WO2019024664A1 - 参考信号的传输方法及装置 - Google Patents

参考信号的传输方法及装置 Download PDF

Info

Publication number
WO2019024664A1
WO2019024664A1 PCT/CN2018/095218 CN2018095218W WO2019024664A1 WO 2019024664 A1 WO2019024664 A1 WO 2019024664A1 CN 2018095218 W CN2018095218 W CN 2018095218W WO 2019024664 A1 WO2019024664 A1 WO 2019024664A1
Authority
WO
WIPO (PCT)
Prior art keywords
elements
ptrs
resource block
sequence
frequency
Prior art date
Application number
PCT/CN2018/095218
Other languages
English (en)
French (fr)
Inventor
吴丹
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18842402.2A priority Critical patent/EP3644540B1/en
Publication of WO2019024664A1 publication Critical patent/WO2019024664A1/zh
Priority to US16/746,543 priority patent/US11108520B2/en
Priority to US17/403,422 priority patent/US11496262B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03821Inter-carrier interference cancellation [ICI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2681Details of algorithms characterised by constraints
    • H04L27/2688Resistance to perturbation, e.g. noise, interference or fading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26132Structure of the reference signals using repetition

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and an apparatus for transmitting a reference signal.
  • next-generation wireless communication networks with working frequency bands above 6 GHz, such as fifth-generation mobile communication (5th generation, 5G)
  • 5th generation 5th generation
  • the frequency bands available for the next generation wireless communication network include frequency bands at 28 GHz, 39 GHz, 60 GHz, 73 GHz, and the like.
  • High-frequency communication systems above 6 GHz have significant features such as large bandwidth and highly integrated antenna arrays, making it easy to achieve higher throughput.
  • the transmitting device can add a phase tracking reference signal (PTRS), and the receiving end can estimate the phase noise according to the received PTRS.
  • PTRS phase tracking reference signal
  • the carrier frequency band supported by the 5G standard New Radio (NR) network can reach more than 60 GHz, and the influence of phase noise cannot be ignored in some cases.
  • NR has agreed to introduce PTRS for phase noise measurement and compensation.
  • phase noise Compared with existing wireless communication networks, high-frequency communication systems will suffer from more severe mid-frequency distortion, especially phase noise.
  • the effects of Doppler effect and carrier frequency offset (CFO) on the performance of high-frequency communication systems will also increase as the location of the frequency band becomes higher.
  • a common feature of phase noise, Doppler effect and CFO is the introduction of phase error or phase offset for data reception in high frequency communication systems, resulting in reduced or even inoperable performance of high frequency communication systems.
  • the present application provides a method and apparatus for transmitting a reference signal to reduce inter-carrier interference and thereby improve spectral efficiency.
  • a method for transmitting a reference signal including:
  • the at least one OFDM symbol comprising a phase tracking reference signal PTRS resource block, the PTRS resource block comprising a PTRS sequence of Y elements, a last X elements of the PTRS sequence, At least two of the first three elements of the PTRS sequence occupying a plurality of consecutive resource particles RE; wherein X, Y, Z are integers; transmitting the one or more OFDM symbol.
  • the transmission scheme of the receiving end is also disclosed, including:
  • the at least one OFDM symbol comprising a phase tracking reference signal PTRS resource block
  • the PTRS resource block comprising a PTRS sequence of Y elements, a last X elements of the PTRS sequence, At least two of the three sequences of the first Z elements of the PTRS sequence, the PTRS resource block occupies a plurality of consecutive resource particles RE; wherein X, Y, Z are integers; from the one or more OFDM Obtain the complete PTRS sequence in the symbol.
  • the transmitting end comprises:
  • Processing module generating one or more orthogonal frequency division multiplexing OFDM symbols, the at least one OFDM symbol includes a phase tracking reference signal PTRS resource block, the PTRS resource block includes a PTRS sequence of Y elements, and a rear X of the PTRS sequence At least two of the three elements, the first Z elements of the PTRS sequence, the PTRS resource block occupies a plurality of consecutive resource particles RE; wherein, X, Y, Z are integers; Transmitting the one or more OFDM symbols.
  • the receiving end includes:
  • a receiving module configured to receive one or more orthogonal frequency division multiplexing OFDM symbols, the at least one OFDM symbol includes a phase tracking reference signal PTRS resource block, and the PTRS resource block includes a PTRS sequence of Y elements, where the PTRS sequence At least two of the last three elements, the first Z elements of the PTRS sequence, the PTRS resource block occupies a plurality of consecutive resource particles RE; wherein, X, Y, Z are integers; the processing module: For obtaining a complete PTRS sequence from the one or more OFDM symbols.
  • the PTRS resource block may be included in each OFDM symbol, and the number of PTRS resource blocks in one OFDM symbol may be one or more, and the foregoing solution may be:
  • each OFDM symbol including at least one phase tracking reference signal PTRS resource block, each PTRS resource block including a PTRS sequence of Y elements, and the last X of the PTRS sequence
  • An element, at least two of the first three elements of the PTRS sequence, the PTRS resource block occupies a plurality of consecutive resource particles RE; wherein, X, Y, Z are integers; sending the one or more OFDM symbols.
  • the transmission scheme of the receiving end is also disclosed, including:
  • each OFDM symbol comprising at least one phase tracking reference signal PTRS resource block
  • each PTRS resource block comprising a PTRS sequence of Y elements, the last X of the PTRS sequence
  • An element, at least two of the first three elements of the PTRS sequence, the PTRS resource block occupies a plurality of consecutive resource particles RE; wherein X, Y, Z are integers; from the one or more A complete PTRS sequence is obtained in OFDM symbols.
  • the transmitting end comprises:
  • Processing module generating one or more orthogonal frequency division multiplexing OFDM symbols, each OFDM symbol including at least one phase tracking reference signal PTRS resource block, each PTRS resource block including a PTRS sequence of Y elements, the PTRS sequence At least two of the last three elements, the first Z elements of the PTRS sequence, the PTRS resource block occupies a plurality of consecutive resource particles RE; wherein, X, Y, Z are integers; the sending module: And for transmitting the one or more OFDM symbols.
  • the receiving end includes:
  • a receiving module configured to receive one or more orthogonal frequency division multiplexing OFDM symbols, each OFDM symbol includes at least one phase tracking reference signal PTRS resource block, and each PTRS resource block includes a PTRS sequence of Y elements, the PTRS At least two of the last X elements of the sequence, the first Z elements of the PTRS sequence, the PTRS resource block occupies a plurality of consecutive resource particles RE; wherein, X, Y, Z are integers; Module: for obtaining a complete PTRS sequence from the one or more OFDM symbols.
  • the sending end is a network device
  • the receiving end is a terminal device; or if the sending end is a terminal device, the receiving end is a network device.
  • the processing module is implemented by a processor
  • the receiving module is implemented by a receiver
  • the transmitting module is implemented by a transmitter.
  • the PTRS resource block is located in one or more resource blocks RB.
  • the PTRS resource block includes X+Y+Z elements, X elements, Y elements, and Z elements are consecutively and frequency-divided, X ⁇ Y, Z ⁇ Y; or
  • the PTRS resource block includes X+Y or Y+Z elements, X elements, Y elements or Y elements, Z elements are consecutively and frequency-divided, X ⁇ Y, Z ⁇ Y; or
  • the PTRS resource block includes X+Z elements, X elements, Z elements are consecutively and frequency-divided, (X+Z)>Y, for example: (X+Z) ⁇ (Y+2).
  • the PTRS resource block when at least 2 OFDM symbols include the PTRS resource block, or when the OFDM symbol including the PTRS resource block is multiple, the PTRS resource block is in each OFDM symbol. It can occupy the same location or occupy different locations, where the location refers to the frequency domain resource location in each OFDM symbol.
  • the above method and corresponding device reduce inter-carrier interference, thereby improving spectral efficiency.
  • Yet another aspect of the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • Yet another aspect of the present application provides a communication chip in which instructions are stored that, when run on a network device or terminal device, cause the computer to perform the methods described in the various aspects above.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • FIG. 1 is a schematic diagram of a communication system architecture
  • FIG. 2a is a schematic structural diagram of a PTRS resource block according to an embodiment of the present application.
  • 2b is a schematic structural diagram of another PTRS resource block according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another PTRS resource block according to an embodiment of the present application.
  • FIG. 3b is a schematic structural diagram of another PTRS resource block according to an embodiment of the present application.
  • FIG. 3c is a schematic structural diagram of another PTRS resource block according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another PTRS resource block according to an embodiment of the present application.
  • FIG. 4a is a schematic structural diagram of another PTRS resource block according to an embodiment of the present application.
  • FIG. 4b is a schematic structural diagram of another PTRS resource block according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an OFDM symbol including a PTRS resource block according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of an OFDM symbol including a PTRS resource block according to another embodiment of the present application.
  • FIG. 7 is a schematic diagram of a module of a transmitting end device according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a module of a receiving end device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a hardware architecture of another transmitting end device/receiving end device according to an embodiment of the present disclosure.
  • plural in the present application means two or more.
  • the term “and/or” in the present application is merely an association relationship describing an associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and A and B exist at the same time. There are three cases of B alone.
  • the character "/" in this article generally indicates that the contextual object is an "or” relationship.
  • the terms “first”, “second”, and the like in this application are used to distinguish different objects, and do not limit the order of the different objects.
  • the technical solution provided by the present application can be applied to various communication systems using beam scanning technologies, for example, beam scanning technology, 5G communication system, future evolution system or multiple communication fusion systems are adopted on the basis of the existing communication system. Wait. Can include a variety of application scenarios, such as machine to machine (M2M), device-to-device (D2D), macro-micro communication, enhanced mobile broadband (eMBB), super High reliability & low latency communication (uRLLC) and massive machine type communication (mMTC) scenarios. These scenarios may include, but are not limited to, a communication scenario between the terminal and the terminal, a communication scenario between the network device and the network device, a communication scenario between the network device and the terminal, and the like.
  • the technical solution provided by the present application can also be applied to a communication between a terminal and a terminal in a 5G communication system, or a communication between a network device and a network device.
  • FIG. 1 is a schematic diagram of a communication system to which the technical solution provided by the present application is applied, which may include one or more network devices 100 (only one is shown) and one or more connected to the network device 100.
  • Terminal device 200 may include one or more network devices 100 (only one is shown) and one or more connected to the network device 100.
  • Network device 100 can be a device that can communicate with terminal 200.
  • the network device 100 may be a base station (for example, a base transceiver station (BTS), a node B (NBB), an evolved base station B (eNB), or an eNodeB, and a transmission reception point in the NR system. Point, TRP or TP) or next generation Node B (gNB), base station or network equipment in future communication networks), relay stations, access points, in-vehicle devices, wearable devices, wireless-fidelity (wireless-fidelity, Wi-Fi) sites, wireless backhaul nodes, small stations, micro stations, etc.
  • the network device 100 may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • the network device 100 may also be a network device in a 5G communication system or a network device in a future evolved network; it may also be a wearable device or an in-vehicle device or the like.
  • the terminal device 200 may be, for example, a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, User agent or user device, cellular phone, cordless phone, session initiation protocol (SIP) phone, wireless local loop (WLL) station, personal digital assistant (PDA), with wireless A communication-enabled handheld device, a computing device, or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal in a future 5G network, or a terminal in a future evolved PLMN network, or the like.
  • UE user equipment
  • PDA personal digital assistant
  • the received signal affected by phase noise is inter-carrier interference (Inter-Carrier Interference) when subjected to Fourier Transform (FFT) transform. , ICI), and will affect the amplitude of the received signal.
  • FFT Fourier Transform
  • ICI inter-carrier Interference
  • the pilot since the pilot is also affected by phase noise, it will affect the accuracy of signal estimation.
  • phase noise when the frequency generated by the local oscillator is used for the sampling clock of an Analog-to-Digital Converter (ADC), phase noise also affects the sampling of the digital signal.
  • ADC Analog-to-Digital Converter
  • ICI caused by phase noise can cause serious degradation of performance.
  • Distributed PTRS is suitable for the correction of common phase deviation (CPE) of phase noise, but does not help ICI cancellation. Without increasing the complexity of the receiver, using only distributed PTRS may not meet the system performance requirements.
  • the distributed PTRS hardly considers the influence of inter-carrier interference caused by phase offset on the performance of the high-frequency communication system.
  • the modulation order is high, the inter-carrier interference of the high-frequency (above 6 GHz) communication system cannot be accurately estimated.
  • the bit error rate is high, resulting in low spectral efficiency.
  • the method for transmitting a reference signal in this embodiment includes: the transmitting end generates one or more OFDM symbols, the at least one OFDM symbol includes a PTRS resource block, and the PTRS resource block includes a PTRS sequence of Y elements, and the back X of the PTRS sequence At least two of the three elements, the first Z elements of the PTRS sequence, the PTRS resource block occupying a plurality of consecutive resource elements (REs); transmitting the one or more OFDM symbols.
  • the transmitting end generates one or more OFDM symbols, the at least one OFDM symbol includes a PTRS resource block, and the PTRS resource block includes a PTRS sequence of Y elements, and the back X of the PTRS sequence At least two of the three elements, the first Z elements of the PTRS sequence, the PTRS resource block occupying a plurality of consecutive resource elements (REs); transmitting the one or more OFDM symbols.
  • the transmitting end generates one or more OFDM symbols
  • the receiving end receives the one or more OFDM symbols, and acquires a complete PTRS sequence from the one or more OFDM symbols.
  • the foregoing method may be performed by a network device, or may be performed by a terminal device.
  • the sending end is a network device
  • the receiving end is a terminal device
  • the sending end is a terminal device
  • the receiving end is a network device.
  • each element in each sequence occupies one RE.
  • each sequence is continuous in each OFDM symbol and is frequency-divided;
  • X, Y, and Z are integers, 1 ⁇ X ⁇ Y, and 1 ⁇ Z ⁇ Y.
  • the Y-position PTRS sequence is an initial PTRS sequence and is also a complete PTRS sequence; it can be a Zadoff–Chu (ZC) sequence, or it can be another sequence, Y ⁇ 1.
  • ZC Zadoff–Chu
  • the PTRS resource block may be located in one or more RBs.
  • the PTRS resource block may be included in each OFDM symbol, and the PTRS resource block may occupy the same frequency domain location in each OFDM symbol, or may occupy different frequency domain locations.
  • the number of PTRS resource blocks included in each OFDM symbol may be one or more.
  • the complete sequence corresponding to the PTRS resource block is as shown in FIG. 2a, including three parts, and the intermediate P1-P5 is initial.
  • P4-P5 on the left is a cyclic prefix
  • P1-P2 on the right is a cyclic suffix
  • three parts form a cyclic PTRS (cyclic PTRS); three sequences are consecutively arranged and frequency-divided in each OFDM symbol.
  • the initial PTRS sequence may take other values, and the cyclic prefix and the cyclic suffix may also take other values, and the values may be the same or different; for example, when the cyclic prefix and the cyclic suffix have a value of 1, 2b is shown.
  • P4 on the left is the cyclic prefix
  • P5 on the right is the cyclic suffix.
  • the middle P2-P1 still constitutes a complete PTRS sequence
  • the left P1 is a cyclic prefix
  • the right P2 is a cyclic suffix.
  • the two sequences are consecutively arranged and frequency-divided in each OFDM symbol.
  • the PTRS resource block is shown in Figure 3c.
  • the middle part P3-P2 constitutes a complete PTRS sequence
  • the left P2 is a cyclic prefix
  • the right P3-P5 constitutes Cyclic suffix
  • the middle part P4-P3 constitutes a complete PTRS sequence
  • P2-P3 on the left is a cyclic prefix
  • P4-P5 on the right constitutes a cyclic suffix
  • the cyclic prefix and the cyclic prefix can also take other values as long as the middle part is satisfied. It is sufficient to form a complete PTRS sequence.
  • the initial complete PTRS sequence may take other values
  • the cyclic prefix and the cyclic suffix may take other values, and the values may be the same or different.
  • Two complete and continuous PTRS sequences form a PTRS resource block, two parts constitute a repeated PTRS (repeated PTRS), and the middle part P3-P2 constitutes a complete PTRS sequence.
  • the left side P1-P2 is a cyclic prefix, and the right side is P3.
  • the middle part P4-P3 constitutes a complete PTRS sequence
  • the left side P1-P3 is a cyclic prefix
  • the right side P4-P5 constitutes a cyclic suffix; of course, the cyclic prefix and the cyclic prefix can also take other values.
  • the complete PTRS sequence can be formed.
  • the middle portion P3- P2 can still form a complete PTRS sequence, P2 on the left is a cyclic prefix, P3-P4 on the right constitutes a cyclic suffix; or the middle part P4-P3 constitutes a complete PTRS sequence, P2-P3 on the left is a cyclic prefix, and P4 on the right Forms a cyclic suffix.
  • the initial PTRS sequence may take other values
  • the cyclic prefix and the cyclic suffix may take other values, and the values may be the same or different.
  • the PTRS resource block in the OFDM symbol is a block cyclic PTRS or a block repeated PTRS, and the middle part needs to form a complete PTRS sequence, and the redundant parts on both sides are a cyclic prefix and a cyclic suffix, respectively.
  • the above conditions can be met.
  • the PTRS resource block may also include only a cyclic prefix or a cyclic suffix.
  • a cyclic prefix or a cyclic suffix may be included.
  • the generation process of the OFDM symbol including the above PTRS resource block will be exemplified below.
  • the method includes: generating an initial PTRS sequence, and introducing a cyclic prefix and a cyclic suffix to the sequence to form a PTRS resource block, that is, a block cyclic PTRS; mapping the block cyclic PTRS to 1 On consecutive subcarriers within one or more RBs; optionally, other subcarriers map data symbols; then OFDM modulation is performed to obtain OFDM symbols to be transmitted.
  • the initial PTRS sequence length is usually greater than 1, and the OFDM symbol may be one or more.
  • the following is an example of an initial PTRS sequence with 4 OFDM symbols and a length of 5.
  • the initial PTRS sequence may employ a Zadoff-Chu (ZC) sequence or other sequences, which is not limited in this embodiment.
  • ZC Zadoff-Chu
  • the process of generating the OFDM symbol includes:
  • the foregoing generation manner is only an example, and the initial PTRS sequence may be generated in other manners, which is not limited in this embodiment.
  • the last two elements P4, P5 of the initial PTRS sequence ⁇ P1, P2, P3, P4, P5 ⁇ are moved to the head of the sequence, and the first two elements P1 and P2 of the sequence are moved to the end of the sequence to obtain a length of 9 block cycle PTRS; as shown in Figure 2a.
  • the last three elements P3-P5 of the sequence can also be moved to the head of the sequence, and the first three elements P1-P3 of the sequence are moved to the tail of the sequence to obtain a block-shaped cyclic PTRS of length 11;
  • the last four elements P2-P5 of the sequence can also be moved to the head of the sequence, and the first four elements P1-P4 of the sequence are moved to the tail of the sequence to obtain a block-shaped cyclic PTRS of length 13;
  • the method may be performed by a network device or by a terminal device; if performed by the network device, the initial PTRS sequence length and the cyclic suffix length may be determined or predefined by the network device; if performed by the terminal device, the initial PTRS sequence length and The suffix suffix length can be determined by the network device and notified to the terminal device, for example, by RRC (radio resource control) signaling, DCI (downlink control information, downlink control information), or predefined; suffix length The same or different, the embodiment is not limited.
  • RRC radio resource control
  • the block cyclic PTRS is mapped to consecutive REs of each OFDM symbol, and 4 OFDM symbols are taken as an example to map a PTRS sequence of length 9 into a scheduling bandwidth.
  • the block cyclic PTRS is mapped in each OFDM symbol in FIG. 5.
  • the block cyclic PTRS may also be mapped only in a partial OFDM symbol, such as only the first and third OFDM symbols.
  • the middle map has the block repeat PTRS.
  • the positions of the PTRSs mapped in the OFDM symbols may also be different, or partially the same, or the block cyclic PTRS may also be mapped to different RBs.
  • the block cyclic PTRS may also be mapped in the same OFDM symbol. repeatedly.
  • the method includes: generating an initial PTRS sequence, and repeating the sequence to form a PTRS resource block, that is, a block-like repeated PTRS; mapping the block-shaped repeated PTRS to one or more On consecutive subcarriers within the RB; optionally, other subcarriers map data symbols; perform OFDM modulation to obtain OFDM symbols to be transmitted.
  • the initial PTRS sequence length is usually greater than 1, and the OFDM symbol may be one or more.
  • the following is an example of an initial PTRS sequence with 4 OFDM symbols and a length of 5.
  • the initial PTRS sequence may employ a Zadoff-Chu (ZC) sequence or other sequences, which is not limited in this embodiment.
  • ZC Zadoff-Chu
  • the process of generating the OFDM symbol includes:
  • the generated initial PTRS sequence is ⁇ P1, P2, P3, P4, P5 ⁇ , and the generation process is the same as 501, and will not be described in detail.
  • 602 repeating the PTRS sequence once, sequentially arranging to obtain a block repeat PTRS having a length of 10;
  • the block repeat PTRS is: ⁇ P1, P2, P3, P4, P5, P1, P2, P3, P4, P5 ⁇ .
  • the mapping mode is similar to that of step 503.
  • the block-shaped repeated PTRS is mapped to 10 consecutive REs of 1 RB in the scheduled bandwidth, and each element occupies one RE.
  • the position of the mapped PTRS in the 4 OFDM symbols is completely assumed.
  • the location of the mapped PTRS is shown in Figure 6;
  • the block-shaped repeated PTRS is mapped in each OFDM symbol in FIG. 6.
  • the block-shaped repeated PTRS may also be mapped in only part of the OFDM symbols, such as only the first and third OFDM symbols.
  • the middle map has the block repeat PTRS.
  • the positions of the PTRSs mapped in the OFDM symbols may also be different, or partially the same, or the block-shaped repeated PTRS may also be mapped to different RBs.
  • the block-shaped repeated PTRS may also be mapped in the same OFDM symbol. repeatedly.
  • the receiving process may be performed by the network device, or may be performed by the terminal device. For example, after determining the location of the PTRS resource block of length N, starting from the Kth RE of the PTRS resource block, intercepting the frequency domain continuous with length Y
  • the complete PTRS sequence where the possible values of K are: 1, 2, ..., N-Y+1, the value of K may be determined by the network device or predefined, or notified by the network device to the terminal device.
  • the interference of the PTRS is isolated by the elements before and after the PTRS, and the estimation and compensation of the phase noise CPE and ICI are realized.
  • the transmitting end includes:
  • the processing module 701 generates one or more orthogonal frequency division multiplexing OFDM symbols, where the at least one OFDM symbol includes a phase tracking reference signal PTRS resource block, where the PTRS resource block includes a PTRS sequence of Y elements, and the PTRS sequence is followed by At least two of the three elements, the first Z elements of the PTRS sequence, the PTRS resource block occupies a plurality of consecutive resource particles RE; wherein, X, Y, Z are integers; and the sending module 702: And for transmitting the one or more OFDM symbols.
  • the PTRS resource block may be included in each OFDM symbol, and the number of PTRS resource blocks in one OFDM symbol may be one or more, and the foregoing solution may be:
  • Processing module 701 generate one or more orthogonal frequency division multiplexing OFDM symbols, each OFDM symbol includes at least one phase tracking reference signal PTRS resource block, and each PTRS resource block includes a PTRS sequence of Y elements, the PTRS sequence At least two of the last X elements, the first Z elements of the PTRS sequence, the PTRS resource block occupies a plurality of consecutive resource particles RE; wherein, X, Y, Z are integers; 702: Used to send the one or more OFDM symbols.
  • the receiving end includes:
  • the receiving module 801 is configured to receive one or more orthogonal frequency division multiplexing OFDM symbols, where the at least one OFDM symbol includes a phase tracking reference signal PTRS resource block, where the PTRS resource block includes a PTRS sequence of Y elements, and the PTRS sequence At least two of the last three elements, the first Z elements of the PTRS sequence, the PTRS resource block occupies a plurality of consecutive resource particles RE; wherein, X, Y, Z are integers; processing module 802: For obtaining a complete PTRS sequence from the one or more OFDM symbols.
  • the PTRS resource block may be included in each OFDM symbol, and the number of PTRS resource blocks in one OFDM symbol may be one or more, and the foregoing solution may be:
  • the receiving module 801 is configured to receive one or more orthogonal frequency division multiplexing OFDM symbols, each OFDM symbol includes at least one phase tracking reference signal PTRS resource block, and each PTRS resource block includes a PTRS sequence of Y elements, where At least two of the last X elements of the PTRS sequence and the first Z elements of the PTRS sequence, the PTRS resource block occupies a plurality of consecutive resource particles RE; wherein, X, Y, and Z are integers; Processing module 802: configured to obtain a complete PTRS sequence from the one or more OFDM symbols.
  • the transmitting end is a network device
  • the receiving end is a terminal device; or if the transmitting end is a terminal device, the receiving end is a network device.
  • the above device can also be a chip.
  • the above-mentioned device is divided into functional modules by the transmitting end or the receiving end according to the method embodiment, and the corresponding steps are performed by the corresponding modules.
  • the above modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • the processing module may be replaced by a processor
  • the sending module may be replaced by a transmitter
  • the receiving module may be replaced by a receiver, respectively performing the foregoing method embodiments.
  • the sending operation, the receiving operation, and the related processing operation, wherein the sending end includes:
  • Processor generate one or more orthogonal frequency division multiplexing OFDM symbols, the at least one OFDM symbol includes a phase tracking reference signal PTRS resource block, the PTRS resource block includes a PTRS sequence of Y elements, and a rear X of the PTRS sequence At least two of the three elements, the first Z elements of the PTRS sequence, the PTRS resource block occupies a plurality of consecutive resource particles RE; wherein, X, Y, Z are integers; Transmitting the one or more OFDM symbols.
  • the receiving end includes:
  • the at least one OFDM symbol comprises a phase tracking reference signal PTRS resource block, the PTRS resource block comprising a PTRS sequence of Y elements, the PTRS sequence At least two of the last X elements, the first Z elements of the PTRS sequence, the PTRS resource block occupies a plurality of consecutive resource particles RE; wherein, X, Y, Z are integers; the processor: For obtaining a complete PTRS sequence from the one or more OFDM symbols.
  • the processor may be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic device.
  • the receiver is for receiving data and/or signals
  • the transmitter is for transmitting data and/or signals.
  • the transmitter and receiver can be separate devices or an integral device such as a transceiver.
  • the transmitter or receiver in the above embodiments can be replaced by a transceiver.
  • antennas may be one or more.
  • bus includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • bus includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are labeled as buses in the figure.
  • a memory may be further included for storing computer executable program code, wherein when the program code includes an instruction, when the processor executes In the case of an instruction, the instruction causes the network device or the terminal device to perform corresponding steps in the method embodiment.
  • the memory may also be in the processor.
  • the application also provides a computer program product that, when run on a computer, causes the computer to perform any of the methods provided above.
  • the present application also provides a communication chip in which instructions are stored that, when run on a network device or terminal, cause the network device or terminal to perform the methods provided above.
  • the memory includes, but is not limited to, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read only memory (EPROM), or a portable A compact disc read-only memory (CD-ROM) for use in related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read only memory
  • CD-ROM portable A compact disc read-only memory
  • the memory is used to store the program code and data of the transmitting device, and may be a separate device or integrated in the processor.
  • the above various devices can be implemented in a chip integrated, for example, integrated in a baseband chip.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in or transmitted by a computer readable storage medium.
  • the computer instructions may be from a website site, computer, server or data center via a wired (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) Another website site, computer, server, or data center for transmission.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital versatile disc (DVD)), or a semiconductor medium (eg, a solid state disk (SSD)). )Wait.
  • the foregoing storage medium includes: a read-only memory (ROM) or a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种参考信号的传输方法及装置,该方法包括:生成一个或多个OFDM符号,至少一个OFDM符号包括PTRS资源块,所述PTRS资源块包括Y个元素的PTRS序列,所述PTRS序列的后X个元素,PTRS序列的前Z个元素这三个序列中的至少两个,所述PTRS资源块占用连续的多个资源元素RE;其中,X,Y,Z均为整数;发送所述一个或多个OFDM符号;上述方法及装置,减小载波间干扰,进而提高频谱效率。

Description

参考信号的传输方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种参考信号的的传输方法及装置。
背景技术
随着网络系统的发展,通信速率和容量的需求日益增加,对高频资源的需求也随之增加,工作频段在6GHz以上的下一代无线通信网络,如第五代移动通信(5th generation,5G),可以提供超高速的数据通信业务。在6GHz以上的频率范围,可用于下一代无线通信网络的频段包括位于28GHz、39GHz、60GHz、73GHz等处的频段。6GHz以上高频通信系统具有如大带宽和高集成天线阵列的显著特点,从而容易实现较高的吞吐量。但是随着频率的增大,频率器件即本地振荡器的随机抖动产生的相位噪声(phase noise,PHN)也随之增大,因此在高频无线通信中相位噪声的影响不可忽略,随着频段的增加,相位噪声水平越高,对接收信号的影响就越大。通常情况下,发送端设备可以加入相位跟踪参考信号(phase tracking reference signal,PTRS),接收端可以根据接收到的PTRS对相位噪声进行估计。
射频器件支持的频段越高,相噪的影响越大。5G标准新无线(New Radio,NR)网络所支持的载波频段可达60GHz以上,相噪的影响在某些情况下不可忽略。NR已经同意引入PTRS进行相噪测量和补偿。
相对现有的无线通信网络,高频通信系统将遭受更加严重的中射频失真,尤其是相位噪声带来的影响。另外,多普勒效应和载波频率偏移(carrier frequency offset,CFO)对高频通信系统性能带来的影响也会随着频段所处位置的变高而加剧。相位噪声、多普勒效应和CFO的一个共同特点是给高频通信系统的数据接收引入了相位误差或称相位偏移,导致高频通信系统的性能下降甚至无法工作。
另外,在下一代无线通信网络中,为满足日益增加的通信需求,对高阶调制如256 QAM(Quadrature Amplitude Modulation,正交幅度调制)甚至1024 QAM的需求也越来越高。此时,除了公共相位误差(Common Phase Error,CPE),因相位偏移引起的载波间干扰(Inter-Carrier Interference,ICI)也不可忽略。
现有技术中,在配置PTRS时,几乎没有考虑相位偏移引起的载波间干扰对高频通信系统性能的影响,尤其当当调制阶数较高时不能准确估计高频通信系统的载波间干扰,误码率高,导致频谱效率较低。
发明内容
本申请提供一种参考信号的传输方法及装置,以减小载波间干扰,进而提高频谱效率。
一方面,提供了一种参考信号的传输方法,包括:
生成一个或多个正交频分复用OFDM符号,至少一个OFDM符号包括相位跟踪参考信号PTRS资源块,所述PTRS资源块包括Y个元素的PTRS序列,所述PTRS序列的后X个元素,PTRS序列的前Z个元素这三个序列中的至少两个,所述PTRS资源块占用连续的多个资源粒子RE;其中,X,Y,Z均为整数;发送所述一个或多个OFDM符号。
和上述发送端的传输方案对应,还公开了接收端的传输方案,包括:
接收一个或多个正交频分复用OFDM符号,至少一个OFDM符号包括相位跟踪参考信号PTRS资源块,所述PTRS资源块包括Y个元素的PTRS序列,所述PTRS序列的后X个元素,PTRS序列的前Z个元素这三个序列中的至少两个,所述PTRS资源块占用连续的多个资源粒子RE;其中,X,Y,Z均为整数;从所述一个或多个OFDM符号中获取完整的PTRS序列。
和上述方法对应,还公开了相应的装置,其中发送端包括:
处理模块:生成一个或多个正交频分复用OFDM符号,至少一个OFDM符号包括相位跟踪参考信号PTRS资源块,所述PTRS资源块包括Y个元素的PTRS序列,所述PTRS序列的后X个元素,PTRS序列的前Z个元素这三个序列中的至少两个,所述PTRS资源块占用连续的多个资源粒子RE;其中,X,Y,Z均为整数;发送模块:用于发送所述一个或多个OFDM符号。
接收端包括:
接收模块:用于接收一个或多个正交频分复用OFDM符号,至少一个OFDM符号包括相位跟踪参考信号PTRS资源块,所述PTRS资源块包括Y个元素的PTRS序列,所述PTRS序列的后X个元素,PTRS序列的前Z个元素这三个序列中的至少两个,所述PTRS资源块占用连续的多个资源粒子RE;其中,X,Y,Z均为整数;处理模块:用于从所述一个或多个OFDM符号中获取完整的PTRS序列。
上述方案中,也可以在每个OFDM符号中均包括PTRS资源块,一个OFDM符号中PTRS资源块的数量可以为一个,也可以为多个,则上述方案可以为:
生成一个或多个正交频分复用OFDM符号,每个OFDM符号包括至少一个相位跟踪参考信号PTRS资源块,每个PTRS资源块包括Y个元素的PTRS序列,所述PTRS序列的后X个元素,PTRS序列的前Z个元素这三个序列中的至少两个,所述PTRS资源块占用连续的多个资源粒子RE;其中,X,Y,Z均为整数;发送所述一个或多个OFDM符号。
和上述发送端的传输方案对应,还公开了接收端的传输方案,包括:
接收一个或多个正交频分复用OFDM符号,每个OFDM符号包括至少一个相位跟踪参考信号PTRS资源块,每个PTRS资源块包括Y个元素的PTRS序列,所述PTRS序列的后X个元素,PTRS序列的前Z个元素这三个序列中的至少两个,所述PTRS资源块占用连续的多个资源粒子RE;其中,X,Y,Z均为整数;从所述一个或多个OFDM符号中获取完整的PTRS序列。
和上述方法对应,还公开了相应的装置,其中发送端包括:
处理模块:生成一个或多个正交频分复用OFDM符号,每个OFDM符号包括至少一个相位跟踪参考信号PTRS资源块,每个PTRS资源块包括Y个元素的PTRS序列,所述PTRS序列的后X个元素,PTRS序列的前Z个元素这三个序列中的至少两个,所述PTRS资源块占用连续的多个资源粒子RE;其中,X,Y,Z均为整数;发送模块:用于发送所述一个或多个OFDM符号。
接收端包括:
接收模块:用于接收一个或多个正交频分复用OFDM符号,每个OFDM符号包括至少一个相位跟踪参考信号PTRS资源块,每个PTRS资源块包括Y个元素的PTRS序列,所述PTRS序列的后X个元素,PTRS序列的前Z个元素这三个序列中的至少两个,所述PTRS资 源块占用连续的多个资源粒子RE;其中,X,Y,Z均为整数;处理模块:用于从所述一个或多个OFDM符号中获取完整的PTRS序列。
上述各个方案中,如果发送端是网络设备,则接收端是终端设备;或如果发送端是终端设备,则接收端是网络设备。
上述发送端及接收端装置还有另一种形式,处理模块由处理器实现,接收模块由接收器实现,发送模块由发射器实现。
结合上述方法及装置的各个方案,其中,所述PTRS资源块位于1个或多个资源块RB。
结合上述方法及装置的各个方案,其中,所述PTRS资源块包括X+Y+Z个元素,X个元素、Y个元素、Z个元素连续且频分布置,X≤Y,Z≤Y;或
所述PTRS资源块包括X+Y或Y+Z个元素,X个元素、Y个元素或Y个元素、Z个元素连续且频分布置,X≤Y,Z≤Y;或
所述PTRS资源块包括X+Z个元素,X个元素、Z个元素连续且频分布置,(X+Z)>Y,例如:(X+Z)≥(Y+2)。
当所述PTRS资源块包括X+Y或Y+Z个元素,X=Y或Y=Z时,相当于所述PTRS资源块包括2个连续且相同的PTRS序列。
结合上述方法及装置的各个方案,当至少2个OFDM符号均包括所述PTRS资源块时,或包括所述PTRS资源块的OFDM符号为多个时,所述PTRS资源块在每个OFDM符号中可以占用相同的位置,也可以占用不同的位置,这里的位置指在每个OFDM符号中的频域资源位置。
上述方法及对应的装置,减小载波间干扰,进而提高频谱效率。
本申请的又一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的又一方面提供了一种通信芯片,其中存储有指令,当其在网络设备或终端设备上运行时,使得计算机执行上述各方面所述的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1为通信系统架构示意图;
图2a为本申请实施例的一种PTRS资源块结构示意图;
图2b为本申请实施例的另一种PTRS资源块结构示意图;
图3a为本申请实施例的又一种PTRS资源块结构示意图;
图3b为本申请实施例的又一种PTRS资源块结构示意图;
图3c为本申请实施例的又一种PTRS资源块结构示意图;
图3d为本申请实施例的又一种PTRS资源块结构示意图;
图4a为本申请实施例的又一种PTRS资源块结构示意图;
图4b为本申请实施例的又一种PTRS资源块结构示意图;
图5为本申请实施例包含PTRS资源块的OFDM符号示意图;
图6为本申请另一实施例包含PTRS资源块的OFDM符号示意图;
图7为本申请实施例提供的一种发射端设备的模块示意图;
图8为本申请实施例提供的一种接收端设备的模块示意图;
图9为本申请实施例提供的另一种发射端设备/接收端设备的硬件架构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请中的术语“多个”是指两个或两个以上。本申请中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。本申请中的术语“第一”、“第二”等是为了区分不同的对象,并不限定该不同对象的顺序。
本申请提供的技术方案可以应用于各种使用了波束扫描技术的通信系统,例如,在现有通信系统的基础上采用了波束扫描技术,5G通信系统,未来演进系统或者多种通信融合系统等等。可以包括多种应用场景,例如,机器对机器(machine to machine,M2M)、设备到设备(device-to-device,D2D)、宏微通信、增强型移动互联网(enhance mobile broadband,eMBB)、超高可靠性与超低时延通信(ultra reliable&low latency communication,uRLLC)以及海量物联网通信(massive machine type communication,mMTC)等场景。这些场景可以包括但不限于:终端与终端之间的通信场景,网络设备与网络设备之间的通信场景,网络设备与终端之间的通信场景等。本申请提供的技术方案也可以应用于5G通信系统中的终端与终端之间的通信,或网络设备与网络设备之间的通信等场景中。
图1给出了本申请提供的技术方案所适用的一种通信系统示意图,该通信系统可以包括一个或多个网络设备100(仅示出1个)以及与网络设备100连接的一个或多个终端设备200。
网络设备100可以是能和终端200通信的设备。网络设备100可以是基站(例如:BTS(base transceiver station,BTS)、节点B(nodeB,NB)、演进型基站B(evolutional node B,eNB或eNodeB)、NR系统中的传输接收点(transmission reception point,TRP或者TP)或者下一代节点B(generation nodeB,gNB)、未来通信网络中的基站或网络设备)、中继站、接入点、车载设备、可穿戴设备、无线保真(wireless-fidelity,Wi-Fi)的站点、无线回传节点、小站、微站等。网络设备100还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备100还可以是5G通信系统中的网络设备或未来演进网络中的网络设备;还可以是可穿戴设备或车载设备等。
终端设备200可以是例如:用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的PLMN网络中的终端等。
对于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统,受到相位噪声影响的接收信号,经过傅里叶变换(Fast Fourier Transformation,FFT)变换时,会产生载波间干扰(Inter-Carrier Interference,ICI),且会影响接收信号的幅度。对信号估计来讲,由于导频上也受到相噪的影响,因此会影响信号估计的准确性。另外,当本地振荡器产生的频率用于模数转换器(Analog-Digital Converter,ADC)的采样时钟时,相位噪声也会影响数 字信号的采样。
对于高阶调制,比如256QAM或1024QAM,相噪带来的ICI会引起性能的严重恶化。分布式PTRS适用于对相噪的公共相位偏差(Common Phase Error,CPE)的纠正,而对ICI消除没有帮助。在不增加接收机复杂度的情况下,只采用分布式PTRS可能无法满足系统性能的需求。
可以看出,分布式PTRS几乎没有考虑相位偏移引起的载波间干扰对高频通信系统性能的影响,当调制阶数较高时不能准确估计高频(6GHz以上)通信系统的载波间干扰,误码率高,导致频谱效率较低。
本实施例的参考信号的传输方法包括:发送端生成一个或多个OFDM符号,至少一个OFDM符号包括PTRS资源块,所述PTRS资源块包括Y个元素的PTRS序列,所述PTRS序列的后X个元素,PTRS序列的前Z个元素这三个序列中的至少两个,所述PTRS资源块占用连续的多个资源粒子(resource element,RE);发送所述一个或多个OFDM符号。
相应的,接收端接收所述一个或多个OFDM符号,从所述一个或多个OFDM符号中获取完整的PTRS序列。
上述方法可以由网络设备执行,也可以由终端设备执行,例如发送端为网络设备,则接收端为终端设备,或发送端为终端设备,则接收端为网络设备。
上述方案中,各个序列中的每一个元素占用一个RE。
上述方案中,各个序列在每个OFDM符号中是连续的,并且频分布置;X,Y,Z均为整数,1≤X≤Y,1≤Z≤Y。
Y位PTRS序列是一个初始PTRS序列,也是完整的PTRS序列;可以为Zadoff–Chu(ZC)序列,也可以为其它序列,Y≥1。
上述方案中,所述PTRS资源块可以位于1个或多个RB。
上述方案中,可以每个OFDM符号中均包括所述PTRS资源块,所述PTRS资源块可以在各个OFDM符号中占用相同的频域位置,也可以占用不同的频域位置。
每个OFDM符号包括的PTRS资源块的数量可以为1个或多个。
以下举例说明上述PTRS资源块的结构,以Y=5为例进行说明,即初始的PTRS序列长度为5。
如果PTRS资源块包括上述3个序列,例如,X=2,Y=5,Z=2时,PTRS资源块对应的完整序列如图2a所示,包括三部分,中间的P1-P5为初始的PTRS序列,左边的P4-P5为循环前缀,右边的P1-P2为循环后缀,三部分构成了块状循环PTRS(cyclic PTRS);三个序列连续排列且在每个OFDM符号中频分布置。
上述例子中,初始的PTRS序列可以取其它值,循环前缀及循环后缀也可以取其它值,两者取值可以相同,也可以不同;如:循环前缀及循环后缀取值为1时,如图2b所示。
如果PTRS资源块包括上述2个序列,一个是完整PTRS序列,一个是部分PTRS序列,例如,X=2,Y=5时,如图3a所示;此时中间的P5-P4仍然构成了一个完整的PTRS序列,左边的P4为循环前缀,右边的P5为循环后缀。又如Z=2,Y=5时,如图3b所示,此时中间的P2-P1仍然构成了一个完整的PTRS序列,左边的P1为循环前缀,右边的P2为循环后缀。2个序列连续排列且在每个OFDM符号中频分布置。
又如,当X=4,Y=5时,PTRS资源块如图3c所示,此时,中间部分P3-P2构成了完整的PTRS序列,左边P2为循环前缀,右边的P3-P5构成了循环后缀;或者中间部分P4-P3构 成了完整的PTRS序列,左边P2-P3为循环前缀,右边的P4-P5构成了循环后缀;当然循环前缀及循环前缀也可以取其它值,只要满足中间部分构成完整的PTRS序列即可。另外,当Z=4,Y=5时,和上述情况类似,参考图3d,不再详述。
上述各个例子中,初始的完整PTRS序列可以取其它值,循环前缀及循环后缀也可以取其它值,两者取值可以相同,也可以不同。
如果PTRS资源块包括2个完整的初始PTRS序列,例如,当X=Y=5时,或Z=Y=5时,或X=Z=5时,如图4a所示;此时,相当于两个完整且连续的PTRS序列构成了PTRS资源块,两部分构成了块状重复PTRS(repeated PTRS),中间部分P3-P2构成了完整的PTRS序列,左边P1-P2为循环前缀,右边的P3-P5构成了循环后缀;或者中间部分P4-P3构成了完整的PTRS序列,左边P1-P3为循环前缀,右边的P4-P5构成了循环后缀;当然循环前缀及循环前缀也可以取其它值,只要满足中间部分构成完整的PTRS序列即可。
如果PTRS资源块包括2个不完整的初始PTRS序列,例如,初始PTRS序列Y长度为5,PTRS资源块该只包括X=4,Z=4的序列时,图4b所示,中间部分P3-P2仍然可以构成了完整的PTRS序列,左边P2为循环前缀,右边的P3-P4构成了循环后缀;或者中间部分P4-P3构成了完整的PTRS序列,左边P2-P3为循环前缀,右边的P4构成了循环后缀。该例子中,只要中间部分构成完成的PTRS序列,并且左右两侧有循环前缀和循环后缀即可,这种情况下,首先,(X+Z)≥Y,保证X+Z构成完整的PTRS序列;进一步的,(X+Z)≥(Y+2),以保证PTRS序列两边有循环前缀和循环后缀。
上述各个例子中,初始的PTRS序列可以取其它值,循环前缀及循环后缀也可以取其它值,两者取值可以相同,也可以不同。
从上述各个实施例可以看出,OFDM符号中的PTRS资源块为块状循环PTRS或块状重复PTRS,其中间部分需要构成一个完整的PTRS序列,两边多余的部分分别为循环前缀及循环后缀,满足上述条件即可。
另外,某些情况下,PTRS资源块也可以只包括循环前缀或循环后缀,例如,图3a,3b所示,如果把P1-P5作为完整的PTRS序列,则只包括循环前缀或循环后缀。
以下举例说明包含上述PTRS资源块的OFDM符号的生成过程。
当PTRS资源块为块状循环PTRS时,该方法包括:生成初始PTRS序列,并对该序列引入循环前缀和循环后缀,形成PTRS资源块,即块状循环PTRS;将块状循环PTRS映射在1个或多个RB内的连续子载波上;可选的,其它子载波映射数据符号;然后进行OFDM调制,得到待发送的OFDM符号。
初始PTRS序列长度通常大于1,OFDM符号可以为1个或多个,以下以4个OFDM符号、长度为5的初始PTRS序列为例来说明。初始PTRS序列可采用Zadoff–Chu(ZC)序列或其它序列,本实施例不限定。该OFDM符号的生成过程包括:
501:生成长度为5的ZC序列,作为初始PTRS序列;
例如:其生成方式为:P k=e -jπ(k(k+1)/5),k=1,2,3,4,5,生成的初始PTRS序列各个元素分别为{P1,P2,P3,P4,P5}。
上述生成方式只是一个例子,可以采用其它方式来生成初始PTRS序列,本实施例不限定。
502:对所述初始PTRS序列引入循环前缀和循环后缀,得到块状循环PTRS;
例如:将初始PTRS序列{P1,P2,P3,P4,P5}的后两个元素P4,P5搬移到序列的头 部,序列的前两个元素P1,P2搬移到序列的尾部,得到长度为9的块状循环PTRS;如图2a所示。
也可以将序列的后1个元素P5搬移到序列的头部,序列的前1个元素P1搬移到序列的尾部,得到长度为7的块状循环PTRS;如图2b所示。
也可以将序列的后3个元素P3-P5搬移到序列的头部,序列的前3个元素P1-P3搬移到序列的尾部,得到长度为11的块状循环PTRS;
也可以将序列的后4个元素P2-P5搬移到序列的头部,序列的前4个元素P1-P4搬移到序列的尾部,得到长度为13的块状循环PTRS;
该方法可以由网络设备执行,也可以由终端设备执行;如果由网络设备执行,初始PTRS序列长度和循环前后缀长度可以由网络设备确定或预先定义;如果由终端设备执行,初始PTRS序列长度和循环前后缀长度可以由网络设备确定并通知该终端设备,例如通过RRC(radio resource control,无线资源控制)信令、DCI(downlink control information,下行控制信息)进行配置,或预先定义;前后缀长度可以相同也可以不相同,本实施例不限定。
503:将所述块状循环PTRS映射到被调度的连续子载波上;
以长度为9的块状循环PTRS为例,将该块状循环PTRS分别映射到各个OFDM符号连续的RE上,以4个OFDM符号为例,将长度为9的PTRS序列映射到调度带宽内的1个RB(resource block,资源块)的9个连续的RE上,每个元素占用一个RE,这里假设4个OFDM符号中映射的PTRS的位置完全相同,映射后PTRS的位置如图5所示;
图5中每个OFDM符号中都映射有该块状循环PTRS,另一例子中,也可以只在部分OFDM符号中映射有该块状循环PTRS,比如只在第一个和第三个OFDM符号中映射有该块状重复PTRS。
当然,各个OFDM符号中映射的PTRS的位置也可以不相同,或者部分相同,或者该块状循环PTRS也可以映射到不同的RB;另外,该块状循环PTRS在同一个OFDM符号中也可以映射多次。
504:在其余子载波对应的RE上映射数据符号,以D表示。
505:对映射后的符号进行OFDM调制,并发送调制后的OFDM符号。
当PTRS资源块为块状循环PTRS时,该方法包括:生成初始PTRS序列,并对该序列进行重复,形成PTRS资源块,即块状重复PTRS;将块状重复PTRS映射在1个或多个RB内的连续子载波上;可选的,其它子载波映射数据符号;进行OFDM调制,得到待发送的OFDM符号。
初始PTRS序列长度通常大于1,OFDM符号可以为1个或多个,以下以4个OFDM符号、长度为5的初始PTRS序列为例来说明。初始PTRS序列可采用Zadoff–Chu(ZC)序列或其它序列,本实施例不限定。该OFDM符号的生成过程包括:
601:生成长度为5的ZC序列,作为初始PTRS序列;
生成的初始PTRS序列为{P1,P2,P3,P4,P5},生成过程同501,不再详述。
602:对PTRS序列重复1次,依次排列得到长度为10的块状重复PTRS;
块状重复PTRS为:{P1,P2,P3,P4,P5,P1,P2,P3,P4,P5}。
603:将所述块状重复PTRS映射到被调度的连续子载波上;
映射方式与步骤503类似,将块状重复PTRS映射到被调度带宽内的1个RB的10个连续的RE上,每个元素占用一个RE,这里假设4个OFDM符号中映射的PTRS的位置完全相 同,映射后PTRS的位置如图6所示;
图6中每个OFDM符号中都映射有该块状重复PTRS,另一例子中,也可以只在部分OFDM符号中映射有该块状重复PTRS,比如只在第一个和第三个OFDM符号中映射有该块状重复PTRS。
当然,各个OFDM符号中映射的PTRS的位置也可以不相同,或者部分相同,或者该块状重复PTRS也可以映射到不同的RB;另外,该块状重复PTRS在同一个OFDM符号中也可以映射多次。
604-605,同步骤504-505,不再详述。
以下简单介绍OFDM符号的接收过程。
接收一个或多个OFDM符号,根据PTRS映射的RE位置确定PTRS资源块的位置,并从所属PTRS资源块中获取完整的PTRS序列。进一步的,可以利用所述PTRS序列进行相噪估计和补偿。
该接收过程可以由网络设备执行,也可以由终端设备执行,例如确定长度为N的PTRS资源块的位置后,从所述PTRS资源块的第K个RE开始,截取长度为Y的频域连续的完整PTRS序列,其中,K的可能取值为:1,2,…,N-Y+1,K的值可以由网络设备确定或预先定义,或者由网络设备通知终端设备。
上述方法中,PTRS资源块中,通过循环前、后缀或重复PTRS两侧的元素隔离数据对PTRS的干扰,从而实现对相噪CPE和ICI的估计和补偿。
和上述方法实施例对应,还公开了相应的参数信号的传输装置,参考图7,其中发送端包括:
处理模块701:生成一个或多个正交频分复用OFDM符号,至少一个OFDM符号包括相位跟踪参考信号PTRS资源块,所述PTRS资源块包括Y个元素的PTRS序列,所述PTRS序列的后X个元素,PTRS序列的前Z个元素这三个序列中的至少两个,所述PTRS资源块占用连续的多个资源粒子RE;其中,X,Y,Z均为整数;发送模块702:用于发送所述一个或多个OFDM符号。
上述方案中,也可以在每个OFDM符号中均包括PTRS资源块,一个OFDM符号中PTRS资源块的数量可以为一个,也可以为多个,则上述方案可以为:
处理模块701:生成一个或多个正交频分复用OFDM符号,每个OFDM符号包括至少一个相位跟踪参考信号PTRS资源块,每个PTRS资源块包括Y个元素的PTRS序列,所述PTRS序列的后X个元素,PTRS序列的前Z个元素这三个序列中的至少两个,所述PTRS资源块占用连续的多个资源粒子RE;其中,X,Y,Z均为整数;发送模块702:用于发送所述一个或多个OFDM符号。
参考图8,接收端包括:
接收模块801:用于接收一个或多个正交频分复用OFDM符号,至少一个OFDM符号包括相位跟踪参考信号PTRS资源块,所述PTRS资源块包括Y个元素的PTRS序列,所述PTRS序列的后X个元素,PTRS序列的前Z个元素这三个序列中的至少两个,所述PTRS资源块占用连续的多个资源粒子RE;其中,X,Y,Z均为整数;处理模块802:用于从所述一个或多个OFDM符号中获取完整的PTRS序列。
上述方案中,也可以在每个OFDM符号中均包括PTRS资源块,一个OFDM符号中PTRS资源块的数量可以为一个,也可以为多个,则上述方案可以为:
接收模块801:用于接收一个或多个正交频分复用OFDM符号,每个OFDM符号包括至少一个相位跟踪参考信号PTRS资源块,每个PTRS资源块包括Y个元素的PTRS序列,所述PTRS序列的后X个元素,PTRS序列的前Z个元素这三个序列中的至少两个,所述PTRS资源块占用连续的多个资源粒子RE;其中,X,Y,Z均为整数;处理模块802:用于从所述一个或多个OFDM符号中获取完整的PTRS序列。
如果发送端是网络设备,则接收端是终端设备;或如果发送端是终端设备,则接收端是网络设备。
上述装置也可以为芯片。
上述装置是根据方法实施例对发送端或者接收端进行功能模块的划分,由相应的模块执行方法实施例相应的步骤,具体可以参考方法实施例不再一一详述。上述的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
上述各个实施例的网络设备与终端设备还有另一形式的实施例,处理模块可以由处理器替代,发送模块可以由发射机替代,接收模块可以由接收机替代,分别执行上述方法实施例中的发送操作、接收操作以及相关的处理操作,其中,发送端包括:
处理器:生成一个或多个正交频分复用OFDM符号,至少一个OFDM符号包括相位跟踪参考信号PTRS资源块,所述PTRS资源块包括Y个元素的PTRS序列,所述PTRS序列的后X个元素,PTRS序列的前Z个元素这三个序列中的至少两个,所述PTRS资源块占用连续的多个资源粒子RE;其中,X,Y,Z均为整数;发射器:用于发送所述一个或多个OFDM符号。
接收端包括:
接收器:用于接收一个或多个正交频分复用OFDM符号,至少一个OFDM符号包括相位跟踪参考信号PTRS资源块,所述PTRS资源块包括Y个元素的PTRS序列,所述PTRS序列的后X个元素,PTRS序列的前Z个元素这三个序列中的至少两个,所述PTRS资源块占用连续的多个资源粒子RE;其中,X,Y,Z均为整数;处理器:用于从所述一个或多个OFDM符号中获取完整的PTRS序列。
上述另一形式的装置实施例具体结构可参看图9,其中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件。
接收器用于接收数据和/或信号,以及发射器用于发送数据和/或信号。发射器和接收器可以是独立的器件,也可以是一个整体的器件,例如收发器。因此上述实施例中的发射器或接收器可以由收发机替代。
还可以进一步包括天线,天线的数量可以为一个或多个。
上述各个组件可以通过总线耦合在一起,其中总线除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线。
进一步的,在一种具体的实施例中,还可以包括存储器(图中未示出),用于存储计算机可执行程序代码,其中,当所述程序代码包括指令,当所述处理器执行所述指令时,所述指令使所述网络设备或终端设备执行方法实施例中的相应步骤,另外,存储器也可以为于处理器中。
本申请还提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述提供的任一种方法。本申请还提供了一种通信芯片,其中存储有指令,当其在网络设备或终端 上运行时,使得网络设备或终端执行上述提供的方法。
存储器包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器用于相关指令及数据。
存储器用于存储发射端设备的程序代码和数据,可以为单独的器件或集成在处理器中。
上述各个器件可以集成在芯片中实现,例如集成在基带芯片中实现。
上述实施例的参考信号的传输方法及装置,由于PTRS序列两边设置有循环前缀及循环后缀,减小了载波间干扰,尤其是调制阶数较高时,减小了误码率,进而提高了频谱效率。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由 计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:只读存储器(read-only memory,ROM)或随机存储存储器(random access memory,RAM)、磁碟或者光盘等各种可存储程序代码的介质。

Claims (20)

  1. 一种参考信号的传输方法,其特征在于,包括:
    生成一个或多个正交频分复用OFDM符号,至少一个OFDM符号包括相位跟踪参考信号PTRS资源块,所述PTRS资源块包括Y个元素的PTRS序列,所述PTRS序列的后X个元素,PTRS序列的前Z个元素这三个序列中的至少两个,所述PTRS资源块占用连续的多个资源粒子RE;其中,X,Y,Z均为整数;
    发送所述一个或多个OFDM符号。
  2. 如权利要求1所述的方法,其中,所述PTRS资源块位于1个或多个资源块RB。
  3. 如权利要求1所述的方法,其中:
    所述PTRS资源块包括X+Y+Z个元素,X个元素、Y个元素、Z个元素连续且频分布置,X≤Y,Z≤Y;或
    所述PTRS资源块包括X+Y或Y+Z个元素,X个元素、Y个元素或Y个元素、Z个元素连续且频分布置,X≤Y,Z≤Y;或
    所述PTRS资源块包括X+Z个元素,X个元素、Z个元素连续且频分布置,(X+Z)>Y。
  4. 如权利要求1所述的方法,所述PTRS资源块在每个OFDM符号中占用相同的位置。
  5. 一种参考信号的传输方法,其特征在于,包括:
    接收一个或多个正交频分复用OFDM符号,至少一个OFDM符号包括相位跟踪参考信号PTRS资源块,所述PTRS资源块包括Y个元素的PTRS序列,所述PTRS序列的后X个元素,PTRS序列的前Z个元素这三个序列中的至少两个,所述PTRS资源块占用连续的多个资源粒子RE;其中,X,Y,Z均为整数;
    从所述一个或多个OFDM符号中获取完整的PTRS序列。
  6. 如权利要求5所述的方法,其中,所述PTRS资源块位于1个或多个资源块RB。
  7. 如权利要求5所述的方法,其中:
    所述PTRS资源块包括X+Y+Z个元素,X个元素、Y个元素、Z个元素连续且频分布置,X≤Y,Z≤Y;或
    所述PTRS资源块包括X+Y或Y+Z个元素,X个元素、Y个元素或Y个元素、Z个元素连续且频分布置,X≤Y,Z≤Y;或
    所述PTRS资源块包括X+Z个元素,X个元素、Z个元素连续且频分布置,(X+Z)>Y。
  8. 如权利要求5所述的方法,所述PTRS资源块在每个OFDM符号中占用相同的位置。
  9. 一种参考信号的传输装置,其特征在于,包括:
    处理模块:生成一个或多个正交频分复用OFDM符号,至少一个OFDM符号包括相位跟踪参考信号PTRS资源块,所述PTRS资源块包括Y个元素的PTRS序列,所述PTRS序列的后X个元素,PTRS序列的前Z个元素这三个序列中的至少两个,所述PTRS资源块占用连续的多个资源粒子RE;其中,X,Y,Z均为整数;
    发送模块:用于发送所述一个或多个OFDM符号。
  10. 如权利要求9所述的方法,其中,所述PTRS资源块位于1个或多个RB。
  11. 如权利要求9所述的方法,其中:
    所述PTRS资源块包括X+Y+Z个元素,X个元素、Y个元素、Z个元素连续且频分布置,X≤Y,Z≤Y;或
    所述PTRS资源块包括X+Y或Y+Z个元素,X个元素、Y个元素或Y个元素、Z个元 素连续且频分布置,X≤Y,Z≤Y;或
    所述PTRS资源块包括X+Z个元素,X个元素、Z个元素连续且频分布置,(X+Z)>Y。
  12. 如权利要求9所述的方法,其中,所述PTRS资源块在每个OFDM符号中占用相同的位置。
  13. 一种参考信号的传输方法,其特征在于,包括:
    接收模块:用于接收一个或多个正交频分复用OFDM符号,至少一个OFDM符号包括相位跟踪参考信号PTRS资源块,所述PTRS资源块包括Y个元素的PTRS序列,所述PTRS序列的后X个元素,PTRS序列的前Z个元素这三个序列中的至少两个,所述PTRS资源块占用连续的多个资源粒子RE;其中,X,Y,Z均为整数;
    处理模块:用于从所述一个或多个OFDM符号中获取完整的PTRS序列。
  14. 如权利要求13所述的方法,其中,所述PTRS资源块位于1个或多个RB。
  15. 如权利要求13所述的方法,其中:
    所述PTRS资源块包括X+Y+Z个元素,X个元素、Y个元素、Z个元素连续且频分布置,X≤Y,Z≤Y;或
    所述PTRS资源块包括X+Y或Y+Z个元素,X个元素、Y个元素或Y个元素、Z个元素连续且频分布置,X≤Y,Z≤Y;或
    所述PTRS资源块包括X+Z个元素,X个元素、Z个元素连续且频分布置,(X+Z)>Y。
  16. 如权利要求13所述的方法,其中,所述PTRS资源块在每个OFDM符号中占用相同的位置。
  17. 一种信息传输装置,其特征在于,用于执行如权利要求1至8任一项所述的方法。
  18. 一种信息传输装置,其特征在于,包括:存储器和处理器;所述处理器被配置为支持所述装置执行如权利要求1至8任一项所述的方法的功能,所述存储器用于保存所述装置必要的程序和数据。
  19. 一种计算机存储介质,其特征在于,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至8任一项所述的方法。
  20. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1至8任一项所述的方法。
PCT/CN2018/095218 2017-08-01 2018-07-11 参考信号的传输方法及装置 WO2019024664A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18842402.2A EP3644540B1 (en) 2017-08-01 2018-07-11 Method and device for transmitting reference signal
US16/746,543 US11108520B2 (en) 2017-08-01 2020-01-17 Reference signal transmission method and apparatus
US17/403,422 US11496262B2 (en) 2017-08-01 2021-08-16 Reference signal transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710648853.X 2017-08-01
CN201710648853.XA CN109327296B (zh) 2017-08-01 2017-08-01 参考信号的传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/746,543 Continuation US11108520B2 (en) 2017-08-01 2020-01-17 Reference signal transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2019024664A1 true WO2019024664A1 (zh) 2019-02-07

Family

ID=65233091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095218 WO2019024664A1 (zh) 2017-08-01 2018-07-11 参考信号的传输方法及装置

Country Status (4)

Country Link
US (2) US11108520B2 (zh)
EP (1) EP3644540B1 (zh)
CN (2) CN114401173A (zh)
WO (1) WO2019024664A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021173451A1 (en) * 2020-02-27 2021-09-02 Qualcomm Incorporated Techniques for phase tracking to enable higher modulation orders in wireless communications
KR20210129187A (ko) * 2019-04-08 2021-10-27 미쓰비시덴키 가부시키가이샤 채널 및 위상 잡음의 공동 추정을 위한 순회 파일럿 시퀀스
CN114337951A (zh) * 2020-09-29 2022-04-12 大唐移动通信设备有限公司 信号传输方法及装置、终端、网络侧设备
EP4068892A4 (en) * 2019-12-27 2023-03-01 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR DETERMINING A REFERENCE SIGNAL

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114401173A (zh) * 2017-08-01 2022-04-26 华为技术有限公司 参考信号的传输方法及装置
CN112054982B (zh) * 2019-06-06 2022-05-17 华为技术有限公司 一种信号的发送、接收方法及通信装置
CN114338306B (zh) * 2020-09-29 2024-05-03 大唐移动通信设备有限公司 相位噪声补偿方法及装置
CN117121448A (zh) * 2021-03-31 2023-11-24 瑞典爱立信有限公司 低复杂度载波间干扰(ici)补偿算法:循环块相位跟踪参考信号(ptrs)序列设计
CN115499112A (zh) * 2021-06-19 2022-12-20 华为技术有限公司 符号传输的方法和通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102160322A (zh) * 2008-09-18 2011-08-17 高通股份有限公司 用于在无线通信系统中复用数据和参考信号的方法和装置
CN104066147A (zh) * 2013-03-19 2014-09-24 中兴通讯股份有限公司 基于下行探测参考信号搜索网络节点的方法、装置及设备
US20140314000A1 (en) * 2013-04-17 2014-10-23 Futurewei Technologies, Inc. Systems and Methods for Adaptive Transmissions in Wireless Network

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404234A (zh) * 2001-08-31 2003-03-19 国家广播电影电视总局广播科学研究院 一种训练参考信号及接收处理方法
KR101221890B1 (ko) * 2005-11-28 2013-01-15 엘지전자 주식회사 통신 시스템에서 코드 시퀀스 생성 방법, 신호 전송 방법,송신 장치, 코드 시퀀스 및 코드 시퀀스 세트
KR101652251B1 (ko) * 2010-02-23 2016-08-30 주식회사 팬택 기준신호 확장 전송 방법 및 장치와, 그를 위한 사이클릭 시프트 파라미터 전송 방법 및 장치
KR102047713B1 (ko) * 2016-06-05 2019-11-22 엘지전자 주식회사 무선 통신 시스템에서 위상 잡음 추정을 위한 신호 전송 방법
US10367672B2 (en) * 2016-09-28 2019-07-30 Qualcomm Incorporated Enhancements to phase-noise compensation reference signal design and scrambling
RU2737391C2 (ru) * 2016-09-28 2020-11-30 Идак Холдингз, Инк. Конструкция опорного сигнала для систем беспроводной связи
CN109923817B (zh) * 2016-11-04 2022-12-23 Lg 电子株式会社 在无线通信系统中在终端和基站之间发送和接收物理上行链路控制信道的方法和支持该方法的装置
KR102094894B1 (ko) * 2016-11-09 2020-03-30 엘지전자 주식회사 무선 통신 시스템에서 위상 잡음 제거를 위한 ptrs의 파워 부스팅 레벨 결정 방법 및 그 장치
US10560243B2 (en) * 2017-01-13 2020-02-11 Qualcomm Incorporated Systems and methods to select or transmitting frequency domain patterns for phase tracking reference signals
KR102077044B1 (ko) * 2017-03-25 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 위상 잡음 제거를 위한 ptrs 할당 방법 및 그 장치
US11121743B2 (en) * 2017-05-04 2021-09-14 Apple Inc. System and method for phase noise compensation
US11122589B2 (en) * 2017-05-14 2021-09-14 Lg Electronics Inc. Method and device for allocating PTRS to resource block in wireless communication system
WO2018237258A1 (en) * 2017-06-23 2018-12-27 Nokia Technologies Oy METHODS AND APPARATUSES FOR DESIGNING A PHASE TRACKING REFERENCE SIGNAL
CN114401173A (zh) * 2017-08-01 2022-04-26 华为技术有限公司 参考信号的传输方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102160322A (zh) * 2008-09-18 2011-08-17 高通股份有限公司 用于在无线通信系统中复用数据和参考信号的方法和装置
CN104066147A (zh) * 2013-03-19 2014-09-24 中兴通讯股份有限公司 基于下行探测参考信号搜索网络节点的方法、装置及设备
US20140314000A1 (en) * 2013-04-17 2014-10-23 Futurewei Technologies, Inc. Systems and Methods for Adaptive Transmissions in Wireless Network

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Phase and Frequency Tracking Reference Signal Considetations", 3GPP TSG-RAN WG1 #88 RI-1702617, 17 February 2017 (2017-02-17), XP051209770 *
MITSUBISHI ELECTRIC: "UL PTRS for DFTsOFDM Waveform", 3GPP TSG-RANNR AH#2 R1-1710230, 30 June 2017 (2017-06-30), XP051299450 *
NOKIA ET AL.: "On Details of the PT -RS Design for DFT-s-OFDM", 3GPP TSG RAN WGI NR AD-HOC#2 R1-1711631, 30 June 2017 (2017-06-30), XP051300794 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210129187A (ko) * 2019-04-08 2021-10-27 미쓰비시덴키 가부시키가이샤 채널 및 위상 잡음의 공동 추정을 위한 순회 파일럿 시퀀스
KR102660271B1 (ko) * 2019-04-08 2024-04-23 미쓰비시덴키 가부시키가이샤 채널 및 위상 잡음의 공동 추정을 위한 순회 파일럿 시퀀스
EP4068892A4 (en) * 2019-12-27 2023-03-01 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR DETERMINING A REFERENCE SIGNAL
WO2021173451A1 (en) * 2020-02-27 2021-09-02 Qualcomm Incorporated Techniques for phase tracking to enable higher modulation orders in wireless communications
US11271690B2 (en) 2020-02-27 2022-03-08 Qualcomm Incorporated Techniques for phase tracking to enable higher modulation orders in wireless communications
US11831568B2 (en) 2020-02-27 2023-11-28 Qualcomm Incorporated Techniques for phase tracking to enable higher modulation orders in wireless communications
CN114337951A (zh) * 2020-09-29 2022-04-12 大唐移动通信设备有限公司 信号传输方法及装置、终端、网络侧设备
CN114337951B (zh) * 2020-09-29 2024-01-16 大唐移动通信设备有限公司 信号传输方法及装置、终端、网络侧设备

Also Published As

Publication number Publication date
EP3644540B1 (en) 2023-08-30
EP3644540A4 (en) 2020-06-24
US11496262B2 (en) 2022-11-08
CN109327296B (zh) 2022-01-11
US11108520B2 (en) 2021-08-31
CN114401173A (zh) 2022-04-26
US20220038236A1 (en) 2022-02-03
CN109327296A (zh) 2019-02-12
EP3644540A1 (en) 2020-04-29
US20200153585A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
US11496262B2 (en) Reference signal transmission method and apparatus
US20220006560A1 (en) Wireless communication method and apparatus
WO2018201860A1 (zh) 上报端口信息的方法、终端设备和网络设备
WO2018228268A1 (zh) 资源单元的设置、传输方法及装置
WO2018210243A1 (zh) 一种通信方法和装置
WO2018228458A1 (zh) 参考信号的传输方法和传输装置
WO2019096272A1 (zh) 信息指示方法、终端设备及网络设备
WO2020001607A1 (zh) 数据加扰方法及相关设备
CN109475003B (zh) 一种信号发送、信号接收方法及装置
CN111726316B (zh) 同步信号的发送方法、同步信号的接收方法及相关设备
WO2021093321A1 (zh) 一种基于轨道角动量oam的通信方法及相关装置
WO2019029426A1 (zh) 用于传输参考信号的方法及装置
WO2018137570A1 (zh) 一种信息传输方法及装置
WO2019079936A1 (zh) 一种选择波形的方法及设备
WO2018228243A1 (zh) 一种发送解调参考信号的方法和装置、解调方法和装置
WO2020244728A1 (en) Dynamic discrete fourier transform or bandwidth size indication
EP3937564A1 (en) Communication method and apparatus
US20240111017A1 (en) Ranging method and apparatus
WO2018127180A1 (zh) 一种参考信号传输方法及装置
WO2022027507A1 (zh) 一种参考信号序列生成方法及装置
WO2019024556A1 (zh) 一种指示及信息确定方法和装置
WO2019214586A1 (zh) 通信方法和通信装置
WO2018177216A1 (zh) 传输信号的方法和装置
TW202241174A (zh) 用於探測參考訊號之部分探測方法及其使用者設備
CN110830402B (zh) 一种同步广播信息的发送、检测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018842402

Country of ref document: EP

Effective date: 20200120

NENP Non-entry into the national phase

Ref country code: DE