WO2022268104A1 - 一种无线感知的方法及装置 - Google Patents

一种无线感知的方法及装置 Download PDF

Info

Publication number
WO2022268104A1
WO2022268104A1 PCT/CN2022/100350 CN2022100350W WO2022268104A1 WO 2022268104 A1 WO2022268104 A1 WO 2022268104A1 CN 2022100350 W CN2022100350 W CN 2022100350W WO 2022268104 A1 WO2022268104 A1 WO 2022268104A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
parameter set
transmission parameter
communication device
configuration
Prior art date
Application number
PCT/CN2022/100350
Other languages
English (en)
French (fr)
Inventor
周保建
罗嘉金
吕永霞
刘辰辰
彭晓辉
侯晓乐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22827597.0A priority Critical patent/EP4346270A1/en
Publication of WO2022268104A1 publication Critical patent/WO2022268104A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0244Accuracy or reliability of position solution or of measurements contributing thereto
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application relates to the field of communication technologies, and in particular to a wireless sensing method and device.
  • the wireless perception technology obtains the characteristics of the signal propagation space by analyzing the changes of the wireless signal during the propagation process, so as to realize the perception of the scene, such as distance measurement, speed measurement, positioning, etc.
  • the main function of the wireless communication system is to exchange information between transceivers.
  • the basic principle is that the sending end transmits a specific waveform signal, which is received by the receiver after passing through the wireless channel, and after signal processing, the signal transmitted by the sending end is demodulated. Signal.
  • the surrounding environment can be sensed while realizing communication.
  • New radio defines positioning reference signal (positioning reference signal, PRS), channel sounding reference signal (sounding reference signal, SRS) and other reference signals that can be used for ranging and positioning, by calculating the original signal and receiving Correlation values between signals estimate signal transmission delays.
  • PRS positioning reference signal
  • SRS sounding reference signal
  • the design of existing signals such as PRS and SRS has problems such as inflexible resource allocation.
  • Embodiments of the present application provide a wireless sensing method and device, which can alleviate the problem of inflexible resource allocation while meeting sensing requirements.
  • the embodiment of the present application provides a wireless sensing method, the method includes: the first communication device respectively receives the first signal sent by the second communication device and the second transmission parameter set according to the first transmission parameter set and the second transmission parameter set; Two signals; wherein the first transmission parameter set corresponds to the first signal, at least one parameter in the first transmission parameter set satisfies the first condition, and the first condition is related to the target ranging range; the second transmission parameter set corresponds to the second signal, and the second transmission parameter set corresponds to the second signal, At least one parameter in the second transmission parameter set satisfies a second condition, and the second condition is related to target perception accuracy; the first communication device performs perception according to the first signal and the second signal, and obtains a perception result.
  • At least one parameter in the first transmission parameter set corresponding to the first signal satisfies the first condition related to the target ranging range, and at least one parameter in the second transmission parameter set corresponding to the second signal meets the target ranging accuracy.
  • the second condition is that different sets of transmission parameters can be used for different sensing requirements, so as to realize flexible configuration of transmission resources.
  • performing perception according to the first signal and the second signal to obtain the perception result includes: performing perception according to the first signal to obtain the first result, performing perception according to the second signal to obtain the second result, and obtaining the second result according to the above-mentioned first signal. The result and the second result determine the perceived result.
  • the perception result may be determined according to the difference between the first result and the second result.
  • the difference between the measured value of the first result and the multiple measured values of the second result is calculated respectively to obtain multiple difference values, and the measurement of the second result corresponding to the difference with the smallest absolute value is selected according to the multiple difference values value as a result of perception.
  • the first result corresponding to the first signal can meet the target ranging range, and can ensure that there is no ranging ambiguity in a large range, and the second result corresponding to the second signal can meet the target ranging accuracy, but it may There is ranging ambiguity, that is, there may be multiple measurement values in the second result. Based on the first result, the measurement value closest to the actual value can be selected from the multiple measurement values of the second result as the perception result, which can ensure the distance measurement Improve ranging accuracy without blurring.
  • the first communication device receives the first configuration information.
  • the first configuration information is used to indicate the result of signal configuration according to the first transmission parameter set and the second transmission parameter set. This implementation enables the first communication device to successfully receive the first signal and the second signal according to the configuration result.
  • the first communication device receives the first configuration request, performs signal configuration in response to the first configuration request, and sends second configuration information.
  • the first configuration request includes information of the first transmission parameter set and the second transmission parameter set; the second configuration information is used to indicate the result of signal configuration according to the first transmission parameter set and the second transmission parameter set.
  • the first communication device sends the second configuration request, so that the second communication device performs signal configuration in response to the second configuration request, and receives third configuration information sent by the second communication device.
  • the second configuration request includes information about the first transmission parameter set and the second transmission parameter set, and the third configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set. This implementation enables the first communication device to successfully receive the first signal and the second signal according to the configuration result indicated by the third configuration information.
  • the first communication device determines the first transmission parameter set and the second transmission parameter set, performs signal configuration according to the first transmission parameter set and the second transmission parameter set, and sends fourth configuration information, the fourth The configuration information is used to indicate the result of signal configuration according to the first transmission parameter set and the second transmission parameter set.
  • This implementation enables the first signal and the second signal to be successfully sent and received between the second communication device and the first communication device according to the result of the signal configuration.
  • an embodiment of the present application provides a wireless sensing method, the method including: the second communication device acquires a first transmission parameter set and a second transmission parameter set, where the first transmission parameter set corresponds to the first signal, and the first transmission parameter set corresponds to the first signal. At least one parameter in the transmission parameter set satisfies the first condition, and the first condition is related to the target ranging range; the second transmission parameter set corresponds to the second signal, and at least one parameter in the second transmission parameter set satisfies the second condition, and the second The condition is related to target perception accuracy; the second communication device sends the first signal and the second signal to the first communication device according to the first transmission parameter set and the second transmission parameter set; wherein the first signal and the second signal are used to perform perception.
  • the second communication device sends the first configuration information, where the first configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • This implementation enables the first signal and the second signal to be successfully sent and received between the second communication device and the first communication device according to the result of the signal configuration.
  • the second communication device sends the first configuration request, so that the first communication device performs signal configuration in response to the first configuration request, and receives second configuration information sent by the first communication device.
  • the first configuration request includes information of the first transmission parameter set and the second transmission parameter set; the second configuration information is used to indicate the result of signal configuration according to the first transmission parameter set and the second transmission parameter set.
  • the second communication device receives the second configuration request, performs signal configuration in response to the second configuration request, and sends third configuration information.
  • the second configuration request includes information about the first transmission parameter set and the second transmission parameter set, and the third configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the second communication device receives fourth configuration information, where the fourth configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • This implementation enables the first signal and the second signal to be successfully sent and received between the second communication device and the first communication device according to the result of the signal configuration.
  • the embodiment of the present application also provides a communication device, which can be used in the first communication device of the first aspect, and the communication device can be a terminal device or a network device, or can be a terminal device or a network device A device (for example, a chip, or a chip system, or a circuit), or a device that can be matched with a terminal device or a network device.
  • a communication device which can be used in the first communication device of the first aspect, and the communication device can be a terminal device or a network device, or can be a terminal device or a network device A device (for example, a chip, or a chip system, or a circuit), or a device that can be matched with a terminal device or a network device.
  • the communication device may include a one-to-one corresponding module or unit for executing the method/operation/step/action described in the first aspect.
  • the module or unit may be a hardware circuit, software, or It can be implemented by combining hardware circuits with software.
  • the communications device may include a processing unit and a transceiver unit.
  • the processing unit is used to call the transceiver unit to perform receiving and/or sending functions.
  • the transceiver unit is used to receive the first signal and the second signal sent by the second communication device according to the first transmission parameter set and the second transmission parameter set respectively;
  • the processing unit is used to perform perception according to the first signal and the second signal A perception result is obtained; wherein, the first transmission parameter set corresponds to the first signal, the first transmission parameter set includes the first number of subcarriers corresponding to the first signal, the second transmission parameter set corresponds to the second signal, and the second transmission parameter set includes The second number of subcarriers corresponding to the second signal, wherein the second number of subcarriers is less than the first number of subcarriers; the first transmission parameter set is determined according to the target ranging range, and the second transmission parameter set is determined according to the target perception accuracy Sure.
  • the processing unit is specifically configured to perform perception according to the first signal to obtain a first result, perform perception according to the second signal to obtain a second result, and determine the perception result according to the first result and the second result.
  • the transceiver unit is further configured to receive first configuration information.
  • the first configuration information is used to indicate the result of signal configuration according to the first transmission parameter set and the second transmission parameter set.
  • the transceiver unit is further configured to receive a first configuration request; the processing unit is further configured to perform signal configuration in response to the first configuration request; the transceiver unit is further configured to send second configuration information.
  • the first configuration request includes information of the first transmission parameter set and the second transmission parameter set; the second configuration information is used to indicate the result of signal configuration according to the first transmission parameter set and the second transmission parameter set.
  • the transceiver unit is further configured to send a second configuration request, so that the second communication device performs signal configuration in response to the second configuration request, and is also configured to receive third configuration information sent by the second communication device.
  • the second configuration request includes information about the first transmission parameter set and the second transmission parameter set, and the third configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the transceiver unit is configured to send fourth configuration information, where the fourth configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the processing unit is a processor
  • the transceiver unit is a transceiver
  • the communication device may include: a receiving unit and a sensing unit, where the receiving unit is configured to respectively receive the first signal sent by the second communication device according to the first transmission parameter set and the second transmission parameter set and the second signal; the sensing unit is configured to perform sensing according to the first signal and the second signal to obtain a sensing result; wherein the first transmission parameter set corresponds to the first signal, and at least one parameter in the first transmission parameter set satisfies the first condition, The first condition is related to the ranging range of the target; the second transmission parameter set corresponds to the second signal, and at least one parameter in the second transmission parameter set satisfies the second condition, and the second condition is related to target perception accuracy.
  • the sensing unit is specifically configured to perform sensing according to the first signal to obtain a first result, perform sensing according to the second signal to obtain a second result, and determine the sensing result according to the first result and the second result.
  • the receiving unit is further configured to receive first configuration information.
  • the first configuration information is used to indicate the result of signal configuration according to the first transmission parameter set and the second transmission parameter set.
  • the communication device further includes: a sending unit and a configuration unit, the receiving unit is also used to receive the first configuration request; the configuration unit is used to perform signal configuration in response to the first configuration request; the sending unit is used to send the second configuration information.
  • the first configuration request includes information of the first transmission parameter set and the second transmission parameter set; the second configuration information is used to indicate the result of signal configuration according to the first transmission parameter set and the second transmission parameter set.
  • the communication device further includes: a sending unit, configured to send a second configuration request, so that the second communication device performs signal configuration in response to the second configuration request, and the receiving unit is also configured to receive the second configuration request from the second communication device.
  • the second configuration request includes information about the first transmission parameter set and the second transmission parameter set, and the third configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the communication device further includes: a sending unit, configured to send fourth configuration information, where the fourth configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • a sending unit configured to send fourth configuration information, where the fourth configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the embodiment of the present application also provides a communication device, which can be used in the second communication device of the second aspect, and the communication device can be a terminal device or a network device, or can be a terminal device or a network device A device (for example, a chip, or a chip system, or a circuit), or a device that can be matched with a terminal device or a network device.
  • a communication device which can be used in the second communication device of the second aspect, and the communication device can be a terminal device or a network device, or can be a terminal device or a network device A device (for example, a chip, or a chip system, or a circuit), or a device that can be matched with a terminal device or a network device.
  • the communication device may include a one-to-one corresponding module or unit for executing the method/operation/step/action described in the first aspect.
  • the module or unit may be a hardware circuit, software, or It can be implemented by combining hardware circuits with software.
  • the communications device may include a processing unit and a transceiver unit.
  • the processing unit is used to call the transceiver unit to perform receiving and/or sending functions.
  • a processing unit configured to obtain a first transmission parameter set and a second transmission parameter set, wherein the first transmission parameter set corresponds to the first signal, at least one parameter in the first transmission parameter set satisfies a first condition, and the first condition is the same as The target ranging range is related; the second transmission parameter set corresponds to the second signal, and at least one parameter in the second transmission parameter set satisfies the second condition, and the second condition is related to the target perception accuracy;
  • the transceiver unit is configured to transmit according to the first transmission parameter
  • the set and the second set of transmission parameters transmit the first signal and the second signal, wherein the first signal and the second signal are used for sensing.
  • the transceiver unit is further configured to send first configuration information, where the first configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the transceiver unit is further configured to send a first configuration request, so that the first communication device performs signal configuration in response to the first configuration request, and is also configured to receive second configuration information sent by the first communication device.
  • the first configuration request includes information of the first transmission parameter set and the second transmission parameter set; the second configuration information is used to indicate the result of signal configuration according to the first transmission parameter set and the second transmission parameter set.
  • the transceiver unit is further configured to receive a second configuration request, the processing unit is further configured to perform signal configuration in response to the second configuration request, and the transceiver unit is further configured to send third configuration information.
  • the second configuration request includes information about the first transmission parameter set and the second transmission parameter set, and the third configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the transceiver unit is further configured to receive fourth configuration information, where the fourth configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the processing unit is a processor
  • the transceiver unit is a transceiver
  • the communication device includes: an acquiring unit and a sending unit, where the acquiring unit is configured to acquire a first transmission parameter set and a second transmission parameter set, where the first transmission parameter set corresponds to the first signal , at least one parameter in the first transmission parameter set satisfies the first condition, and the first condition is related to the target ranging range; the second transmission parameter set corresponds to the second signal, and at least one parameter in the second transmission parameter set satisfies the second condition, The second condition is related to target perception accuracy; the sending unit is configured to send the first signal and the second signal according to the first transmission parameter set and the second transmission parameter set, wherein the first signal and the second signal are used for perception.
  • the sending unit is further configured to send first configuration information, where the first configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the sending unit is further configured to send the first configuration request, so that the first communication device performs signal configuration in response to the first configuration request
  • the communication device further includes a receiving unit, configured to receive the second configuration request sent by the first communication device.
  • configuration information The first configuration request includes information of the first transmission parameter set and the second transmission parameter set; the second configuration information is used to indicate the result of signal configuration according to the first transmission parameter set and the second transmission parameter set.
  • the communication device further includes a receiving unit and a configuration unit, the receiving unit is used to receive a second configuration request, the configuration unit is used to perform signal configuration in response to the second configuration request, and the sending unit is also used to send the second configuration request.
  • the second configuration request includes information about the first transmission parameter set and the second transmission parameter set, and the third configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the communication device further includes a receiving unit further configured to receive fourth configuration information, where the fourth configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the embodiment of the present application further provides a first communication device, including a logic circuit and an input and output interface, the input and output interface is used to receive the first signal and the second signal, the first signal corresponds to the first transmission parameter set, The second signal corresponds to the second transmission parameter set; the logic circuit is used to perform perception according to the first signal and the second signal, and obtain a perception result; wherein the first transmission parameter set corresponds to the first signal, and at least one of the first transmission parameter set The parameters satisfy the first condition, and the first condition is related to the ranging range of the target; the second transmission parameter set corresponds to the second signal, and at least one parameter in the second transmission parameter set satisfies the second condition, and the second condition is related to the target perception accuracy.
  • a first communication device including a logic circuit and an input and output interface, the input and output interface is used to receive the first signal and the second signal, the first signal corresponds to the first transmission parameter set, The second signal corresponds to the second transmission parameter set; the logic circuit is used to perform perception according to the first
  • the logic circuit is specifically configured to perform sensing according to the first signal to obtain the first result, perform sensing according to the second signal to obtain the second result, and determine the sensing result according to the first result and the second result.
  • the input-output interface is also used to receive the first configuration information.
  • the first configuration information is used to indicate the result of signal configuration according to the first transmission parameter set and the second transmission parameter set.
  • the input and output interface is also used to receive the first configuration request; the logic circuit is also used to perform signal configuration in response to the first configuration request; the input and output interface is also used to output the second configuration information.
  • the first configuration request includes information of the first transmission parameter set and the second transmission parameter set; the second configuration information is used to indicate the result of signal configuration according to the first transmission parameter set and the second transmission parameter set.
  • the input-output interface is also used to output a second configuration request, so that the second communication device performs signal configuration in response to the second configuration request, and is also used to receive third configuration information sent by the second communication device.
  • the second configuration request includes information about the first transmission parameter set and the second transmission parameter set, and the third configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the input-output interface is further configured to output fourth configuration information, where the fourth configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the embodiment of the present application further provides a second communication device, including a logic circuit and an input-output interface.
  • a logic circuit configured to obtain a first transmission parameter set and a second transmission parameter set, wherein the first transmission parameter set corresponds to the first signal, at least one parameter in the first transmission parameter set satisfies a first condition, and the first condition is consistent with the target measurement The distance range is related; the second transmission parameter set corresponds to the second signal, and at least one parameter in the second transmission parameter set satisfies the second condition, and the second condition is related to the target perception accuracy; the input and output interface is used to transmit according to the first transmission parameter set and the second set of transmission parameters output a first signal and a second signal, wherein the first signal and the second signal are used for sensing.
  • the input-output interface is further configured to output first configuration information, where the first configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the input and output unit is further configured to output a first configuration request, so that the first communication device performs signal configuration in response to the first configuration request, and is also configured to receive second configuration information sent by the first communication device.
  • the first configuration request includes information of the first transmission parameter set and the second transmission parameter set; the second configuration information is used to indicate the result of signal configuration according to the first transmission parameter set and the second transmission parameter set.
  • the input-output interface is also used for outputting and receiving the second configuration request
  • the logic circuit is also used for performing signal configuration in response to the second configuration request
  • the input-output unit is also used for outputting third configuration information.
  • the second configuration request includes information about the first transmission parameter set and the second transmission parameter set
  • the third configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the input-output interface is further configured to receive fourth configuration information, where the fourth configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the embodiment of the present application further provides a first communication device, including a processor, configured to perform the following method:
  • the first signal corresponds to the first transmission parameter set
  • the second signal corresponds to the second transmission parameter set
  • the first transmission The parameter set corresponds to the first signal, at least one parameter in the first transmission parameter set satisfies the first condition, and the first condition is related to the target ranging range
  • the second transmission parameter set corresponds to the second signal, and at least one parameter in the second transmission parameter set The second condition is satisfied, and the second condition is related to the target perception accuracy.
  • the processor is specifically configured to perform perception according to the first signal to obtain a first result, perform perception according to the second signal to obtain a second result, and determine the perception result according to the first result and the second result.
  • the processor is also configured to receive first configuration information.
  • the first configuration information is used to indicate the result of signal configuration according to the first transmission parameter set and the second transmission parameter set.
  • the processor is further configured to receive a first configuration request; perform signal configuration in response to the first configuration request; and output second configuration information.
  • the first configuration request includes information of the first transmission parameter set and the second transmission parameter set; the second configuration information is used to indicate the result of signal configuration according to the first transmission parameter set and the second transmission parameter set.
  • the processor is further configured to output a second configuration request, so that the second communication device performs signal configuration in response to the second configuration request, and is also configured to receive third configuration information sent by the second communication device.
  • the second configuration request includes information about the first transmission parameter set and the second transmission parameter set, and the third configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the processor is further configured to output fourth configuration information, where the fourth configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the processor implements the method executed by the processor in the seventh aspect by executing instructions stored in the memory.
  • the communication device further includes a memory for storing instructions.
  • the embodiment of the present application further provides a second communication device, including a processor, configured to perform the following method:
  • first transmission parameter set and a second transmission parameter set wherein the first transmission parameter set corresponds to the first signal, and at least one parameter in the first transmission parameter set satisfies a first condition, and the first condition is related to a target ranging range; the second The two transmission parameter sets correspond to the second signal, at least one parameter in the second transmission parameter set satisfies a second condition, and the second condition is related to the target perception accuracy; output the first signal and the second transmission parameter set according to the first transmission parameter set and the second transmission parameter set A second signal, wherein the first signal and the second signal are used for sensing.
  • the processor is further configured to output first configuration information, where the first configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the processor is further configured to output a first configuration request, so that the first communication device performs signal configuration in response to the first configuration request, and is also configured to receive second configuration information sent by the first communication device.
  • the first configuration request includes information of the first transmission parameter set and the second transmission parameter set; the second configuration information is used to indicate the result of signal configuration according to the first transmission parameter set and the second transmission parameter set.
  • the processor is further configured to receive a second configuration request, perform signal configuration in response to the second configuration request, and output third configuration information.
  • the second configuration request includes information about the first transmission parameter set and the second transmission parameter set, and the third configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the processor is further configured to receive fourth configuration information, where the fourth configuration information is used to indicate a signal configuration result according to the first transmission parameter set and the second transmission parameter set.
  • the first transmission parameter set further includes at least one of the following: the first subcarrier number M 1 corresponding to the first signal, the first subcarrier spacing number K 1 corresponding to the first signal, the first signal corresponding to The first orthogonal frequency division multiplexing OFDM symbol number L 1 and the first sample energy E 1 corresponding to the first signal, where K 1 and L 1 are positive integers, and E 1 is greater than or equal to 0;
  • the second transmission parameter set It also includes at least one of the following: the second number of subcarriers M 2 corresponding to the second signal, the second number of subcarrier intervals K 2 corresponding to the second signal, and the second number of OFDM symbols corresponding to the first signal L 2 and the second sample energy E 2 corresponding to the first signal, wherein K 2 and L 2 are positive integers, and E 2 is greater than or equal to zero.
  • the number of subcarriers corresponding to a signal indicates the number of subcarriers carrying the signal.
  • the number of subcarrier intervals of a signal indicates the density of the signal in the frequency domain.
  • the number of OFDM symbols of a signal indicates the time domain resources occupied by the signal, that is, the duration of the signal in the time domain.
  • the sample energy of a signal such as E 1 or E 2 , represents the mean value of the squares of the amplitudes of the resource elements constituting the signal.
  • the above transmission parameters of the signal can affect the accuracy of the sensing result based on the signal sensing, and are also related to the transmission resources in the time, frequency, and power domains occupied when transmitting the signal. By selecting appropriate transmission parameters, the resource utilization rate can be improved while meeting the perception requirements.
  • the first transmission parameter set includes the first subcarrier spacing number K 1 corresponding to the first signal.
  • the above-mentioned first subcarrier spacing number K1 is determined according to the target ranging range.
  • the maximum unambiguous distance is determined according to the frequency difference between two subcarriers.
  • the frequency difference between two subcarriers can be represented by the subcarrier spacing number. Therefore, determining the first subcarrier spacing number K1 corresponding to the first signal according to the target ranging range can make the ranging result based on the first signal have no distance ambiguity within the target ranging range.
  • At least one parameter in the first transmission parameter set satisfies a first condition, and the first condition is:
  • D is the target ranging range
  • K 1 is the first subcarrier spacing number
  • ⁇ f is the subcarrier spacing corresponding to the first signal
  • c is the signal propagation speed, that is, the propagation speed of the signal
  • is a preset value greater than 0 value.
  • the value of the preset value ⁇ is different: in the passive target ranging scenario, ⁇ is a value greater than 1 and less than or equal to 2, and in the spontaneous and self-receiving scenario, ⁇ can be equal to 2 , in active target ranging scenarios, ⁇ can be equal to 1.
  • D is a predefined parameter
  • subcarrier spacing (SCS) ⁇ f is a predefined system parameter
  • signal propagation speed c is a known parameter
  • is a parameter that can be determined according to the ranging scenario , so the number of subcarrier intervals K 1 of the first signal can be determined through these parameters.
  • the value of the first subcarrier spacing number K1 is the largest integer that satisfies the above first condition.
  • the first transmission parameter set includes: the first subcarrier number M 1 corresponding to the first signal, the first OFDM symbol number L 1 corresponding to the first signal, and the first signal The corresponding first sample energy E 1 .
  • the first number of subcarriers M 1 , the first number of OFDM symbols L 1 and the first sample energy E 1 satisfy a third condition, which is related to the maximum unambiguous distance of the second signal.
  • the third condition may make the accuracy of the first signal satisfy that the distance measurement based on the second signal is not ambiguous.
  • the first number of subcarriers M 1 , the first number of OFDM symbols L 1 and the first sample energy E 1 are based on the noise power spectral density (noise power spectral density) of the first communication device and the second A path loss determination from the communication device to the first communication device.
  • the ranging accuracy is related to the frequency and signal-to-noise ratio of the radio frequency signal.
  • noise power spectral density the path loss from the transmitter to the receiver is determined.
  • the first number of subcarriers, the first number of OFDM symbols L 1 and the first sample energy E 1 can be determined according to the noise power spectral density and path loss, The distance measurement based on the first signal meets the distance measurement accuracy requirement.
  • the parameters in the first transmission parameter set satisfy the third condition, and the third condition is:
  • B RMS is the root mean square bandwidth of the first signal
  • SNR 1 is the equivalent signal-to-noise ratio of the first signal
  • f c is the radio frequency carrier center frequency
  • c is the signal propagation velocity
  • ⁇ 1 is the first correction parameter
  • SNR 1 is based on the number of subcarriers M 1 corresponding to the first signal, the number of OFDM symbols L 1 corresponding to the first signal, the sample energy E 1 corresponding to the first signal, the noise power spectral density of the first communication device, and the second communication device A path loss to the first communication device is determined.
  • the third condition Indicates the ranging accuracy of the first signal, and c/f c indicates the wavelength of the second signal.
  • the ranging based on the second signal is single-carrier phase ranging, and the wavelength of the second signal is its maximum unambiguous distance.
  • This application does not limit the second signal to use single-carrier phase ranging.
  • the ranging of the second signal is multi-carrier differential phase ranging, c/f c should be replaced by the equivalent wavelength of the multi-carrier signal.
  • the third condition may satisfy that ranging accuracy based on the first signal meets that ranging based on the second signal is not ambiguous.
  • the second transmission parameter set includes the second subcarrier number M 2 corresponding to the second signal, and the second orthogonal frequency division multiplexing OFDM symbol number L 2 corresponding to the second signal corresponds to the second signal
  • the second sample energy L 2 ; the second number of subcarriers M 2 , the second number of OFDM symbols L 2 and the second sample energy E 2 meet the second condition.
  • the second condition may enable the ranging based on the second signal to meet the target ranging accuracy.
  • the second number of subcarriers M 2 , the second number of OFDM symbols L 2 and the second sample energy E 2 are based on the target perception accuracy, the noise power spectral density of the first communication device, and the second communication device to Path loss determination for the first communication device.
  • the ranging accuracy is related to the frequency and signal-to-noise ratio of the radio frequency signal.
  • the noise power spectral density of (the first communication device), the path loss from the transmitter to the receiver are determined.
  • the second number of subcarriers M 1 , the second number of OFDM symbols L 2 and the second sample energy E 2 can be determined according to the noise power spectral density and path loss , so that the ranging based on the second signal meets the requirement of target ranging accuracy.
  • the parameters in the second transmission parameter set satisfy a second condition, and the second condition is:
  • is the target perception accuracy
  • SNR 2 is the equivalent signal-to-noise ratio of the second signal
  • f c is the center frequency of the radio frequency carrier
  • c is the signal propagation speed
  • ⁇ 2 is the second correction parameter
  • SNR 2 is based on the second subcarrier
  • the number M 2 , the second OFDM symbol number L 2 , the second sample energy E 2 , the noise power spectral density of the first communication device, and the path loss from the second communication device to the first communication device are determined.
  • the second number of subcarriers M 1 , the second number of OFDM symbols L 2 and the second sample energy E 2 determined by the above second condition can make the ranging accuracy based on the second signal meet the target ranging accuracy.
  • the second number of subcarriers M 2 corresponding to the second signal is less than the first number M 1 of subcarriers corresponding to the first signal, that is, fewer subcarriers are used to carry the second signal, which can reduce Resource overhead during continuous ranging, providing resource utilization.
  • the second subcarrier spacing number K 2 corresponding to the second signal is less than the first subcarrier spacing number K 1 corresponding to the first signal, that is, the subcarrier density corresponding to the second signal is greater than that corresponding to the first signal
  • the subcarrier density can reduce the resource overhead during continuous ranging.
  • the second number L 2 of OFDM symbols corresponding to the second signal is greater than or equal to the first number L 1 of OFDM symbols corresponding to the first signal.
  • the duration of the second signal in the time domain is longer than that of the first signal in the time domain, which is beneficial to the continuous ranging of the target.
  • the second sample energy E 2 corresponding to the second signal is less than or equal to the first sample energy E 1 corresponding to the first signal.
  • Using lower sample energy (low power) for the second signal can reduce resource overhead during continuous ranging.
  • the first signal and/or the second signal maintain phase continuity in adjacent OFDM symbols on the same subcarrier.
  • the signals on the same subcarrier maintain phase continuity in adjacent OFDM symbols, high phase detection accuracy can be ensured, and at the same time, the signal processing complexity of the receiver is low.
  • the first signal and/or the second signal are phase-compensated signals.
  • the phase value of the resource element RE corresponding to the lth OFDM symbol on the same subcarrier of the first signal and/or the second signal is based on the resource element corresponding to the adjacent (l+1)th OFDM symbol
  • the phase value of the RE is phase compensated; or the phase value of the resource element RE corresponding to the l+1th OFDM symbol on the same subcarrier of the first signal and/or the second signal is based on its adjacent lth OFDM Phase compensation is performed on the phase value of the resource element RE corresponding to the symbol.
  • the first signal and/or the second signal received by the first communication device is phase-compensated, so that the processing complexity of phase ranging based on the first signal and/or the second signal is low, And the ranging accuracy is high.
  • the first communication device sends the first phase compensation instruction to the second communication device, so that the second communication device performs phase compensation on the first signal and/or the second signal in response to the first phase compensation instruction.
  • the baseband frequency index i of the subcarrier occupied by the first signal and/or the second signal satisfies the following fourth condition:
  • ⁇ f is the subcarrier spacing
  • T CP is the OFDM cyclic prefix length
  • n is an integer.
  • the first signal and/or the second signal have the same value in multiple consecutive REs corresponding to a frequency domain position of the same subcarrier.
  • the time-domain waveforms corresponding to the subcarriers whose baseband frequency indexes satisfy the fourth condition above may maintain phase continuity in adjacent OFDM symbols.
  • the embodiment of the present application also provides a communication device, including a processor, configured to execute the computer program (or computer-executable instruction) stored in the memory.
  • a communication device including a processor, configured to execute the computer program (or computer-executable instruction) stored in the memory.
  • the device is made to execute the method in the first aspect and each possible implementation of the first aspect.
  • processor and memory are integrated;
  • the above-mentioned memory is located outside the communication device.
  • the communication device also includes a communication interface, which is used for the communication device to communicate with other devices, such as sending or receiving data and/or signals.
  • the communication interface may be a transceiver, circuit, bus, module or other types of communication interface.
  • the embodiment of the present application also provides a communication device, including a processor, configured to execute the computer program (or computer-executable instruction) stored in the memory.
  • a communication device including a processor, configured to execute the computer program (or computer-executable instruction) stored in the memory.
  • the device is made to execute the second aspect and the method in each possible implementation of the second aspect.
  • processor and memory are integrated;
  • the memory is located outside the communication device.
  • the communication device also includes a communication interface, which is used for the communication device to communicate with other devices, such as sending or receiving data and/or signals.
  • the communication interface may be a transceiver, circuit, bus, module or other types of communication interface.
  • the embodiment of the present application further provides a first communication device, configured to execute the method in the foregoing first aspect and various possible implementations thereof.
  • the embodiment of the present application further provides a second communication device, configured to execute the method in the above second aspect and various possible implementations thereof.
  • the embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program (or computer-executable instruction), wherein the computer program (or computer-executable instruction) is
  • the processor executes, so that some or all steps of the method described in the first aspect and any possible implementation thereof, the second aspect and any possible implementation thereof are executed.
  • the embodiment of the present application also provides a computer program product including computer-executable instructions.
  • the computer program product When the computer program product is run, the above-mentioned first aspect and any possible implementation thereof, and the second aspect Part or all of the steps of the method described in any possible implementation thereof are performed.
  • the embodiment of the present application also provides a computer program including computer-executable instructions.
  • the computer program When the computer program is run, the above-mentioned first aspect and any possible implementation thereof, the second aspect and its Some or all steps of the method described in any possible implementation are performed.
  • the embodiment of the present application also provides a chip system, the chip system includes a processor, and may also include a memory, for realizing the above-mentioned first aspect and any possible implementation thereof, the second aspect and any possible implementation thereof.
  • a chip system includes a processor, and may also include a memory, for realizing the above-mentioned first aspect and any possible implementation thereof, the second aspect and any possible implementation thereof.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the embodiment of the present application also provides a communication system, including the first communication device and the first communication device provided by the third aspect, the fifth aspect, the seventh aspect, the ninth aspect and various possible implementations of the foregoing aspects.
  • the fourth aspect, the sixth aspect, the eighth aspect, the tenth aspect and various possible implementations of the foregoing aspects provide the second communication device.
  • Fig. 1 is a schematic diagram of a communication system to which the embodiment of the present application is applicable.
  • FIG. 2 is a schematic diagram of a phase ambiguity waveform.
  • Fig. 3 is a schematic diagram of a phase ranging principle.
  • Fig. 4a is a schematic diagram of downlink time difference of arrival positioning principle.
  • Fig. 4b is a schematic diagram of the uplink time difference of arrival positioning principle.
  • Fig. 5a is a schematic diagram of resource unit distribution of a positioning reference signal.
  • Fig. 5b is a schematic diagram of the distribution of sounding reference signal resource units.
  • Fig. 6a is a schematic diagram of time-domain distribution of a positioning reference signal.
  • Fig. 6b is a schematic diagram of time-domain element distribution of a sounding reference signal.
  • Fig. 7a is a schematic diagram of a configuration of a primary positioning reference signal and an auxiliary positioning reference signal.
  • Fig. 7b is a schematic diagram of a configuration of a primary positioning reference signal and an auxiliary positioning reference signal.
  • FIG. 8 is a schematic diagram of an application scenario applicable to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another application scenario applicable to the embodiment of the present application.
  • Fig. 10 is an interactive schematic diagram of a wireless sensing method provided by an embodiment of the present application.
  • Fig. 11a is a schematic diagram of time-frequency domain distribution of a first signal and a second signal provided by an embodiment of the present application.
  • Fig. 11b is a schematic diagram of time-frequency domain distribution of positioning reference signals.
  • Fig. 11c is a schematic diagram of time-frequency domain distribution of sounding reference signals.
  • Fig. 12 is an interactive schematic diagram of a wireless sensing method provided by an embodiment of the present application.
  • Fig. 13 is an interactive schematic diagram of a wireless sensing method provided by an embodiment of the present application.
  • Fig. 14 is an interactive schematic diagram of a wireless sensing method provided by an embodiment of the present application.
  • Fig. 15 is an interactive schematic diagram of a wireless sensing method provided by an embodiment of the present application.
  • Fig. 16 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Fig. 17 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Fig. 18 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Embodiments of the present application provide a wireless communication method and device, which can flexibly configure resources while meeting perception requirements.
  • “/” means “or” in this application.
  • the term “and/or” is just an association relationship describing associated objects, which means that there can be three relationships, for example, B and/or C can mean: B exists alone, B and C exist at the same time, and C exists alone. three conditions.
  • the terms “first” and “second” in the description and claims of the embodiments of the present application are used to distinguish different objects, and are not used to describe a specific order of objects unless explicitly stated. For example, the first communication device, the second communication device, etc. are used to distinguish different communication devices, rather than describing a specific sequence of target objects.
  • the technical solution of the present application can be applied to cellular systems related to the third generation partnership project (3rd generation partnership project, 3GPP), for example, the fourth generation (4th generation, 4G) communication such as the long term evolution (long term evolution, LTE) system system, new radio (NR) system and other fifth-generation (5th generation, 5G) communication systems, can also be applied to wireless fidelity (wireless fidelity, WiFi) systems, communication systems that support the integration of multiple wireless technologies, or It is a future-oriented evolution system.
  • 3rd generation partnership project, 3GPP 3rd generation partnership project, 3GPP
  • 4th generation, 4G communication such as the long term evolution (long term evolution, LTE) system system, new radio (NR) system and other fifth-generation (5th generation, 5G) communication systems
  • wireless fidelity wireless fidelity, WiFi
  • FIG. 1 is an example of a communication system applicable to an embodiment of the present application.
  • a communication system 100 includes at least one network device 110 and at least one terminal 120 .
  • the terminal 120 mentioned in the embodiment of the present application may be a device with a wireless transceiver function, and specifically may refer to a user equipment (user equipment, UE), an access terminal, a subscriber unit (subscriber unit), a subscriber station, and a mobile station (mobile station), remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent, or user device.
  • UE user equipment
  • UE user equipment
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • remote station remote terminal, mobile device, user terminal, wireless communication device, user agent, or user device.
  • the terminal device may also be a satellite phone, a cellular phone, a smartphone, a wireless data card, a wireless modem, a machine type communication device, may be a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (wireless local loop) loop, WLL) station, personal digital assistant (PDA), handheld device with wireless communication function, computing device or other processing device connected to a wireless modem, vehicle-mounted device, communication device carried on high-altitude aircraft, wearable Devices, drones, robots, devices in device-to-device (D2D), terminals in vehicle to everything (V2X), virtual reality (VR) terminals, Augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, smart grid ), wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home or terminal equipment in future communication networks, etc., this application No limit.
  • SIP session initiation protocol
  • WLL wireless local loop
  • the device for realizing the function of the terminal device may be a terminal device; it may also be a device capable of supporting the terminal device to realize the function, such as a chip system.
  • the device can be installed in the terminal equipment or matched with the terminal equipment.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the network device 110 is a device with a wireless transceiver function for communicating with terminal devices, and may be an evolved base station (evolved Node B, eNB or eNodeB) in LTE; or a base station in a 5G network or a future evolved public land mobile Base stations in the network (public land mobile network, PLMN), broadband network gateway (broadband network gateway, BNG), aggregation switch or non-third generation partnership project (3rd generation partnership project, 3GPP) access equipment, etc.
  • eNB evolved Node B
  • eNodeB evolved public land mobile Base stations in the network
  • PLMN public land mobile network
  • BNG broadband network gateway
  • aggregation switch or non-third generation partnership project (3rd generation partnership project, 3GPP) access equipment, etc.
  • the network equipment in this embodiment of the present application may include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, 5G base stations, and devices that implement base station functions in the future , access nodes in the WiFi system, transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), mobile switching center and device-to-device (Device-to-Device, D2D), vehicle outreach ( vehicle-to-everything, V2X), machine-to-machine (machine-to-machine, M2M) communications, and equipment that undertakes the base station function, etc., which are not specifically limited in this embodiment of the present application.
  • base stations such as: macro base stations, micro base stations (also called small stations), relay stations, access points, 5G base stations, and devices that implement base station functions in the future , access nodes in the WiFi system, transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), mobile switching center
  • the network device 110 can communicate and interact with core network devices, and provide communication services to terminal devices.
  • the core network device is, for example, a device in a 5G network core network (core network, CN).
  • core network CN
  • the core network provides an interface to the data network, providing communication connections, authentication, management, policy control, and carrying data services for terminals.
  • the device for realizing the function of the network device may be a network device; it may also be a device capable of supporting the network device to realize the function, such as a chip system.
  • the device can be installed in the network equipment or matched with the network equipment.
  • Root mean square (root mean square, RMS) bandwidth For a time domain signal s(t), its root mean square bandwidth B RMS is defined as:
  • f is the frequency
  • S(f) is the frequency spectrum of the time-domain signal s(t) after Fourier transform
  • 2 is the power spectral density of the signal.
  • Phase ranging ranging by detecting the phase change of the signal during propagation.
  • the signal may be a single-carrier signal, or may be a signal including multiple carriers, such as a dual-carrier signal, an orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) signal, and the like.
  • OFDM orthogonal frequency division multiplexing
  • the unknown integer N is the integer ambiguity
  • ⁇ 1 is the wavelength of the single carrier signal.
  • the single-carrier signal has only one frequency component, and the signal processing flow and algorithm in the frequency domain can be greatly simplified.
  • phase-locked loops Phase Locked Loop, PLL
  • PLL Phase Locked Loop
  • the use of single carrier phase ranging has the advantage of simple signal processing.
  • the characteristics of continuous phase change (no jump) of single carrier signal in time are very suitable for continuous phase detection, so it is suitable for the application scenario of continuous ranging of the target.
  • the distance of the target can be updated by continuously detecting the phase change of the single-carrier signal. As long as the moving distance of the target does not exceed the wavelength of a single carrier in the time interval between each detection and the last detection, the range ambiguity problem will not be introduced.
  • the principle of two or more multi-carrier phase ranging is similar to the principle of dual-carrier phase ranging.
  • the slope ⁇ fitting method can be zero-forcing (ZF), linear minimum mean square error (linear minimum mean square error, LMMSE) and other methods.
  • N integer ambiguity
  • the maximum unambiguous distance of the multi-carrier signal is the frequency difference between any two sub-carriers of its non-zero power sub-carriers; assuming that the sub-carriers of the multi-carrier signal are evenly spaced, that is, ⁇ f i is the same for different values of i, then it can be Define the equivalent wavelength of a multi-carrier signal as
  • is the carrier wavelength.
  • the wavelength of the 2GHz frequency carrier is 15cm
  • the wavelength of the 3GHz frequency carrier is 10cm.
  • the wireless local area network (wireless local area network, WLAN) frequency band The wavelength of the carrier wave at 5GHz frequency is 6cm.
  • is the equivalent wavelength, that is, the difference between the signal propagation speed divided by the carrier frequency. Because the carrier frequency difference is usually much smaller than the frequency of the carrier itself, the maximum unambiguous distance can be greatly improved. A sufficiently large maximum unambiguous distance can ensure that there is no distance ambiguity within a targeted ranging coverage, thereby solving the problem of unknown integer ambiguity.
  • single-carrier ranging may have the problem of distance ambiguity, and it is necessary to solve the unknown full-circle ambiguity, while dual-carrier ranging can support greater ranging Unambiguous distance measurement within range (3m). Take the subcarrier configuration in NR as an example again.
  • the maximum unambiguous distance is 10cm if single-carrier ranging is used, and if dual-carrier ranging is used, it is assumed that the subcarrier spacing is 15kHz for ranging
  • Ranging accuracy Describe the accuracy of the ranging result, that is, the error between the measured distance and the actual distance.
  • its measured distance to a target can be modeled as a random variable d, which is affected by systematic errors and noise.
  • d 0 a common definition of ranging accuracy ⁇ is: the root mean square of the difference between the measured value d and the real value d 0 , namely
  • E[x] represents the expectation (mean) of a random variable x.
  • the ranging accuracy mentioned in this application can be defined according to the above formula (5).
  • ranging accuracy is inversely proportional to the bandwidth; using the phase of the radio frequency signal for ranging, under the condition of no phase ambiguity Under the condition, the ranging accuracy is inversely proportional to the frequency of the radio frequency signal.
  • NR supports two positioning methods based on time difference measurement: Observed Time Difference Of Arrival (OTDOA) and Uplink Time Difference Of Arrival (UTDOA).
  • the principle of OTDOA positioning is shown in Figure 4a.
  • Multiple network devices send PRS generated by Gold sequence at the same time.
  • the terminal receives and measures the time difference between the signals (waveforms) of multiple network devices arriving at the terminal. Each time difference corresponds to a
  • the root is a hyperbola with the network device as the focus, and the point where multiple hyperbolas intersect is the location of the terminal.
  • Resource elements (resource elements, REs) carrying PRS are distributed on time-frequency resources according to a predefined pattern (pattern) within a slot (slot), that is, after mapping (mapping) the PRS in the time-frequency domain There will be a certain pattern.
  • the specific mapping method is determined according to parameters such as the number of OFDM symbols in the time domain, the cycle in the time domain, and the comb interval in the frequency domain (representing the density in the frequency domain).
  • the PRS appears on L PRS ⁇ 2,4,6,12 ⁇ consecutive symbols of a slot, and the period of the PRS is time slots; in the frequency domain, the density of PRS is
  • Figure 5a is a schematic diagram of the time-frequency domain distribution of PRS, where the abscissa represents the time domain, and the ordinate represents the frequency domain, each grid represents an RE, and one RE occupies one symbol in the time domain and one symbol in the frequency domain.
  • the terminal sends the SRS generated by the ZC (Zadoff–Chu) sequence, and multiple network devices receive and measure the signal (waveform) arrival time. The difference between each arrival time defines a network device.
  • the hyperbola of the focus, the point where multiple hyperbolas intersect is the terminal position.
  • the SRS Similar to the PRS, the SRS also appears in a certain pattern in the time-frequency domain. In the time domain, the SRS in a time slot Appears on consecutive symbols, and SRS also appears in a certain period according to the configuration, and the unit of the period is time slot; in the frequency domain, it appears in a comb structure with an interval of K TC ⁇ 2,4,8 ⁇ .
  • Figure 5b is a schematic diagram of the time-frequency domain distribution of SRS, where the abscissa represents the time domain, and the ordinate represents the frequency domain, each square represents an RE, and one RE occupies one symbol in the time domain and one symbol in the frequency domain.
  • Figure 6b is a schematic diagram of the time domain distribution of PRS, where the abscissa represents the time domain, and the ordinate represents the frequency domain, as shown in Figure 6b, the SRS occurrence period is several time slots; appear on the slot, that is, one of the several slots in each period contains PRS; for a slot containing SRS, there are SRS on 12 symbols in the 14 symbols of the slot; in the frequency domain, The SRS is distributed according to a comb structure with a certain frequency domain density, and the specific comb structure distribution is not shown in the figure.
  • the communication-based perception technology can be applied to the scenario of continuous ranging.
  • the continuous ranging of the target can be divided into two stages: initial ranging and continuous ranging.
  • the initial ranging stage determines the initial distance of the target, and the continuous ranging stage measures the target based on the measured initial distance.
  • Continuous ranging With the prior information of the target (the initial ranging result), the continuous ranging phase can usually use less resources to achieve the same accuracy as the initial ranging phase.
  • the current mode definition of PRS and SRS in NR does not consider flexible resource allocation in these two stages. If PRS and SRS in NR are used for continuous ranging, there may be waste of bandwidth and power resources.
  • a combination of primary PRS (Primary PRS, P-PRS) and secondary PRS (Secondary PRS, S-PRS) is provided on the basis of NR downlink measurement and positioning for downlink ranging and positioning.
  • P-PRS and PRS are configured in a similar way. According to the system configuration, they are sent at a fixed period and a fixed duration. The power is high and does not coexist with data, which can provide basic ranging and positioning performance; S-PRS is a flexible auxiliary signal. , to transmit when there is no P-PRS, whether it is enabled (On/Off), bandwidth, power, whether to coexist with data, etc.
  • FIG. 7a and Figure 7b are schematic diagrams of two configurations of P-PRS and S-PRS.
  • S-PRS uses small bandwidth and high power and does not coexist with data in time
  • S-PRS PRS uses large bandwidth and low power and coexists with data in time.
  • the signal phase of S-PRS is discontinuous, and the above-mentioned positioning based on time difference measurement is still used. Therefore, in the scenario of continuous ranging, correlation calculations of a large number of sampling points or complex parameter estimation are required, and the calculation complexity is high.
  • the present application provides a wireless sensing method and device, so as to realize flexible allocation of signal transmission resources according to sensing requirements when the communication-based sensing technology is applied to continuous ranging.
  • Sensing may include measuring physical parameters of the target or environment, such as distance measurement, speed measurement, positioning, and time synchronization.
  • Perceived targets can be passive targets (animals, cars, drones) or active targets.
  • one or more transmitters and one or more receivers perceive passive targets existing in the environment.
  • Figure 8 is a schematic diagram of a scene for sensing passive targets, as shown in Figure 8 (a ) scenario, the mobile objects in the environment are sensed through the transmission of signals between network devices; in the scenario (b) of Figure 8, the mobile objects in the environment are sensed through the transmission of signals between network devices and terminals, for example Said that in smart transportation, the perception signal is transmitted between the network device and the terminal, and the perception ability of the network device or terminal is used to sense whether there is a moving object at the intersection, so as to assist driving and prevent accidents.
  • the network device sends a signal to the terminal, and the terminal perceives the passive target according to the signal (as shown by the realization arrow); in a possible scenario, the terminal sends a signal to the network device, and the network device perceives the passive target based on the signal.
  • passive targets for perception (as indicated by the dashed arrows).
  • the cars in the environment are sensed through the transmission of signals between terminals; in the scene (d) of Figure 8, the cars in the environment are sensed through the network equipment sending and receiving signals spontaneously.
  • perception is performed between one or more transmitters and one or more receivers.
  • FIG. 9 is a schematic diagram of a scene for sensing an active target. In FIG.
  • the network device sends a signal to the terminal, and the terminal performs perception according to the signal (as shown by the arrow); in a possible scenario The terminal sends a signal to the network device, and the network device performs perception according to the signal (as shown by the dotted arrow).
  • FIG. 10 is a schematic diagram of interaction of a wireless sensing method 200 provided in an embodiment of the present application.
  • the second communication device sends a first signal and a second signal to the first communication device respectively according to the first transmission parameter set and the second transmission parameter set, for the first communication device to transmit the first signal and the second signal according to the first signal and the second transmission parameter set.
  • Two signals are sensed to obtain a sensing result, at least one parameter in the first transmission parameter set corresponding to the first signal satisfies the first condition related to the target ranging range, and at least one parameter in the second transmission parameter set corresponding to the second signal meets the target
  • different sets of transmission parameters can be used for different sensing requirements to achieve flexible configuration of transmission resources.
  • the embodiment of the present application relates to a first communication device and a second communication device.
  • the first communication device may be a terminal or a network device
  • the second communication device may also be a terminal or a network device.
  • the first communication device and the second communication device may be one device.
  • the first communication device and/or the second communication device determines a first transmission parameter set and a second transmission parameter set.
  • the first transmission parameter set corresponds to the first signal
  • the second transmission parameter set corresponds to the second signal
  • the first transmission parameter set and the second transmission parameter set respectively indicate information about transmission resources of the first signal and the second signal, where the transmission resources may include frequency domain resources and/or time domain resources.
  • At least one parameter in the first transmission parameter set satisfies a first condition
  • the first condition is determined according to the target ranging range
  • at least one parameter in the second transmission parameter set satisfies a second condition
  • the second condition is determined according to target perception accuracy.
  • the first signal and the second signal are used for sensing by the first communication device, and the first signal and the second signal may be referred to as sensing signals.
  • the optional first and second signals may also be reference signals.
  • the first signal and the second signal may be a certain waveform, or may be a certain sequence carried on the waveform.
  • the first transmission parameter set includes a first number of subcarriers corresponding to the first signal; the second transmission parameter set includes a second number of subcarriers corresponding to the second signal.
  • the number of subcarriers corresponding to the signal may be the number of subcarriers carrying the signal, and a larger number of subcarriers means more frequency domain resources occupied by the signal. If the number of subcarriers is 1, it means that the signal is carried by a single carrier.
  • the number of the second subcarriers is less than the number of the first subcarriers, that is, the frequency domain resources used for transmitting the second signal are less than the frequency domain resources used for transmitting the first signal.
  • the content related to the first transmission parameter set and the second transmission parameter set will be described in detail below, and will not be repeated here.
  • This step S210 is an optional step.
  • the first transmission parameter set and the second transmission parameter set need to be determined, and a period of time after the first transmission Inside, the first transmission parameter set and the second transmission parameter set in the first transmission may be used when the first signal and the second signal are transmitted again.
  • the second communication device sends the first signal and the second signal respectively according to the first transmission parameter set and the second transmission parameter set, and correspondingly, the first communication device receives the first signal according to the first transmission parameter set and the second transmission parameter set A signal and a second signal.
  • the second communication device respectively sends the first signal and the second signal within one sensing period, and the first communication device respectively receives the first signal and the second signal within one sensing period.
  • the second communication device periodically sends the first signal and the second signal, and the time domain period of sending the first signal and the second signal is called a sensing period.
  • one sensing period may be several time slots, for example, one sensing period is 1-16 time slots.
  • the maximum value of the sensing period may be one radio frame.
  • one radio frame is 10ms, and one radio frame is equal to 10 subframes.
  • one subframe is 2 time slots, and one time slot is 7 OFDM symbols; in NR, the length of the subframe is related to the subcarrier spacing. For example, when the subcarrier spacing is 15KHz, one subframe is one time slot, and the subcarrier When the interval is 30KHz, one subframe is 2 time slots, when the subcarrier interval is 60KHz, one subframe is 4 time slots, and so on.
  • One slot in NR is 14 OFDM symbols (normal CP mode) or 12 OFDM symbols (extended CP mode).
  • the symbols, time slots, subframes, and wireless frames involved in this application may be values in LTE, or values in NR, or values in wireless communication systems that will evolve in the future, and this application does not limited.
  • the first phase of a sensing cycle transmits the first signal
  • the second phase of the sensing cycle transmits the second signal.
  • the first signal may be a first-stage sensing signal
  • the second signal may be a second-stage sensing signal.
  • the duration of the first phase is shorter than the duration of the second phase.
  • the first communication device performs sensing according to the first signal and the second signal to obtain a sensing result.
  • the first communication device performs sensing according to the first signal and the second signal to obtain a sensing result, specifically including: performing sensing according to the first signal to obtain a first result; performing sensing according to the second signal to obtain a second result; and obtaining a second result according to the first result and the second signal.
  • the second result determines the perceived result.
  • perception may include distance measurement, speed measurement, positioning, etc.
  • distance measurement is used as an example for illustration below, but the method provided in this application is not limited to distance measurement, and can also be applied to other perception scenarios.
  • the first signal may be used for initial ranging
  • the second signal may be used for continuous ranging
  • the first signal is a multi-carrier signal
  • the first communication device performs sensing according to the first signal to obtain the first result, including: based on the first signal, using a multi-carrier phase ranging method to obtain the measurement of the target distance
  • the value d 1 that is, the first result is d 1
  • the parameters in the transmission parameter set of the first signal are determined according to the target ranging range, which can ensure no distance ambiguity within the target ranging range.
  • the transmission parameter of the second signal does not consider the target ranging range, so there may be distance ambiguity, and the number N of measurement values can be obtained by dividing the target ranging range by the maximum unambiguous distance of the second signal.
  • the maximum unambiguous distance of the second signal is the carrier wavelength of the second signal, that is, the signal propagation speed divided by the carrier frequency of the second signal; when the second signal is a multi-carrier signal, the second The maximum unambiguous distance of the two signals is the equivalent wavelength, and the calculation of the equivalent wavelength can refer to the above-mentioned descriptions related to phase ranging and maximum unambiguous distance, which will not be repeated here.
  • the parameters in the transmission parameter set of the second signal are determined according to the ranging accuracy of the target, which can ensure that the second result meets the ranging accuracy requirement.
  • the parameters in the first transmission parameter set corresponding to the first signal need to be satisfied, the ranging accuracy based on the first signal can be guaranteed, and the ranging based on the second signal has no ambiguity.
  • the ranging error of the first signal needs to be smaller than the maximum unambiguous distance corresponding to the second signal.
  • the second result may be ⁇ ...,99.45m, 99.75m, 100.05m, 100.35m, 100.65m... ⁇
  • the error corresponding to the accuracy of the first signal must be less than 30cm, for example, 10cm
  • the first result may be 100.1m, according to the first result and the second result can be obtained
  • the perception result is 100.05m. If the error corresponding to the accuracy of the first signal is greater than or equal to 30cm, the value closest to the actual distance may not be determined. For example, if the error corresponding to the accuracy of the first signal is 30cm, the first result may be 100.3m, according to the first The result and the second result give a perceived result of 100.35m, not 100.05m which is the closest to 100m.
  • the transmission parameter sets of the two signals are respectively determined according to the range of the target ranging and the accuracy of the target ranging, and the first signal and the second signal are respectively transmitted.
  • At least one parameter in the parameter set satisfies the first condition related to the ranging range of the target, ensuring that the distance is not ambiguous within the ranging range of the target, and can be used for initial ranging of the target.
  • At least one parameter in the parameter set of the second signal satisfies the same
  • the second condition related to target ranging accuracy can be used for continuous ranging, and different parameter sets can be used to achieve flexible configuration of transmission resources for different sensing needs.
  • the frequency domain resource occupied by the second signal is less than that of the first signal, which improves the resource utilization rate when performing continuous ranging on the target while meeting the perception requirement.
  • the first transmission parameter set of the first signal and the second transmission parameter set of the second signal are described below.
  • the signal transmission parameters may also include one or more of the following: the number of subcarrier intervals K, the number of OFDM symbols L, and the sample energy E.
  • the number of OFDM symbols L represents the time domain resource occupied by the signal, that is, the length of the OFDM symbol occupied by the signal, the larger the L, the longer the signal lasts in the time domain, and the longer the L Small means that the duration of the signal in the time domain is shorter;
  • the sample energy E of the signal is the average value of the squares of the amplitudes of all REs that make up the signal.
  • the first transmission parameter set may include one or more of the following parameters: the first subcarrier number M 1 corresponding to the first signal, the first subcarrier interval number K 1 corresponding to the first signal, the first Orthogonal frequency division multiplexing OFDM symbol number L 1 and first sample energy E 1 corresponding to the first signal, wherein M 1 , K 1 and L 1 are positive integers, and E 1 is greater than or equal to 0.
  • At least one parameter in the above-mentioned first transmission parameter set satisfies the first condition of the target ranging range, which may specifically be: the first subcarrier spacing number K1 corresponding to the first signal is determined according to the target ranging range, so that the first signal is within There is no phase ambiguity within the target ranging range, so that the phase ranging based on the first signal has no ranging ambiguity within the target ranging range.
  • the target ranging range can be predefined in the protocol.
  • One or more target ranging ranges can be defined in the standard, and different sets of transmission parameters can be determined for different target ranging ranges.
  • the target ranging range may be of different magnitudes.
  • the target ranging range is 2 km.
  • the transmission parameter set of the first signal needs to ensure that there is no ranging ambiguity within 2 km.
  • the target ranging range can also be 1km, 500m, 400m, 200m, 100m, 50m, 20m, 10m, 5m, 2m, 1m and so on.
  • the above values are exemplary, and the present application does not limit the value of the target ranging range.
  • the parameters in the first transmission parameter set satisfy the first condition, and the first condition is:
  • D is the target ranging range
  • K 1 is the first subcarrier spacing number
  • ⁇ f is the subcarrier spacing corresponding to the first signal
  • c is the signal propagation speed
  • is a preset value greater than 0 and less than or equal to 2.
  • Subcarrier spacing (SCS) ⁇ f is a predefined system parameter.
  • the subcarrier spacing of 15KHz is supported in LTE
  • the subcarrier spacing supported in NR is 15KHz, 30KHz, 60KHz, 120KHz and 240KHz.
  • the value of ⁇ is different.
  • the value of ⁇ is related to the geometric structure formed by the transmitting end, the receiving end and the target of the signal.
  • the receiving end and the target may be the same object in the active target ranging scenario.
  • is a value greater than 1 and less than or equal to 2.
  • can be equal to 2.
  • can be equal to 1 at this time the first condition can be expressed as:
  • the target ranging range D and subcarrier spacing ⁇ f are parameters defined in the protocol, the propagation speed of the signal is a known parameter, and ⁇ is a parameter that can be determined according to the ranging scenario, so the first signal can be determined through these parameters
  • the number of subcarrier intervals K 1 can also be expressed as:
  • K 1 is the largest integer that satisfies the first condition above. Under the same bandwidth, the larger K 1 means that the density of subcarriers carrying the first signal is smaller, and the available remaining frequency domain resources are more. This possible implementation improves the utilization rate of frequency domain resources while satisfying the target ranging range.
  • the above-mentioned first condition can realize that the first signal has no phase ambiguity within the target ranging range.
  • the first condition does not limit the ranging accuracy of the ranging based on the first signal.
  • the ranging accuracy based on the first signal needs to satisfy that the ranging based on the second signal is not ambiguous.
  • the parameters in the first transmission parameter set also satisfy a third condition
  • the third condition is related to the maximum unambiguous distance of the second signal
  • the third condition can make the ranging accuracy of the first signal satisfy based on The ranging of the second signal is not ambiguous.
  • the ranging accuracy is related to the frequency and signal-to-noise ratio of the radio frequency signal.
  • the equivalent signal-to-noise ratio of the signal depends on the number of subcarriers of the signal, the number of OFDM symbols, the sample energy, and the noise power spectral density of the receiver ( noise power spectral density) and path loss (pathloss, PL) are related.
  • the first number of subcarriers M 1 and the number of first OFDM symbols in the first transmission parameter set L 1 and the first sample energy E 1 are determined according to the noise power spectral density and path loss of the first communication device, so that the ranging accuracy based on the first signal meets the ranging accuracy requirement.
  • Noise power spectral density is also called noise power density (noise power density), noise spectral density (noise spectral density), noise density (noise density) and so on.
  • Path loss is the loss caused by the propagation path of the signal from the transmitter to the receiver.
  • the parameters in the first transmission parameter set satisfy a third condition, and the third condition is:
  • B RMS is the root mean square (Root Mean Square, RMS) bandwidth of the first signal
  • SNR 1 is the equivalent signal-to-noise ratio of the first signal
  • f c is the radio frequency carrier center frequency
  • c is the signal propagation speed
  • ⁇ 1 is the first correction parameter
  • the third condition can also be expressed as:
  • the root mean square bandwidth B RMS can be calculated as follows:
  • l is the index of the OFDM symbol
  • k is the index of the subcarrier
  • x k,l is the complex value of RE on OFDM symbol l and subcarrier k
  • ⁇ f is the subcarrier spacing.
  • the subcarrier index of the first signal does not change with the OFDM symbol
  • the root mean square bandwidth B RMS of the first signal can be expressed as:
  • l 0 may be any OFDM symbol index corresponding to the first signal.
  • ⁇ 1 is a constant greater than 0, also known as the correction constant, which consists of two parts and can be written as in, Correct the relationship between the ranging accuracy of the first signal and the RMS bandwidth.
  • the specific value is determined by the waveform of the first signal.
  • its typical value is The relationship between the ranging accuracy of the first signal and the maximum unambiguous distance of the second signal (that is, the carrier wavelength of the second signal) is corrected, and its typical value is 3.
  • the typical value of ⁇ 1 is Other values of ⁇ 1 can also be selected according to actual scenarios, which are not limited in this application.
  • SNR 1 is the equivalent signal-to-noise ratio of the first signal, which can be calculated according to the first number of subcarriers M 1 , the first number of OFDM symbols L 1 , the first sample energy E 1 , and the noise of the receiver (the first communication device)
  • the power spectral density N 0 and the path loss from the transmitting end (the second communication device) to the receiving end (the first communication device) are determined.
  • SNR 1 is obtained by the following formula:
  • T CP is the time length of cyclic prefix (cyclic prefix, CP)
  • T IFFT is the OFDM symbol length without CP
  • N 0 is the noise power spectral density of the receiver (for example, the first communication device)
  • the above-mentioned third condition can satisfy the accuracy of the first signal so that the ranging of the second signal is not ambiguous.
  • the maximum unambiguous distance of the second signal is determined by the center frequency of the radio frequency carrier, and the center frequency of the radio frequency carrier can be determined by the agreement
  • the value of the noise power spectral density of the first communication device is determined according to its hardware circuit, and the path loss can be measured. Therefore, based on the known noise power spectral density, path loss and the maximum unambiguous distance of the second signal, A group of first subcarrier number M 1 , first OFDM symbol number L 1 and first transmit power E 1 satisfying the third condition is determined.
  • the distance within the target ranging range is not ambiguous, and the accuracy meets the second signal without phase ambiguity, which can be used for continuous ranging
  • the initial ranging in the scene On the basis of the initial ranging, the ranging based on the second signal can meet the target ranging accuracy and can be used for the continuous ranging of the target.
  • the second transmission parameter set may include one or more of the following parameters: the second subcarrier number M 2 corresponding to the second signal, the second subcarrier spacing K 2 corresponding to the second signal, the second Orthogonal frequency division multiplexing OFDM symbol number L 2 and second sample energy E 2 corresponding to the second signal, wherein M 2 , K 2 and L 2 are positive integers, and E 2 is greater than or equal to 0.
  • the parameters in the above-mentioned second transmission parameter set satisfy the second condition, and the second condition is related to the target ranging accuracy.
  • the second number of subcarriers, the second number of OFDM symbols, and the second sample energy corresponding to the second signal satisfy the second condition related to the target ranging accuracy, so that the phase ranging based on the second signal meets the target ranging precision requirements.
  • the ranging accuracy is related to the frequency and signal-to-noise ratio of the radio frequency signal.
  • the noise power spectral density is related to the path loss from the transmitter to the receiver. Therefore, the second subcarrier number M 2 , the second OFDM symbol number L 2 and the second sample number in the second transmission parameter can be determined according to the target ranging accuracy, the noise power spectral density of the receiver, and the path loss from the transmitter to the receiver. Energy E 2 .
  • the target ranging accuracy can be predefined, or the ranging accuracy predefined in the protocol or standard can be adopted.
  • one or more target ranging accuracies may be defined in a protocol or standard, and different transmission parameter sets may be determined for different target ranging accuracies.
  • the target ranging accuracy can be 100m, 50m, 30m, 20m, 10m, 5m, 3m, 2m, 1m, 50cm, 30cm, 20cm, 10cm, 5cm, 3cm, 2cm, 1cm and so on.
  • the parameters in the second transmission parameter set satisfy the second condition, and the second condition is
  • is the target ranging accuracy
  • SNR 2 is the equivalent signal-to-noise ratio of the second signal
  • f c is the center frequency of the radio frequency carrier
  • c is the signal propagation speed
  • ⁇ 2 is the second correction parameter
  • ⁇ 2 is a constant greater than 0, also known as the correction constant, and its typical value is Other values of ⁇ 2 can also be selected according to actual scenarios, which are not limited in this application.
  • SNR 2 can be based on the number of subcarriers M 2 of the second signal, the number of OFDM symbols L 2 of the second signal, the sample energy E 2 of the second signal, and the noise power spectral density N 0 of the receiver (the first communication device) and The path loss from the transmitter to the receiver is determined.
  • SNR 2 is obtained by the following formula:
  • T CP is the time length of CP
  • T IFFT is the OFDM symbol length without CP
  • N 0 is the noise power spectral density of the receiver (for example, the first communication device)
  • T CP and T IFFT in the above formula (14) and formula (17) are determined according to the system settings. For example, five system parameters are defined in the NR protocol. In system parameter 0, the subcarrier spacing is 15KHz, T CP is 4.69us, and T IFFT is 66.67us; in system parameter 1, the subcarrier spacing is 30KHz, and T CP It is 2.34us, T IFFT is 33.33us. T CP and T IFFT may also be values in system parameters of a future evolving communication system, which are not limited here.
  • L 2 LL 1 , where L is the length of the perception signal composed of the first signal and the second signal. That is to say, within a sensing cycle, the second signal is sent during the time when the first signal is not sent, the first signal and the second signal are continuous in the time domain, and there is no interruption in the OFDM symbols of the first signal and the second signal , after the initial ranging based on the first signal, continuous ranging can be performed based on the second signal immediately, thereby reducing the ranging error caused by discontinuous signals.
  • the second subcarrier spacing number K 2 corresponding to the second signal is less than the first subcarrier spacing number K 1 corresponding to the first signal, that is, the second The subcarrier density corresponding to the signal is greater than the subcarrier density corresponding to the first signal.
  • the second number M 2 of subcarriers corresponding to the second signal is less than the first number M 1 of subcarriers corresponding to the first signal.
  • the bandwidth occupied by the second signal is smaller than the bandwidth occupied by the first signal, which can reduce the continuous ranging time resource overhead.
  • the second number L 2 of OFDM symbols corresponding to the second signal is greater than or equal to the first number L 1 of OFDM symbols corresponding to the first signal.
  • the duration of the second signal in the time domain is longer than that of the first signal in the time domain, which is beneficial to the continuous ranging of the target.
  • the transmit power E 2 corresponding to the second signal is less than or equal to the transmit power E 1 corresponding to the first signal.
  • Using low power for the second signal can reduce resource overhead during continuous ranging.
  • the first OFDM symbol number L1 corresponding to the first signal can be 1 to 14 symbols; the second OFDM symbol number L1 corresponding to the second signal can be at least 1 , and the maximum can be the perception cycle minus The number of OFDM symbols of the first signal.
  • the minimum number M1 of subcarriers corresponding to the first signal is 2, and the maximum is limited by the configured bandwidth.
  • the minimum number of subcarriers is 2, which can realize multi-carrier phase ranging based on the first signal, and can satisfy a larger target range than single-carrier phase ranging.
  • the minimum of the subcarrier M 2 corresponding to the second signal is 1, and the maximum is limited by the configured bandwidth.
  • the number of sub-carriers of the second signal M 2 1, that is, when the second signal is a single-carrier signal, on the basis of the initial ranging of the first signal, the single-carrier signal can also be used to achieve target continuous ranging that meets the accuracy requirements , in addition, when a single carrier is used, the power for sending the second signal is concentrated on one carrier, reducing the complexity of signal processing.
  • the subcarrier spacing number K 2 of the second signal is 1.
  • the number of subcarrier intervals K 2 does not exist in the second transmission parameter set, or the number of subcarrier intervals K 2 is an invalid value.
  • the subcarriers corresponding to the first signal may be 2 ⁇ (- ⁇ ) ⁇ 10 ⁇ 2 ⁇ (- ⁇ ) ⁇ 20000.
  • the subcarrier spacing number K1 corresponding to the first signal may be as shown in Table 1 below.
  • the number of subcarrier spacing corresponding to the first signal is 10.
  • the resource utilization rate is Highest.
  • the number of subcarrier intervals may also be less than 10.
  • Table 1 Possible values of the subcarrier spacing number K 1 when the subcarrier spacing is 2 ⁇ 15kHz
  • Target range (m) Number of subcarrier spacing K 1 2000 2 ⁇ (- ⁇ ) ⁇ 10 1000 2 ⁇ (- ⁇ ) ⁇ 20 500 2 ⁇ (- ⁇ ) ⁇ 40 400 2 ⁇ (- ⁇ ) ⁇ 50 200 2 ⁇ (- ⁇ ) ⁇ 100 100 2 ⁇ (- ⁇ ) ⁇ 200 50 2 ⁇ (- ⁇ ) ⁇ 400 20 2 ⁇ (- ⁇ ) ⁇ 1000 10 2 ⁇ (- ⁇ ) ⁇ 2000 5 2 ⁇ (- ⁇ ) ⁇ 4000 2 2 ⁇ (- ⁇ ) ⁇ 10000 1 2 ⁇ (- ⁇ ) ⁇ 20000
  • the corresponding number of sub-carrier spacings is 20-2000.
  • the intervals of the comb structure of the current PRS and SRS are only ⁇ 2,4,6,12 ⁇ and ⁇ 2,4,8 ⁇ , the excessive maximum unambiguous distance brought by this high-density frequency domain distribution
  • the actual application scenario does not match, but increases unnecessary frequency domain resource overhead.
  • the first signal in the embodiment of the present application can reduce the overhead of frequency domain resources on the basis of meeting the target ranging range.
  • Figures 11a-11c respectively show the sensing signals in this application and the time-frequency resource distribution diagrams of PRS and SRS in NR.
  • Fig. 11a is a schematic diagram of a time-frequency resource distribution of a first signal and a second signal according to an embodiment of the present application.
  • the sensing signal cycle is 4 time slots, each sensing cycle contains the first signal and the second signal, the first signal exists in the first slot of the sensing cycle, the second signal It exists in the last three time slots of the sensing cycle, and the unfilled part in the figure can carry data, other reference signals or be left blank.
  • the number of intervals between subcarriers of the first signal is 4, that is, there is a subcarrier carrying the first signal in every 4 subcarriers.
  • the first signal is distributed in the entire bandwidth allocated to the sensing signal in the frequency domain, while the second signal occupies part of the bandwidth, and the number of subcarriers carrying the second signal is less than the number of subcarriers carrying the first signal.
  • Fig. 11b is a schematic diagram of typical time-frequency resource distribution of PRS in NR.
  • the PRS cycle is also 4 time slots (the minimum is 4 time slots); in order to achieve the continuous ranging effect similar to the embodiment of the present application, if the PRS repetition factor is 4, the PRS repeats 4 times in each cycle , that is, there is a PRS in each time slot.
  • the PRS does not persist in the time domain, because in the NR system, in the normal cyclic suffix (normal CP) mode, there are 14 OFDM symbols in a time slot, and the PRS is at most 12 consecutive It exists on the symbol, which causes the phenomenon that the PRS is discontinuous in time.
  • the PRS occupies the entire bandwidth allocated to the PRS with a comb structure interval of 4; since the PRS configuration is the same within a period, the PRS will continue to occupy the entire bandwidth allocated to the PRS during the entire period.
  • FIG 11c is a schematic diagram of a typical time-frequency resource distribution of SRS in NR.
  • the part with "SRS” means that it carries the SRS signal, and the blank part can carry data, other reference signals or be left blank.
  • the period of the SRS is one time slot.
  • an SRS needs to exist in each time slot.
  • the SRS does not persist in the time domain, because in the Normal CP mode, there are 14 OFDM symbols in a time slot, and the SRS is at most 12 consecutive symbols. Existence, which causes the phenomenon of SRS intermittent in time.
  • the comb structure interval of the SRS is 4, that is, one of every 4 subcarriers carries the SRS. Similar to the PRS, the SRS also covers the entire bandwidth allocated to the SRS.
  • Fig. 11a in order to realize continuous ranging, PRS and SRS need to cover the entire allocated bandwidth in each time slot, and there may be discontinuities in time.
  • the first signal uses a large bandwidth and high power for initial ranging
  • the second signal uses a small bandwidth and low power for continuous ranging.
  • the second signal does not cover the entire bandwidth, and the second signal occupies a small amount.
  • the frequency domain resources can realize the continuous ranging of the target, and other data, reference signals, etc. can be transmitted on the unoccupied resource positions, which improves the utilization rate of the frequency domain resources.
  • the following further analyzes the transmission resources consumed by the embodiments of the present application, PRS and SRS to achieve similar ranging effects.
  • PRS and SRS have discontinuities in the time domain. In the scene of continuous ranging of the target, the target may be lost, which has obvious disadvantages compared with the solution of this application. Secondly, in terms of resource utilization efficiency, this solution is also more cost-effective.
  • the sensing signal provided by the embodiment of the present application mainly saves overhead through the second signal.
  • the bandwidth and period in the example are relatively small.
  • the second phase of this scheme can be longer than the first phase. At this time, this scheme is compared with PRS and SRS Can save more expenses.
  • phase discontinuity may lead to a decrease in the accuracy of phase detection.
  • the embodiment of the present application provides a method for making the phase of the time-domain complex waveform corresponding to the subcarrier of the sensing signal continuous, so as to reduce the processing complexity of the receiver and improve the accuracy of phase detection to improve the ranging accuracy.
  • the method includes: performing phase compensation on the RE value of the first signal and/or the second signal, so that the first signal and/or the second signal are kept in adjacent OFDM symbols on the same subcarrier. Phase continuous.
  • RE-(l+1) can be phase-compensated according to the phase value of RE-l so that the phases of RE-l and RE-(l+1) remain continuous; it can also be based on RE-(l+ The phase value of 1) performs phase compensation on RE-1 so that the phases of RE-1 and RE-(1+1) remain continuous.
  • the baseband frequency index of the subcarrier where RE-1 and RE-(l+1) are located is q
  • the values of RE-1 and RE-(l+1) are respectively x l and x l+1
  • the CP length of the OFDM symbol where the two REs are located is T CP
  • the length of the OFDM symbol without CP is T IFFT ;
  • the phase of the time-domain waveform corresponding to -l remains continuous after adding CP, and the value of RE-(l+1) can be compensated as follows according to the current phase of RE-l:
  • the phase of RE-1 can also be compensated as follows according to the current phase of RE-(l+1):
  • the first communication device sends the first phase compensation instruction to the second communication device, and correspondingly, the second communication device receives the first phase compensation instruction sent by the first communication device, and responds to the first phase compensation instruction Indicates that the second communication device performs phase compensation on the first signal and/or the second signal.
  • the second communication device performs phase compensation on the first signal and/or the second signal, and sends a second phase compensation indication to the first communication device, where the second phase compensation indication is used to indicate that the first signal And/or the second signal is a phase compensated signal.
  • the first communication device selects an appropriate signal processing method to process the first signal and the second signal according to the second phase compensation instruction. For example, different PLL types are used for processing signals with continuous phase and signals with discontinuous phase.
  • the second communication device performs phase compensation on the RE value of the first signal and/or the second signal before sending the first signal and/or the second signal.
  • phase compensation is sequentially performed on REs corresponding to consecutive OFDM symbols on the same subcarrier.
  • the sequential compensation can specifically be to use the formula (19) to compensate the value of each RE according to the order of the OFDM symbol index l from small to large; or to use the formula (20) to compensate each The value of RE is compensated.
  • the phase compensation is performed through the value of the RE corresponding to the adjacent OFDM symbols on a subcarrier, so that the phase of the first signal and/or the second signal is kept continuous in the adjacent OFDM symbols on the same subcarrier.
  • the method does not limit the position or index of the subcarrier carrying the first signal and/or the second signal, and has high flexibility.
  • the method includes: selecting a subcarrier whose baseband frequency index satisfies a fourth condition for transmitting the first signal and/or the second signal, and the fourth condition is as shown in the following formula (21):
  • y is a baseband frequency index
  • ⁇ f is a subcarrier spacing
  • the CP length of an OFDM symbol is T CP
  • n is an integer.
  • Transmission of specific values on sub-carriers at specific positions can enable the time-domain waveforms corresponding to the sensing signals of these sub-carriers to maintain phase continuity in adjacent OFDM symbols.
  • the CP duration of the OFDM symbol is an integer multiple of the period of the complex sine wave corresponding to the subcarrier, phase continuity between OFDM symbols including the CP can be guaranteed.
  • the first signal and/or the second signal have the same value in multiple consecutive REs corresponding to a frequency domain position of the same subcarrier.
  • selecting a subcarrier of a specific baseband frequency index to carry the first signal and/or the second signal can realize the first signal and/or the second signal
  • the phases are kept continuous in adjacent OFDM symbols on the same subcarrier, no operations such as phase compensation are required, and the complexity of the transmitter is low.
  • the receiver does not need to detect the moment of the phase discontinuity point, so the signal processing of the receiver is simple , the continuous signal phase can ensure high phase detection accuracy, thereby improving the ranging accuracy.
  • the phase-continuous signal is convenient for continuous ranging of the target. In the continuous ranging scenario, there may be two sources of phase change: the movement of the target will cause the phase change, and the phase discontinuity of the signal will also cause the phase to jump at certain moments. If the signal phase is continuous, the phase change It directly reflects the movement of the target, which can reduce the complexity of signal processing.
  • the above describes the transmission parameter sets of the first signal and the second signal, and the process of sensing according to the sensing signal composed of the first signal and the second signal.
  • the following will describe the interaction process for the configuration and use of sensing signals.
  • the first communication device Before transmitting the first signal and the second signal, it is necessary to determine the transmission parameter set of the first signal and the second signal, and perform signal configuration, these two steps may be performed by the first communication device, or may be performed by the second communication device, Either executed by the first communication device and the second communication device respectively, or executed by the second communication device and the first communication device respectively.
  • the following describes four methods for determining the transmission parameter sets of the first signal and the second signal, performing signal configuration, and performing sensing with reference to FIGS. 12-15 .
  • FIG. 12 is a schematic diagram of an interaction process of a wireless sensing method according to an embodiment of the present application.
  • the second communication device determines the transmission parameters of the first signal and the second signal, performs signal configuration, and sends the configuration result to the first communication device.
  • the second communication device sends a first request to the first communication device, and correspondingly, the first communication device receives the first request sent by the second communication device.
  • the first request is used to request the noise power spectral density of the first communication device and the path loss from the second communication device to the first communication device.
  • the second communication device further sends the second request to the first communication device.
  • the first request is used to request the noise power spectral density of the first communication device
  • the second request is used to request the path loss from the second communication device to the first communication device; or, the first request is used to request the second communication device to the first communication device
  • the path loss of the communication device, the second request is for the noise power spectral density of the first communication device.
  • the ranging accuracy of the first signal and the second signal and the noise power spectral density of the receiver (first communication device) and the path from the second communication device to the first communication device Loss is related, so the second communication device needs to know the noise power spectral density of the first communication device and the path loss from the second communication device to the first communication device when determining the transmission parameter sets of the first signal and the second signal.
  • the first request is used to request the noise power spectral density of the first communication device.
  • the first request and/or the second request may be sent through RRC signaling, specifically, the amount to be measured may be indicated by filling in a relevant information element (information element, IE) in the RRC signaling (i.e. noise power spectral density and/or path loss).
  • IE information element
  • the first communication device sends noise power spectral density information and/or path loss information to the second communication device, and correspondingly, the second communication device receives the noise power spectral density information and/or path information sent by the first communication device Lost information.
  • the first communication device performs noise power measurement according to the first request or the second request received in S1201, obtains the noise power spectral density of the first communication device, and sends the noise power spectrum to the second communication device density information.
  • the first communication device stores its own noise power spectral density, and after receiving the first request, sends the information of the noise power spectral density stored by itself to the second communication device.
  • the information of the noise power spectral density may include an actual value or a quantized value of the noise power spectral density.
  • the first communication device performs path loss measurement according to the first request or the second request received in S1201, obtains the path loss from the second communication device to the first communication device, and sends the Path loss information.
  • the second communication device may obtain the path loss by measuring a reference signal received power (reference signal received power, RSRP) of a reference signal sent by the first communication device.
  • RSRP reference signal received power
  • the reference signal used to measure the path loss may be carried in the first request or the second request, or may be carried in other signaling, which is not limited in this application.
  • the path loss information may include an actual value of the path loss or an offline gain coefficient corresponding to the path loss.
  • the information of the noise power spectral density and/or the information of the path loss may be sent through RRC signaling.
  • the second communication device determines a first transmission parameter set corresponding to the first signal and a second transmission parameter set corresponding to the second signal.
  • the second communication device determines the first subcarrier spacing number corresponding to the first signal according to the target ranging range, and further determines the first subcarrier interval number according to the noise power spectral density of the first communication device and the path loss from the second communication device to the first communication device.
  • the parameters such as the number of first subcarriers, the number of first OFDM symbols, and the energy of the first sample in the transmission parameter set of the signal are based on the target ranging accuracy, the noise power spectral density of the first communication device, and the distance from the second communication device to the first
  • the path loss of the communication device determines parameters such as the second number of subcarriers, the second number of OFDM symbols, and the second sample energy in the second transmission parameter set of the second signal.
  • the second communication device selects the first transmission parameter set and/or the second transmission parameter set that satisfy the target ranging range and the target ranging accuracy from the candidate transmission parameter sets.
  • the candidate parameter sets include multiple candidate first transmission parameter sets and/or multiple candidate second transmission parameter sets.
  • the second communication device selects a first transmission parameter set that satisfies the target ranging range from multiple candidate first transmission parameter sets, and selects a second transmission parameter set that meets the target ranging accuracy from multiple candidate second transmission parameter sets. Specifically, the second communication device selects a first transmission parameter set that satisfies the first condition and/or the third condition from multiple candidate first transmission parameter sets. The second communication device selects a second transmission parameter set satisfying a second condition from the plurality of candidate second transmission parameter sets.
  • the candidate parameter set includes multiple candidate subcarrier spacing numbers, multiple candidate subcarrier numbers, multiple candidate OFDM symbol numbers, and/or multiple candidate sample energies
  • the second communication device obtains from Select the number of subcarrier intervals that meet the target ranging range from the candidate parameter set as a parameter in the first transmission parameter set, and select the number of subcarriers, the number of OFDM symbols and/or samples that meet the target ranging accuracy from the candidate parameter set Energy is used as a parameter in the second transmission parameter set.
  • the second communication device selects parameters satisfying the first condition and/or the third condition from the candidate parameter sets as parameters in the first transmission parameter set, and selects parameters satisfying the second condition from the candidate parameter sets as the second transmission parameter set. Two parameters in the transmission parameter set.
  • the first transmission parameter set corresponding to the first signal and the second transmission parameter set corresponding to the second signal determined by the second communication device may be the first transmission parameter set and the second transmission parameter set in various possible implementations above, I won't repeat them here.
  • the second communication device performs signal configuration.
  • the second communication device performs signal configuration according to the determined first transmission parameter set corresponding to the first signal and the second transmission parameter set corresponding to the second signal.
  • the transmission resources of the first signal and the second signal are configured according to the first transmission parameter set and the second transmission parameter set, where the transmission resources may specifically be resource grids of the first signal and the second signal in the time-frequency domain
  • the signal configuration also includes determining the value of the previously allocated position, and the value may be a certain sequence, such as a Gold sequence or a ZC sequence; it may also be a constant, such as 1 or 0.5+0.5j; it may also be a random sequence.
  • the second communication device sends the first configuration information to the first communication device, and correspondingly, the first communication device receives the first configuration information sent by the second communication device.
  • the first configuration information is used to indicate the result of signal configuration according to the first transmission parameter set and the second transmission parameter set.
  • the first configuration information includes: transmission resource information of the first signal and transmission resource information of the second signal determined according to the first transmission parameter set and the second transmission parameter set respectively.
  • the first configuration information is carried in radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the second communication device respectively sends the first signal and the second signal to the first communication device, and correspondingly, the first communication device respectively receives the first signal and the second signal.
  • the second communication device sends the first signal and the second signal respectively according to the first transmission parameter set and the second transmission parameter set within one sensing period, and the first communication device transmits the first signal and the second signal according to the first transmission parameter set within one sensing period.
  • the set of transmission parameters and the second set of transmission parameters receive the first signal and the second signal, respectively.
  • the second communication device transmits the first signal and the second signal respectively according to the first transmission parameter set and the second transmission parameter set within one sensing period, which may specifically include: the second communication device transmits the first signal according to the first transmission parameter within one sensing period
  • the first signal and the second signal are sent on transmission resources configured by the parameter set and the second transmission parameter set.
  • the first communication device receives the first signal and the second signal respectively according to the first transmission parameter set and the second transmission parameter set within one sensing cycle, which may specifically include: the first communication device receives the first signal according to the first transmission parameter set within one sensing cycle receiving the first signal and the second signal on the transmission resources configured by the parameter set and the second transmission parameter set, wherein the transmission resources configured according to the first transmission parameter set and the second transmission parameter set are obtained according to the first configuration information received in S1205 of.
  • the second communication device may also send the first signal and the second signal in each of the multiple sensing cycles, and correspondingly, the first communication device may also send the first signal and the second signal in each of the multiple sensing cycles A first signal and a second signal are received.
  • step S220 For the content of the sensing period in this step, reference may be made to step S220, which will not be repeated here.
  • the first communication device performs sensing according to the first signal and the second signal, and obtains a sensing result.
  • This step is the same as S230 and will not be repeated here.
  • the second communication device determines the first transmission parameter set of the first signal and the second transmission parameter set of the second signal, and according to the determined first transmission parameter set and the second transmission parameter set performing signal configuration, sending a configuration result (first configuration information) and sending a first signal and a second signal to the first communication device, so that the first communication device passes the first transmission parameter determined according to the first transmission parameter set and the second transmission parameter set.
  • the configuration information receives the first signal and the second signal, and then performs perception according to the first signal and the second signal, and obtains a perception result.
  • FIG. 13 is a schematic diagram of an interaction process of another wireless sensing method according to an embodiment of the present application.
  • the second communication device determines the transmission parameter sets of the first signal and the second signal, and sends a configuration request to the first communication device, and the first communication device configures the signal and sends the configuration result to the second communication device .
  • the second communication device sends a first request to the first communication device, and correspondingly, the first communication device receives the first request sent by the second communication device.
  • the first communication device sends the information of the noise power spectral density to the second communication device, and correspondingly, the second communication device receives the information of the noise power spectral density sent by the first communication device.
  • the second communication device determines a first transmission parameter set corresponding to the first signal and a second transmission parameter set corresponding to the second signal.
  • Steps S1301-S1303 are the same as steps S1201-S1203, and will not be repeated here.
  • the second communication device sends a first configuration request to the first communication device, and correspondingly, the first communication device receives the first configuration request sent by the second communication device.
  • the first configuration request is used to request the first communication device to perform signal configuration of the first signal and the second signal.
  • the first configuration request includes information about the first transmission parameter set and the second transmission parameter set, so that the first communication device configures the first signal and the second signal according to the first configuration request.
  • the information of the first transmission parameter set and/or the second transmission parameter set may be the values of the parameters in the first transmission parameter set and the second transmission parameter set; or, when the first transmission parameter set and/or the second transmission parameter set
  • the information of the first transmission parameter set and/or the second transmission parameter set may be the index of the first transmission parameter set and/or the second transmission parameter set, or may be the first transmission parameter set and/or the second transmission parameter set.
  • An index of each parameter for example, the number of subcarriers, the number of subcarrier intervals, the number of OFDM symbols, the energy of samples, etc.
  • the first configuration request is carried in RRC signaling.
  • the RRC signaling may be an RRC request message.
  • the first communication device performs signal configuration.
  • the first communication device performs signal configuration according to the received first configuration request.
  • the first communication device determines the first transmission parameter set corresponding to the first signal and the second transmission parameter set corresponding to the second signal according to the first configuration request, and according to the determined first transmission parameter set and the second transmission parameter set corresponding to the first signal
  • the second transmission parameter set corresponding to the signal performs signal configuration.
  • the first communication device configures the transmission resources of the first signal and the second signal according to the first transmission parameter set and the second transmission parameter set, where the transmission resources may specifically be the transmission resources of the first signal and the second signal in the time-frequency domain The position on the resource grid.
  • the signal configuration also includes the value to determine the position of the aforementioned configuration on the resource grid.
  • the value can be a certain sequence, such as a Gold sequence or a ZC sequence; it can also be a constant, such as 1 or 0.5+0.5j; it can also be a random sequence .
  • the first communication device sends the second configuration information to the second communication device, and correspondingly, the second communication device receives the second configuration information sent by the first communication device.
  • the second configuration information is used to indicate the result of signal configuration according to the first transmission parameter set and the second transmission parameter set.
  • the second configuration information includes: transmission resource information of the first signal and transmission resource information of the second signal determined according to the first transmission parameter set and the second transmission parameter set respectively.
  • the second configuration information is carried in RRC signaling.
  • the RRC signaling may specifically be an RRC response message.
  • the second communication device respectively sends the first signal and the second signal to the first communication device, and correspondingly, the first communication device respectively receives the first signal and the second signal.
  • the second communication device sends the first signal and the second signal respectively according to the first transmission parameter set and the second transmission parameter set within one sensing period, and the first communication device transmits the first signal and the second signal according to the first transmission parameter set within one sensing period.
  • the set of transmission parameters and the second set of transmission parameters receive the first signal and the second signal, respectively.
  • the second communication device transmits the first signal and the second signal respectively according to the first transmission parameter set and the second transmission parameter set within one sensing period, which may specifically include: the second communication device transmits the first signal according to the first transmission parameter within one sensing period Sending the first signal and the second signal on the transmission resources configured by the parameter set and the second transmission parameter set, wherein the transmission resources configured according to the first transmission parameter set and the second transmission parameter set are obtained according to the second configuration information received in S1306 of. .
  • the first communication device receives the first signal and the second signal respectively according to the first transmission parameter set and the second transmission parameter set within one sensing cycle, which may specifically include: the first communication device receives the first signal according to the first transmission parameter set within one sensing cycle
  • the first signal and the second signal are received on transmission resources configured by the parameter set and the second transmission parameter set.
  • the second communication device may also send the first signal and the second signal in each of the multiple sensing cycles, and correspondingly, the first communication device may also send the first signal and the second signal in each of the multiple sensing cycles A first signal and a second signal are received.
  • step S220 For the content of the sensing period in this step, reference may be made to step S220, which will not be repeated here.
  • the first communication device performs sensing according to the first signal and the second signal, and obtains a sensing result.
  • This step is the same as S230 and will not be repeated here.
  • the second communication device determines the first transmission parameter set of the first signal and the second transmission parameter set of the second signal, and sends information including the first transmission parameter set to the first communication device and the first configuration request of the information of the second transmission parameter set, the first communication device performs signal configuration according to the first transmission parameter set and the second transmission parameter set, and sends the configuration result (second configuration information) to the second communication device, the second The second communication communication device sends the first signal and the second signal according to the second configuration information, so that the first communication device receives the first signal and the second signal according to the transmission resources configured by the first transmission parameter set and the second transmission parameter set, and then according to Perceive the first signal and the second signal to obtain a perceptual result.
  • the transmission parameters of the sensing signal can be reasonably configured according to the specific signal-to-noise ratio in the scene, and the resource utilization rate can be improved while avoiding distance ambiguity in the stage of ranging based on the second signal.
  • FIG. 14 is a schematic diagram of an interaction process of another wireless sensing method according to an embodiment of the present application.
  • the first communication device determines the transmission parameters of the first signal and the second signal, and sends a configuration request to the second communication device, and the second communication device configures the signal and sends the configuration result to the first communication device.
  • the first communication device determines a first transmission parameter set corresponding to the first signal and a second transmission parameter set corresponding to the second signal.
  • the first communication device determines the first subcarrier spacing number corresponding to the first signal according to the target ranging range, and further determines the transmission parameters of the first signal according to the noise power spectral density of the first communication device, and according to the target ranging accuracy and the first
  • the noise power spectral density of the communication device determines a second set of transmission parameters for the second signal.
  • the first communication device selects the first transmission parameter set and/or the second transmission parameter set that satisfy the target ranging range and the target ranging accuracy from the candidate transmission parameter sets.
  • the candidate parameter sets include multiple candidate first transmission parameter sets and/or multiple candidate second transmission parameter sets.
  • the first communication device selects a first transmission parameter set that satisfies the target ranging range from multiple candidate first transmission parameter sets, and selects a second transmission parameter set that meets the target ranging accuracy from multiple candidate second transmission parameter sets. Specifically, the first communication device selects a first transmission parameter set that satisfies the first condition and/or the third condition from multiple candidate first transmission parameter sets.
  • the second communication device selects a second transmission parameter set satisfying a second condition from the plurality of candidate second transmission parameter sets.
  • the candidate parameter set includes multiple candidate subcarrier spacing numbers, multiple candidate subcarrier numbers, multiple candidate OFDM symbol numbers, and/or multiple candidate sample energies
  • the first communication device obtains from Select the number of subcarrier intervals that meet the target ranging range from the candidate parameter set as a parameter in the first transmission parameter set, and select the number of subcarriers, the number of OFDM symbols and/or samples that meet the target ranging accuracy from the candidate parameter set Energy is used as a parameter in the second transmission parameter set.
  • the first communication device selects parameters satisfying the first condition and/or the third condition from the candidate parameter sets as parameters in the first transmission parameter set, and selects parameters satisfying the second condition from the candidate parameter sets as the second transmission parameter set. Two parameters in the transmission parameter set.
  • the first transmission parameter set corresponding to the first signal and the second transmission parameter set corresponding to the second signal determined by the first communication device may be the first transmission parameter set and the second transmission parameter set in various possible implementations above, I won't repeat them here.
  • the first communication device sends a second configuration request to the second communication device, and correspondingly, the second communication device receives the second configuration request sent by the first communication device.
  • the second configuration request is used to request the second communication device to perform signal configuration of the first signal and the second signal.
  • the second configuration request includes information about the first transmission parameter set and the second transmission parameter set, so that the second communication device configures the first signal and the second signal according to the second configuration request.
  • the information of the first transmission parameter set and/or the second transmission parameter set may be the values of the first transmission parameter set and the second transmission parameter set; or, when the first transmission parameter set and/or the second transmission parameter set are When selecting parameters from the candidate parameter sets, the information of the first transmission parameter set and/or the second transmission parameter set may be the index of the first transmission parameter set and/or the second transmission parameter set, or may be the first transmission parameter set An index of each parameter (for example, the number of subcarriers, the number of subcarrier intervals, the number of OFDM symbols, the energy of samples, etc.) in the parameter set and/or the second transmission parameter set.
  • the second configuration request is carried in RRC signaling.
  • the RRC signaling may be an RRC request message.
  • the second communication device performs signal configuration.
  • the second communication device performs signal configuration according to the received second configuration request. Specifically, the second communication device determines the first transmission parameter set corresponding to the first signal and the second transmission parameter set corresponding to the second signal according to the second configuration request, and according to the determined first transmission parameter set corresponding to the first signal
  • the second transmission parameter set corresponding to the second signal performs signal configuration, specifically, configures the transmission resources of the first signal and the second signal according to the first transmission parameter set and the second transmission parameter set, wherein the transmission resources may specifically be the first The positions of the first signal and the second signal on the resource grid in the time-frequency domain.
  • the signal configuration also includes the value to determine the position of the aforementioned configuration on the resource grid.
  • the value can be a certain sequence, such as a Gold sequence or a ZC sequence; it can also be a constant, such as 1 or 0.5+0.5j; it can also be a random sequence .
  • the second communication device sends third configuration information to the first communication device, and correspondingly, the first communication device receives the third configuration information sent by the second communication device.
  • the third configuration information is used to indicate the result of signal configuration according to the first transmission parameter set and the second transmission parameter set.
  • the third configuration information includes: transmission resource information of the first signal and transmission resource information of the second signal determined according to the first transmission parameter set and the second transmission parameter set respectively.
  • the third configuration information is carried in RRC signaling.
  • the RRC signaling may specifically be an RRC response message.
  • the second communication device respectively sends the first signal and the second signal to the first communication device, and correspondingly, the first communication device respectively receives the first signal and the second signal.
  • Step S1405 is similar to step S1206, except that the transmission resource used by the first communication device to receive the first signal and the second signal is obtained according to the third configuration information in S1404. For other relevant content, please refer to S1206, which will not be repeated here .
  • the first communication device performs sensing according to the first signal and the second signal, and obtains a sensing result.
  • This step is the same as S230 and will not be repeated here.
  • the first communication device determines the first transmission parameter set of the first signal and the second transmission parameter set of the second signal, and sends information including the first transmission parameter set to the second communication device and the second configuration request of the information of the second transmission parameter set
  • the second communication device performs signal configuration according to the first transmission parameter set and the second transmission parameter set, sends the configuration result (third configuration information) and sends the configuration result (third configuration information) to the first communication device
  • the first signal and the second signal so that the first communication device receives the first signal and the second signal through the third configuration information determined according to the first transmission parameter set and the second transmission parameter set, and then according to the first signal and the second signal Perceive and get the result of perception.
  • FIG. 15 is a schematic diagram of an interaction process of another wireless sensing method according to an embodiment of the present application.
  • the first communication device determines the transmission parameters of the first signal and the second signal, performs signal configuration, and sends the configuration result to the second communication device.
  • the first communication device determines a first transmission parameter set corresponding to the first signal and a second transmission parameter set corresponding to the second signal.
  • This step is the same as step S1401 and will not be repeated here.
  • the first communication device performs signal configuration.
  • the first communication device performs signal configuration according to the determined first transmission parameter set corresponding to the first signal and the second transmission parameter set corresponding to the second signal, specifically, configures the first transmission parameter set according to the first transmission parameter set and the second transmission parameter set Transmission resources of the first signal and the second signal, where the transmission resources may specifically be positions of the first signal and the second signal on a resource grid in the time-frequency domain.
  • the signal configuration also includes the value to determine the position of the aforementioned configuration on the resource grid.
  • the value can be a certain sequence, such as a Gold sequence or a ZC sequence; it can also be a constant, such as 1 or 0.5+0.5j; it can also be a random sequence .
  • the first communication device sends fourth configuration information to the second communication device, and correspondingly, the second communication device receives the fourth configuration information sent by the first communication device.
  • the fourth configuration information is used to indicate the result of signal configuration according to the first transmission parameter set and the second transmission parameter set.
  • the fourth configuration information includes: transmission resource information of the first signal and transmission resource information of the second signal determined according to the first transmission parameter set and the second transmission parameter set respectively.
  • the fourth configuration information is carried in RRC signaling.
  • the second communication device respectively sends the first signal and the second signal to the first communication device, and correspondingly, the first communication device respectively receives the first signal and the second signal.
  • This step is similar to S1307, except that the transmission resource used by the first communication device to send the first signal and the second signal is obtained according to the fourth configuration information in S1503. For other related content, refer to S1307, which will not be repeated here.
  • the first communication device performs sensing according to the first signal and the second signal, and obtains a sensing result.
  • This step is the same as S230 and will not be repeated here.
  • the first communication device determines the first transmission parameter set of the first signal and the second transmission parameter set of the second signal, and according to the determined first transmission parameter set and the second transmission parameter set Perform signal configuration, send the configuration result (fourth configuration information) to the second communication device, and the second communication device sends the first signal and the second signal according to the fourth configuration information, so that the first communication device transmits the first signal and the second signal according to the first transmission parameter set and
  • the transmission resource configured by the second transmission parameter set receives the first signal and the second signal, and performs sensing according to the first signal and the second signal to obtain a sensing result.
  • both the first communication device and the second communication device may include a hardware structure and/or a software module, in the form of a hardware structure, a software module, or a hardware structure plus a software module to realize the above functions. Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • the embodiment of the present application provides a communication device 1600 .
  • the communication device 1600 may be a terminal or a network device, or a device in the terminal device or the network device, or a device that can be matched with the terminal device or the network device.
  • the communication device 1600 may include modules or units corresponding to the methods/operations/steps/actions performed by the first communication device or the second communication device in the above method embodiments, and the unit may be
  • the hardware circuit may also be software, or may be implemented by combining hardware circuits with software.
  • the communication device 1600 may include a processing unit 1610 and a transceiver unit 1620 .
  • the processing unit 1610 may be configured to call the transceiver unit 1620 to perform receiving and/or sending functions.
  • the transceiver unit 1620 is used to receive the first signal and the second signal respectively according to the first transmission parameter set and the second transmission parameter set; wherein the first transmission parameter The set corresponds to the first signal, at least one parameter in the first transmission parameter set satisfies the first condition, and the first condition is related to the target ranging range; the second transmission parameter set corresponds to the second signal, and at least one parameter in the second transmission parameter set The second condition is satisfied, and the second condition is related to the target perception accuracy; the processing unit 1610 is configured to perform perception according to the first signal and the second signal to obtain a perception result.
  • the processing unit 1610 is specifically configured to perform perception according to the first signal to obtain a first result, perform perception according to the second signal to obtain a second result, and determine the perception result according to the first result and the second result.
  • the processing unit 1610 is used to obtain the first transmission parameter set and the second transmission parameter set; wherein the first transmission parameter set corresponds to the first signal, and the first transmission parameter set At least one parameter in the set satisfies a first condition, and the first condition is related to the target ranging range; the second transmission parameter set corresponds to a second signal, and at least one parameter in the second transmission parameter set satisfies a second condition, and the second condition is related to The target sensing accuracy is related; the transceiver unit 1620 is configured to send the first signal and the second signal within one sensing cycle according to the first transmission parameter set and the second transmission parameter set, wherein the first signal and the second signal are used for sensing.
  • the processing unit 1610 is specifically configured to perform phase compensation on the second signal.
  • the transceiver unit 1620 is further configured to perform other receiving or sending steps or operations performed by the first communication device or the second communication device in the above method embodiments.
  • the processing unit 1610 may also be configured to perform other corresponding steps or operations performed by the first communication device and the second communication device in the above method embodiments except sending and receiving, which will not be repeated here.
  • the communication device 1600 when used to perform the operations performed by the first communication device, it may include: a receiving unit and a sensing unit, wherein the receiving unit is used for performing the operation according to the first transmission parameter set and the second transmission parameter set respectively receiving the first signal and the second signal sent by the second communication device; the sensing unit is configured to perform sensing according to the first signal and the second signal, and obtain a sensing result; wherein the first transmission parameter set corresponds to the For a first signal, at least one parameter in the first transmission parameter set satisfies a first condition, and the first condition is related to a target ranging range; the second transmission parameter set corresponds to a second signal, and the second transmission parameter At least one parameter in the set satisfies a second condition related to target perception accuracy.
  • the communication device 1600 further includes: a sending unit and a configuration unit, the receiving unit is also used to receive a first configuration request; the configuration unit is used to perform signal configuration in response to the first configuration request; the sending unit is used to send the first configuration request Two configuration information.
  • the communication device 1600 when used to perform the operation performed by the second communication device, it may include an obtaining unit and a sending unit, where the obtaining unit is used to obtain the first transmission parameter set and the second transmission parameter set, Wherein the first transmission parameter set corresponds to the first signal, at least one parameter in the first transmission parameter set satisfies the first condition, and the first condition is related to the target ranging range; the second transmission parameter set corresponds to the second signal, and the second At least one parameter in the transmission parameter set satisfies a second condition, and the second condition is related to target perception accuracy; the sending unit is configured to send the first signal and the second signal according to the first transmission parameter set and the second transmission parameter set, wherein the The first signal and the second signal are used for sensing.
  • the communication device 1600 further includes a receiving unit and a configuration unit, the receiving unit is used to receive a second configuration request, the configuration unit is used to perform signal configuration in response to the second configuration request, and the sending unit is also used to send The third configuration information.
  • each functional module or unit in each embodiment of the present application may be integrated into one processor, or physically exist separately, or two or more modules or units may be integrated into one module or unit.
  • the above-mentioned integrated modules or units can be implemented in the form of hardware or in the form of software function modules.
  • the processing unit 1610 may be a processor
  • the transceiver unit 1620 may be a transceiver.
  • the embodiment of the present application also provides a communication device 1700 , configured to implement the functions of the first communication device and the second communication device in the above method.
  • the communication device may be a terminal, a network device, or a device in a terminal or a network device, or a device that can be matched with a terminal or a network device.
  • the communication device 1700 includes at least one processor 1710 , and the communication device 1700 may further include a communication interface 1720 .
  • the communication interface may be a transceiver, a circuit, a bus, a module or other types of communication interfaces for communicating with other devices through a transmission medium.
  • the communication interface 1720 is used for devices in the communication device 1700 to communicate with other devices.
  • the processor 1710 can perform the functions performed by the processing unit 1610 in the communication device 1600 ; the communication interface 1720 can be used to perform the functions performed by the transceiver unit 1620 in the communication device 1600 .
  • the communication interface 1720 is used to receive the first signal and the second signal respectively according to the first transmission parameter set and the second transmission parameter set; wherein the first transmission parameter The set corresponds to the first signal, at least one parameter in the first transmission parameter set satisfies the first condition, and the first condition is related to the target ranging range; the second transmission parameter set corresponds to the second signal, and at least one parameter in the second transmission parameter set The second condition is satisfied, and the second condition is related to the target perception accuracy; the processor 1710 is configured to perform perception according to the first signal and the second signal to obtain a perception result.
  • the processor 1710 is used to obtain the first transmission parameter set and the second transmission parameter set; wherein the first transmission parameter set corresponds to the first signal, and the first transmission parameter set At least one parameter in the set satisfies a first condition, and the first condition is related to the target ranging range; the second transmission parameter set corresponds to a second signal, and at least one parameter in the second transmission parameter set satisfies a second condition, and the second condition is related to Target perception accuracy is related; the communication interface 1720 is used to output the first signal and the second signal according to the first transmission parameter set and the second transmission parameter set; wherein the first signal and the second signal are used for perception.
  • the communication interface 1720 is also used to perform other receiving or sending steps or operations performed by the first communication device and the second communication device in the above method embodiments.
  • the processor 1710 may also be configured to execute other corresponding steps or operations other than sending and receiving performed by the first communication device and the second communication device in the above method embodiment, which will not be repeated here.
  • the communication device 1700 may also include at least one memory 1730 for storing program instructions and/or data.
  • the memory 1730 is coupled to the processor 1710 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be electrical, mechanical or other forms for information exchange between devices, units or modules.
  • Processor 1720 may cooperate with memory 1730 .
  • Processor 1710 may execute computer program programs or instructions stored in memory 1730 .
  • at least one of the at least one memory may be integrated with the processor.
  • the memory 1730 is located outside the communication device 1700 .
  • a specific connection medium among the communication interface 1720, the processor 1710, and the memory 1730 is not limited.
  • the memory 1730, the processor 1710, and the communication interface 1720 are connected through the bus 1740.
  • the bus is represented by a thick line in FIG. 17, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 17 , but it does not mean that there is only one bus or one type of bus.
  • the communication device 1700 may be a system on a chip.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the embodiment of the present application further provides a communication device 1800 , configured to implement the functions of the first communication device and the second communication device in the above method.
  • the communication device may be a terminal or a network device, or a device in the terminal or the network device, or a device that can be matched with the terminal or the network device.
  • the communication device includes a processor 1810, which is configured to implement part or all of the functions of the first communication device and/or the second communication device.
  • the processor 1810 when the communication device 1800 is used to realize the function of the first communication device, the processor 1810 is used to receive the first signal and the second signal, the first signal corresponds to the first transmission parameter set, and the second signal Corresponding to the second transmission parameter set; performing sensing according to the first signal and the second signal to obtain a sensing result; wherein the first transmission parameter set corresponds to the first signal, at least one parameter in the first transmission parameter set satisfies the first condition, and the first The condition is related to the ranging range of the target; the second transmission parameter set corresponds to the second signal, at least one parameter in the second transmission parameter set satisfies the second condition, and the second condition is related to the target perception accuracy.
  • the processor 1810 is specifically configured to perform perception according to the first signal to obtain the first result, perform perception according to the second signal to obtain the second result, and determine the perception result according to the first result and the second result.
  • the processor 1810 when the communication device 1800 is used to realize the function of the second communication device, the processor 1810 is used to obtain the first transmission parameter set and the second transmission parameter set, where the first transmission parameter set corresponds to the first signal , at least one parameter in the first transmission parameter set satisfies the first condition, and the first condition is related to the target ranging range; the second transmission parameter set corresponds to the second signal, and at least one parameter in the second transmission parameter set satisfies the second A condition, the second condition is related to target perception accuracy; and outputting a first signal and a second signal according to the first transmission parameter set and the second transmission parameter set, wherein the first signal and the second signal are used for perception.
  • the processor 1810 implements the functions implemented by the first communication device and/or the second communication device by executing instructions stored in the memory 1820 .
  • the communication device further includes a memory 1820 .
  • the processor 1810 and the memory 1820 are integrated together.
  • the memory 1820 is outside the communication device 1800 .
  • the processor may be one or more central processing units (Central Processing Unit, CPU), and in the case where the processor is a CPU, the CPU may be a single Core CPU, also can be multi-core CPU.
  • the processor can be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and can realize or execute the Each method, step and logical block diagram of the.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the memory may include but not limited to hard disk (hard disk drive, HDD) or solid-state drive (solid-state drive, SSD) and other non-volatile memory, random access memory (Random Access Memory, RAM), Erasable Programmable ROM (EPROM), Read-Only Memory (ROM), or Portable Read-Only Memory (Compact Disc Read-Only Memory, CD- ROM) and so on.
  • a memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, and is used for storing computer programs or instructions, and/or data.
  • the embodiment of the present application also provides a device 1900, which can be used to realize the functions of the first communication device and the second communication device in the above method.
  • the device 1900 can be a communication device or a chip in a communication device.
  • the communication device includes:
  • At least one input and output interface 1910 and a logic circuit 1920 may be an input-output circuit.
  • the input-output interface 1910 may be an input-output circuit.
  • the logic circuit 1920 may be a signal processor, a chip, or other integrated circuits that can implement the method of the present application.
  • At least one input and output interface 1910 is used for input or output of signals or data.
  • the input and output interface 1910 is used to receive the first signal and the second signal.
  • the input and output interface 1910 is used to output the first signal and the second signal.
  • the logic circuit 1920 is configured to execute some or all steps of any method provided in the embodiments of the present application.
  • the logic circuit 1920 is used to The signal is perceived to obtain the perception result.
  • the logic circuit 1920 is used to obtain the first transmission parameter set and the second transmission parameter set.
  • the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information from other modules in the terminal (such as radio frequency modules or antennas), and the information is sent to the terminal by other terminals or network equipment; or, the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas) Output information, which is sent by the terminal to other terminals or network devices.
  • the network equipment chip implements the functions of the network equipment in the above method embodiments.
  • the network device chip receives information from other modules in the network device (such as radio frequency modules or antennas), and the information is sent to the network device by terminals or other network devices; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna) output information, which is sent by the network device to the terminal or other network devices.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer programs or instructions, and the computer programs or instructions are executed by a computer (for example, a processor) to implement the embodiments of the present application Part or all of the steps of any method performed by any device.
  • a computer for example, a processor
  • the embodiment of the present application also provides a computer program product including a computer program or a set of instructions, when the computer program product is run on a computer, some or all steps of any one of the above methods are executed.
  • the present application also provides a chip or a chip system, and the chip may include a processor.
  • the chip may also include memory (or storage module) and/or transceiver (or communication module), or, the chip is coupled with memory (or storage module) and/or transceiver (or communication module), wherein the transceiver ( or communication module) can be used to support the chip for wired and/or wireless communication, the memory (or storage module) can be used to store a program or a set of instructions, and the processor calls the program or the set of instructions can be used to implement the above method embodiments, An operation performed by a terminal or a network device in any possible implementation manner of the method embodiment.
  • the system-on-a-chip may include the above-mentioned chips, and may also include the above-mentioned chips and other discrete devices, such as memory (or storage module) and/or transceiver (or communication module).
  • the present application further provides a communication system, where the communication system may include the above first communication device and second communication device.
  • the communication system may be used to implement the operations performed by the first communication device or the second communication device in any of the foregoing method embodiments and any possible implementation manners of the method embodiments.
  • the communication system may have a structure as shown in FIG. 1 .
  • all or part may be implemented by software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, DSL) or wireless (eg, infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as an optical disk), or a semiconductor medium (such as a solid-state disk), and the like.
  • a magnetic medium such as a floppy disk, a hard disk, or a magnetic tape
  • an optical medium such as an optical disk
  • a semiconductor medium such as a solid-state disk
  • the device provided in this application is realized in the form of software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on such an understanding, the part of the technical solution of the present application that contributes to the prior art or all or part of the technical solution may be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several instructions. So that a computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in the various embodiments of the present application.

Abstract

本申请提供了一种无线感知的方法及装置。该方法包括:第一通信装置根据第一传输参数集和第二传输参数集分别接收第一信号和第二信号,并根据该第一信号和第二信号进行感知得到感知结果;其中,第一传输参数集对应第一信号,且第一传输参数集中的至少一个参数满足第一条件,该第一条件与目标测距范围相关,第二传输参数集对应第二信号,且第二传输参数集中的至少一个参数满足第二条件,该第二条件与目标感知精度相关,使得基于第一信号和第二信号进行感知的感知结果能够满足感知需求,实现根据感知需求灵活分配信号传输资源。

Description

一种无线感知的方法及装置
本申请要求于2021年06月22日提交国家知识产权局、申请号为202110691276.9、申请名称为“一种无线感知的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种无线感知的方法及装置。
背景技术
无线感知技术通过分析无线信号在传播过程中的变化,获得信号传播空间的特性,以实现场景的感知,例如测距、测速、定位等。无线通信系统的主要功能是用于收发机之间交互信息,其基本原理是发送端发射特定的波形信号,经过无线信道后被接收机所接收,并经过信号处理后解调出发送端发射的信号。将无线通信和无线感知技术合二为一,可以在实现通信的同时对周围的环境进行感知。
新空口(new radio,NR)中定义了定位参考信号(positioning reference signal,PRS)、信道探测参考信号(sounding reference signal,SRS)等可用于测距和定位的参考信号,通过计算原始信号和接收信号之间的相关值估计信号传输时延。现有的PRS和SRS等信号的设计,存在资源配置不灵活等问题。
发明内容
本申请实施例提供一种无线感知的方法及装置,能够在满足感知需求的同时,缓解资源分配不灵活的问题。
第一方面,本申请实施例提供一种无线感知的方法,该方法包括:第一通信装置在根据第一传输参数集和第二传输参数集分别接收第二通信装置发送的第一信号和第二信号;其中第一传输参数集对应第一信号,第一传输参数集中的至少一个参数满足第一条件,该第一条件与目标测距范围相关;第二传输参数集对应第二信号,第二传输参数集中的至少一个参数满足第二条件,该第二条件与目标感知精度相关;第一通信装置根据该第一信号和第二信号进行感知,得到感知结果。
上述方法中第一信号对应的第一传输参数集中的至少一个参数满足与目标测距范围相关的第一条件,第二信号对应的第二传输参数集中的至少一个参数满足目标测距精度相关的第二条件,可以针对不同的感知需求,使用不同的传输参数集,实现传输资源的灵活配置。
一种可能的实现中,根据第一信号和第二信号进行感知得到感知结果,包括:根据第一信号进行感知得到第一结果,根据第二信号进行感知得到第二结果,以及根据上述第一结果和第二结果确定感知结果。
可选的,可以根据第一结果和第二结果的差值确定感知结果。例如,分别计算第一结果的测量值和第二结果的多个测量值之间的差得到多个差值,根据该多个差值选择与绝对值最 小的差值对应的第二结果的测量值作为感知结果。
上述可能的实现中,第一信号对应的第一结果可以满足目标测距范围,可以保证在较大范围内没有测距模糊,第二信号对应的第二结果可以满足目标测距精度,但可能存在测距模糊,即第二结果可能存在多个测量值,可以基于第一结果,从第二结果的多个测量值中选择最接近的实际值的测量值作为感知结果,能够在保证测距不模糊的同时提高测距精度。
一种可能的实现中,第一通信装置接收第一配置信息。该第一配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。该种实现使得第一通信装置根据配置结果成功接收第一信号和第二信号。
一种可能的实现中,第一通信装置接收第一配置请求,响应于该第一配置请求,进行信号配置,并发送第二配置信息。该第一配置请求包含第一传输参数集和第二传输参数集的信息;该第二配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。该种实现使得第二通信装置和第一通信装置之间根据该信号配置的结果成功发收第一信号和第二信号。
一种可能的实现中,第一通信装置发送第二配置请求,使得第二通信装置响应于该第二配置请求进行信号配置,并接收第二通信装置发送的第三配置信息。该第二配置请求包含第一传输参数集和第二传输参数集的信息,该第三配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。该种实现使得第一通信装置根据第三配置信息指示的配置结果成功接收第一信号和第二信号。
一种可能的实现中,第一通信装置确定第一传输参数集和第二传输参数集,根据第一传输参数集和第二传输参数集进行信号配置,并发送第四配置信息,该第四配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。该种实现使得第二通信装置和第一通信装置之间根据该信号配置的结果成功发收第一信号和第二信号。
第二方面,本申请实施例提供一种无线感知的方法,该方法包括:第二通信装置获取第一传输参数集和第二传输参数集,其中第一传输参数集对应第一信号,第一传输参数集中的至少一个参数满足第一条件,该第一条件与目标测距范围相关;第二传输参数集对应第二信号,第二传输参数集中的至少一个参数满足第二条件,该第二条件与目标感知精度相关;第二通信装置根据第一传输参数集和第二传输参数集向第一通信装置发送该第一信号和第二信号;其中上述第一信号和第二信号用于进行感知。
一种可能的实现中,第二通信装置发送第一配置信息,该第一配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。该种实现使得,第二通信装置和第一通信装置之间根据该信号配置的结果成功发收第一信号和第二信号。
一种可能的实现中,第二通信装置发送第一配置请求,使得第一通信装置响应于该第一配置请求进行信号配置,并接收第一通信装置发送的第二配置信息。该第一配置请求包含第一传输参数集和第二传输参数集的信息;该第二配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。该种实现使得第二通信装置和第一通信装置之间根据该信号配置的结果成功发收第一信号和第二信号。
一种可能的实现中,第二通信装置接收第二配置请求,响应于该第二配置请求进行信号配置,并发送的第三配置信息。该第二配置请求包含第一传输参数集和第二传输参数集的信息,该第三配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。该种实现使得第二通信装置和第一通信装置之间根据该信号配置的结果成功发收第一信号和 第二信号。
一种可能的实现中,第二通信装置接收第四配置信息,该第四配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。该种实现使得第二通信装置和第一通信装置之间根据该信号配置的结果成功发收第一信号和第二信号。
第三方面,本申请实施例还提供一种通信装置,该通信装置可以用于第一方面的第一通信装置,该通信装置可以是终端设备或网络设备,也可以是终端设备或网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和终端设备或网络设备匹配使用的装置。
一种可能的实现中,该通信装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块或单元,该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
一种可能的实现中,该通信装置可以包括处理单元和收发单元。处理单元用于调用收发单元执行接收和/或发送的功能。例如:收发单元,用于根据第一传输参数集和第二传输参数集分别接收第二通信装置发送的第一信号和第二信号;处理单元,用于根据第一信号和第二信号进行感知得到感知结果;其中,第一传输参数集对应第一信号,第一传输参数集包括第一信号对应的第一子载波个数,第二传输参数集对应第二信号,第二传输参数集包括第二信号对应的第二子载波个数,其中,第二子载波个数少于第一子载波个数;第一传输参数集根据目标测距范围确定,第二传输参数集根据目标感知精度确定。
一种可能的实现中,处理单元具体用于根据第一信号进行感知得到第一结果,根据第二信号进行感知得到第二结果,以及根据该第一结果和第二结果确定感知结果。
可选的,收发单元还用于接收第一配置信息。该第一配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,收发单元还用于接收第一配置请求;处理单元还用于响应于该第一配置请求,进行信号配置;收发单元还用于发送第二配置信息。该第一配置请求包含第一传输参数集和第二传输参数集的信息;该第二配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,收发单元还用于发送第二配置请求,使得第二通信装置响应于该第二配置请求进行信号配置,还用于接收第二通信装置发送的第三配置信息。该第二配置请求包含第一传输参数集和第二传输参数集的信息,该第三配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,收发单元用于发送第四配置信息,该第四配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
一种可能的实现中,上述处理单元为处理器,上述收发单元为收发器。
另一种可能的实现中,该通信装置可以包括:接收单元和感知单元,其中接收单元用于用于根据第一传输参数集和第二传输参数集分别接收第二通信装置发送的第一信号和第二信号;感知单元,用于根据第一信号和第二信号进行感知,得到感知结果;其中第一传输参数集对应第一信号,第一传输参数集中的至少一个参数满足第一条件,该第一条件与目标测距范围相关;第二传输参数集对应第二信号,第二传输参数集中的至少一个参数满足第二条件,该第二条件与目标感知精度相关。
一种可能的实现中,感知单元具体用于根据第一信号进行感知得到第一结果,根据第二信号进行感知得到第二结果,以及根据该第一结果和第二结果确定感知结果。
可选的,接收单元还用于接收第一配置信息。该第一配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,该通信装置还包括:发送单元和配置单元,接收单元还用于接收第一配置请求;配置单元用于响应于该第一配置请求,进行信号配置;发送单元用于发送第二配置信息。该第一配置请求包含第一传输参数集和第二传输参数集的信息;该第二配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,该通信装置还包括:发送单元,该发送单元用于发送第二配置请求,使得第二通信装置响应于该第二配置请求进行信号配置,接收单元还用于接收第二通信装置发送的第三配置信息。该第二配置请求包含第一传输参数集和第二传输参数集的信息,该第三配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,该通信装置还包括:发送单元,该发送单元用于发送第四配置信息,该第四配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
第三方面及其各种可能的实现中的通信装置的有益效果参见第一方面及其各种可能的实现,此处不再赘述。
第四方面,本申请实施例还提供一种通信装置,该通信装置可以用于第二方面的第二通信装置,该通信装置可以是终端设备或网络设备,也可以是终端设备或网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和终端设备或网络设备匹配使用的装置。
一种可能的实现中,该通信装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块或单元,该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
一种可能的实现中,该通信装置可以包括处理单元和收发单元。处理单元用于调用收发单元执行接收和/或发送的功能。例如:处理单元,用于获取第一传输参数集和第二传输参数集,其中第一传输参数集对应第一信号,第一传输参数集中的至少一个参数满足第一条件,该第一条件与目标测距范围相关;第二传输参数集对应第二信号,第二传输参数集中的至少一个参数满足第二条件,该第二条件与目标感知精度相关;收发单元,用于根据第一传输参数集和第二传输参数集发送第一信号和第二信号,其中该第一信号和第二信号用于进行感知。
可选的,收发单元还用于发送第一配置信息,该第一配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,收发单元还用于发送第一配置请求,使得第一通信装置响应于该第一配置请求进行信号配置,还用于接收第一通信装置发送的第二配置信息。该第一配置请求包含第一传输参数集和第二传输参数集的信息;该第二配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,收发单元还用于接收第二配置请求,处理单元还用于响应于该第二配置请求进行信号配置,收发单元还用于发送的第三配置信息。该第二配置请求包含第一传输参数集和第二传输参数集的信息,该第三配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,收发单元还用于接收第四配置信息,该第四配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
一种可能的实现中,上述处理单元为处理器,上述收发单元为收发器。
另一种可能的实现中,该通信装置包括:获取单元和发送单元,该获取单元用于,用于 获取第一传输参数集和第二传输参数集,其中第一传输参数集对应第一信号,第一传输参数集中的至少一个参数满足第一条件,该第一条件与目标测距范围相关;第二传输参数集对应第二信号,第二传输参数集中的至少一个参数满足第二条件,该第二条件与目标感知精度相关;该发送单元用于根据第一传输参数集和第二传输参数集发送第一信号和第二信号,其中该第一信号和第二信号用于进行感知。
可选的,发送单元还用于发送第一配置信息,该第一配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,发送单元还用于发送第一配置请求,使得第一通信装置响应于该第一配置请求进行信号配置,该通信装置还包括接收单元,用于接收第一通信装置发送的第二配置信息。该第一配置请求包含第一传输参数集和第二传输参数集的信息;该第二配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,该通信装置还包括接收单元和配置单元,该接收单元用于接收第二配置请求,该配置单元用于响应于该第二配置请求进行信号配置,发送单元还用于发送的第三配置信息。该第二配置请求包含第一传输参数集和第二传输参数集的信息,该第三配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,该通信装置还包括接收单元还用于接收第四配置信息,该第四配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
第四方面及其各种可能的实现中的通信装置的有益效果参见第二方面及其各种可能的实现,此处不再赘述。
第五方面,本申请实施例还提供一种第一通信装置,包括逻辑电路和输入输出接口,输入输出接口用于接收第一信号和第二信号,第一信号与第一传输参数集对应,第二信号与第二传输参数集对应;逻辑电路,用于根据第一信号和第二信号进行感知,得到感知结果;其中第一传输参数集对应第一信号,第一传输参数集中的至少一个参数满足第一条件,第一条件与目标测距范围相关;第二传输参数集对应第二信号,第二传输参数集中的至少一个参数满足第二条件,第二条件与目标感知精度相关。
一种可能的实现中,逻辑电路具体用于根据第一信号进行感知得到第一结果,根据第二信号进行感知得到第二结果,以及根据该第一结果和第二结果确定感知结果。
可选的,输入输出接口还用于接收第一配置信息。该第一配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,输入输出接口还用于接收第一配置请求;逻辑电路还用于响应于该第一配置请求,进行信号配置;输入输出接口还用于输出第二配置信息。该第一配置请求包含第一传输参数集和第二传输参数集的信息;该第二配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,输入输出接口还用于输出第二配置请求,使得第二通信装置响应于该第二配置请求进行信号配置,还用于接收第二通信装置发送的第三配置信息。该第二配置请求包含第一传输参数集和第二传输参数集的信息,该第三配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,输入输出接口还用于输出第四配置信息,该第四配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
第五方面及其各种可能的实现中的通信装置的有益效果参见第一方面及其各种可能的实 现,此处不再赘述。
第六方面,本申请实施例还提供一种第二通信装置,包括逻辑电路和输入输出接口。逻辑电路,用于获取第一传输参数集和第二传输参数集,其中第一传输参数集对应第一信号,第一传输参数集中的至少一个参数满足第一条件,该第一条件与目标测距范围相关;第二传输参数集对应第二信号,第二传输参数集中的至少一个参数满足第二条件,该第二条件与目标感知精度相关;输入输出接口,用于根据第一传输参数集和第二传输参数集输出第一信号和第二信号,其中该第一信号和第二信号用于进行感知。
可选的,输入输出接口还用于输出第一配置信息,该第一配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,输入输出单元还用于输出第一配置请求,使得第一通信装置响应于该第一配置请求进行信号配置,还用于接收第一通信装置发送的第二配置信息。该第一配置请求包含第一传输参数集和第二传输参数集的信息;该第二配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,输入输出接口还用于输出还用于接收第二配置请求,逻辑电路还用于响应于该第二配置请求进行信号配置,输入输出单元还用于输出第三配置信息。该第二配置请求包含第一传输参数集和第二传输参数集的信息,该第三配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,输入输出接口还用于接收第四配置信息,该第四配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
第六方面及其各种可能的实现中的通信装置的有益效果参见第二方面及其各种可能的实现,此处不再赘述。
第七方面,本申请实施例还提供一种第一通信装置,包括处理器,用于执行以下方法:
接收第一信号和第二信号,第一信号与第一传输参数集对应,第二信号与第二传输参数集对应;根据第一信号和第二信号进行感知,得到感知结果;其中第一传输参数集对应第一信号,第一传输参数集中的至少一个参数满足第一条件,第一条件与目标测距范围相关;第二传输参数集对应第二信号,第二传输参数集中的至少一个参数满足第二条件,第二条件与目标感知精度相关。
一种可能的实现中,该处理器具体用于根据第一信号进行感知得到第一结果,根据第二信号进行感知得到第二结果,以及根据该第一结果和第二结果确定感知结果。
可选的,该处理器还用于接收第一配置信息。该第一配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,该处理器还用于接收第一配置请求;响应于该第一配置请求,进行信号配置;以及输出第二配置信息。该第一配置请求包含第一传输参数集和第二传输参数集的信息;该第二配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,该处理器还用于输出第二配置请求,使得第二通信装置响应于该第二配置请求进行信号配置,还用于接收第二通信装置发送的第三配置信息。该第二配置请求包含第一传输参数集和第二传输参数集的信息,该第三配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,该处理器还用于输出第四配置信息,该第四配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
一种可能的实现中,处理器通过执行存储器中存储的指令,以实现第七方面中处理器所执行的方法。可选的,该通信装置还包括该存储指令的存储器。
第八方面,本申请实施例还提供一种第二通信装置,包括处理器,用于执行以下方法:
获取第一传输参数集和第二传输参数集,其中第一传输参数集对应第一信号,第一传输参数集中的至少一个参数满足第一条件,该第一条件与目标测距范围相关;第二传输参数集对应第二信号,第二传输参数集中的至少一个参数满足第二条件,该第二条件与目标感知精度相关;根据第一传输参数集和第二传输参数集输出第一信号和第二信号,其中该第一信号和第二信号用于进行感知。
可选的,该处理器还用于输出第一配置信息,该第一配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,该处理器还用于输出第一配置请求,使得第一通信装置响应于该第一配置请求进行信号配置,还用于接收第一通信装置发送的第二配置信息。该第一配置请求包含第一传输参数集和第二传输参数集的信息;该第二配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,该处理器还用于接收第二配置请求,响应于该第二配置请求进行信号配置,以及输出第三配置信息。该第二配置请求包含第一传输参数集和第二传输参数集的信息,该第三配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
可选的,该处理器还用于接收第四配置信息,该第四配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
结合上述第一至第八方面的方法或装置,还包括以下一种或多种可能的实现方式:
一种可能的实现中,第一传输参数集还包括以下至少一个:第一信号对应的第一子载波个数M 1、第一信号对应的第一子载波间隔数K 1、第一信号对应的第一正交频分复用OFDM符号数L 1和第一信号对应的第一样本能量E 1,其中K 1和L 1为正整数,E 1大于或等于0;第二传输参数集还包括以下至少一个:第二信号对应的第二子载波个数M 2、第二信号对应的第二子载波间隔数K 2、第一信号对应的第二正交频分复用OFDM符号数L 2和第一信号对应的第二样本能量E 2,其中K 2和L 2为正整数,E 2大于或等于0。
信号对应的子载波个数,例如M 1或M 2,表示承载该信号的子载波个数。信号的子载波间隔数,例如K 1或K 2,表示信号在频域的密度。信号的OFDM符号数,例如L 1或L 2,表示信号在占用的时域资源,即信号在时域上延续的时间长短。信号的样本能量,例如E 1或E 2表示构成信号的资源单元的幅度的平方的均值。信号的上述传输参数可以影响基于信号进行感知的感知结果的准确度,还和传输信号时占用的时、频、功率域的传输资源相关。通过选择合适的传输参数可以实现满足感知需求的同时提高资源利用率。
一种可能的实现中,第一传输参数集包括第一信号对应的第一子载波间隔数K 1
上述第一子载波间隔数K 1根据目标测距范围确定。相位测距时,最大不模糊距离根据两个子载波之间的频率差确定。两个子载波之间的频率差可以通过子载波间隔数表示。因此根据目标测距范围确定第一信号对应的第一子载波间隔数K 1可以使得基于第一信号的测距结果在目标测距范围内没有距离模糊。
一种可能的实现中,第一传输参数集中的至少一个参数满足第一条件,该第一条件为:
Figure PCTCN2022100350-appb-000001
其中,D为目标测距范围,K 1为第一子载波间隔数,Δf为第一信号对应的子载波间隔,c为信号传播速度,也就是信号的传播速度,γ为大于0的预设值。
在不同测距场景下,预设值γ的取值不同:在无源目标测距场景中,γ为大于1且小于或等于2的值,其中在自发自收的场景中,γ可以等于2,在有源目标测距场景中,γ可以等于1。
上述第一条件中,D为预定义的参数,子载波间隔(subcarrier spacing,SCS)Δf是预定义的系统参数,信号的传播速度c是已知参数,γ是可以根据测距场景确定的参数,因此可以通过这些参数确定第一信号的子载波间隔数K 1
一种可能是实现中,第一子载波间隔数K 1的值为满足上述第一条件的最大整数。第一信号的子载波间隔数越大,表示承载第一信号的子载波的密度越小,可利用的剩余频域资源越多。该种可能的实现,在满足目标测距范围的同时,提高频域资源的利用率。
一种可能的实现中,第一传输参数集包括:第一信号对应的第一子载波个数M 1,第一信号对应的第一正交频分复用OFDM符号数L 1和第一信号对应的第一样本能量E 1。第一子载波个数M 1,第一OFDM符号数L 1和第一样本能量E 1满足第三条件,该第三条件与第二信号的最大不模糊距离相关。第三条件可以使得第一信号的精度满足基于第二信号的测距不模糊。
一种可能的实现中,第一子载波个数M 1,第一OFDM符号数L 1和第一样本能量E 1根据第一通信装置的噪声功率谱密度(noise power spectral density)和第二通信装置到第一通信装置的路径损耗确定。在相位测距中,测距精度与射频信号的频率和信噪比相关,其中信号的等效信噪比根据信号的子载波个数、OFDM符号数和样本能量以及接收机(第一通信装置)的噪声功率谱密度、发射机到接收机的路径损耗确定。该种可能的实现中,在已知的测距精度要求下,可以根据噪声功率谱密度、路径损耗确定第一子载波个数,第一OFDM符号数L 1和第一样本能量E 1,使得基于第一信号的测距满足该测距精度要求。
一种可能是实现中,第一传输参数集中的参数满足第三条件,该第三条件为:
Figure PCTCN2022100350-appb-000002
其中,B RMS为第一信号均方根带宽,SNR 1为第一信号的等效信噪比,f c为射频载波中心频率,c为信号传播速度,β 1为第一修正参数;
SNR 1根据第一信号对应的子载波个数M 1、第一信号对应的OFDM符号数L 1、第一信号对应的样本能量E 1、第一通信装置的噪声功率谱密度和第二通信装置到第一通信装置的路径损耗确定。
上述第三条件中
Figure PCTCN2022100350-appb-000003
表示第一信号的测距精度,c/f c表示第二信号的波长,此处假设基于第二信号的测距为单载波相位测距,第二信号的波长为其最大不模糊距离。本申请不限定第二信号采用单载波相位测距,若第二信号的测距为多载波差分相位测距,则c/f c应替换为多载波信号的等效波长。第三条件可以满足基于第一信号的测距精度满足基于第二信号的测距不模糊。
一种可能的实现中,第二传输参数集包括第二信号对应的第二子载波个数M 2,第二信号对应的第二正交频分复用OFDM符号数L 2和第二信号对应的第二样本能量L 2;第二子载波个数M 2,第二OFDM符号数L 2和第二样本能量E 2满足第二条件。第二条件可以使得基于第二信号的测距满足目标测距精度。
一种可能的实现中,第二子载波个数M 2,第二OFDM符号数L 2和第二样本能量E 2根据目标感知精度、第一通信装置的噪声功率谱密度以及第二通信装置到第一通信装置的路径损 耗确定。如上文所述,在相位测距中,测距精度与射频信号的频率和信噪比相关,其中信号的等效信噪比根据信号的子载波个数、OFDM符号数和样本能量以及接收机(第一通信装置)的噪声功率谱密度、发射机到接收机的路径损耗确定。该种可能的实现中,在已知的目标测距精度下,可以根据噪声功率谱密度、路径损耗确定第二子载波个数M 1,第二OFDM符号数L 2和第二样本能量E 2,使得基于第二信号的测距满足目标测距精度的需求。
一种可能的实现中,第二传输参数集中的参数满足第二条件,该第二条件为:
Figure PCTCN2022100350-appb-000004
其中,δ为目标感知精度,SNR 2为第二信号的等效信噪比,f c为射频载波中心频率,c为信号传播速度,β 2为第二修正参数;SNR 2根据第二子载波个数M 2、第二OFDM符号数L 2、第二样本能量E 2、第一通信装置的噪声功率谱密度和第二通信装置到第一通信装置的路径损耗确定。
通过上述第二条件确定的第二子载波个数M 1,第二OFDM符号数L 2和第二样本能量E 2,可以使得基于第二信号的测距精度满足目标测距精度。
一种可能的实现中,第二信号对应的第二子载波个数M 2少于第一信号对应的第一子载波个数M 1,即采用更少的子载波承载第二信号,可以降低持续测距时的资源开销,提供资源利用率。
一种可能的实现中,第二信号对应的第二子载波间隔数K 2少于第一信号对应的第一子载波间隔数K 1,即第二信号对应的子载波密度大于第一信号对应的子载波密度,可以降低持续测距时的资源开销。
一种可能的实现中,第二信号对应的第二OFDM符号数L 2大于或等于第一信号对应的第一OFDM符号数L 1。第二信号在时域持续的时间比第一信号时域持续的时间更长,有利于对目标的持续测距。
一种可能的实现中,第二信号对应的第二样本能量E 2小于或等于第一信号对应的第一样本能量E 1。第二信号使用更低的样本能量(小功率)可以降低持续测距时的资源开销。
一种可能的实现中,第一信号和/或第二信号在同一个子载波上相邻的OFDM符号中保持相位连续。同一个子载波上的信号在相邻的OFDM符号中保持相位连续时,可以保证相位检测精度高,同时接收机的信号处理复杂度低。
一种可能的实现中,第一信号和/第二信号是经过相位补偿后的信号。具体地,第一信号和/或第二信号的同一个子载波上的第l个OFDM符号对应的资源单元RE的相位值是根据其相邻的第(l+1)个OFDM符号对应的资源单元RE的相位值进行相位补偿的;或者第一信号和/或第二信号的同一个子载波上的第l+1个OFDM符号对应的资源单元RE的相位值是根据其相邻的第l个OFDM符号对应的资源单元RE的相位值进行相位补偿的。
该种可能的实现中,第一通信装置接收的第一信号和/或第二信号是经过的相位补偿的,使得根据第一信号和/或第二信号的相位测距的处理复杂度低,且测距精度高。
可选的,第一通信装置向第二通信装置发送第一相位补偿指示,使得第二通信装置响应于该第一相位补偿指示对第一信号和/或第二信号进行相位补偿。
一种可能的实现中,第一信号和/或第二信号占用的子载波的基带频率索引i满足以下第四条件:
Figure PCTCN2022100350-appb-000005
其中Δf为子载波间隔,T CP为OFDM循环前缀长度,n为整数。可选的,针对选择的特定基带频域索引的子载波,第一信号和/或第二信号在同一个子载波的频域位置对应的连续多个RE的值相同。
满足基带频率索引满足上述第四条件的子载波对应的时域波形可以在相邻的OFDM符号中保持相位连续。
第九方面,本申请实施例还提供一种通信装置,包括处理器,用于执行存储器中存储的计算机程序(或计算机可执行指令),当计算机程序(或计算机可执行指令)被执行时,使得该装置执行如第一方面及第一方面各个可能的实现中的方法。
在一种可能的实现中,处理器和存储器集成在一起;
在另一种可能的实现中,上述存储器位于该通信装置之外。
该通信装置还包括通信接口,该通信接口用于该通信装置与其他设备进行通信,例如数据和/或信号的发送或接收。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。
第十方面,本申请实施例还提供一种通信装置,包括处理器,用于执行存储器中存储的计算机程序(或计算机可执行指令),当计算机程序(或计算机可执行指令)被执行时,使得该装置执行如第二方面及第二方面各个可能的实现中的方法。
在一种可能的实现中,处理器和存储器集成在一起;
在另一种可能的实现中,存储器位于该通信装置之外。
该通信装置还包括通信接口,该通信接口用于该通信装置与其他设备进行通信,例如数据和/或信号的发送或接收。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。
第十一方面,本申请实施例还提供一种第一通信装置,用于执行上述第一方面及其各种可能的实现中的方法。
第十二方面,本申请实施例还提供一种第二通信装置,用于执行上述第二方面及其各种可能的实现中的方法。
第十三方面,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(或计算机可执行指令),其中,该计算机程序(或计算机可执行指令)被处理器执行,使得上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现中所述的方法的部分或全部步骤被执行。
第十四方面,本申请实施例还提供了一种包括计算机可执行指令的计算机程序产品,当该计算机程序产品被运行时,使得上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现中所述的方法的部分或全部步骤被执行。
第十五方面,本申请实施例还提供了一种包括计算机可执行指令的计算机程序,当该计算机程序被运行时,使得上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现中所述的方法的部分或全部步骤被执行。
第十六方面,本申请实施例还提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十七方面,本申请实施例还提供一种通信系统,包括第三方面、第五方面、第七方面、第九方面及前述各方面的各种可能的实现提供的第一通信装置和第四方面、第六方面、第八方面、第十方面及前述各方面的各种可能的实现提供的第二通信装置。
附图说明
下面将对本申请实施例涉及的一些附图进行说明。
图1是本申请实施例适用的一种通信系统的示意图。
图2是一种相位模糊的波形示意图。
图3是一种相位测距原理的示意图。
图4a是下行到达时间差定位原理示意图。
图4b是上行到达时间差定位原理示意图。
图5a是一种定位参考信号资源单元分布示意图。
图5b是一种探测参考信号资源单元分布示意图。
图6a是一种定位参考信号的时域分布示意图。
图6b是一种探测参考信号的时域元分布示意图。
图7a是一种主定位参考信号和辅定位参考信号的配置示意图。
图7b是一种主定位参考信号和辅定位参考信号的配置示意图。
图8是本申请实施例适用的一种应用场景示意图。
图9是本申请实施例适用的又一种应用场景示意图。
图10是本申请实施例提供的一种无线感知方法的交互示意图。
图11a是本申请实施例提供的第一信号和第二信号的时频域分布示意图。
图11b是定位参考信号的时频域分布示意图。
图11c是探测参考信号的时频域分布示意图。
图12是本申请实施例提供的一种无线感知方法的交互示意图。
图13是本申请实施例提供的一种无线感知方法的交互示意图。
图14是本申请实施例提供的一种无线感知方法的交互示意图。
图15是本申请实施例提供的一种无线感知方法的交互示意图。
图16是本申请实施例提供的一种通信装置的示意图。
图17是本申请实施例提供的一种通信装置的示意图。
图18是本申请实施例提供的一种通信装置的示意图。
图19是本申请实施例提供的一种通信装置的示意图。
具体实施方式
本申请实施例提供一种无线通信的方法及装置,实现满足感知需求的同时,灵活地配置资源。
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请中“/”表示“或”。术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,B和/或C,可以表示:单独存在B,同时存在B和C,单独存在C这三种情况。本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于 区别不同的对象,没有明确说明的情况下不用于描述对象的特定顺序。例如,第一通信装置和第二通信装置等是用于区别不同的通信装置,而不是用于描述目标对象的特定顺序。在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明,本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或方案不应被解释为比其它实施例或设计方案更优选或更具优势。在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元。
本申请的技术方案可以应用于第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的蜂窝系统,例如,长期演进(long term evolution,LTE)系统等第四代(4th generation,4G)通信系统,新无线(new radio,NR)系统等第五代(5th generation,5G)通信系统,还可以应用于无线保真(wireless fidelity,WiFi)系统,支持多种无线技术融合的通信系统,或者是面向未来的演进系统。
图1为适用于本申请实施例的通信系统的示例。参见图1,通信系统100包括至少一个网络设备110以及至少一个终端120。
本申请实施例中提及的终端120,可以是一种具有无线收发功能的设备,具体可以指用户设备(user equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动台(mobile station)、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端设备还可以是卫星电话、蜂窝电话、智能手机、无线数据卡、无线调制解调器、机器类型通信设备、可以是无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、高空飞机上搭载的通信设备、可穿戴设备、无人机、机器人、设备到设备通信(device-to-device,D2D)中的终端、车到一切(vehicle to everything,V2X)中的终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端或者未来通信网络中的终端设备等,本申请不作限制。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统。该装置可以被安装在终端设备中或者和终端设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
网络设备110是具有无线收发功能的设备,用于与终端设备进行通信,可以是LTE中的演进型基站(evolved Node B,eNB或eNodeB);或者5G网络中的基站或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或者非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等。可选的,本申请实施例中的网络设备可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、5G基站、未来实现基站功能的设备、WiFi系统中的接入节点,传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(Device-to-Device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等,本申请实施例对此不作具体限定。
网络设备110可以和核心网设备进行通信交互,向终端设备提供通信服务。核心网设备例如为5G网络核心网(core network,CN)中的设备。核心网作为承载网络提供到数据网络的接口,为终端提供通信连接、认证、管理、策略控制以及对数据业务完成承载等。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统。该装置可以被安装在网络设备中或者和网络设备匹配使用。
为了便于理解本申请公开的实施例,对本申请涉及的相关概念进行简单的介绍:
1.均方根(root mean square,RMS)带宽:对于时域信号s(t),其均方根带宽B RMS定义为:
Figure PCTCN2022100350-appb-000006
其中,f是频率,S(f)是时域信号s(t)经过傅里叶变换后的频谱,|S(f)| 2是信号的功率谱密度。
2.相位模糊(Phase ambiguity):对于一个周期信号,因为其波形的周期性,接收机检测到的相位ψ(t)和该信号的真实相位φ(t)之间可能相差整数个2π弧度,即ψ(t)-φ(t)=N·2π,N为整数。这种现象称为相位模糊,其中N称为整数周期模糊度,简称整周模糊度(integer ambiguity)。例如,对于一个正弦波单音信号,接收机检测到相位为π/2,而真实相位可能为π/2±N·2π,如图2所示,真实相位可能是“x”标记位置中的任何一个。
3.相位测距:通过检测信号在传播过程中的相位变化进行测距。信号可以是单载波信号,或者可以是包含多个载波的信号,例如双载波信号、正交频分复用(orthogonal frequency division multiplexing,OFDM)信号等。
如图3所示,对于单载波信号,假设单载波信号在发送端和接收端之间的相位差为φ弧度,则可以推断发送端和接收端之间的距离d为:
Figure PCTCN2022100350-appb-000007
其中,未知整数N为整周模糊度,λ 1为单载波信号的波长。单载波信号只有一个频率成分,在频域信号处理流程和算法可以极大简化,在时域也可以用锁相环(Phase Locked Loop,PLL)等进行低复杂度的处理,实现频率检测和相位追踪,因此利用单载波相位测距具有信号处理简单的优点。另外,单载波信号在时间上相位连续变化(不存在跳变)的特点非常适合于做连续的相位检测,从而适用于对目标进行持续测距的应用场景。目标的初始距离已知(即初始的整周模糊度已知)时,可以通过持续检测单载波信号的相位变化,来更新目标的距离。只要每次检测和上一次检测的时间间隔内,目标的移动距离不超过单载波的波长,则不会引入距离模糊问题。
对于双载波信号,相位测距的基本原理如下:设双载波信号中的两个载波的频率分别为f 1和f 2,频率差为Δf=|f 1-f 2|,双载波信号的两个频率成分f 1和f 2在发射端和接收端的相位差分别为φ 1=2πf 1τ,φ 2=2πf 2τ,信号传播速度(电磁波传播速度)为c,则经过时间τ后,双载波信号的传输距离d为:
Figure PCTCN2022100350-appb-000008
其中,Δφ=|φ 12|,相位测量存在相位模糊现象,即相位以2π为周期,无法直接检 测到Δφ的值,只能检测到位于0和2π之间的值
Figure PCTCN2022100350-appb-000009
可以表示为:
Figure PCTCN2022100350-appb-000010
Figure PCTCN2022100350-appb-000011
其中N为整周模糊度。本申请中定义双载波信号的等效波长为
Figure PCTCN2022100350-appb-000012
两个以上的多载波相位测距原理与双载波相位测距原理类似,发射机发送多个载波{f i},i=1,2,…M,相应的,接收机检测到多个相位差{φ i},i=1,2,…,M,频率分量f i在发射端和接收端的相位差为φ i=2πf iτ。
当多个相位差{φ i},i=1,2,…,M不存在相位模糊时,这些相位差{φ i},i=1,2,…,M和载波频率{f i},i=1,2,…M成线性关系,即φ i=αf i,其中斜率α满足α=2πτ。通过对相位差{φ i},i=1,2,…,M和载波频率{f i},i=1,2,…,M之间的线性关系进行拟合,可以得到该线性关系的斜率α,再根据α=2πτ得到信号传播时间τ,并计算传播距离d:
Figure PCTCN2022100350-appb-000013
斜率α拟合方法可以是迫零法(zero-forcing,ZF)、线性最小均方误差法(linear minimum mean square error,LMMSE)等方法。
当多个相位差{φ i},i=1,2,…,M存在相位模糊时,无法直接进行线性拟合。一种可能的实现是,假设同一组载波的相位差{φ i},i=1,2,…,M的整周模糊度N相同,即φ i+2πN=2πf iτ。然后,用{φ i},i=2,…,M和φ 1做差得到
Figure PCTCN2022100350-appb-000014
其中
Figure PCTCN2022100350-appb-000015
从而消除未知的整周模糊度N;对应地,用{f i},i=2,…,M和f 1做差得到{Δf i},i=2,…,M,其中Δf=|f 1-f i|;则
Figure PCTCN2022100350-appb-000016
和{f i},i=2,…,M满足简单的线性关系
Figure PCTCN2022100350-appb-000017
可以通过ZF和LMMSE等线性拟合方法得到线性关系的斜率α,从而通过上述公式(3)估计传播距离d。同一组载波的相位差的整周模糊度N相同的假设成立的前提是:
Figure PCTCN2022100350-appb-000018
的值都小于2π,即
Figure PCTCN2022100350-appb-000019
由此可以得到:
Figure PCTCN2022100350-appb-000020
或者等价地:
Figure PCTCN2022100350-appb-000021
测距范围满足上述公式(4)时,可以保证线性拟合的方法在多载波测距中正常工作。多载波信号的最大不模糊距离为其非零功率的子载波中的任意两个子载波的频率差;假设多载波信号的子载波间隔均匀,即Δf i对于不同i的值是相同的,那么可以定义多载波信号的等效波长为
Figure PCTCN2022100350-appb-000022
4.最大不模糊距离:当利用信号的相位进行测距时,相位模糊会带来距离模糊的现象,即接收端测得距离d和真实距离d 0之间可能相差整数个波长λ,即d-d 0=Nλ,N为整周模糊度,因此接收端无法判断自己位于多个可能的距离点中的哪一个点。λ称为最大不模糊距离(Unambiguous range)。
在单载波相位测距中,λ为载波波长,例如NR频段中,2GHz频率的载波的波长是15cm,3GHz频率的载波的波长是10cm,再例如无线局域网(wireless local area network,WLAN)频段中5GHz频率的载波的波长是6cm。这些cm级的最大不模糊距离,导致在实际应用中的m级甚至km级测距范围内存在距离模糊,要获得真实距离,则需要解算(resolve)出未知的整周模糊度;
在多载波差分相位测距中,λ为等效波长,即信号传播速度除以载波频率的差,因为载波频率差通常远远小于载波本身的频率,所以最大不模糊距离可以大大提高。一个足够大的最大不模糊距离,可以保证在目标测距范围内(in a targeted ranging coverage)不存在距离模糊,从而解决未知整周模糊度的问题。
举例来说,假设信号传播速度为3×10 8m/s,假设单载波信号频率为3GHz,则其最大不模糊距离为
Figure PCTCN2022100350-appb-000023
假设双载波信号频率为3GHz和3.1GHz,则其最大不模糊距离 为
Figure PCTCN2022100350-appb-000024
因此,在该示例中,凡是超过10cm的测距范围,单载波测距都可能存在距离模糊的问题,都需要解算未知的整周模糊度,而双载波测距可以支持更大的测距范围(3m)内进行无模糊的测距。再以NR中的子载波配置进行举例。对于中心频率为3GHz的NR部分带宽(bandwidth partition,BWP)配置,采用单载波测距则其最大不模糊距离为10cm,而如果采用双载波测距,假设子载波间隔为15kHz,用于测距的两个子载波的频率差为10个资源块(Resource block,RB),即15kHz*12*10=1.8MHz,则其最大不模糊距离为166.67m。
5.测距精度:描述测距结果的准确度,即测量的距离与实际距离之间的误差大小。对于一个测距系统,其对某个目标的测量距离可以建模为一个随机变量d,d受系统误差和噪声影响。设目标的真实距离为d 0,则一种常见的测距精度δ定义是:测量值d和真实值d 0之间的差的均方根,即
Figure PCTCN2022100350-appb-000025
其中,E[x]表示一个随机变量x的期望(mean)。本申请中提到的测距精度可以按照上述公式(5)定义。
根据克拉默-饶界(Cramer-Rao Lower Bound,CRLB,或简称CRB),利用基带信号进行测距,测距精度和带宽成反比;利用射频信号的相位进行测距,在无相位模糊的条件下,测距精度和射频信号的频率成反比。
6.基于时间差测量的定位
多个发送端发送由特定序列生成的信号,接收端接收多个发送端发送的信号并利用序列的自相关特性进相关运算,从而测量这些信号到达接收端的时间差。在二维空间定位的情形下,每个时间差对应一根以发送端为焦点的双曲线,多个双曲线相交的点为该接收端的位置。举例来说,NR支持两种基于时间差测量的定位方法:观测到达时间差(Observed Time Difference Of Arrival,OTDOA)和上行到达时间差(Uplink Time Difference Of Arrival,UTDOA)。
OTDOA定位原理如图4a所示,多个网络设备同时发送由金氏序列(Gold sequence)生成的PRS,终端接收并测量多个网络设备的信号(波形)到达终端的时间差,每个时间差对应一根以网络设备为焦点的双曲线,多个双曲线相交的点即为终端的位置。承载PRS的资源单元(resource element,RE)在一个时隙(slot)内按照预先定义的模式(pattern)在时频资源上分布,也就是,将PRS在时频域上进行映射(mapping)后会呈现出一定的模式。具体的映射方式根据时域的OFDM符号个数,时域的周期,频域的梳状(comb)间隔(表示频域密度)等参数确定。时域上,PRS在一个时隙的L PRS∈{2,4,6,12}个连续的符号上出现,PRS的周期为
Figure PCTCN2022100350-appb-000026
个时隙;频域上,PRS的密度取值为
Figure PCTCN2022100350-appb-000027
图5a为PRS的时频域分布的一种示意图,其中横坐标表示时域,纵坐标表示频域,每个方格表示一个RE,一个RE在时域上占用一个符号在频域上占用一个子载波,如图5a所示,PRS在时域上12个OFDM符号上分布,即L PRS=12,在频域上频域密度为每4个RE存在一个PRS的RE,即
Figure PCTCN2022100350-appb-000028
图6a为PRS的时域分布的一种示意图,其中横坐标表示时域,纵坐标表示频域,如图6a所示,PRS出现的周期
Figure PCTCN2022100350-appb-000029
为若干个时隙;在每个周期内PRS的模式重复2次,即每个周期内的若干个时隙中有2个时隙包含PRS;对于包含PRS的时隙,该时隙的14个符号中的12个符号上存在PRS;频域上,PRS按照一定频域密度的梳状结构分布,图中未表现具体的梳状结构分布。
UTDOA的原理如图4b所示,终端发送由ZC(Zadoff–Chu)序列生成的SRS,多个网 络设备接收并测量信号(波形)到达时间,每个到达时间的差定义一根以网络设备为焦点的双曲线,多个双曲线相交的点即为终端位置。与PRS类似,SRS在时频域上也按照一定的模式(pattern)出现。时域上,SRS在一个时隙内的
Figure PCTCN2022100350-appb-000030
个连续的符号上出现,SRS也按照配置以一定的周期出现,周期的单位为时隙;在频域上按照间隔为K TC∈{2,4,8}梳状结构出现。图5b为SRS的时频域分布的一种示意图,其中横坐标表示时域,纵坐标表示频域,每个方格表示一个RE,一个RE在时域上占用一个符号在频域上占用一个子载波,如图5b所示,SRS在时域上12个连续的OFDM符号上分布,即
Figure PCTCN2022100350-appb-000031
在频域上频域密度为每4个RE存在一个SRS的RE,K TC=4。图6b为PRS的时域分布的一种示意图,其中横坐标表示时域,纵坐标表示频域,如图6b所示,SRS出现周期为若干个时隙;在每个周期内SRS在一个时隙上出现,即每个周期内的若干个时隙中有1个时隙包含PRS;对于包含SRS的时隙,该时隙的14个符号中的12个符号上存在SRS;频域上,SRS按照一定频域密度的梳状结构分布,图中未表现具体的梳状结构分布。
基于通信的感知技术,可以应用于持续测距的场景,该场景中,需要持续对目标进行测距,从而实现对目标的持续测距。一种可能的实现中,持续对目标进行测距可以分成初次测距和持续测距两个阶段进行,初次测距阶段确定目标的初始距离,持续测距阶段基于测得的初始距离对目标进行持续测距。有了目标的先验信息(初次测距结果),持续测距阶段通常可以使用更少的资源达到和初次测距阶段一样的精度。但是目前NR中PRS和SRS的模式定义没有考虑这两个阶段进行灵活的资源配置,若采用NR中PRS和SRS进行持续测距,可能存在带宽和功率上的资源浪费。
一种可能的实现中,在NR下行测量和定位的基础上提供了主PRS(Primary PRS,P-PRS)和辅PRS(Secondary PRS,S-PRS)结合的方案用于下行测距和定位。P-PRS和PRS配置方式类似,按照系统配置,在固定的周期以固定的时长发送,功率较高且和数据不共存,可以提供基础的测距定位性能;S-PRS为一个灵活的辅助信号,在不存在P-PRS的时间进行传输,其启用与否(On/Off)、带宽、功率、是否与数据共存等均可灵活配置:其带宽、功率可以比P-PRS小,也可以比P-PRS大;其可以与数据共存,也可以在传输S-PRS时不允许数据传输。图7a和图7b为两种P-PRS和S-PRS的配置示意图,如图7a所示,S-PRS使用小带宽高功率并且和数据在时间上不共存;如图7b所示,S-PRS使用大带宽低功率并且和数据在时间上共存。该方案中S-PRS的信号相位不连续,且仍采用上述基于时间差测量的定位,因此在持续测距的场景中,需要进行大量采样点的相关运算或者复杂的参数估计,计算复杂度高。
针对上述问题,本申请提供一种无线感知方法和装置,以实现基于通信的感知技术应用于持续测距时,可以根据感知需求灵活分配信号传输资源。
本申请实施例提供的技术方案可以应用于对无源目标或有源目标进行感知,感知可以包括对目标或环境的物理参数进行测量,例如,测距、测速、定位、时间同步等。感知的目标可以是无源目标(动物、汽车、无人机),也可以是有源目标。一种可能的实现中,一个或多个发射机和一个或多个接收机对环境中存在的无源目标进行感知,图8为对无源目标进行感知的场景示意图,如图8的(a)场景中,通过网络设备之间传输信号对环境中的移动物体进行感知;如图8的(b)场景中,通过网络设备和终端之间传输信号对环境中的移动物体进行感知,举例来说,在智慧交通中网络设备和终端之间传输感知信号,利用网络设备或终端的感知能力感知路口是否有移动物体,从而辅助驾驶,防止出现事故。
一种可能的场景中网络设备向终端发送信号,终端根据该信号对无源目标进行感知(如实现 箭头所示);一种可能的场景中终端向网络设备发送信号,网络设备根据该信号对无源目标进行感知(如虚线箭头所示)。如图8的(c)场景中,通过终端之间传输信号对环境中的汽车进行感知;如图8的(d)场景中,通过网络设备自发自收信号对环境中的汽车进行感知。另一种可能的实现中,一个或多个发射机和一个或多个接收机之间进行感知,图9为对有源目标进行感知的场景示意图,图9中一个或多个网络设备与终端之间传输信号,从而实现对终端(有源目标)的感知,一种可能的场景中网络设备向终端发送信号,终端根据该信号进行感知(如实现箭头所示);一种可能的场景中终端向网络设备发送信号,网络设备根据该信号进行感知(如虚线箭头所示)。
图10为本申请实施例提供的无线感知方法200的交互示意图。无线感知方法200中,第二通信装置根据第一传输参数集和第二传输参数集向第一通信装置分别发送第一信号和第二信号,用于第一通信装置根据该第一信号和第二信号进行感知得到感知结果,第一信号对应的第一传输参数集中的至少一个参数满足与目标测距范围相关的第一条件,第二信号对应的第二传输参数集中的至少一个参数满足目标测距精度相关的第二条件,可以针对不同的感知需求,使用不同的传输参数集,实现传输资源的灵活配置。
本申请实施例涉及第一通信装置和第二通信装置。第一通信装置可以为终端或网络设备,第二通信装置也可以为终端或网络设备。在自发自收的场景下,第一通信装置和第二通信装置可以为一个装置。
S210.第一通信装置和/或第二通信装置确定第一传输参数集和第二传输参数集。
其中,第一传输参数集对应第一信号,第二传输参数集对应第二信号。第一传输参数集和第二传输参数集分别指示第一信号和第二信号的传输资源的信息,其中传输资源可以包括频域资源和/或时域资源。第一传输参数集中的至少一个参数满足第一条件,该第一条件根据目标测距范围确定,第二传输参数集中的至少一个参数满足第二条件,该第二条件根据目标感知精度确定。
第一信号和第二信号用于第一通信装置进行感知,第一信号和第二信号可以称为感知信号。可选的第一信号和第二信号也可以是参考信号。第一信号和第二信号具体可以是某种波形,或可以是承载在波形上某种序列。
一种可能的实现中,第一传输参数集包括对应第一信号的第一子载波个数;第二传输参数集包括对应第二信号的第二子载波个数。信号对应的子载波个数可以是承载该信号的子载波个数,子载波个数越多表示信号占用的频域资源越多。子载波个数为1,则表示用单载波承载该信号。一种可能的实现中,第二子载波个数少于第一子载波个数,也就是传输第二信号所用的频域资源少于传输第一信号所用的频域资源。
下文中将详细说明第一传输参数集和第二传输参数集相关的内容,此处不再赘述。
该步骤S210是可选步骤,第一通信装置和第二通信装置之间首次传输第一信号和第二信号时,需要确定第一传输参数集和第二传输参数集,首次传输之后的一段时间内,再次传输第一信号和第二信号时可以使用首次传输时的第一传输参数集和第二传输参数集。
S220.第二通信装置根据第一传输参数集和第二传输参数集分别发送第一信号和第二信号,相应的,第一通信装置根据第一传输参数集和第二传输参数集接收该第一信号和第二信号。
一种可能的实现中,第二通信装置在一个感知周期内分别发送第一信号和第二信号,第一通信装置在一个感知周期内分别接收第一信号和第二信号。第二通信装置周期性地发送第 一信号和第二信号,发送第一信号和第二信号的时域周期称为感知周期。一种可能的实现中,一个感知周期可以为若干个时隙,示例性的,一个感知周期为1~16个时隙。一种可能的实现中,感知周期的最大值可以为一个无线帧。
在LTE和NR中一个无线帧为10ms,一个无线帧等于10个子帧。LTE中1个子帧为2个时隙,一个时隙为7个OFDM符号;在NR中子帧的长度和子载波间隔相关,例如,子载波间隔为15KHz时一个子帧为一个时隙,子载波间隔为30KHz时一个子帧为2个时隙,子载波间隔为60KHz时一个子帧为4个时隙等等。NR中一个时隙为14个OFDM符号(普通循环前缀(normal CP)模式)或者12个OFDM符号(扩展循环前缀(extended CP)模式)。本申请中涉及的符号、时隙、子帧、无线帧可以为LTE中的取值,也可以为NR中的取值,还可以是未来演进的无线通信系统中的取值,本申请不做限定。
一种可能的实现中,一个感知周期的第一阶段传输第一信号,感知周期的第二阶段传输第二信号。本申请中第一信号可以为第一阶段感知信号,第二信号可以为第二阶段感知信号。
一种可能的实现中,第一阶段占用的时长短于第二阶段占用的时长。
S230.第一通信装置根据第一信号和第二信号进行感知得到感知结果。
第一通信装置根据第一信号和第二信号进行感知得到感知结果,具体包括:根据第一信号进行感知得到第一结果;根据第二信号进行感知得到第二结果;以及根据第一结果和第二结果确定感知结果。
如上文中所述,感知可以包括测距、测速、定位等等,下面以测距为例进行说明,但本申请提供的方法不限于测距,还可以应用于其他感知场景。
测距场景中,第一信号可以用于初始测距,第二信号可以用于持续测距。
一种可能的实现中,第一信号是多载波信号,第一通信装置根据第一信号进行感知得到第一结果,包括:基于第一信号,使用多载波相位测距方法得出目标距离的测量值d 1,即第一结果为d 1,第一信号的传输参数集中的参数是根据目标测距范围确定的,可以保证在目标测距范围内无距离模糊。
第一通信装置根据第二信号进行感知得到第二结果,包括:基于第二信号,使用相位测距方法得到目标距离的测量值{d 2,i},i=1,2,…,N,其中i为整周模糊度,即第二结果为{d 2,i},i=1,2,…,N。第二信号的传输参数没有考虑目标测距范围,因此可能存在距离模糊,测量值的个数N可以通过目标测距范围除以第二信号的最大不模糊距离得到。当第二信号为单载波信号时,第二信号的最大不模糊距离为第二信号的载波波长,即信号传播速度除以第二信号的载波频率;当第二信号为多载波信号时,第二信号的最大不模糊距离为等效波长,等效波长的计算可以参考上文中相位测距和最大不模糊距离相关的描述,此处不再赘述。第二信号的传输参数集中的参数是根据目标测距精度确定的,可以保证第二结果满足测距精度要求。
第一通信装置根据第一结果和第二结果确定感知结果,具体可以包括:分别计算第一结果的测量值d 1和第二结果中多个测量值{d 2,i},i=1,2,…,N之间的差值的绝对值{e i},i=1,2,…,N,从第二结果的多个测量值中选择的最小绝对值e m对应的测量值d 2,m为感知结果其中m∈{1,2,…,N}。
一种可能的实现中,第一信号对应的第一传输参数集中的参数需满足,基于第一信号的测距精度能保证,基于第二信号的测距不存在模糊。第一信号的测距误差需小于第二信号对应的最大不模糊距离。举例来说,假设,目标距离的实际值为100m,第二信号对应的最大不 模糊距离为30cm,第二信号的精度对应的最大误差为5cm,则第二结果可能为{…,99.45m,99.75m,100.05m,100.35m,100.65m…},则第一信号的精度对应的误差需小于30cm,例如10cm,此时第一结果可能为100.1m,根据第一结果和第二结果可得到感知结果为100.05m。若第一信号的精度对应的误差大于或等于30cm,则可能无法确定最接近实际距离的值,例如,第一信号的精度对应的误差为30cm,则第一结果可能为100.3m,根据第一结果和第二结果得到的感知结果为100.35m,而不是最接近100m的100.05m。
上述无线感知方法200中,根据目标测距范围和目标测距精度分别确定两个信号(第一信号和第二信号)的传输参数集,分别传输第一信号和第二信号,第一信号的参数集中的至少一个参数满足与目标测距范围相关的第一条件,保证在目标测距范围内距离不模糊,可用于对目标的初始测距,第二信号的参数集中的至少一个参数满足与目标测距精度相关的第二条件,可用于持续持续测距,可以针对不同的感知需求,使用不同的参数集实现传输资源的灵活配置。在一些可能的实现中,第二信号占用的频域资源少于第一信号,在满足感知需求的同时,提高了在对目标进行持续测距时的资源利用率。
下面对第一信号的第一传输参数集和第二信号的第二传输参数集进行说明。
除了子载波个数之外,信号的传输参数还可以包括以下一种或多种:子载波间隔数K,正交频分复用OFDM符号数L,和样本能量E。
其中子载波间隔数K表示信号在频域的密度,K越大表示信号在频域的密度越小,K越小表示信号在频域的密度越大,举例来说,K=4表示每4个子载波中有一个承载第一信号的子载波;OFDM符号数L表示信号占用的时域资源,即信号占用的OFDM符号长度,L越大表示信号在时域上延续的时间越长,L越小表示信号在时域上延续的时间越短;信号的样本能量E为构成信号的所有RE的幅度的平方的平均值。
一、第一信号的第一传输参数集
第一传输参数集可以包括以下一种或多种参数:第一信号对应的第一子载波个数M 1、第一信号对应的第一子载波间隔数K 1、第一信号对应的第一正交频分复用OFDM符号数L 1和第一信号对应的第一样本能量E 1,其中M 1、K 1和L 1为正整数,E 1大于或等于0。
上述第一传输参数集中的至少一个参数满足与目标测距范围的第一条件,具体可以为:第一信号对应的第一子载波间隔数K 1根据目标测距范围确定,使得第一信号在目标测距范围内没有相位模糊,从而使得基于第一信号的相位测距在目标测距范围内没有测距模糊。
目标测距范围可以是协议中预定义的。标准中可以定义一个或多个目标测距范围,针对不同的目标测距范围,可以确定不同的传输参数集。目标测距范围可以是不同量级的,举例来说,目标测距范围是2km,此时第一信号的传输参数集需要保证在2km内没有测距模糊。目标测距范围也可以是1km、500m、400m、200m、100m、50m、20m、10m、5m、2m、1m等等。以上取值是示例性的,本申请对目标测距范围的取值不做限定。
一种可能的实现中,第一传输参数集中的参数满足第一条件,第一条件为:
Figure PCTCN2022100350-appb-000032
其中,D为目标测距范围,K 1为第一子载波间隔数,Δf为第一信号对应的子载波间隔,c为信号传播速度,γ为大于0且小于或者等于2的预设值。
子载波间隔(subcarrier spacing,SCS)Δf是预定义的系统参数。例如,LTE中支持15KHz的子载波间隔,NR中支持的子载波间隔为15KHz、30KHz、60KHz、120KHz和240KHz。
在不同测距场景下,γ的取值不同。γ的取值与信号的发送端、接收端以及目标一起构成的几何结构相关,可选的,在有源目标测距场景中接收端和目标可以为同一个物体。在无源目标测距场景中,例如图8所示的场景中,γ为大于1且小于或等于2的值。在自发自收的场景中,例如图8的(d)场景中,γ可以等于2。在有源目标测距场景中,例如图9所示的场景中,γ可以等于1,此时第一条件可以表示为:
Figure PCTCN2022100350-appb-000033
第一条件中,目标测距范围D和子载波间隔Δf是协议中定义的参数,信号的传播速度是已知参数,γ是可以根据测距场景确定的参数,因此可以通过这些参数确定第一信号的子载波间隔数K 1。第一条件也可以表示为:
Figure PCTCN2022100350-appb-000034
一种可能的实现中,K 1为满足上述第一条件的最大整数。在相同的带宽下,K 1越大,表示承载第一信号的子载波的密度越小,可利用的剩余频域资源越多。该种可能的实现,在满足目标测距范围的同时,提高频域资源的利用率。
一种可能的实现中,当传输第一信号的带宽B给定的话,可以用子载波个数M 1表示K 1,即K 1=B/M 1,第一条件可以表示为:
Figure PCTCN2022100350-appb-000035
上述第一条件可以实现第一信号在目标测距范围内没有相位模糊。第一条件对基于第一信号的测距的测距精度没有做限制。在使用第一信号和第二信号进行测距时,需要基于第一信号的测距精度满足基于第二信号的测距没有模糊。
一种可能的实现中,第一传输参数集中的参数还满足第三条件,该第三条件与第二信号的最大不模糊距离相关,第三条件可以使得第一信号的测距精度在满足基于第二信号的测距不模糊。
相位测距中,测距精度与射频信号的频率和信噪比相关,其中信号的等效信噪比根据信号的子载波个数、OFDM符号数、样本能量、接收机的噪声功率谱密度(noise power spectral density)和路径损耗(pathloss,PL)相关。因此,已知测距精度要求(基于第一信号的测距精度满足基于第二信号的测距没有模糊)时,第一传输参数集中的第一子载波个数M 1、第一OFDM符号数L 1和第一样本能量E 1根据第一通信装置的噪声功率谱密度和路径损耗确定,使得基于第一信号的测距精度满足该测距精度要求。
噪声功率谱密度还称为噪声功率密度(noise power density)、噪声谱密度(noise spectral density)、噪声密度(noise density)等。路径损耗为信号从发射端到接收端的传播路径上产生的损耗。
一种可能的实现中,第一传输参数集中的参数满足第三条件,该第三条件为:
Figure PCTCN2022100350-appb-000036
其中,B RMS为第一信号的均方根(Root Mean Square,RMS)带宽,SNR 1为第一信号的等效信噪比,f c为射频载波中心频率,c为信号传播速度,β 1为第一修正参数;
上述公式(10)中
Figure PCTCN2022100350-appb-000037
表示第一信号的测距精度,c/f c表示第二信号的波长,此处假设基于第二信号的测距为单载波相位测距,第二信号的波长为其最大不模糊距离。本申请 不限定第二信号采用单载波相位测距,若第二信号的测距为多载波差分相位测距,则c/f c应替换为多载波信号的等效波长。
第三条件还可以表示为:
Figure PCTCN2022100350-appb-000038
其中,均方根带宽B RMS可以按照如下方式计算:
Figure PCTCN2022100350-appb-000039
其中,l为OFDM符号的索引,
Figure PCTCN2022100350-appb-000040
为第一信号对应的OFDM符号索引,k为子载波的索引,
Figure PCTCN2022100350-appb-000041
为第一信号对应的子载波的索引,x k,l为OFDM符号l和子载波k上的RE的复数值,Δf为子载波间隔。
一种可能的实现中,第一信号的子载波索引不随OFDM符号变化,第一信号的均方根带宽B RMS可以表示为:
Figure PCTCN2022100350-appb-000042
其中,
Figure PCTCN2022100350-appb-000043
即l 0可以为第一信号对应的任一OFDM符号索引。
β 1为大于0的常数,也称为修正常数,其由两部分构成,可以写成
Figure PCTCN2022100350-appb-000044
其中,
Figure PCTCN2022100350-appb-000045
修正第一信号的测距精度与均方根带宽的关系,具体值由第一信号的波形决定,对于OFDM信号,其典型值为
Figure PCTCN2022100350-appb-000046
修正第一信号的测距精度与第二信号的最大不模糊距离(即第二信号的载波波长)的关系,其典型值为3。综上,β 1的典型值为
Figure PCTCN2022100350-appb-000047
β 1也可以根据实际场景选择其他值,本申请不做限定。
SNR 1为第一信号的等效信噪比,可以根据第一子载波个数M 1、第一OFDM符号数L 1、第一样本能量E 1、接收机(第一通信装置)的噪声功率谱密度N 0和发射端(第二通信装置)到接收端(第一通信装置)的路径损耗确定。
一种可能的实现中,SNR 1通过以下公式得到:
Figure PCTCN2022100350-appb-000048
其中,T CP为循环前缀(cyclic prefix,CP)的时间长度,T IFFT为不含CP的OFDM符号长度,N 0为接收机(例如,第一通信装置)的噪声功率谱密度,ρ为路径损耗对应的增益系数(例如,对于PL=10dB,ρ=0.1)。当OFDM符号没有循环前缀时,也就是T CP=0时,SNR 1通过以下公式得到:
Figure PCTCN2022100350-appb-000049
上述第三条件可以满足第一信号的精度使得第二信号的测距不模糊,上述第三条件中,第二信号的最大不模糊距离由射频载波中心频率确定,射频载波中心频率可以是协议约定的值,第一通信装置的噪声功率谱密度根据其硬件电路决定,路径损耗可以测量得到,因此可以在根据噪声功率谱密度、路径损耗和第二信号的最大不模糊距离已知的基础上,确定一组满足第三条件的第一子载波个数M 1、第一OFDM符号数L 1和第一发射功率E 1
通过采用传输参数满足第一条件和第三条件的第一信号进行测距,可以实现在目标测距范围内距离不模糊,且精度满足第二信号不存在相位模糊,可以用于持续持续测距的场景中 的初始测距。在初始测距的基础上,基于第二信号的测距可以满足目标测距精度,可以用于目标的持续测距。
二、第二信号的第二传输参数集
第二传输参数集可以包括以下一种或多种参数:第二信号对应的第二子载波个数M 2、第二信号对应的第二子载波间隔数K 2、第二信号对应的第二正交频分复用OFDM符号数L 2和第二信号对应的第二样本能量E 2,其中M 2、K 2和L 2为正整数,所述E 2大于或等于0。
上述第二传输参数集中的参数满足第二条件,该第二条件与目标测距精度相关。具体地,第二信号对应的第二子载波个数、第二OFDM符号数和第二样本能量满足与目标测距精度相关的第二条件,使得基于第二信号的相位测距满足目标测距精度的需求。
如上文所述,相位测距中,测距精度与射频信号的频率和信噪比相关,其中信号的等效信噪比根据信号的子载波个数、OFDM符号数、样本能量、接收机的噪声功率谱密度和发射端到接收端的路径损耗相关。因此可以根据目标测距精度、接收机的噪声功率谱密度和发射端到接收端的路径损耗确定第二传输参数中的第二子载波个数M 2、第二OFDM符号数L 2和第二样本能量E 2
目标测距精度可以是预先定义,也可以采用协议或标准中预定义的测距精度。例如,协议或标准中可以定义一个或多个目标测距精度,针对不同的目标测距精度,可以确定不同的传输参数集。举例来说,目标测距精度可以是100m、50m、30m、20m、10m、5m、3m、2m、1m、50cm、30cm、20cm、10cm、5cm、3cm、2cm、1cm等。
一种可能实现中,第二传输参数集中的参数满足第二条件,该第二条件为
Figure PCTCN2022100350-appb-000050
δ为目标测距精度,SNR 2为第二信号的等效信噪比,f c为射频载波中心频率,c为信号传播速度,β 2为第二修正参数;
β 2为大于0的常数,也称为修正常数,其典型值为
Figure PCTCN2022100350-appb-000051
β 2也可以根据实际场景选择其他值,本申请不做限定。
SNR 2可以根据第二信号的子载波个数M 2、第二信号的OFDM符号数L 2、第二信号的样本能量E 2和接收机(第一通信装置)的噪声功率谱密度N 0和发射端到接收端的路径损耗确定。
一种可能的实现中,SNR 2通过以下公式得到:
Figure PCTCN2022100350-appb-000052
其中,T CP为CP的时间长度,T IFFT为不含CP的OFDM符号长度,N 0为接收机(例如,第一通信装置)的噪声功率谱密度,ρ为路径损耗对应的线性增益系数(例如,对于PL=10dB,ρ=0.1)。当OFDM符号没有循环前缀时,也就是T CP=0时,SNR 1通过以下公式得到:
Figure PCTCN2022100350-appb-000053
上述公式(14)和公式(17)中的T CP和T IFFT根据系统设置确定。举例来说,NR协议中定义了五种系统参数,系统参数0中,子载波间隔为15KHz,T CP为4.69us,T IFFT为66.67us;系统参数1中,子载波间隔为30KHz,T CP为2.34us,T IFFT为33.33us。T CP和T IFFT还可以是在未来演进的通信系统的系统参数中的值,此处不做限定。
本申请描述的公式仅仅是一种示例性的表达方式,这些公式可以通过变形获得其他等价的公式。满足该等价公式的,也相当于满足本申请的公式。
一种可能的实现中,取L 2=L-L 1,其中L是由第一信号和第二信号组成的感知信号的长度。也就是说,在一个感知周期内,不发送第一信号的时间内均发送第二信号,第一信号和第二信号在时域上连续,第一信号和第二信号的OFDM符号不存在中断,在基于第一信号的初始测距后,可以立即基于第二信号进行持续测距,从而减小信号不连续带来的测距误差。
一种可能的实现中,当第二信号为非单载波信号时,第二信号对应的第二子载波间隔数K 2少于第一信号对应的第一子载波间隔数K 1,即第二信号对应的子载波密度大于第一信号对应的子载波密度。
第二信号对应的第二子载波个数M 2少于第一信号对应的第一子载波个数M 1。当第二信号对应的第二子载波间隔数K 2少于第一信号对应的第一子载波间隔数K 1时,第二信号占用的带宽小于第一信号占用的带宽,可以降低持续测距时的资源开销。
一种可能的实现中,第二信号对应的第二OFDM符号数L 2大于或等于第一信号对应的第一OFDM符号数L 1。第二信号在时域持续的时间比第一信号时域持续的时间更长,有利于对目标的持续测距。
一种可能的实现中,第二信号对应的发射功率E 2小于或等于第一信号对应的发射功率E 1。第二信号使用小功率可以降低持续测距时的资源开销。
下面举例说明本申请实施例中的第一信号的第一传输参数集和第二信号的第二传输参数集中的参数的可能取值。
一种可能的实现中,第一信号对应的第一OFDM符号数L 1可以为1~14符号;第二信号对应的第二OFDM符号数L 1最小可以为1,最大可以为感知周期减去第一信号的OFDM符号数。
一种可能的实现中,第一信号的对应的子载波个数M 1最小为2,最大以所配置的带宽为限制。子载波个数最小为2可以实现基于第一信号的多载波相位测距,相比单载波相位测距可以满足更大的目标测距范围。
一种可能的实现中,第二信号对应的子载波M 2最小为1,最大以所配置的带宽为限制。第二信号的子载波个数M 2=1,即第二信号为单载波信号时,在第一信号实现初始测距的基础上,采用单载波信号也可以实现满足精度要求的目标持续测距,另外,采用单载波时,发送第二信号的功率集中在一个载波上,降低信号处理的复杂度。
一种可能的实现中,第二信号的子载波间隔数K 2为1。当第二信号是单载波信号时,第二传输参数集中不存在子载波间隔数K 2,或者子载波间隔数K 2为无效值。
一种可能的实现中,在对有源目标进行感知的场景下,子载波间隔Δf为2^μ×15kHz(μ=0,1,2,3,4…)时,第一信号对应的子载波间隔数K 1的取值范围可以是2^(-μ)×10~2^(-μ)×20000。针对不同目标测距范围D,第一信号对应的子载波间隔数K 1可以为如下表1所示。举例来说,子载波间隔为15kHz(μ=0),目标测距范围为2000m时,第一信号对应的子载波间隔数为10,此时,在满足目标测距范围的基础上资源利用率最高。可选的,子载波间隔数也可以小于10。当表1中子载波间隔数的值不是整数时,K 1应当取不大于该值的某个正整数。
表1 子载波间隔为2^μ×15kHz时子载波间隔数K 1的可能取值
目标测距范围(m) 子载波间隔数K 1
2000 2^(-μ)×10
1000 2^(-μ)×20
500 2^(-μ)×40
400 2^(-μ)×50
200 2^(-μ)×100
100 2^(-μ)×200
50 2^(-μ)×400
20 2^(-μ)×1000
10 2^(-μ)×2000
5 2^(-μ)×4000
2 2^(-μ)×10000
1 2^(-μ)×20000
如表1中所示,在通常的测距范围(10m~1km)和15kHz子载波间隔配置下,对应的子载波间隔数为20~2000。然而,当前PRS和SRS的梳状结构间隔范围只有{2,4,6,12}和{2,4,8},这种高密度的频域分布带来的过大的最大不模糊距离与实际应用场景不匹配,反而增加了不必要的频域资源开销。本申请实施例中的第一信号在满足目标测距范围的基础上,可以降低频域资源的开销。
图11a-11c分别示出了本申请中的感知信号以及NR中PRS和SRS的时频资源分布示意图。
图11a为本申请实施例的第一信号和第二信号的一种时频资源分布示意图。如图11a所示,在时域上,感知信号周期为4个时隙,每个感知周期包含第一信号和第二信号,第一信号存在于感知周期的第一个时隙,第二信号存在于感知周期的后三个时隙,图中无填充部分可以承载数据、其他参考信号或留空。在频域上,第一信号的子载波间隔数为4,即每4个子载波中有一个承载第一信号的子载波。第一信号在频域上分布在整个分配给感知信号的带宽,而第二信号占据部分带宽,且承载第二信号的子载波个数少于承载第一信号的子载波个数。
作为对比,图11b为NR中PRS的典型时频资源分布示意图。在时域上,PRS周期同样为4个时隙(最小为4个时隙);为了达到和本申请实施例相近的持续测距效果,PRS重复因子取4则每个周期内PRS重复4次,即每个时隙内都存在PRS。相比本申请的方案,PRS在时域上不是持续存在的,因为NR系统中,普通循环后缀(normal CP)模式下,一个时隙内有14个OFDM符号,而PRS最多在12个连续的符号上存在,这就造成了PRS在时间上间断的现象。在频域上,PRS以梳状结构间隔为4占满整个分配给PRS的带宽;由于PRS配置在一个周期内相同,PRS在整个周期内会持续占用整个分配给PRS的带宽。
作为对比,图11c为NR中SRS的典型时频资源分布示意图,图11c中,带“SRS”的部分代表承载的是SRS信号,空白部分可以承载数据、其他参考信号或留空。在时域上,SRS周期为1个时隙,为了达到和前述本申请实施例相近的持续测距效果,每个时隙中都需要存在SRS。图11c的方案中,相比本申请的方案,SRS在时域上不是持续存在的,因为在Normal  CP模式下,一个时隙内有14个OFDM符号,而SRS最多在12个连续的符号上存在,这就造成了SRS在时间上间断的现象。在频域上,SRS的梳状结构间隔为4,即每4个子载波中有一个承载SRS,与PRS类似的,SRS也铺满整个分配给SRS的带宽。
将图11a分别与图11b和图11c对比,可知,为实现持续持续测距,PRS和SRS需要在每个时隙内都铺满整个分配的带宽,并且可能在时间上存在间断的情况。而本申请中第一信号采用大带宽、大功率用于初始测距,第二信号采用小带宽、小功率用于持续测距,第二信号并不会铺满整个带宽,第二信号占用少量频域资源即可实现目标的持续测距,没有占用的资源位置上可以传输其他数据、参考信号等,提高了频域资源的利用率。
下面进一步分析,本申请实施例和PRS、SRS为达到相似的测距效果所消耗的传输资源。
首先PRS和SRS在时域上存在间断,在目标的持续测距场景下,可能丢失目标,相比本申请方案有明显的劣势。其次在资源使用效率上,本方案也更节省开销。PRS和SRS的资源使用率相同,只不过PRS在频域上的资源分布有偏移,因此以下分析对比本申请方案和SRS的开销。因为4个时隙是PRS方案和本方案共有的周期,所以将分析对比两种方案在4个时隙内的开销。整个周期内的RE数量为13子载波*14OFDM符号*4时隙=728。本方案中感知信号占用的RE数量为4子载波*14OFDM符号*1时隙+2子载波*14OFDM符号*3时隙=140;SRS方案中SRS占用的RE数量为4子载波*12OFDM符号*4时隙=192。因此,SRS方案相比本方案约多使用了(192-140)/140=37%的资源。
本申请实施例提供的感知信号相比PRS、SRS,主要通过第二信号节省开销。为了便于解释,示例中的带宽和周期都比较小,当实际中感知信号的带宽和周期很大时,本方案第二阶段相比第一阶段可以更长,这时本方案相比PRS、SRS可以节省更多开销。
另外,现有的PRS、SRS、P-PRS以及S-PRS等采用基于时间差测量的实现定位时需要进行大量采样点的相关运算或复杂的参数估计。若采用这些信号进行相位测距,则由于这些信号的各个子载波的时域复数波形相位不连续(一个OFDM符号在频域的每一个子载波对应于在时域中的一段复数正弦波形),接收机需要检测相位不连续的点在哪个时刻,接收机的信号处理会更复杂,此外,相位不连续可能会导致相位检测的精度下降。
针对上述问题,本申请实施例提供一种使感知信号的子载波对应的时域复数波形的相位连续的方法,以降低接收机的处理复杂度,以及提高相位检测的精度从而提高测距精度。
一种可能的实现中,该方法包括:对第一信号和/或第二信号的RE值进行相位补偿,使得第一信号和/或第二信号在同一个子载波上相邻的OFDM符号中保持相位连续。
设包含感知信号的两个相邻OFDM符号(编号分别为l和(l+1),l为大于或等于0的整数)上的同一个子载波上的2个RE分别为RE-l和RE-(l+1),可以根据RE-l的相位值对RE-(l+1)进行相位补偿使得RE-l和RE-(l+1)的相位保持连续;也可以根据RE-(l+1)的相位值对RE-l进行相位补偿使得RE-l和RE-(l+1)的相位保持连续。
举例来说,设RE-l和RE-(l+1)所在的子载波的基带频率索引为q,设RE-l和RE-(l+1)的值分别为x l和x l+1,且该2个RE所在的OFDM符号的CP长度为T CP,不含CP的OFDM符号长度为T IFFT;为了让RE-(l+1)对应的时域波形在添加CP后的相位和RE-l对应的时域波形在添加CP后的相位保持连续,可以根据当前RE-l的相位对RE-(l+1)的值进行如下补偿:
Figure PCTCN2022100350-appb-000054
其中,|x l+1|是x l+1的幅度,
Figure PCTCN2022100350-appb-000055
是x l的相位。
还可以根据当前RE-(l+1)的相位,对RE-l的相位进行如下补偿:
Figure PCTCN2022100350-appb-000056
其中,|x l|是x l的幅度,
Figure PCTCN2022100350-appb-000057
是x l+1的相位。
一种可能的实现中,第一通信装置向第二通信装置发送第一相位补偿指示,相应的,第二通信装置接收第一通信装置发送的第一相位补偿指示,响应于该第一相位补偿指示,第二通信装置对第一信号和/或第二信号进行相位补偿。
一种可能的实现中,第二通信装置对第一信号和/或第二信号进行相位补偿,并向第一通信装置发送第二相位补偿指示,该第二相位补偿指示用于指示第一信号和/或第二信号是经过相位补偿的信号。第一通信装置根据该第二相位补偿指示选择合适的信号处理方法处理第一信号和第二信号。例如,针对相位连续的信号和相位不连续的信号采用不同的PLL类型进行处理。
可选的,第二通信装置在发送第一信号和/或第二信号之前,对第一信号和/或第二信号的RE的值进行相位补偿。例如,对同一个子载波上连续的OFDM符号对应的RE依次进行相位补偿。依次补偿具体可以为按照OFDM符号索引l从小到大的顺序,使用公式(19)对各个RE的值进行补偿;或者,按照OFDM符号索引l从大到小的顺序,使用公式(20)对各个RE的值进行补偿。
上述方法中,通过一个子载波上相邻的OFDM符号对应的RE的值,进行相位补偿,实现第一信号和/或第二信号在同一个子载波上相邻的OFDM符号中保持相位连续,该方法不限定携带第一信号和/或第二信号的子载波的位置或索引,灵活性高。
另一种可能的实现中,该方法包括:选择基带频率索引满足第四条件的子载波用于传输第一信号和/或第二信号,第四条件为如下公式(21)所示:
Figure PCTCN2022100350-appb-000058
其中y为基带频率索引,Δf为子载波间隔,OFDM符号的CP长度为T CP,n为整数。
在特定位置的子载波上传输特定值可以实现这些子载波的感知信号对应的时域波形在相邻的OFDM符号中保持相位连续。具体地,当OFDM符号的CP时长是子载波对应复数正弦波周期的整数倍时,可以保证包含CP的OFDM符号间相位连续。
一种可能的实现中,针对选择的特定基带频域索引的子载波,第一信号和/或第二信号在同一个子载波的频域位置对应的连续多个RE的值相同。
一种可能的实现中,在NR中的Normal CP模式下,第一信号和/或第二信号对应的子载波的基带频率索引y=128n,(n=0,±1,±2,…);在NR中的Extended CP模式下,第一信号和/或第二信号对应的子载波的基带频率索引y=4n,(n=0,±1,±2,…)。
上述方法中,针对不同的子载波间隔和OFDM循环前缀的长度的配置,选择特定基带频率索引的子载波承载第一信号和/或第二信号,即可实现第一信号和/或第二信号在同一个子载波上相邻的OFDM符号中保持相位连续,无需进行相位补偿等操作,发射机的复杂度低。
第一信号和/或第二信号的子载波对应的时域复数波形在跨多个OFDM符号时保持相位连续时,接收机无需检测相位不连续的点在哪个时刻,因此接收机的信号处理简单,信号相位连续可以保证相位检测精度高,从而提高测距精度。另外,相位连续的信号便于对目标进行持续测距。在持续测距场景下,相位变化的来源可能有两个:目标的移动会导致相位变化, 而信号的相位不连续也会导致相位在某些时刻发生跳变,如果信号相位连续,相位的变化就直接反映目标的移动,可以降低信号处理的复杂度。
以上描述了第一信号和第二信号的传输参数集,以及根据由第一信号和第二信号组成的感知信号进行感知的过程。下面将描述感知信号的配置和使用的交互流程。
在传输第一信号和第二信号之前需要确定第一信号和第二信号的传输参数集,并进行信号配置,这两个步骤可以由第一通信装置执行,或者可以由第二通信装置执行,或者分别由第一通信装置和第二通信装置执行,或者分别由第二通信装置和第一通信装置执行。下面结合图12-图15,描述四种确定第一信号和第二信号的传输参数集,进行信号配置和进行感知的方法。
参见图12,图12为本申请实施例的一种无线感知方法的交互流程示意图。图12所示的方法中第二通信装置确定第一信号和第二信号的传输参数,进行信号配置并向第一通信装置发送配置结果。
S1201.第二通信装置向第一通信装置发送第一请求,相应的,第一通信装置接收第二通信装置发送的第一请求。
一种可能的实现中,第一请求用于请求第一通信装置的噪声功率谱密度和第二通信装置到第一通信装置的路径损耗。
一种可能的实现中,第二通信装置还向第一通信装置发送第二请求。第一请求用于请求第一通信装置的噪声功率谱密度,第二请求用于请求第二通信装置到第一通信装置的路径损耗;或者,第一请求用于请求第二通信装置到第一通信装置的路径损耗,第二请求用于第一通信装置的噪声功率谱密度。
如上文中所述,在一些可能的实现中,第一信号和第二信号对应的测距精度和接收机(第一通信装置)的噪声功率谱密度和第二通信装置到第一通信装置的路径损耗相关,因此第二通信装置确定第一信号和第二信号的传输参数集时需要获知第一通信装置的噪声功率谱密度和第二通信装置到第一通信装置的路径损耗。
该步骤中第一请求用于请求第一通信通信装置的噪声功率谱密度。
一种可能的实现中,可以通过RRC信令发送该第一请求和/或第二请求,具体地,可以通过在RRC信令中填写相关信息元素(information element,IE)指示需要测量的量(即噪声功率谱密度和/或路径损耗)。
S1202.第一通信装置向第二通信装置发送噪声功率谱密度的信息和/或路径损耗的信息,相应的,第二通信装置接收第一通信装置发送的噪声功率谱密度的信息和/或路径损耗的信息。
一种可能的实现中,第一通信装置根据S1201中接收到的第一请求或第二请求进行噪声功率测量,得到第一通信装置的噪声功率谱密度,并向第二通信装置发送噪声功率谱密度的信息。
另一种可能的实现中,第一通信装置存储有自身的噪声功率谱密度,接收到第一请求后,向第二通信装置发送自身存储的噪声功率谱密度的信息。
可选的,噪声功率谱密度的信息可以包含噪声功率谱密度的实际值或量化值。
一种可能的实现中,第一通信装置根据S1201中接收到的第一请求或第二请求进行路径损耗测量,得到第二通信装置到第一通信装置的路径损耗,并向第一通信装置发送路径损耗的信息。具体地,第二通信装置可以通过测量第一通信装置发送的参考信号的参考信号接收功率(reference signal received power,RSRP)得到路径损耗。可选的,用于测量路径损耗的 参考信号可以携带在第一请求或第二请求中,也可以携带在其他信令中,本申请不做限制。可选的,路径损耗的信息可以包含路径损耗的实际值或者路径损耗对应的线下增益系数。
一种可能的实现中,可以通过RRC信令发送噪声功率谱密度的信息和/或路径损耗的信息。
S1203.第二通信装置确定第一信号对应的第一传输参数集以及第二信号对应的第二传输参数集。
第二通信装置根据目标测距范围确定第一信号对应的第一子载波间隔数,进一步地根据第一通信装置的噪声功率谱密度和第二通信装置到第一通信装置的路径损耗确定第一信号的传输参数集中的第一子载波个数、第一OFDM符号数、第一样本能量等参数,根据目标测距精度、第一通信装置的噪声功率谱密度和第二通信装置到第一通信装置的路径损耗确定第二信号的第二传输参数集中的第二子载波个数、第二OFDM符号数、第二样本能量等参数。
一种可能的实现中,第二通信装置从候选传输参数集合中选择满足目标测距范围和目标测距精度的第一传输参数集和/或第二传输参数集。
可选的,候选的参数集合中包括多个候选的第一传输参数集和/或多个候选的第二传输参数集。第二通信装置从候选的多个第一传输参数集中选择满足目标测距范围的第一传输参数集,从候选的多个第二传输参数集中选择满足目标测距精度的第二传输参数集。具体地,第二通信装置从候选的多个第一传输参数集中选择满足第一条件和/或第三条件的第一传输参数集。第二通信装置从候选的多个第二传输参数集中选择满足第二条件的第二传输参数集。
可选的,候选的参数集合中包括多个候选的子载波间隔数、多个候选的子载波个数、多个候选的OFDM符号数和/或多个候选的样本能量,第二通信装置从候选的参数集合中选择满足目标测距范围的子载波间隔数作为第一传输参数集中的参数,从候选的参数集合中选择满足目标测距精度的子载波个数、OFDM符号数和/或样本能量作为第二传输参数集中的参数。具体地,第二通信装置从候选的参数集合中选择满足第一条件和/或第三条件的参数作为第一传输参数集中的参数,从候选的参数集合中选择满足第二条件的参数作为第二传输参数集中的参数。
第二通信装置确定的第一信号对应的第一传输参数集和第二信号对应的第二传输参数集可以是上文中各种可能的实现中的第一传输参数集和第二传输参数集,此处不再赘述。
S1204.第二通信装置进行信号配置。
第二通信装置根据所确定的第一信号对应的第一传输参数集和第二信号对应的第二传输参数集进行信号配置。具体地,根据第一传输参数集和第二传输参数集配置第一信号和第二信号的传输资源,其中,传输资源具体可以为第一信号和第二信号在时频域的资源网格
(resource grid)上的位置。
信号配置还包括确定前述分配的位置上的值,该值可以是某种序列,比如Gold序列或者ZC序列;也可以是常数,比如1或者0.5+0.5j;也可以是随机序列。
S1205.第二通信装置向第一通信装置发送第一配置信息,相应的,第一通信装置接收第二通信装置发送的第一配置信息。
第一配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。一种可能的实现中,第一配置信息包括:分别根据第一传输参数集和第二传输参数集确定的第一信号的传输资源信息以及第二信号的传输资源信息。
一种可能的实现中,第一配置信息承载在无线资源控制(radio resource control,RRC)信令中。
S1206.第二通信装置向第一通信装置分别发送第一信号和第二信号,相应的,第一通信装置分别接收第一信号和第二信号。
一种可能的实现中,第二通信装置在一个感知周期内根据第一传输参数集和第二传输参数集分别发送第一信号和第二信号,第一通信装置在一个感知周期内根据第一传输参数集和第二传输参数集分别接收第一信号和第二信号。
第二通信装置在一个感知周期内根据第一传输参数集和第二传输参数集分别发送第一信号和第二信号,具体可以包括:第二通信装置在一个感知周期内,在根据第一传输参数集和第二传输参数集配置的传输资源上发送第一信号和第二信号。
第一通信装置在一个感知周期内根据第一传输参数集和第二传输参数集分别接收第一信号和第二信号,具体可以包括:第一通信装置在一个感知周期内,在根据第一传输参数集和第二传输参数集配置的传输资源上接收第一信号和第二信号,其中根据第一传输参数集和第二传输参数集配置的传输资源是根据S1205中接收的第一配置信息获取的。
可选的,第二通信装置还可以在多个感知周期的每个感知周期内发送第一信号和第二信号,相应的,第一通信装置还可以在多个感知周期的每个感知周期内接收第一信号和第二信号。
该步骤中感知周期的内容可以参见步骤S220,此处不再赘述。
S1207.第一通信装置根据第一信号和第二信号进行感知,得到感知结果。
该步骤与S230相同,此处不再赘述。
图12所示的无线感知方法中,第二通信装置确定第一信号的第一传输参数集和第二信号的第二传输参数集,根据所确定的第一传输参数集和第二传输参数集进行信号配置,向第一通信装置发送配置结果(第一配置信息)以及发送第一信号和第二信号,使得第一通信装置通过根据第一传输参数集和第二传输参数集确定的第一配置信息接收第一信号和第二信号,进而根据第一信号和第二信号进行感知,得到感知结果。通过上述方法可以根据场景中的具体信噪比,合理配置感知信号的传输参数,在基于第二信号进行测距的阶段,避免距离模糊的同时提高资源利用率。
参见图13,图13为本申请实施例的又一种无线感知方法的交互流程示意图。图13所示的方法中第二通信装置确定第一信号和第二信号的传输参数集,并向第一通信装置发送配置请求,第一通信装置进行信号配置并向第二通信装置发送配置结果。
S1301.第二通信装置向第一通信装置发送第一请求,相应的,第一通信装置接收第二通信装置发送的第一请求。
S1302.第一通信装置向第二通信装置发送噪声功率谱密度的信息,相应的,第二通信装置接收第一通信装置发送的噪声功率谱密度的信息。
S1303.第二通信装置确定第一信号对应的第一传输参数集以及第二信号对应的第二传输参数集。
步骤S1301~S1303与步骤S1201~S1203相同,此处不再赘述。
S1304.第二通信装置向第一通信装置发送第一配置请求,相应的,第一通信装置接收第二通信装置发送的第一配置请求。
第一配置请求用于请求第一通信装置进行第一信号和第二信号的信号配置。第一配置请求中包含第一传输参数集和第二传输参数集的信息,使得第一通信装置根据第一配置请求进行第一信号和第二信号的信号配置。其中,第一传输参数集和/或第二传输参数集的信息可以 是第一传输参数集和第二传输参数集中的参数的值;或者,当第一传输参数集和/或第二传输参数集是从候选的参数集合中选择的参数时,第一传输参数集和/或第二传输参数集的信息可以是第一传输参数集和/或第二传输参数集的索引,或者可以是第一传输参数集和/或第二传输参数集中各个参数(例如,子载波个数、子载波间隔数、OFDM符号数、样本能量等等)的索引。
一种可能的实现中,第一配置请求承载在RRC信令中。该RRC信令具体可以是RRC请求消息。
S1305.第一通信装置进行信号配置。
第一通信装置根据接收到的第一配置请求进行信号配置。第一通信装置根据第一配置请求确定第一信号对应的第一传输参数集以及第二信号对应的第二传输参数集,并根据所确定的第一信号对应的第一传输参数集和第二信号对应的第二传输参数集进行信号配置。具体地,第一通信装置根据第一传输参数集和第二传输参数集配置第一信号和第二信号的传输资源,其中,传输资源具体可以为第一信号和第二信号在时频域的资源网格上的位置。
信号配置还包括确定前述配置在资源网格上的位置的值,该值可以是某种序列,比如Gold序列或者ZC序列;也可以是常数,比如1或者0.5+0.5j;也可以是随机序列。
S1306.第一通信装置向第二通信装置发送第二配置信息,相应的,第二通信装置接收第一通信装置发送的第二配置信息。
第二配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。一种可能的实现中,第二配置信息包括:分别根据第一传输参数集和第二传输参数集确定的第一信号的传输资源信息以及第二信号的传输资源信息。
一种可能的实现中,第二配置信息承载在RRC信令中。该RRC信令具体可以是RRC响应消息。
S1307.第二通信装置向第一通信装置分别发送第一信号和第二信号,相应的,第一通信装置分别接收第一信号和第二信号。
一种可能的实现中,第二通信装置在一个感知周期内根据第一传输参数集和第二传输参数集分别发送第一信号和第二信号,第一通信装置在一个感知周期内根据第一传输参数集和第二传输参数集分别接收第一信号和第二信号。
第二通信装置在一个感知周期内根据第一传输参数集和第二传输参数集分别发送第一信号和第二信号,具体可以包括:第二通信装置在一个感知周期内,在根据第一传输参数集和第二传输参数集配置的传输资源上发送第一信号和第二信号,其中根据第一传输参数集和第二传输参数集配置的传输资源是根据S1306中接收的第二配置信息获取的。。
第一通信装置在一个感知周期内根据第一传输参数集和第二传输参数集分别接收第一信号和第二信号,具体可以包括:第一通信装置在一个感知周期内,在根据第一传输参数集和第二传输参数集配置的传输资源上接收第一信号和第二信号。
可选的,第二通信装置还可以在多个感知周期的每个感知周期内发送第一信号和第二信号,相应的,第一通信装置还可以在多个感知周期的每个感知周期内接收第一信号和第二信号。
该步骤中感知周期的内容可以参见步骤S220,此处不再赘述。
S1308.第一通信装置根据第一信号和第二信号进行感知,得到感知结果。
该步骤与S230相同,此处不再赘述。
图13所示的无线感知方法中,第二通信装置确定第一信号的第一传输参数集和第二信号的第二传输参数集,并向第一通信装置发送包含第一传输参数集的信息和第二传输参数集的信息的第一配置请求,第一通信装置根据第一传输参数集和第二传输参数集进行信号配置,向第二通信装置发送配置结果(第二配置信息),第二通信通信装置根据第二配置信息发送第一信号和第二信号,使得第一通信装置根据第一传输参数集和第二传输参数集配置的传输资源接收第一信号和第二信号,进而根据第一信号和第二信号进行感知,得到感知结果。通过上述方法可以根据场景中的具体信噪比,合理配置感知信号的传输参数,在基于第二信号进行测距的阶段,避免距离模糊的同时提高资源利用率。
参见图14,图14为本申请实施例的又一种无线感知方法的交互流程示意图。图14所示的方法中第一通信装置确定第一信号和第二信号的传输参数,并向第二通信装置发送配置请求,第二通信装置进行信号配置并向第一通信装置发送配置结果。
S1401.第一通信装置确定第一信号对应的第一传输参数集以及第二信号对应的第二传输参数集。
第一通信装置根据目标测距范围确定第一信号对应的第一子载波间隔数,进一步地根据第一通信装置的噪声功率谱密度确定第一信号的传输参数,根据目标测距精度和第一通信装置的噪声功率谱密度确定第二信号的第二传输参数集。
一种可能的实现中,第一通信装置从候选传输参数集合中选择满足目标测距范围和目标测距精度的第一传输参数集和/或第二传输参数集。
可选的,候选的参数集合中包括多个候选的第一传输参数集和/或多个候选的第二传输参数集。第一通信装置从候选的多个第一传输参数集中选择满足目标测距范围的第一传输参数集,从候选的多个第二传输参数集中选择满足目标测距精度的第二传输参数集。具体地,第一通信装置从候选的多个第一传输参数集中选择满足第一条件和/或第三条件的第一传输参数集。第二通信装置从候选的多个第二传输参数集中选择满足第二条件的第二传输参数集。
可选的,候选的参数集合中包括多个候选的子载波间隔数、多个候选的子载波个数、多个候选的OFDM符号数和/或多个候选的样本能量,第一通信装置从候选的参数集合中选择满足目标测距范围的子载波间隔数作为第一传输参数集中的参数,从候选的参数集合中选择满足目标测距精度的子载波个数、OFDM符号数和/或样本能量作为第二传输参数集中的参数。具体地,第一通信装置从候选的参数集合中选择满足第一条件和/或第三条件的参数作为第一传输参数集中的参数,从候选的参数集合中选择满足第二条件的参数作为第二传输参数集中的参数。
第一通信装置确定的第一信号对应的第一传输参数集和第二信号对应的第二传输参数集可以是上文中各种可能的实现中的第一传输参数集和第二传输参数集,此处不再赘述。
S1402.第一通信装置向第二通信装置发送第二配置请求,相应的,第二通信装置接收第一通信装置发送的第二配置请求。
第二配置请求用于请求第二通信装置进行第一信号和第二信号的信号配置。第二配置请求中包含第一传输参数集和第二传输参数集的信息,使得第二通信装置根据第二配置请求进行第一信号和第二信号的信号配置。其中,第一传输参数集和/或第二传输参数集的信息可以是第一传输参数集和第二传输参数集的值;或者,当第一传输参数集和/或第二传输参数集是从候选的参数集合中选择的参数时,第一传输参数集和/或第二传输参数集的信息可以是第一 传输参数集和/或第二传输参数集的索引,或者可以是第一传输参数集和/或第二传输参数集中各个参数(例如,子载波个数、子载波间隔数、OFDM符号数、样本能量等等)的索引。
一种可能的实现中,第二配置请求承载在RRC信令中。该RRC信令具体可以是RRC请求消息。
S1403.第二通信装置进行信号配置。
第二通信装置根据接收到的第二配置请求进行信号配置。具体地,第二通信装置根据第二配置请求确定第一信号对应的第一传输参数集以及第二信号对应的第二传输参数集,并根据所确定的第一信号对应的第一传输参数集和第二信号对应的第二传输参数集进行信号配置,具体地,根据第一传输参数集和第二传输参数集配置第一信号和第二信号的传输资源,其中,传输资源具体可以为第一信号和第二信号在时频域的资源网格上的位置。
信号配置还包括确定前述配置在资源网格上的位置的值,该值可以是某种序列,比如Gold序列或者ZC序列;也可以是常数,比如1或者0.5+0.5j;也可以是随机序列。
S1404.第二通信装置向第一通信装置发送第三配置信息,相应的,第一通信装置接收第二通信装置发送的第三配置信息。
第三配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。一种可能的实现中,第三配置信息包括:分别根据第一传输参数集和第二传输参数集确定的第一信号的传输资源信息以及第二信号的传输资源信息。
一种可能的实现中,第三配置信息承载在RRC信令中。该RRC信令具体可以是RRC响应消息。
S1405.第二通信装置向第一通信装置分别发送第一信号和第二信号,相应的,第一通信装置分别接收第一信号和第二信号。
步骤S1405与步骤S1206相似,区别在于,第一通信装置用于接收第一信号和第二信号的传输资源是根据S1404中的第三配置信息获取的,其他相关内容参见S1206,此处不再赘述。
S1406.第一通信装置根据第一信号和第二信号进行感知,得到感知结果。
该步骤与S230相同,此处不再赘述。
图14所示的无线感知方法中,第一通信装置确定第一信号的第一传输参数集和第二信号的第二传输参数集,并向第二通信装置发送包含第一传输参数集的信息和第二传输参数集的信息的第二配置请求,第二通信装置根据第一传输参数集和第二传输参数集进行信号配置,向第一通信装置发送配置结果(第三配置信息)以及发送第一信号和第二信号,使得第一通信装置通过根据第一传输参数集和第二传输参数集确定的第三配置信息接收第一信号和第二信号,进而根据第一信号和第二信号进行感知,得到感知结果。通过上述方法可以根据场景中的具体信噪比,合理配置感知信号参数,在基于第二信号进行测距的阶段,避免距离模糊的同时提高资源利用率。
参见图15,图15为本申请实施例的又一种无线感知方法的交互流程示意图。图15所示的方法中第一通信装置确定第一信号和第二信号的传输参数,进行信号配置并向第二通信装置发送配置结果。
S1501.第一通信装置确定第一信号对应的第一传输参数集以及第二信号对应的第二传输参数集。
该步骤与步骤S1401相同,此处不再赘述。
S1502.第一通信装置进行信号配置。
第一通信装置根据所确定的第一信号对应的第一传输参数集和第二信号对应的第二传输参数集进行信号配置,具体地,根据第一传输参数集和第二传输参数集配置第一信号和第二信号的传输资源,其中,传输资源具体可以为第一信号和第二信号在时频域的资源网格上的位置。
信号配置还包括确定前述配置在资源网格上的位置的值,该值可以是某种序列,比如Gold序列或者ZC序列;也可以是常数,比如1或者0.5+0.5j;也可以是随机序列。
S1503.第一通信装置向第二通信装置发送第四配置信息,相应的,第二通信装置接收第一通信装置发送的第四配置信息。
第四配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。一种可能的实现中,第四配置信息包括:分别根据第一传输参数集和第二传输参数集确定的第一信号的传输资源信息以及第二信号的传输资源信息。
一种可能的实现中,第四配置信息承载在RRC信令中。
S1504.第二通信装置向第一通信装置分别发送第一信号和第二信号,相应的,第一通信装置分别接收第一信号和第二信号。
此步骤与S1307相似,区别在于,第一通信装置用于发送第一信号和第二信号的传输资源是根据S1503中的第四配置信息获取的,其他相关内容参见S1307,此处不再赘述。
S1505.第一通信装置根据第一信号和第二信号进行感知,得到感知结果。
该步骤与S230相同,此处不再赘述。
图15所示的无线感知方法中,第一通信装置确定第一信号的第一传输参数集和第二信号的第二传输参数集,根据所确定的第一传输参数集和第二传输参数集进行信号配置,向第二通信装置发送配置结果(第四配置信息),第二通信通信装置根据第四配置信息发送第一信号和第二信号,使得第一通信装置根据第一传输参数集和第二传输参数集配置的传输资源接收第一信号和第二信号,进而根据第一信号和第二信号进行感知,得到感知结果。通过上述方法可以根据场景中的具体信噪比,合理配置感知信号的传输参数,在基于第二信号进行测距的阶段,避免距离模糊的同时提高资源利用率。
为了实现上述本申请实施例提供的方法中的各功能,第一通信装置、第二通信装置均可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图16所示,本申请实施例提供了一种通信装置1600。该通信装置1600可以是终端或网络设备,也可以是终端设备或网络设备中的装置,或者是能够和终端设备、网络设备匹配使用的装置。一种可能的实现中,该通信装置1600可以包括执行上述方法实施例中第一通信装置或第二通信装置执行的方法/操作/步骤/动作所一一对应的模块或单元,该单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种可能的实现中,该通信装置1600可以包括处理单元1610和收发单元1620。处理单元1610可以用于调用收发单元1620执行接收和/或发送的功能。
当通信装置1600用于执行第一通信装置所执行的操作时,收发单元1620,用于根据第一传输参数集和第二传输参数集分别接收第一信号和第二信号;其中第一传输参数集对应第一信号,第一传输参数集中的至少一个参数满足第一条件,该第一条件与目标测距范围相关; 第二传输参数集对应第二信号,第二传输参数集中的至少一个参数满足第二条件,该第二条件与目标感知精度相关;处理单元1610,用于根据第一信号和第二信号进行感知得到感知结果。
一种可能的实现中,处理单元1610具体用于根据第一信号进行感知得到第一结果,根据第二信号进行感知得到第二结果,并根据该第一结果和第二结果确定感知结果。
当通信装置1600用于执行第二通信装置所执行的操作时,处理单元1610用于获取第一传输参数集和第二传输参数集;其中第一传输参数集对应第一信号,第一传输参数集中的至少一个参数满足第一条件,该第一条件与目标测距范围相关;第二传输参数集对应第二信号,第二传输参数集中的至少一个参数满足第二条件,该第二条件与目标感知精度相关;收发单元1620用于根据第一传输参数集和第二传输参数集在一个感知周期内发送第一信号和第二信号,其中第一信号和第二信号用于进行感知。
一种可能的实现中,处理单元1610具体用于对第二信号进行相位补偿。
收发单元1620还用于执行上述方法实施例中第一通信装置或第二通信装置执行的其它接收或发送的步骤或操作。处理单元1610还可以用于执行上述方法实施例中第一通信装置、第二通信装置执行的除收发之外的其它对应的步骤或操作,在此不再一一赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
举例来说,当通信装置1600用于执行第一通信装置所执行的操作时,可以包括:接收单元和感知单元,其中接收单元用于用于根据第一传输参数集和第二传输参数集分别接收第二通信装置发送的第一信号和第二信号;感知单元,用于根据所述第一信号和所述第二信号进行感知,得到感知结果;其中所述第一传输参数集对应所述第一信号,所述第一传输参数集中的至少一个参数满足第一条件,所述第一条件与目标测距范围相关;所述第二传输参数集对应第二信号,所述第二传输参数集中的至少一个参数满足第二条件,所述第二条件与目标感知精度相关。可选的,该通信装置1600还包括:发送单元和配置单元,接收单元还用于接收第一配置请求;配置单元用于响应于该第一配置请求,进行信号配置;发送单元用于发送第二配置信息。
举例来说,当通信装置1600用于执行第二通信装置所执行的操作时,可以包括获取单元和发送单元,该获取单元用于,用于获取第一传输参数集和第二传输参数集,其中第一传输参数集对应第一信号,所述第一传输参数集中的至少一个参数满足第一条件,该第一条件与目标测距范围相关;第二传输参数集对应第二信号,第二传输参数集中的至少一个参数满足第二条件,该第二条件与目标感知精度相关;该发送单元用于根据第一传输参数集和第二传输参数集发送第一信号和第二信号,其中该第一信号和第二信号用于进行感知。可选的,该通信装置1600还包括接收单元和配置单元,该接收单元用于接收第二配置请求,该配置单元用于响应于该第二配置请求进行信号配置,发送单元还用于发送的第三配置信息。
另外,在本申请各个实施例中的各功能模块或单元可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块或单元集成在一个模块或单元中。上述集成的模块或单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。一种可能的实现中,上述处理单元1610可以是处理器,上述收发单元1620可以是收发器。
参见图17,本申请实施例还提供了一种通信装置1700,用于实现上述方法中第一通信装置、第二通信装置的功能。该通信装置可以是终端、网络设备,也可以是终端、网络设备中 的装置,或者是能够和终端、网络设备匹配使用的装置。通信装置1700包括至少一个处理器1710,通信装置1700还可以包括通信接口1720。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口1720用于通信装置1700中的装置可以和其它设备进行通信。
处理器1710可以执行通信装置1600中处理单元1610所执行的功能;通信接口1720可以用于执行通信装置1600中收发单元1620所执行的功能。
当通信装置1700用于执行第一通信装置所执行的操作时,通信接口1720,用于根据第一传输参数集和第二传输参数集分别接收第一信号和第二信号;其中第一传输参数集对应第一信号,第一传输参数集中的至少一个参数满足第一条件,该第一条件与目标测距范围相关;第二传输参数集对应第二信号,第二传输参数集中的至少一个参数满足第二条件,该第二条件与目标感知精度相关;处理器1710,用于根据第一信号和第二信号进行感知得到感知结果。
当通信装置1700用于执行第二通信装置所执行的操作时,处理器1710用于获取第一传输参数集和第二传输参数集;其中第一传输参数集对应第一信号,第一传输参数集中的至少一个参数满足第一条件,该第一条件与目标测距范围相关;第二传输参数集对应第二信号,第二传输参数集中的至少一个参数满足第二条件,该第二条件与目标感知精度相关;通信接口1720用于根据第一传输参数集和第二传输参数集输出第一信号和第二信号;其中第一信号和第二信号用于进行感知。
通信接口1720还用于执行上述方法实施例中第一通信装置、第二通信装置执行的其它接收或发送的步骤或操作。处理器1710还可以用于执行上述方法实施例第一通信装置、第二通信装置执行的除收发之外的其它对应的步骤或操作,在此不再一一赘述。
通信装置1700还可以包括至少一个存储器1730,用于存储程序指令和/或数据。存储器1730和处理器1710耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的用于装置、单元或模块之间的信息交互的形式。处理器1720可能和存储器1730协同操作。处理器1710可能执行存储器1730中存储的计算机程序程序或指令。在一种可能的实现中,至少一个存储器中的至少一个可以与处理器集成在一起。在另一种可能的实现中,存储器1730位于该通信装置1700之外。
本申请实施例中不限定上述通信接口1720、处理器1710以及存储器1730之间的具体连接介质。本申请实施例在图17中以存储器1730、处理器1710以及通信接口1720之间通过总线1740连接,总线在图17中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图17中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
一种可能的实现中,该通信装置1700可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
参见图18,本申请实施例还提供了一种通信装置1800,用于实现上述方法中第一通信装置、第二通信装置的功能。该通信装置可以是终端、网络设备,也可以是终端、网络设备中的装置,或者是能够和终端、网络设备匹配使用的装置。该通信装置包括处理器1810,该处理器用实现上述第一通信装置和/或第二通信装置的部分或全部功能。
一种可能的实现中,当通信装置1800用于实现第一通信装置的功能时,处理器1810用于接收第一信号和第二信号,第一信号与第一传输参数集对应,第二信号与第二传输参数集对应;根据第一信号和第二信号进行感知,得到感知结果;其中第一传输参数集对应第一信 号,第一传输参数集中的至少一个参数满足第一条件,第一条件与目标测距范围相关;第二传输参数集对应第二信号,第二传输参数集中的至少一个参数满足第二条件,第二条件与目标感知精度相关。可选的,该处理器1810具体用于根据第一信号进行感知得到第一结果,根据第二信号进行感知得到第二结果,以及根据该第一结果和第二结果确定感知结果。
一种可能的实现中,当通信装置1800用于实现第二通信装置的功能时,处理器1810用于获取第一传输参数集和第二传输参数集,其中第一传输参数集对应第一信号,所述第一传输参数集中的至少一个参数满足第一条件,该第一条件与目标测距范围相关;第二传输参数集对应第二信号,第二传输参数集中的至少一个参数满足第二条件,该第二条件与目标感知精度相关;以及根据第一传输参数集和第二传输参数集输出第一信号和第二信号,其中该第一信号和第二信号用于进行感知。
一种可能的实现中,处理器1810通过执行存储器1820中存储的指令,以实现第一通信装置和/或第二通信装置实现的功能。可选的,该通信装置还包括存储器1820。可选的,处理器1810和存储器1820集成在一起。可选的,存储器1820在通信装置1800之外。
本申请实施例中,处理器(例如处理器1710,处理器1810)可以是一个或多个中央处理器(Central Processing Unit,CPU),在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例中,存储器(例如存储器1730,存储器1820)可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、只读存储器(Read-Only Memory,ROM)或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储计算机程序或指令,和/或数据。
参加图19,本申请实施例还提供一种装置1900,可用于实现上述方法中第一通信装置、第二通信装置的功能,该装置1900可以是通信装置或者通信装置中的芯片。该通信装置包括:
至少一个输入输出接口1910和逻辑电路1920。输入输出接口1910可以是输入输出电路。逻辑电路1920可以是信号处理器、芯片,或其他可以实现本申请方法的集成电路。
其中,至少一个输入输出接口1910用于信号或数据的输入或输出。举例来说,当该装置为第一通信装置时,输入输出接口1910用于接收第一信号和第二信号。举例来说,当该装置为第二通信装置时,输入输出接口1910用于输出第一信号和第二信号。
其中,逻辑电路1920用于执行本申请实施例提供的任意一种方法的部分或全部步骤。举例来说,当该装置为第一通信装置时,用于执行上述方法实施例中各种可能的实现方式中第一通信装置执行的步骤,例如逻辑电路1920用于根据第一信号和第二信号进行感知得到感知结果。当该装置为第二通信装置时,用于执行上述方法实施例中各种可能的实现方法中第二通信装置执行的步骤,例如逻辑电路1920用于获取第一传输参数集和第二传输参数集。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是其他终端或网络设备发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)输出信息,该信息是终端发送给其他终端或网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端或其他网络设备发送给该网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)输出信息,该信息是网络设备发送给终端或其他网络设备的。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序或指令,所述计算机程序或指令被计算机(例如,处理器)执行,以实现本申请实施例中由任意装置执行的任意一种方法的部分或全部步骤。
本申请实施例还提供了一种包括计算机程序或一组指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得以上各方面的任意一种方法的部分或者全部步骤被执行。
本申请还提供一种芯片或芯片系统,该芯片可包括处理器。该芯片还可包括存储器(或存储模块)和/或收发器(或通信模块),或者,该芯片与存储器(或存储模块)和/或收发器(或通信模块)耦合,其中,收发器(或通信模块)可用于支持该芯片进行有线和/或无线通信,存储器(或存储模块)可用于存储程序或一组指令,该处理器调用该程序或该组指令可用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中由终端或者网络设备执行的操作。该芯片系统可包括以上芯片,也可以包含上述芯片和其他分立器件,如存储器(或存储模块)和/或收发器(或通信模块)。
基于与上述方法实施例相同构思,本申请还提供一种通信系统,该通信系统可包括以上第一通信装置和第二通信装置。该通信系统可用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中由第一通信装置或者第二通信装置执行的操作。示例性的,该通信系统可具有如图1所示结构。
在上述实施例中,可全部或部分地通过软件、硬件、固件、或其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如软盘、硬盘、磁带)、光介质(例如光盘)、或者半导体介质(例如固态硬盘)等。在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
本申请所提供的装置如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请技术方案对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
以上所述,仅为本申请的一些具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可对这些实施例做出另外的变更和修改。因此,所附权利要求意欲解释为包括上述实施例以及落入本申请范围的说是有变更和修改。因此,本申请保护范围应以所述权利要求的保护范围为准。

Claims (58)

  1. 一种无线感知的方法,其特征在于,包括:
    第一通信装置根据第一传输参数集和第二传输参数集分别接收第二通信装置发送的第一信号和第二信号;
    其中所述第一传输参数集对应所述第一信号,所述第一传输参数集中的至少一个参数满足第一条件,所述第一条件与目标测距范围相关;所述第二传输参数集对应第二信号,所述第二传输参数集中的至少一个参数满足第二条件,所述第二条件与目标感知精度相关;
    第一通信装置根据所述第一信号和所述第二信号进行感知,得到感知结果。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一信号和所述第二信号进行感知,包括:
    根据所述第一信号进行感知得到第一结果,根据所述第二信号进行感知得到第二结果,以及根据所述第一结果和所述第二结果确定所述感知结果。
  3. 根据权利要求2所述的方法,其特征在于,所述第一结果满足所述目标测距范围,所述第二结果满足所述目标测距精度。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,还包括:
    所述第一通信装置接收第一配置信息,所述第一配置信息指示根据所述第一传输参数集和所述第二传输参数集进行信号配置的结果。
  5. 根据权利要求1至3任一项所述的方法,其特征在于,还包括:
    所述第一通信装置接收第一配置请求,所述第一配置请求包含所述第一传输参数集的信息和所述第二传输参数集的信息;
    根据所述第一传输参数集和所述第二传输参数集进行信号配置;以及
    发送第二配置信息,所述第二配置信息用于指示根据所述第一传输参数集和所述第二传输参数进行信号配置的结果。
  6. 根据权利要求1至3任一项所述的方法,其特征在于,还包括:
    所述第一通信装置发送第二配置请求,所述第二配置请求包含所述第一传输参数集和所述第二传输参数集的信息;以及
    接收第三配置信息,所述第三配置信息指示根据所述第一传输参数集和所述第二传输参数集进行信号配置的结果。
  7. 根据权利要求1至3任一项所述的方法,其特征在于,还包括:
    所述第一通信装置确定所述第一传输参数集和所述第二传输参数集,
    根据所述第一传输参数集和所述第二传输参数集进行信号配置;以及
    发送第四配置信息,所述第四配置信息用于指示根据所述第一传输参数集和所述第二传输参数集进行信号配置的结果。
  8. 一种无线感知的方法,其特征在于,包括:
    第二通信装置获取第一传输参数集和第二传输参数集,其中所述第一传输参数集对应第一信号,所述第一传输参数集中的至少一个参数满足第一条件,所述第一条件与目标测距范围相关;所述第二传输参数集对应第二信号,所述第二传输参数集中的至少一个参数满足第二条件,所述第二条件与目标感知精度相关;
    第二通信装置根据所述第一传输参数集和所述第二传输参数集向第一通信装置发送所述第一信号和所述第二信号;其中所述第一信号和所述第二信号用于进行感知。
  9. 根据权利要求7所述的方法,其特征在于,还包括:
    所述第二通信装置发送第一配置信息,所述第一配置信息用于指示根据所述第一传输参数集和所述第二传输参数集进行信号配置的结果。
  10. 根据权利要求7所述的方法,其特征在于,还包括:
    所述第二通信装置发送第一配置请求,所述第一配置请求包含所述第一传输参数集和所述第二传输参数集的信息;以及,
    接收第二配置信息,所述第二配置信息用于指示根据所述第一传输参数集和所述第二传输参数集进行信号配置的结果。
  11. 根据权利要求7所述的方法,其特征在于,还包括:
    所述第二通信装置接收第二配置请求,所述第二配置请求包含第一传输参数集和第二传输参数集的信息
    响应于所述第二配置请求进行信号配置,以及
    发送第三配置信息,所述第三配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
  12. 根据权利要求7所述的方法,其特征在于,还包括:
    所述第二通信装置接收第四配置信息,所述第四配置信息用于指示根据所述第一传输参数集和所述第二传输参数集进行信号配置的结果。
  13. 根据权利要求1至12所述的方法,其特征在于,
    所述第一传输参数集包括所述第一信号对应的第一子载波间隔数。
  14. 根据权利要求13所述的方法,其特征在于,所述第一条件为:
    Figure PCTCN2022100350-appb-100001
    其中,D为所述目标测距范围,K 1为所述第一子载波间隔数,Δf为所述第一信号对应的子载波间隔,c为信号传播速度,γ为大于0且小于或者等于2的预设值。
  15. 根据权利要求14所述的方法,其特征在于,所述第一子载波间隔数K 1的值为满足所述第一条件的最大整数。
  16. 根据权利要求1至15任一项所述的方法,其特征在于,
    所述第一传输参数集包括:所述第一信号对应的第一子载波个数,所述第一信号对应的第一正交频分复用OFDM符号数和所述第一信号对应的第一样本能量;
    所述第一子载波个数,所述第一OFDM符号数和所述第一样本能量满足第三条件,所述第三条件与所述第二信号的最大不模糊距离相关。
  17. 根据权利要求16所述的方法,其特征在于,所述第三条件为:
    Figure PCTCN2022100350-appb-100002
    其中,B RMS为所述第一信号的均方根带宽,SNR 1为所述第一信号的等效信噪比,f c为射频载波中心频率,c为信号传播速度,β 1为第一修正参数;
    所述SNR 1根据所述第一子载波个数,所述第一OFDM符号数,所述第一样本能量,所述第一通信装置的噪声功率谱密度和所述第二通信装置到所述第一通信装置的路径损耗确定。
  18. 根据权利要求1至17任一项所述的方法,其特征在于,所述第二传输参数集包括所述第二信号对应的第二子载波个数,所述第二信号对应的第二正交频分复用OFDM符号数和所述第二信号对应的第二样本能量;
    所述第二子载波个数,所述第二OFDM符号数和所述第二样本能量满足所述第二条件。
  19. 根据权利要求18所述的方法,其特征在于,所述第二条件为:
    Figure PCTCN2022100350-appb-100003
    其中,δ为所述目标感知精度,SNR 2为所述第二信号的等效信噪比,f c为射频载波中心频率,c为信号传播速度,β 2为第二修正参数;
    所述SNR 2根据所述第二子载波个数,所述第二OFDM符号数,所述所述第二样本能量,所述第一通信装置的噪声功率谱密度和所述第二通信装置到所述第一通信装置的路径损耗确定。
  20. 根据权利要求1或2所述的方法,其特征在于,所述第一传输参数集和所述第二传输参数集满足以下关系中的一种或多种:
    所述第一传输参数集包括所述第一信号对应的第一子载波间隔数;所述第二传输参数集包括所述第二信号对应的第二子载波间隔数;所述第二子载波间隔数小于或等于所述第一子载波间隔数;
    所述第一传输参数集包括所述第一信号对应的第一正交频分复用OFDM符号数;所述第二传输参数集包括所述第二信号对应的第二OFDM符号数;所述第一OFDM符号数小于或等于所述第二OFDM符号数;
    所述第一传输参数集包括所述第一信号对应的第一样本能量;所述第二传输参数集包括所述第二信号对应的第二样本能量;所述第二样本能量小于或等于所述第一样本能量;或者,
    所述第一传输参数集包括所述第一信号对应的第一子载波个数;所述第二传输参数集包括所述第二信号对应的第二子载波个数;所述第二子载波个数少于所述第一子载波个数。
  21. 根据权利要求1至20任一项所述的方法,其特征在于,
    所述第一信号或第二信号在同一个子载波上相邻的OFDM符号中保持相位连续;或
    所述第一信号和第二信号在同一个子载波上相邻的OFDM符号中保持相位连续。
  22. 一种第一通信装置,其特征在于,包括:
    接收单元,用于根据第一传输参数集和第二传输参数集分别接收第二通信装置发送的第一信号和第二信号;
    感知单元,用于根据所述第一信号和所述第二信号进行感知,得到感知结果;
    其中所述第一传输参数集对应所述第一信号,所述第一传输参数集中的至少一个参数满足第一条件,所述第一条件与目标测距范围相关;所述第二传输参数集对应第二信号,所述第二传输参数集中的至少一个参数满足第二条件,所述第二条件与目标感知精度相关。
  23. 根据权利要求22所述的装置,其特征在于,所述根据所述第一信号和所述第二信号进行感知,包括:
    根据所述第一信号进行感知得到第一结果,根据所述第二信号进行感知得到第二结果,以及根据所述第一结果和所述第二结果确定所述感知结果。
  24. 根据权利要求23所述的装置,其特征在于,所述第一结果满足所述目标测距范围,所述第二结果满足所述目标测距精度。
  25. 根据权利要求22至24任一项所述的装置,其特征在于,
    所述接收单元,还用于接收第一配置信息,所述第一配置信息指示根据所述第一传输参数集和所述第二传输参数集进行信号配置的结果。
  26. 根据权利要求22至24任一项所述的装置,其特征在于,
    所述接收单元,还用于接收第一配置请求,所述第一配置请求包含所述第一传输参数集的信息和所述第二传输参数集的信息;
    根据所述第一传输参数集和所述第二传输参数集进行信号配置;以及所述装置还包括:
    发送单元,用于发送第二配置信息,所述第二配置信息用于指示根据所述第一传输参数集和所述第二传输参数进行信号配置的结果。
  27. 根据权利要求22至24任一项所述的装置,其特征在于,所述装置还包括:
    发送单元,用于发送第二配置请求,所述第二配置请求包含所述第一传输参数集和所述第二传输参数集的信息;以及
    所述接收单元,还用于接收第三配置信息,所述第三配置信息指示根据所述第一传输参数集和所述第二传输参数集进行信号配置的结果。
  28. 根据权利要求22至24任一项所述的装置,其特征在于,所述装置还包括处理单元和发送单元,
    所述处理单元,用于确定所述第一传输参数集和所述第二传输参数集,以及
    根据所述第一传输参数集和所述第二传输参数集进行信号配置;以及
    所述发送单元,还用于发送第四配置信息,所述第四配置信息用于指示根据所述第一传输参数集和所述第二传输参数集进行信号配置的结果。
  29. 一种第一通信装置,其特征在于,包括:
    收发器,用于根据第一传输参数集和第二传输参数集分别接收第二通信装置发送的第一信号和第二信号;
    处理器,用于根据所述第一信号和所述第二信号进行感知,得到感知结果;
    其中所述第一传输参数集对应所述第一信号,所述第一传输参数集中的至少一个参数满足第一条件,所述第一条件与目标测距范围相关;所述第二传输参数集对应第二信号,所述第二传输参数集中的至少一个参数满足第二条件,所述第二条件与目标感知精度相关。
  30. 根据权利要求29所述的装置,其特征在于,所述根据所述第一信号和所述第二信号进行感知,包括:
    根据所述第一信号进行感知得到第一结果,根据所述第二信号进行感知得到第二结果,以及根据所述第一结果和所述第二结果确定所述感知结果。
  31. 根据权利要求30所述的装置,其特征在于,所述第一结果满足所述目标测距范围,所述第二结果满足所述目标测距精度。
  32. 根据权利要求29至31任一项所述的装置,其特征在于,
    所述收发器,还用于接收第一配置信息,所述第一配置信息指示根据所述第一传输参数集和所述第二传输参数集进行信号配置的结果。
  33. 根据权利要求29至31任一项所述的装置,其特征在于,
    所述收发器,还用于接收第一配置请求,所述第一配置请求包含所述第一传输参数集的信息和所述第二传输参数集的信息;
    根据所述第一传输参数集和所述第二传输参数集进行信号配置;以及
    所述收发器,用于发送第二配置信息,所述第二配置信息用于指示根据所述第一传输参数集和所述第二传输参数进行信号配置的结果。
  34. 根据权利要求29至31任一项所述的装置,其特征在于,
    所述收发器,用于发送第二配置请求,所述第二配置请求包含所述第一传输参数集和所述第二传输参数集的信息;以及
    所述收发器,还用于接收第三配置信息,所述第三配置信息指示根据所述第一传输参数集和所述第二传输参数集进行信号配置的结果。
  35. 根据权利要求29至31任一项所述的装置,其特征在于,
    所述处理器,用于确定所述第一传输参数集和所述第二传输参数集,以及
    根据所述第一传输参数集和所述第二传输参数集进行信号配置;以及
    所述收发器,还用于发送第四配置信息,所述第四配置信息用于指示根据所述第一传输参数集和所述第二传输参数集进行信号配置的结果。
  36. 一种第二通信装置,其特征在于,包括:
    获取单元,用于获取第一传输参数集和第二传输参数集,其中所述第一传输参数集对应第一信号,所述第一传输参数集中的至少一个参数满足第一条件,所述第一条件与目标测距范围相关;所述第二传输参数集对应第二信号,所述第二传输参数集中的至少一个参数满足第二条件,所述第二条件与目标感知精度相关;
    发送单元,用于根据所述第一传输参数集和所述第二传输参数集向第一通信装置发送所述第一信号和所述第二信号;其中所述第一信号和所述第二信号用于进行感知。
  37. 根据权利要求36所述的装置,其特征在于,
    所述发送单元,还用于发送第一配置信息,所述第一配置信息用于指示根据所述第一传输参数集和所述第二传输参数集进行信号配置的结果。
  38. 根据权利要求36所述的装置,其特征在于,
    所述发送第单元,还用于发送第一配置请求,所述第一配置请求包含所述第一传输参数集和所述第二传输参数集的信息;以及,所述装置还包括接收单元,
    所述接收单元,用于接收第二配置信息,所述第二配置信息用于指示根据所述第一传输参数集和所述第二传输参数集进行信号配置的结果。
  39. 根据权利要求36所述的装置,其特征在于,所述装置还包括接收单元,
    所述接收单元,还用于接收第二配置请求,所述第二配置请求包含第一传输参数集和第二传输参数集的信息;所述装置还包括处理单元,
    所述处理单元,还用于响应于所述第二配置请求进行信号配置,以及
    所述发送单元,还用于发送第三配置信息,所述第三配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
  40. 根据权利要求36所述的装置,其特征在于,所述装置还包括接收单元:
    所述接收单元,还用于接收第四配置信息,所述第四配置信息用于指示根据所述第一传输参数集和所述第二传输参数集进行信号配置的结果。
  41. 一种第二通信装置,其特征在于,包括:
    处理器,用于获取第一传输参数集和第二传输参数集,其中所述第一传输参数集对应第一信号,所述第一传输参数集中的至少一个参数满足第一条件,所述第一条件与目标测距范围相关;所述第二传输参数集对应第二信号,所述第二传输参数集中的至少一个参数满足第 二条件,所述第二条件与目标感知精度相关;
    收发器,用于根据所述第一传输参数集和所述第二传输参数集向第一通信装置发送所述第一信号和所述第二信号;其中所述第一信号和所述第二信号用于进行感知。
  42. 根据权利要求41所述的装置,其特征在于,
    所述收发器,还用于发送第一配置信息,所述第一配置信息用于指示根据所述第一传输参数集和所述第二传输参数集进行信号配置的结果。
  43. 根据权利要求41所述的装置,其特征在于,
    所述收发器,还用于发送第一配置请求,所述第一配置请求包含所述第一传输参数集和所述第二传输参数集的信息;
    所述收发器,还用于接收第二配置信息,所述第二配置信息用于指示根据所述第一传输参数集和所述第二传输参数集进行信号配置的结果。
  44. 根据权利要求41所述的装置,其特征在于,
    所述收发器,还用于接收第二配置请求,所述第二配置请求包含第一传输参数集和第二传输参数集的信息;
    所述处理器,还用于响应于所述第二配置请求进行信号配置,以及
    所述收发器,还用于发送第三配置信息,所述第三配置信息用于指示根据第一传输参数集和第二传输参数集进行信号配置的结果。
  45. 根据权利要求41所述的装置,其特征在于,
    所述收发器,还用于接收第四配置信息,所述第四配置信息用于指示根据所述第一传输参数集和所述第二传输参数集进行信号配置的结果。
  46. 根据权利要求22至45任一项所述的装置,其特征在于,
    所述第一传输参数集包括所述第一信号对应的第一子载波间隔数。
  47. 根据权利要求46所述的装置,其特征在于,所述第一条件为:
    Figure PCTCN2022100350-appb-100004
    其中,D为所述目标测距范围,K 1为所述第一子载波间隔数,Δf为所述第一信号对应的子载波间隔,c为信号传播速度,γ为大于0且小于或者等于2的预设值。
  48. 根据权利要求47所述的装置,其特征在于,所述第一信号的子载波间隔数K 1的值为满足所述第一条件的最大整数。
  49. 根据权利要求22至48任一项所述的装置,其特征在于,
    所述第一传输参数集包括:所述第一信号对应的第一子载波个数,所述第一信号对应的第一正交频分复用OFDM符号数和所述第一信号对应的第一样本能量;
    所述第一子载波个数,所述第一OFDM符号数和所述第一样本能量满足第三条件,所述第三条件与所述第二信号的最大不模糊距离相关。
  50. 根据权利要求49所述的装置,其特征在于,所述第三条件为:
    Figure PCTCN2022100350-appb-100005
    其中,B RMS为所述第一信号的均方根带宽,SNR 1为所述第一信号的等效信噪比,f c为射频载波中心频率,c为信号传播速度,β 1为第一修正参数;
    所述SNR 1根据所述第一子载波个数,所述第一OFDM符号数,所述第一样本能量,所述 第一通信装置的噪声功率谱密度和所述第二通信装置到所述第一通信装置的路径损耗确定。
  51. 根据权利要求22至50任一项所述的装置,其特征在于,所述第二传输参数集包括所述第二信号对应的第二子载波个数,所述第二信号对应的第二正交频分复用OFDM符号数和所述第二信号对应的第二样本能量;
    所述第二子载波个数,所述第二OFDM符号数和所述第二样本能量满足所述第二条件。
  52. 根据权利要求51所述的装置,其特征在于,所述第二条件为:
    Figure PCTCN2022100350-appb-100006
    其中,δ为所述目标感知精度,SNR 2为所述第二信号的等效信噪比,f c为射频载波中心频率,c为信号传播速度,β 2为第二修正参数;
    所述SNR 2根据所述第二子载波个数,所述第二OFDM符号数,所述所述第二样本能量,所述第一通信装置的噪声功率谱密度和所述第二通信装置到所述第一通信装置的路径损耗确定。
  53. 根据权利要求22至52任一项所述的装置,其特征在于,所述第一传输参数集和所述第二传输参数集满足以下关系中的一种或多种:
    所述第一传输参数集包括所述第一信号对应的第一子载波间隔数;所述第二传输参数集包括所述第二信号对应的第二子载波间隔数;所述第二子载波间隔数小于或等于所述第一子载波间隔数;
    所述第一传输参数集包括所述第一信号对应的第一正交频分复用OFDM符号数;所述第二传输参数集包括所述第二信号对应的第二OFDM符号数;所述第一OFDM符号数小于或等于所述第二OFDM符号数;
    所述第一传输参数集包括所述第一信号对应的第一样本能量;所述第二传输参数集包括所述第二信号对应的第二样本能量;所述第二样本能量小于或等于所述第一样本能量;或者,
    所述第一传输参数集包括所述第一信号对应的第一子载波个数;所述第二传输参数集包括所述第二信号对应的第二子载波个数;所述第二子载波个数少于所述第一子载波个数。
  54. 根据权利要求22至53任一项所述的装置,其特征在于,
    所述第一信号或第二信号在同一个子载波上相邻的OFDM符号中保持相位连续;或
    所述第一信号和第二信号在同一个子载波上相邻的OFDM符号中保持相位连续。
  55. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器存储指令,所述处理器用于执行所述指令,使得所述通信装置执行如权利要求1至7、13至21任一项所述的方法,或者,使得所述通信装置执行如权利要求8至21任一项所述的方法。
  56. 一种计算机可读存储介质,包括指令,当其在计算机上执行时,使得权利要求1至7、13至21任一项所述的方法被执行;或者,使得权利要求8至21任一项所述的方法被执行。
  57. 一种包含指令的计算机程序产品,当其在计算机上执行时,使得权利要求1至7、13至21任一项所述的方法被执行;或者,使得权利要求8至21任一项所述的方法被执行。
  58. 一种通信系统,其特征在于,包括权利要求22至35、46至54任一项所述的第一通信装置,以及权利要求36至54任一项所述的第二通信装置。
PCT/CN2022/100350 2021-06-22 2022-06-22 一种无线感知的方法及装置 WO2022268104A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22827597.0A EP4346270A1 (en) 2021-06-22 2022-06-22 Wireless perception method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110691276.9A CN115515175A (zh) 2021-06-22 2021-06-22 一种无线感知的方法及装置
CN202110691276.9 2021-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/390,551 Continuation US20240137177A1 (en) 2021-06-22 2023-12-20 Wireless sensing method and apparatus

Publications (1)

Publication Number Publication Date
WO2022268104A1 true WO2022268104A1 (zh) 2022-12-29

Family

ID=84500332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100350 WO2022268104A1 (zh) 2021-06-22 2022-06-22 一种无线感知的方法及装置

Country Status (3)

Country Link
EP (1) EP4346270A1 (zh)
CN (1) CN115515175A (zh)
WO (1) WO2022268104A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101257704A (zh) * 2007-02-27 2008-09-03 华为技术有限公司 中继网络中的联合方法、系统、中继站及移动台
US20120032855A1 (en) * 2006-10-05 2012-02-09 Ivan Reede High-resolution ranging and location finding using multicarrier signals
CN104469931A (zh) * 2014-11-05 2015-03-25 中兴通讯股份有限公司 一种定位增强的方法及设备
CN111736138A (zh) * 2020-06-23 2020-10-02 西安电子科技大学 基于ofdm信号和三频载波相位测距的室内测距方法
CN112205008A (zh) * 2020-09-03 2021-01-08 北京小米移动软件有限公司 测距的方法、通信节点、通信设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120032855A1 (en) * 2006-10-05 2012-02-09 Ivan Reede High-resolution ranging and location finding using multicarrier signals
CN101257704A (zh) * 2007-02-27 2008-09-03 华为技术有限公司 中继网络中的联合方法、系统、中继站及移动台
CN104469931A (zh) * 2014-11-05 2015-03-25 中兴通讯股份有限公司 一种定位增强的方法及设备
CN111736138A (zh) * 2020-06-23 2020-10-02 西安电子科技大学 基于ofdm信号和三频载波相位测距的室内测距方法
CN112205008A (zh) * 2020-09-03 2021-01-08 北京小米移动软件有限公司 测距的方法、通信节点、通信设备及存储介质

Also Published As

Publication number Publication date
CN115515175A (zh) 2022-12-23
EP4346270A1 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
US10638489B2 (en) Method and apparatus for managing UE-to-UE interference in wireless communication system
US10547998B2 (en) Method and apparatus for transmitting a discovery signal, and method and apparatus for receiving a discovery signal
US20170127365A1 (en) System and method for transmitting a synchronization signal
CN111034143A (zh) 用于确定上行链路发送定时的方法和装置
US8811309B2 (en) Implicit resource allocation using shifted synchronization sequence
WO2018210243A1 (zh) 一种通信方法和装置
US20220014329A1 (en) Methods and apparatus for enhancing the configurability of 5g new radio positioning reference signals
KR20210134979A (ko) 5g 신무선 상향링크 위치결정 참조 신호를 구성하는 방법 및 장치
US20200412590A1 (en) Synchronization signal block design
CN110392443A (zh) 一种数据信道传输方法、接收方法及装置
CN109842432A (zh) 跳频处理方法及设备
JP2023537885A (ja) 分離した帯域幅セグメントを用いたニューラジオ測位に関するシグナリング考察
CN111464473A (zh) 配置信息的方法与装置
WO2022000323A1 (en) Data decoding information sharing for multi-node passive sensing
WO2022000321A1 (en) Reference signal configuration sharing for multi-node passive sensing
WO2022268104A1 (zh) 一种无线感知的方法及装置
US20240137177A1 (en) Wireless sensing method and apparatus
TW202239230A (zh) 通訊方法以及通訊裝置
WO2022002629A1 (en) Methods, apparatuses and systems directed to localizing a target based on a radar processing of a signal
JP2022519089A (ja) 信号送信方法、及び装置
WO2022247593A1 (zh) 测距方法和装置
US20240121812A1 (en) Considerations on channel sensing for sidelink
EP4135362A1 (en) System information transmission method and device
WO2024077615A1 (zh) 测距方法及装置
US20220393815A1 (en) Techniques for sidelink reference signal transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827597

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022827597

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022827597

Country of ref document: EP

Effective date: 20231228

NENP Non-entry into the national phase

Ref country code: DE