,所述接收端结束测距。
  12. 根据权利要求7至11中任一项所述的方法,其特征在于,所述测距信号的子载波个数为M,所述M为2的K次方,所述K≥3,且所述测距信号的零功率子载波个数为P个,
    Figure PCTCN2022090952-appb-100003
    且所述测距信号的非零功率子载波个数为Q个,
    Figure PCTCN2022090952-appb-100004
  13. 一种测距装置,其特征在于,包括:收发单元和处理单元,
    所述收发单元用于接收第一测距参数,所述第一测距参数是在第N次测距中接收的,所述第一测距参数包括测距信号的第一测距精度和/或测距信号的第一信噪比;
    所述处理单元用于根据所述第一测距参数确定第一测距波形;
    所述收发单元用于发送所述第一测距波形;
    所述收发单元用于接收第二测距参数,所述第二测距参数是所述处理单元根据所述第 一测距波形确定的,所述第二测距参数包括测距信号的第二测距精度和/或测距信号的第二信噪比,所述第二测距精度小于所述第一测距精度;
    当所述第二测距参数的值不满足系统的阈值时,所述装置执行第N+1次测距,或者;当所述第二测距参数的值满足系统的阈值时,所述装置结束测距,
    其中,所述N为大于0的整数。
  14. 根据权利要求13所述的装置,其特征在于,所述处理单元用于根据所述第一测距参数确定第一测距波形,包括:
    所述处理单元用于根据所述第一测距参数确定所述测距信号的第一距离;
    所述处理单元用于根据所述测距信号的类型和所述第一距离生成第一测距波形。
  15. 根据权利要求14所述的装置,其特征在于,当所述第一测距参数为第一信噪比时,所述处理单元用于根据所述第一测距参数确定所述测距信号的第一距离,包括:
    所述处理单元用于根据所述第一信噪比确定所述第一测距精度;
    所述处理单元用于根据所述第一测距精度确定所述测距信号的第一距离。
  16. 根据权利要求13至15中任一项所述的装置,其特征在于,当所述第二测距参数为第二信噪比时,
    所述处理单元用于根据所述第二信噪比确定所述第二测距精度;
    当所述第二测距精度的值大于第一阈值时,所述装置执行第N+1次测距,或者;当所述第二测距精度的值小于等于第一阈值时,所述装置结束测距。
  17. 根据权利要求13至16中任一项所述的装置,其特征在于,
    所述处理单元用于确定测距信号的第二距离,所述第二距离在系统支持的测距范围内不存在距离模糊点;
    所述处理单元用于根据所述测距信号的类型和所述第二距离生成第二测距波形;
    所述收发单元用于发送所述第二测距波形,所述第一测距参数是根据所述第二测距波形确定的;
    其中,所述第二距离大于所述第一距离。
  18. 根据权利要求13至17中任一项所述的装置,其特征在于,所述测距信号的子载波个数为M,所述M为2的K次方,所述K≥3,且所述测距信号的零功率子载波个数为P个,
    Figure PCTCN2022090952-appb-100005
    且所述测距信号的非零功率子载波个数为Q个,
    Figure PCTCN2022090952-appb-100006
  19. 一种测距装置,其特征在于,包括:收发单元和处理单元,
    所述收发单元用于发送第一测距参数,所述第一测距参数在第N次测距中发送的,所述第一测距参数包括测距信号的第一测距精度和/或测距信号的第一信噪比;
    所述收发单元用于接收第一测距波形,所述第一测距波形是根据所述第一测距参数生成的;
    所述处理单元用于根据所述第一测距波形确定所述第二测距参数,所述第二测距参数包括所述测距信号的第二测距精度和/或所述测距信号的第二信噪比,所述第二测距精度小于所述第一测距精度;
    当所述第二测距参数的值不满足系统的阈值时,所述装置执行第N+1次测距,或者;当所述第二测距参数的值满足系统的阈值时,所述装置结束测距,
    其中,所述N为大于0的整数。
  20. 根据权利要求19所述的装置,其特征在于,所述第一测距波形是根据所述第一测距参数生成的,包括:
    所述第一测距波形是根据所述测距信号的类型和所述第一距离生成的,所述第一距离是根据所述第一测距参数生成的。
  21. 根据权利要求20所述的装置,其特征在于,当所述第一测距参数为第一信噪比时,所述第一距离是根据所述第一测距参数生成的,包括:
    所述第一距离是根据所述第一测距精度生成的,所述第一测距精度是根据所述第一信噪比生成的。
  22. 根据权利要求19至21中任一项所述的装置,其特征在于,当所述第二测距参数为第二信噪比时,
    所述处理单元用于根据所述第二信噪比确定所述第二测距精度;
    当所述第二测距精度的值大于第一阈值时,所述装置执行第N+1次测距,或者;当所述第二测距精度的值小于等于第一阈值时,所述装置结束测距。
  23. 根据权利要求19至22中任一项所述的装置,其特征在于,
    所述收发单元用于接收第二测距波形,所述第二测距波形是根据所述测距信号的类型和第二距离生成,所述第二距离在系统支持的测距范围内不存在距离模糊点,所述第二距离大于所述第一距离;
    所述处理单元用于根据所述第二测距波形确定所述第一测距参数;
    当所述第一测距参数的值不满足系统的阈值时,所述装置执行第N+1次测距,或者;当所述第一测距参数的值满足系统的阈值时,所述装置结束测距。
  24. 根据权利要求19至23中任一项所述的装置,其特征在于,所述测距信号的子载波个数为M,所述M为2的K次方,所述K≥3,且所述测距信号的零功率子载波个数为P个,
    Figure PCTCN2022090952-appb-100007
    且所述测距信号的非零功率子载波个数为Q个,
    Figure PCTCN2022090952-appb-100008
  25. 一种测距装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述测距装置实现如权利要求1至6中或7至12中任一项所述的方法。
  26. 一种计算机可读存储介质,所述计算机可读介质上存储有计算机程序,当其在计算机上运行时,使得所述计算机执行如权利要求1至6中或7至12中任一项所述的方法。
  27. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序,当所述计算机程序被运行时,使得计算机执行如权利要求1至6中或7至12中任一项所述的方法。
PCT/CN2022/090952 2021-05-28 2022-05-05 测距方法和装置 WO2022247593A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22810322.2A EP4332611A1 (en) 2021-05-28 2022-05-05 Distance measurement method and apparatus
US18/517,770 US20240111017A1 (en) 2021-05-28 2023-11-22 Ranging method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110591894.6A CN115407269A (zh) 2021-05-28 2021-05-28 测距方法和装置
CN202110591894.6 2021-05-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/517,770 Continuation US20240111017A1 (en) 2021-05-28 2023-11-22 Ranging method and apparatus

Publications (1)

Publication Number Publication Date
WO2022247593A1 true WO2022247593A1 (zh) 2022-12-01

Family

ID=84155044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090952 WO2022247593A1 (zh) 2021-05-28 2022-05-05 测距方法和装置

Country Status (4)

Country Link
US (1) US20240111017A1 (zh)
EP (1) EP4332611A1 (zh)
CN (1) CN115407269A (zh)
WO (1) WO2022247593A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024119519A1 (zh) * 2022-12-09 2024-06-13 华为技术有限公司 一种测距方法及相关装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004117166A (ja) * 2002-09-26 2004-04-15 Mitsubishi Electric Corp 測距装置及びこれを用いた測距システム
US20070273575A1 (en) * 2006-05-23 2007-11-29 Korea Advanced Institute Of Science And Technology Sensor for measuring distance and method for measuring distance using the sensor
US20090207070A1 (en) * 2008-02-20 2009-08-20 Samsung Electronics Co., Ltd. Method and apparatus for measuring distance in a wireless environment
CN101655563A (zh) * 2008-08-21 2010-02-24 金华市蓝海光电技术有限公司 一种高精度、低功耗激光测距的方法及其装置
CN103533651A (zh) * 2013-10-30 2014-01-22 成都航天通信设备有限责任公司 基于msk扩频调制模式的相参伪码测距方法
CN105974364A (zh) * 2016-07-13 2016-09-28 中国电子科技集团公司第二十研究所 水下通信定位识别一体化波形优化方法
CN108919323A (zh) * 2018-07-06 2018-11-30 北京邮电大学 一种测距方法、系统、电子设备及可读存储介质
CN110208804A (zh) * 2019-06-02 2019-09-06 南京理工大学 适用于汽车防撞雷达的发射波形设计方法及目标探测算法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004117166A (ja) * 2002-09-26 2004-04-15 Mitsubishi Electric Corp 測距装置及びこれを用いた測距システム
US20070273575A1 (en) * 2006-05-23 2007-11-29 Korea Advanced Institute Of Science And Technology Sensor for measuring distance and method for measuring distance using the sensor
US20090207070A1 (en) * 2008-02-20 2009-08-20 Samsung Electronics Co., Ltd. Method and apparatus for measuring distance in a wireless environment
CN101655563A (zh) * 2008-08-21 2010-02-24 金华市蓝海光电技术有限公司 一种高精度、低功耗激光测距的方法及其装置
CN103533651A (zh) * 2013-10-30 2014-01-22 成都航天通信设备有限责任公司 基于msk扩频调制模式的相参伪码测距方法
CN105974364A (zh) * 2016-07-13 2016-09-28 中国电子科技集团公司第二十研究所 水下通信定位识别一体化波形优化方法
CN108919323A (zh) * 2018-07-06 2018-11-30 北京邮电大学 一种测距方法、系统、电子设备及可读存储介质
CN110208804A (zh) * 2019-06-02 2019-09-06 南京理工大学 适用于汽车防撞雷达的发射波形设计方法及目标探测算法

Also Published As

Publication number Publication date
US20240111017A1 (en) 2024-04-04
CN115407269A (zh) 2022-11-29
EP4332611A1 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
US20220321294A1 (en) Signal communication method and device
WO2021259318A1 (zh) 一种测量上报方法、定位测量设备及定位服务器
WO2020164345A1 (zh) 信号传输方法与装置
US20190174551A1 (en) Random Access Method, Apparatus, and System, Terminal, and Base Station
WO2018127066A1 (zh) 一种上行测量信号的指示方法及装置
WO2020082879A1 (zh) 一种确定参考信号的测量值的方法及装置
WO2019096272A1 (zh) 信息指示方法、终端设备及网络设备
WO2022042658A1 (en) Uplink sounding reference signal carrier aggregation
US20230074373A1 (en) Reference signal design and device procedures for downlink-based positioning/ranging using multi-frequency phase difference of arrival
WO2022268104A1 (zh) 一种无线感知的方法及装置
US11949621B2 (en) System and method for phase noise-based signal design for positioning in a communication system
WO2020177521A1 (zh) Prs的频域资源映射方法、装置及存储介质
US11064490B2 (en) Method and device for transmitting and receiving information
WO2019024664A1 (zh) 参考信号的传输方法及装置
WO2020147596A1 (zh) 配置信息的方法与装置
CN114286330A (zh) 一种定位参考信号prs的关联方法及设备通信装置
TW202239230A (zh) 通訊方法以及通訊裝置
US11910349B2 (en) Physical layer signaling by devices for requesting positioning-resources
WO2021051364A1 (zh) 一种通信方法、装置及设备
US20240111017A1 (en) Ranging method and apparatus
CN111372308B (zh) 一种通信方法及装置
WO2022151391A1 (zh) 一种发送频率调整方法及装置
US11910350B2 (en) Physical layer signaling by base stations for provisioning positioning-resources
WO2022151494A1 (zh) 一种传输参数确定方法及装置
WO2022160298A1 (zh) 时间同步方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810322

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022810322

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022810322

Country of ref document: EP

Effective date: 20231129

NENP Non-entry into the national phase

Ref country code: DE