WO2022247324A1 - 马达阻尼的测算方法和系统 - Google Patents

马达阻尼的测算方法和系统 Download PDF

Info

Publication number
WO2022247324A1
WO2022247324A1 PCT/CN2022/073171 CN2022073171W WO2022247324A1 WO 2022247324 A1 WO2022247324 A1 WO 2022247324A1 CN 2022073171 W CN2022073171 W CN 2022073171W WO 2022247324 A1 WO2022247324 A1 WO 2022247324A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
under test
motor under
test
damping
Prior art date
Application number
PCT/CN2022/073171
Other languages
English (en)
French (fr)
Inventor
朱建伟
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP22748211.4A priority Critical patent/EP4116722A4/en
Priority to US17/799,382 priority patent/US20240183754A1/en
Publication of WO2022247324A1 publication Critical patent/WO2022247324A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/005Testing of complete machines, e.g. washing-machines or mobile phones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines

Definitions

  • the present application relates to the technical field of data processing, in particular to a method and system for measuring and calculating motor damping.
  • the basic parameters of the linear motor such as mechanical damping, should be applied to construct the model of the linear motor, so a scheme that can measure the mechanical damping of the linear motor is needed.
  • the present application provides a method, device and system for measuring and calculating motor damping, aiming at realizing the measuring and calculating of mechanical damping of linear motors.
  • the present application provides a method for measuring and calculating motor damping applied to a processor, including: generating a drive signal to drive the motor under test to run, and at the end of the drive signal, the motor under test is in a state of free decay. Generate a shutdown signal to cut off the test loop of the motor under test; obtain the acceleration of the motor under test with the test loop cut off and in a free decay state, and use the acceleration of the motor under test with the test loop cut off and in a free decay state to obtain the measured Mechanical damping of the motor.
  • the drive signal drives the motor under test to run.
  • the motor under test is in a state of free decay, and the test circuit of the motor under test is cut off by turning off the signal, which can eliminate the motor under test. Measure the electromagnetic damping of the motor during operation. Therefore, the damping of the tested motor obtained through the acceleration of the tested motor with the test loop cut off and in a free decay state is the mechanical damping of the tested motor.
  • a method of generating a shutdown signal to drive the switch to turn off to cut off the test circuit of the motor under test can be used to realize the generation of a shutdown signal at the cut-off time of the drive signal.
  • the signal cuts off the test circuit of the motor under test, of course, the switch is connected to the test circuit of the motor under test.
  • obtaining the acceleration of the motor under test with the test loop cut off and in the free decay state may be: obtaining the target acceleration of the test motor with the test loop cut off and in the free decay state, the target acceleration is determined by the test The acceleration of the motor under test with the loop cut off and in a state of free decay is obtained by signal conditioning.
  • the present application provides another method for calculating the motor damping applied to the processor, including: generating a driving signal to drive the motor under test.
  • the acceleration of the motor under test in the decay state is used to obtain the total damping of the motor under test by using the acceleration of the motor under test in the free decay state.
  • the drive signal drives the motor under test to run.
  • the motor under test is in a state of free decay, and the measured motor can be calculated through the acceleration of the motor under test in a state of free decay. The total damping of the motor.
  • obtaining the acceleration of the motor under test in the free decay state may be: obtaining the target acceleration of the motor under test in the free decay state, and the target acceleration is determined by the acceleration of the motor under test in the free decay state Signal conditioning processing is obtained.
  • the present application provides a device for measuring and calculating motor damping, including: two generating units, an acquiring unit, and a computing unit, the first generating unit of the two generating units is used to generate a drive signal to drive the motor under test to run, The second generation unit is used to generate a shutdown signal to cut off the test circuit of the motor under test at the cut-off moment of the drive signal; the acquisition unit is used to obtain the acceleration of the motor under test with the test circuit cut off and in a free decay state; the calculation unit is used for The damping of the motor under test is obtained by using the acceleration of the motor under test with the test loop cut off and in a state of free decay.
  • the drive signal generated by the first generation unit drives the motor under test to run, and at the cut-off time of the drive signal, the motor under test is in a state of free decay, and the motor under test generated by the second generation unit is turned off.
  • the signal cuts off the test loop of the motor under test, which can eliminate the electromagnetic damping of the motor under test during operation. Therefore, the calculation unit can calculate the acceleration of the motor under test with the test loop cut off and in a free decay state obtained by the acquisition unit.
  • the damping of the motor under test is the mechanical damping of the motor under test.
  • the second generation unit when the second generation unit generates an off signal to cut off the test circuit of the motor under test at the cut-off moment of the drive signal, it is used to: generate the turn-off signal to drive the switch to turn off at the cut-off moment of the drive signal Cut off the test circuit of the motor under test, and connect the switch to the test circuit of the motor under test.
  • the acquisition unit when the acquisition unit acquires the acceleration of the motor under test with the test loop cut off and in a free decay state, it is used to: acquire the target acceleration of the test motor with the test loop cut off and in a free decay state, the target acceleration The acceleration of the motor under test with the test loop cut off and in a state of free decay is obtained by signal conditioning.
  • the present application provides another measuring device for motor damping, including: a generating unit, an acquiring unit, and a computing unit, the generating unit is used to generate a drive signal to drive the motor under test to run; the acquiring unit is used to acquire The acceleration of the motor under test; the calculation unit is used to obtain the total damping of the motor under test by using the acceleration of the motor under test in a state of free decay.
  • the driving signal generated by the generating unit drives the motor under test to run, and at the cut-off time of the driving signal, the motor under test is in a state of free decay, and the calculation unit can acquire the state of free decay through the acquisition unit The acceleration of the motor under test is obtained, and the damping of the motor under test is obtained as the total damping of the motor under test.
  • obtaining the acceleration of the motor under test in the free decay state may be: obtaining the target acceleration of the motor under test in the free decay state, and the target acceleration is determined by the acceleration of the motor under test in the free decay state Signal conditioning processing is obtained.
  • the present application provides an electronic device, including: one or more processors and a memory for storing programs, and when one or more processors execute the programs in the memory, the above-mentioned first aspect or the first aspect is realized
  • the present application provides a motor damping measurement system, including: a processor, a test fixture for installing the motor under test, an accelerometer connected to the processor, and a device connected to the processor to the motor under test.
  • the driving signal drives the motor under test to run.
  • the motor under test is in a free decay state, and the test circuit of the motor under test is cut off by the generated shutdown signal, which can Remove the electromagnetic damping of the motor under test during operation. Therefore, the processor can detect the acceleration of the motor under test with the test circuit cut off and in a free decay state detected by the accelerometer, and calculate the damping of the motor under test, which is the motor under test mechanical damping.
  • a sampling resistor and a power amplifier are also arranged on the branch connecting the processor to the motor under test.
  • the accelerometer is further connected with a signal conditioner, and the signal conditioner performs signal conditioning on the acceleration output by the accelerometer and provides it to the processor.
  • the switch is an optocoupler relay.
  • a motor installation area adapted to the structure of the motor under test is provided inside the test fixture.
  • FIG. 1 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • Fig. 2a is a structural diagram of the motor damping measurement system provided by the embodiment of the present application.
  • FIG. 2b and Figure 2c are schematic circuit diagrams of the motor damping measurement system provided by the embodiment of the present application.
  • Fig. 3a is a flow chart of the method for measuring and calculating the motor damping provided by the embodiment of the present application;
  • Fig. 3b is a diagram showing the relationship between the amplitude and time of the linear motor provided by the embodiment of the present application.
  • Fig. 4a is a flow chart of the method for measuring and calculating the motor damping provided by the embodiment of the present application;
  • Fig. 4b is a diagram showing the relationship between the amplitude and time of the linear motor provided by the embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a measuring device for motor damping provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a measuring device for motor damping provided by an embodiment of the present application.
  • FIG. 7 is a structural diagram of an electronic device that implements a measurement method for a motor under test provided in an embodiment of the present application.
  • the term "comprises”, “comprises” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes none. other elements specifically listed, or also include elements inherent in such a process, method, article, or apparatus.
  • an element defined by the phrase “comprising a " does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.
  • FIG. 1 shows a schematic structural diagram of an electronic device 100 .
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (universal serial bus, USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194, and A subscriber identification module (subscriber identification module, SIM) card interface 195 and the like.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, an ambient light sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example: the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • baseband processor baseband processor
  • neural network processor neural-network processing unit
  • the processor can generate an operation control signal according to the instruction opcode and the timing signal, and complete the control of fetching and executing the instruction.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is a cache memory.
  • the memory may hold instructions or data that the processor 110 has just used or recycled. If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated access is avoided, and the waiting time of the processor 110 is reduced, thus improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transmitter (universal asynchronous receiver/transmitter, UART) interface, mobile industry processor interface (mobile industry processor interface, MIPI), general-purpose input and output (general-purpose input/output, GPIO) interface, subscriber identity module (subscriber identity module, SIM) interface, and /or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input and output
  • subscriber identity module subscriber identity module
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus, including a serial data line (serial data line, SDA) and a serial clock line (derail clock line, SCL).
  • processor 110 may include multiple sets of I2C buses.
  • the processor 110 can be respectively coupled to the touch sensor 180K, the charger, the flashlight, the camera 193 and the like through different I2C bus interfaces.
  • the processor 110 may be coupled to the touch sensor 180K through the I2C interface, so that the processor 110 and the touch sensor 180K communicate through the I2C bus interface to realize the touch function of the electronic device 100 .
  • the I2S interface can be used for audio communication.
  • processor 110 may include multiple sets of I2S buses.
  • the processor 110 may be coupled to the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170 .
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the I2S interface, so as to realize the function of answering calls through the Bluetooth headset.
  • the PCM interface can also be used for audio communication, sampling, quantizing and encoding the analog signal.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 can also transmit audio signals to the wireless communication module 160 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a bidirectional communication bus. It converts the data to be transferred to and from parallel communication.
  • a UART interface is generally used to connect the processor 110 and the wireless communication module 160 .
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to realize the Bluetooth function.
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the UART interface, so as to realize the function of playing music through the Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193 .
  • MIPI interface includes camera serial interface (camera serial interface, CSI), display serial interface (display serial interface, DSI), etc.
  • the processor 110 communicates with the camera 193 through the CSI interface to realize the shooting function of the electronic device 100 .
  • the processor 110 communicates with the display screen 194 through the DSI interface to realize the display function of the electronic device 100 .
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193 , the display screen 194 , the wireless communication module 160 , the audio module 170 , the sensor module 180 and so on.
  • the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 130 is an interface conforming to the USB standard specification, specifically, it can be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the electronic device 100 , and can also be used to transmit data between the electronic device 100 and peripheral devices. It can also be used to connect headphones and play audio through them. This interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules shown in the embodiment of the present invention is only a schematic illustration, and does not constitute a structural limitation of the electronic device 100 .
  • the electronic device 100 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the charging management module 140 is configured to receive a charging input from a charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 140 can receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive a wireless charging input through a wireless charging coil of the electronic device 100 . While the charging management module 140 is charging the battery 142 , it can also provide power for electronic devices through the power management module 141 .
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives the input from the battery 142 and/or the charging management module 140 to provide power for the processor 110 , the internal memory 121 , the display screen 194 , the camera 193 , and the wireless communication module 160 .
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (leakage, impedance).
  • the power management module 141 may also be disposed in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be set in the same device.
  • the wireless communication function of the electronic device 100 can be realized by the antenna 1 , the antenna 2 , the mobile communication module 150 , the wireless communication module 160 , a modem processor, a baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover single or multiple communication frequency bands. Different antennas can also be multiplexed to improve the utilization of the antennas.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G applied on the electronic device 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (low noise amplifier, LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, filter and amplify the received electromagnetic waves, and send them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signals modulated by the modem processor, and convert them into electromagnetic waves through the antenna 1 for radiation.
  • at least part of the functional modules of the mobile communication module 150 may be set in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be set in the same device.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used for modulating the low-frequency baseband signal to be transmitted into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator sends the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low-frequency baseband signal is passed to the application processor after being processed by the baseband processor.
  • the application processor outputs sound signals through audio equipment (not limited to speaker 170A, receiver 170B, etc.), or displays images or videos through display screen 194 .
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent from the processor 110, and be set in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (Wireless Fidelity, Wi-Fi) network), bluetooth (bluetooth, BT), global navigation satellite, etc. applied on the electronic device 100.
  • System global navigation satellite system, GNSS
  • frequency modulation frequency modulation, FM
  • near field communication technology near field communication, NFC
  • infrared technology infrared, IR
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency-modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , frequency-modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the antenna 1 of the electronic device 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access, CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR techniques, etc.
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • code division multiple access code division multiple access
  • CDMA broadband Code division multiple access
  • WCDMA wideband code division multiple access
  • time division code division multiple access time-division code division multiple access
  • TD-SCDMA time-division code division multiple access
  • the GNSS may include a global positioning system (global positioning system, GPS), a global navigation satellite system (global navigation satellite system, GLONASS), a Beidou navigation satellite system (beidou navigation satellite system, BDS), a quasi-zenith satellite system (quasi -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • Beidou navigation satellite system beidou navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the electronic device 100 realizes the display function through the GPU, the display screen 194 , and the application processor.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos and the like.
  • the display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode, AMOLED), flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light emitting diodes (quantum dot light emitting diodes, QLED), etc.
  • the electronic device 100 may include 1 or N display screens 194 , where N is a positive integer greater than 1.
  • the electronic device 100 can realize the shooting function through the ISP, the camera 193 , the video codec, the GPU, the display screen 194 and the application processor.
  • the ISP is used for processing the data fed back by the camera 193 .
  • the light is transmitted to the photosensitive element of the camera through the lens, and the light signal is converted into an electrical signal, and the photosensitive element of the camera transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and skin color.
  • ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be located in the camera 193 .
  • Camera 193 is used to capture still images or video.
  • the object generates an optical image through the lens and projects it to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the light signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other image signals.
  • the electronic device 100 may include 1 or N cameras 193 , where N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the electronic device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • the electronic device 100 may support one or more video codecs.
  • the electronic device 100 can play or record videos in various encoding formats, for example: moving picture experts group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4 and so on.
  • MPEG moving picture experts group
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • Applications such as intelligent cognition of the electronic device 100 can be realized through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, so as to expand the storage capacity of the electronic device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement a data storage function. Such as saving music, video and other files in the external memory card.
  • the internal memory 121 may be used to store computer-executable program codes including instructions.
  • the internal memory 121 may include an area for storing programs and an area for storing data.
  • the stored program area can store an operating system, at least one application program required by a function (such as a sound playing function, an image playing function, etc.) and the like.
  • the storage data area can store data created during the use of the electronic device 100 (such as audio data, phonebook, etc.) and the like.
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (universal flash storage, UFS) and the like.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by executing instructions stored in the internal memory 121 and/or instructions stored in a memory provided in the processor.
  • the electronic device 100 can implement audio functions through the audio module 170 , the speaker 170A, the receiver 170B, the microphone 170C, the earphone interface 170D, and the application processor. Such as music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signal.
  • the audio module 170 may also be used to encode and decode audio signals.
  • the audio module 170 may be set in the processor 110 , or some functional modules of the audio module 170 may be set in the processor 110 .
  • Speaker 170A also referred to as a "horn" is used to convert audio electrical signals into sound signals.
  • Electronic device 100 can listen to music through speaker 170A, or listen to hands-free calls.
  • Receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the receiver 170B can be placed close to the human ear to receive the voice.
  • the microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals. When making a phone call or sending a voice message, the user can put his mouth close to the microphone 170C to make a sound, and input the sound signal to the microphone 170C.
  • the electronic device 100 may be provided with at least one microphone 170C. In some other embodiments, the electronic device 100 may be provided with two microphones 170C, which may also implement a noise reduction function in addition to collecting sound signals. In some other embodiments, the electronic device 100 can also be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and realize directional recording functions, etc.
  • the earphone interface 170D is used for connecting wired earphones.
  • the earphone interface 170D can be a USB interface 130, or a 3.5mm open mobile terminal platform (OMTP) standard interface, or a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the pressure sensor 180A is used to sense the pressure signal and convert the pressure signal into an electrical signal.
  • pressure sensor 180A may be disposed on display screen 194 .
  • pressure sensors 180A such as resistive pressure sensors, inductive pressure sensors, and capacitive pressure sensors.
  • a capacitive pressure sensor may be comprised of at least two parallel plates with conductive material.
  • the electronic device 100 determines the intensity of pressure according to the change in capacitance.
  • the electronic device 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the electronic device 100 may also calculate the touched position according to the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch position but with different touch operation intensities may correspond to different operation instructions. For example: when a touch operation with a touch operation intensity less than the first pressure threshold acts on the short message application icon, an instruction to view short messages is executed. When a touch operation whose intensity is greater than or equal to the first pressure threshold acts on the icon of the short message application, the instruction of creating a new short message is executed.
  • the gyro sensor 180B can be used to determine the motion posture of the electronic device 100 .
  • the angular velocity of the electronic device 100 around three axes may be determined by the gyro sensor 180B.
  • the gyro sensor 180B can be used for image stabilization. Exemplarily, when the shutter is pressed, the gyro sensor 180B detects the shaking angle of the electronic device 100, calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to counteract the shaking of the electronic device 100 through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • the air pressure sensor 180C is used to measure air pressure.
  • the electronic device 100 calculates the altitude based on the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the electronic device 100 may use the magnetic sensor 180D to detect the opening and closing of the flip leather case.
  • the electronic device 100 can detect the opening and closing of the flip according to the magnetic sensor 180D.
  • features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the acceleration of the electronic device 100 in various directions (generally three axes). When the electronic device 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of electronic devices, and can be used in applications such as horizontal and vertical screen switching, pedometers, etc.
  • the distance sensor 180F is used to measure the distance.
  • the electronic device 100 may measure the distance by infrared or laser. In some embodiments, when shooting a scene, the electronic device 100 may use the distance sensor 180F for distance measurement to achieve fast focusing.
  • Proximity light sensor 180G may include, for example, light emitting diodes (LEDs) and light detectors, such as photodiodes.
  • the light emitting diodes may be infrared light emitting diodes.
  • the electronic device 100 emits infrared light through the light emitting diode.
  • Electronic device 100 uses photodiodes to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it may be determined that there is an object near the electronic device 100 . When insufficient reflected light is detected, the electronic device 100 may determine that there is no object near the electronic device 100 .
  • the electronic device 100 can use the proximity light sensor 180G to detect that the user is holding the electronic device 100 close to the ear to make a call, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in leather case mode, automatic unlock and lock screen in pocket mode.
  • the ambient light sensor 180L is used for sensing ambient light brightness.
  • the electronic device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the electronic device 100 is in the pocket, so as to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the electronic device 100 can use the collected fingerprint characteristics to implement fingerprint unlocking, access to application locks, take pictures with fingerprints, answer incoming calls with fingerprints, and the like.
  • the temperature sensor 180J is used to detect temperature.
  • the electronic device 100 uses the temperature detected by the temperature sensor 180J to implement a temperature treatment strategy. For example, when the temperature reported by the temperature sensor 180J exceeds the threshold, the electronic device 100 may reduce the performance of the processor located near the temperature sensor 180J, so as to reduce power consumption and implement thermal protection.
  • the electronic device 100 when the temperature is lower than another threshold, the electronic device 100 heats the battery 142 to prevent the electronic device 100 from being shut down abnormally due to the low temperature.
  • the electronic device 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • the touch sensor 180K is also called “touch device”.
  • the touch sensor 180K can be disposed on the display screen 194, and the touch sensor 180K and the display screen 194 form a touch screen, also called a “touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to the touch operation can be provided through the display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the electronic device 100 , which is different from the position of the display screen 194 .
  • the bone conduction sensor 180M can acquire vibration signals. In some embodiments, the bone conduction sensor 180M can acquire the vibration signal of the vibrating bone mass of the human voice. The bone conduction sensor 180M can also contact the human pulse and receive the blood pressure beating signal. In some embodiments, the bone conduction sensor 180M can also be disposed in the earphone, combined into a bone conduction earphone.
  • the audio module 170 can analyze the voice signal based on the vibration signal of the vibrating bone mass of the vocal part acquired by the bone conduction sensor 180M, so as to realize the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beating signal acquired by the bone conduction sensor 180M, so as to realize the heart rate detection function.
  • the keys 190 include a power key, a volume key and the like.
  • the key 190 may be a mechanical key. It can also be a touch button.
  • the electronic device 100 can receive key input and generate key signal input related to user settings and function control of the electronic device 100 .
  • the motor 191 can generate a vibrating reminder.
  • the motor 191 can be used for incoming call vibration prompts, and can also be used for touch vibration feedback.
  • touch operations applied to different applications may correspond to different vibration feedback effects.
  • the motor 191 may also correspond to different vibration feedback effects for touch operations acting on different areas of the display screen 194 .
  • Different application scenarios for example: time reminder, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 192 can be an indicator light, and can be used to indicate charging status, power change, and can also be used to indicate messages, missed calls, notifications, and the like.
  • the SIM card interface 195 is used for connecting a SIM card.
  • the SIM card can be connected and separated from the electronic device 100 by inserting it into the SIM card interface 195 or pulling it out from the SIM card interface 195 .
  • the electronic device 100 may support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card etc. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the multiple cards may be the same or different.
  • the SIM card interface 195 is also compatible with different types of SIM cards.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the electronic device 100 interacts with the network through the SIM card to implement functions such as calling and data communication.
  • the electronic device 100 adopts an eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the electronic device 100 and cannot be separated from the electronic device 100 .
  • the technical parameters of the motor 191 in the electronic device 100 are crucial to the establishment of the motor model, and also directly determine the performance of the motor 191 .
  • the motor damping is a key parameter. Therefore, there is a need for a solution that can realize the calculation of the motor damping.
  • damping After the motor vibrates under the action of a driving force, its vibration amplitude gradually decreases due to external factors or its own inherent factors. This factor that causes the vibration amplitude of the motor to gradually decrease can be called damping.
  • the damping of the motor is divided into total damping, mechanical damping and electromagnetic damping, and the sum of mechanical damping and electromagnetic damping is equal to the total damping.
  • the motor damping measurement system includes:
  • Host computer 201 Host computer 201, data acquisition card 202, test tooling 203, accelerometer 204 and relay 205; when the measured motor 206 needs to be damped, the data acquisition card 202 is connected to the host computer 201 and accelerometer 204 respectively, and the measured motor 206 is set in the test fixture 203, the data acquisition card 202 and the accelerometer 204 are respectively connected to the motor under test 206, and the relay 205 needs to be connected to the connection branch between the data acquisition card 202 and the motor under test 206.
  • Normally open means that the relay is always in the disconnected state by default and will only close when it receives an instruction; normally closed means that the relay is always in the default state. Closed state, open only when commanded.
  • the relay 205 belongs to the normally closed type.
  • the data acquisition card 202 and the host computer 201 can perform signal interaction, and the host computer 201 can issue instructions to the data acquisition card 202 and can also read data from the data acquisition card 202 .
  • the data acquisition card 202 is a component that can respond to instructions from the host computer, generate control commands to act on other devices, and can automatically collect non-electrical or electrical signals from the detection device or the unit under test.
  • the data acquisition card 202 under the control of the host computer 201, can generate two types of signals, an analog signal and a digital signal, and the motor under test 206 is driven by the analog signal to run.
  • the data acquisition card 202 generates a digital signal, and the digital signal acts on the control port of the relay 205 to control the opening and closing of the relay 205 .
  • the signal can be understood as an analog signal sent by the data acquisition card under the control of the host computer, which is provided to the motor under test through the power supply circuit of the motor under test.
  • M refers to the quality of the test tooling
  • R1 refers to the sampling resistor
  • K refers to the relay.
  • the relay K belongs to the normally closed state, and the relay K receives an instruction and opens as shown in Figure 2c.
  • the accelerometer 204 detects its acceleration
  • the data acquisition card 202 can obtain the acceleration of the motor under test 206 from the accelerometer 204
  • the host computer 201 analyzes and processes the acceleration of the motor under test 206, and calculates Damping of the motor under test.
  • the data acquisition card 202 When the total damping of the motor under test 206 is calculated by using the motor damping measuring system provided in this embodiment, the data acquisition card 202 generates a driving signal, and the motor under test 206 is driven to run according to the driving signal. At the cut-off moment of the driving signal, the driving signal is no longer input to the motor under test 206, and the motor under test 206 is in a state of free decay.
  • the free decay state refers to the state in which the amplitude of the motor decays with time after twisting occurs under the action of the initial torque and the torque is removed.
  • the acceleration of the motor under test 206 detected by the accelerometer 204 at this moment can be used to calculate the total damping of the motor under test 206 .
  • the data acquisition card 202 acquires the acceleration of the motor under test in the state of free decay, and provides it to the host computer 201, and the host computer 201 uses the acceleration of the motor under test in the state of free decay to calculate the total damping of the motor under test.
  • the data acquisition card 202 generates a drive signal, and the motor under test 206 is driven to run according to the drive signal.
  • the host computer 201 issues a control command, and the data acquisition card 202 generates a shutdown signal in response to the control command.
  • the relay 205 is turned off under the control of the shutdown signal, cutting off the power supply circuit (also called the test circuit) of the motor under test 206 .
  • the power supply circuit of the motor under test 206 is cut off, and the electromagnetic damping can be eliminated naturally.
  • the accelerometer 204 measures the speed of the motor under test which is cut off in the test circuit and is in a state of free decay, and the obtained acceleration can be used to calculate the mechanical damping of the motor under test. .
  • the data acquisition card 202 acquires the acceleration of the motor under test whose test loop is cut off and is in a state of free decay, and provides it to the host computer 201, and the host computer 201 utilizes the acceleration of the motor under test whose test loop is cut off and in a state of free decay, Calculate the mechanical damping of the motor under test.
  • the motor under test 206 needs to be installed in the test fixture 203 when the damping is being tested.
  • the simplest test fixture can be a test board with a certain thickness, and the motor under test 206 is placed on the surface of the test board. There are no restrictions on the material of the test board, as long as it can ensure that the tested motor 206 will not slide on the surface of the test board during operation.
  • the test fixture 203 can also be a frame-shaped component, and the motor under test 206 is installed inside it, so that the interference of external factors during the test can be avoided.
  • a motor installation area adapted to the structure of the motor under test 206 is provided inside the test fixture 203 .
  • the motor installation area inside the test fixture 203 also needs to be diversified to ensure that the external structures of each type of motor to be tested are compatible.
  • the power of the analog signal output by the data acquisition card 202 is small.
  • a sampling resistor 207 and a sampling resistor 207 can also be connected.
  • the power amplifier 208 is also shown in Fig. 2a. It should also be noted that the connection positions of the relay 205, the sampling resistor 207 and the power amplifier 208 can be adjusted, as long as the three are connected in series.
  • the relay 205, the sampling resistor 207 and the power amplifier 208 can also be integrated into one device.
  • a signal conditioner can also be connected between the accelerometer and the data acquisition card. If the data acquisition card cannot directly analyze the detection signal of the accelerometer, the signal conditioner needs to perform signal conditioning on the detection signal of the accelerometer to obtain a signal that can be analyzed by the data acquisition card. It can be seen that the signal demodulator can perform signal conversion, linearization processing, amplification and filtering on the detection signal of the accelerometer to obtain a signal that can be analyzed by the data acquisition card.
  • the work of the upper computer 201 and the data acquisition card 202 shown in FIG. 2a can be summarized as follows: the upper computer 201 and the data acquisition card 202 cooperate to complete: generate a driving signal to drive the motor under test to run, and at the cut-off time of the driving signal, Generate a shutdown signal to cut off the test circuit of the motor under test, obtain the acceleration of the motor under test with the test circuit cut off and in a state of free decay, and use the acceleration of the motor under test with the test circuit cut off and in a state of free decay to calculate the motor under test damping.
  • it can also be coordinated to complete: generate a driving signal to drive the motor under test to run, obtain the acceleration of the motor under test in the state of free decay, and calculate the total damping of the motor under test by using the acceleration of the motor under test in the state of free decay.
  • an integrated device such as a processor can be used to uniformly execute the work content of the host computer 201 and the data acquisition card 202 . Based on this, the processor functions as follows:
  • a drive signal to drive the motor under test to run At the cut-off time of the drive signal, generate a shutdown signal to cut off the test circuit of the motor under test, obtain the acceleration of the motor under test with the test circuit cut off and in a free attenuation state, and use the test circuit to be cut off. And the acceleration of the motor under test in the state of free decay, calculate the mechanical damping of the motor under test.
  • the processor can also generate a driving signal to drive the motor under test to run, obtain the acceleration of the motor under test in the free decay state, and calculate the acceleration of the motor under test by using the acceleration of the motor under test in the free decay state. total damping.
  • relay shown in Figure 2a is not the only device that can turn on and off the test circuit of the motor under test, and can be replaced by other switches, of course, optocoupler relays are more commonly used.
  • the embodiment of the present application also provides a method for measuring and calculating motor damping, as shown in Figure 3a, including steps:
  • the damping calculation of the motor under test is completed according to the test case, which includes various test parameters of this test, such as the duration of the driving signal, etc. Moreover, if the mechanical damping of the motor under test is tested, since the electromagnetic damping of the motor under test needs to be shielded, the test parameters can also include the occurrence time of the shutdown signal, which should be the same as the cut-off time of the drive signal .
  • step S202 includes:
  • a shutdown signal is generated to drive the switch to be turned off to cut off the test circuit of the motor under test; wherein, the switch is connected to the test circuit of the motor under test.
  • the drive signal is generated to drive the motor under test for continuous operation, and it will continuously monitor whether the cut-off time of the drive signal is reached, and if it reaches this time, a shutdown signal will be generated.
  • step S203 includes:
  • the target acceleration of the motor under test with the test circuit cut off and in the free decay state
  • the target acceleration is obtained by signal conditioning processing of the acceleration of the test motor with the test circuit cut off and in the free decay state.
  • the amplitude of the linear motor can be calculated by the following conversion formula.
  • a(0) is the acceleration of the motor
  • y 0 is the amplitude value of the motor
  • w n is the free oscillation angular frequency of the motor
  • is the damping coefficient
  • FIG. 3b this figure shows the amplitude from the moment when the test circuit of the motor under test is cut off and is in a free decay state to the moment when the motor under test stops vibrating.
  • amplitude versus time for a linear motor shown in Figure 3b two peaks in amplitude are detected.
  • the acquisition of the acceleration of the motor under test in a state of free decay may also be: the acceleration after being signal-conditioned.
  • FIG. 4a Another embodiment of the present application provides a method for measuring and calculating motor damping, as shown in Figure 4a, including steps:
  • the calculation method of this embodiment measures the total damping of the motor under test, and the test case includes various parameters driving the motor under test to run.
  • the test circuit of the motor under test is not cut off, and the total damping of the motor under test can be calculated by using the acceleration of the motor under test. After obtaining the acceleration of the motor under test in the state of free decay, the acceleration of the motor under test in the state of free decay is also processed through the conversion formula proposed above to obtain the amplitude of the linear motor.
  • FIG. 4b this figure shows the amplitude from the initial moment when the motor under test is in the free decay state to the moment when the motor under test stops vibrating.
  • a linear motor shown in Figure 4b
  • two peaks in amplitude are detected.
  • the acquisition of the acceleration of the motor under test in the state of free decay may also be: the acceleration after being conditioned by the signal.
  • the embodiment of the present application also provides a motor damping measuring device, as shown in Figure 5, including:
  • the first generating unit 501 is configured to generate a driving signal to drive the motor under test.
  • the second generation unit 502 is configured to generate a shutdown signal to cut off the test circuit of the motor under test at the cut-off time of the drive signal.
  • the second generation unit 502 when the second generation unit 502 generates an off signal to cut off the test circuit of the motor under test at the cut-off time of the drive signal, it is used to: generate a cut-off signal to drive the switch to turn off Open to cut off the test circuit of the motor under test, and the switch is connected to the test circuit of the motor under test.
  • the acquiring unit 503 is configured to acquire the acceleration of the motor under test with the test loop cut off and in a state of free decay.
  • the acquisition unit 503 acquires the acceleration of the motor under test with the test loop cut off and in a state of free decay, it is used to: acquire the target acceleration of the motor under test with the test loop cut off and in a state of free decay,
  • the target acceleration is obtained by signal conditioning of the acceleration of the motor under test with the test loop cut off and in a free decay state.
  • the calculation unit 504 is used to calculate the damping of the motor under test by using the acceleration of the motor under test with the test loop cut off and in a state of free decay.
  • FIG. 6 Another embodiment of the present application also provides a motor damping measuring device, as shown in Figure 6, including:
  • the generating unit 601 is configured to generate a driving signal to drive the motor under test.
  • An acquisition unit 602 configured to acquire the acceleration of the motor under test in a free decay state
  • the calculation unit 603 is used for calculating the total damping of the motor under test by using the acceleration of the motor under test in a state of free damping.
  • the acquisition unit 602 acquires the acceleration of the motor under test in a free decay state, it is used to:
  • the target acceleration of the motor under test in the free decay state is acquired, and the target acceleration is obtained by signal conditioning and processing of the acceleration of the motor under test in the free decay state.
  • FIG. 7 is an electronic device disclosed in an embodiment of the present application, including: one or more processors 701 and a memory 702 for storing programs.
  • processors 701 and a memory 702 for storing programs.
  • I/O subsystem 703 and a display screen 704 may also be included.
  • processors 701 execute the program in the memory 702, the above method embodiments are implemented to provide a method for measuring and calculating motor damping.
  • the processor in the electronic device provided in this embodiment implements the method described above, when the embodiment provides the motor damping measurement method, it interacts with the accelerometer in the motor damping measurement system to complete the test set in the test tool of the motor under test. Measure the damping test of the motor.
  • the display screen 704 is connected to the processor 701 through the I/O subsystem 703 , where the display screen 704 may include a display panel 7041 and a touch screen panel 7042 .
  • the display panel 7041 can be used to display the acceleration of the measured motor and the calculated damping, and the touch screen panel 7042 can be used for human-computer interaction.
  • the I/O subsystem 703 may specifically include various controllers shown in FIG. 1 .
  • Electronic devices may also include power supplies, other input devices, and sensors.
  • An embodiment of the present application shows a readable storage medium.
  • the electronic device can execute the method for calculating the motor damping in any of the above embodiments.
  • the readable storage medium may be a non-transitory computer-readable storage medium, for example, the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, and optical data storage equipment etc.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, and optical data storage equipment etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Telephone Function (AREA)

Abstract

一种马达(206)阻尼的测算方法和系统,在马达(206)阻尼的测算方法中,产生驱动信号驱动被测马达(206)运行,在驱动信号的截止时刻,被测马达(206)进入自由衰减状态,并在此刻生成关断信号切断被测马达(206)的测试回路;如此,可以获取测试回路被切断且处于自由衰减状态的被测马达(206)的加速度,再利用测试回路被切断且处于自由衰减状态的被测马达(206)的加速度,获得被测马达(206)的阻尼,如此实现了对被测马达(206)阻尼的测算。

Description

马达阻尼的测算方法和系统
本申请要求于2021年5月24日提交中国专利局、申请号为202110566568.X、发明名称为“马达阻尼的测算方法、装置及系统”,于2021年06月15日提交中国国家知识产权局、申请号为202110661936.9、发明名称为“马达阻尼的测算方法和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及数据处理技术领域,尤其涉及一种马达阻尼的测算方法及系统。
背景技术
线性马达的基本参数,如机械阻尼,要应用于构建线性马达的模型,因此需要一种能够测算得到线性马达的机械阻尼的方案。
发明内容
本申请提供了一种马达阻尼的测算方法、装置及系统,目的在于实现对线性马达的机械阻尼的测算。
为了实现上述目的,本申请提供了以下技术方案:
第一方面,本申请提供了一种应用于处理器的马达阻尼的测算方法,包括:产生驱动信号驱动被测马达运行,在驱动信号的截止时刻,被测马达处于自由衰减状态,在此时刻生成关断信号切断被测马达的测试回路;获取测试回路被切断且处于自由衰减状态的被测马达的加速度,并利用测试回路被切断且处于自由衰减状态的被测马达的加速度,获得被测马达的机械阻尼。
本方面提供的马达阻尼的测算方法中,驱动信号驱动被测马达运行,在驱动信号的截止时刻,被测马达处于自由衰减状态,而通过关断信号切断被测马达的测试回路,可以去除被测马达在运行过程中的电磁阻尼,因此,通过处于测试回路被切断且处于自由衰减状态的被测马达的加速度,获得被测马达的阻尼即为被测马达的机械阻尼。
在一种可能的实现方式中,可以采用在驱动信号的截止时刻,生成关断信号驱动开关断开以切断被测马达的测试回路的方式,来实现对在驱动信号的截止时刻,生成关断信号切断被测马达的测试回路,当然,开关接入被测马达的测试回路。
在一种可能的实现方式中,获取测试回路被切断且处于自由衰减状态的被测马达的加速度可以是:获取测试回路被切断且处于自由衰减状态的被测马达的目标加速度,目标加速度由测试回路被切断且处于自由衰减状态的被测马达的加速度被信号调理处理得到。
第二方面,本申请提供了另一种应用于处理器的马达阻尼的测算方法,包括:生成驱动信号驱动被测马达,在驱动信号的截止时刻,被测马达处于自由衰减状态,获取处于自由衰减状态的被测马达的加速度,利用处于自由衰减状态的被测马达的加速度,获得被测马达的总阻尼。
本方面提供的马达阻尼的测算方法中,驱动信号驱动被测马达运行,在驱动信号的截止时刻,被测马达处于自由衰减状态,通过处于自由衰减状态的被测马达的加速度,可以计算被测马达的总阻尼。
在一种可能的实现方式中,获取处于自由衰减状态的被测马达的加速度可以是:获取处于自由衰减状态的被测马达的目标加速度,目标加速度由处于自由衰减状态的被测马达的加速度被信号调理处理得到。
第三方面,本申请提供了一种马达阻尼的测算装置,包括:两个生成单元、获取单元和计算单元,两个生成单元中的第一生成单元用于产生驱动信号驱动被测马达运行,第二生成单元用于在驱动信号的截止时刻,生成关断信号切断被测马达的测试回路;获取单元用于获取测试回路被切断且处于自由衰减状态的被测马达的加速度;计算单元用于利用测试回路被切断且处于自由衰减状态的被测马达的加速度,获得被测马达的阻尼。
本方面提供的马达阻尼的测算装置中,第一生成单元产生的驱动信号驱动被测马达运行,在驱动信号的截止时刻,被测马达处于自由衰减状态,而通过第二生成单元生成的关断信号切断被测马达的测试回路,可以消除被测马达在运行过程中的电磁阻尼,因此,计算单元可以通过获取单元获取的处于测试回路被切断且处于自由衰减状态的被测马达的加速度,计算被测马达的阻尼即为被测马达的机械阻尼。
在一个可能的实施方式中,第二生成单元在驱动信号的截止时刻,生成关断信号切断被测马达的测试回路时用于:在驱动信号的截止时刻,生成关断信号驱动开关断开以切断被测马达的测试回路,开关接入被测马达的测试回路。
在一个可能的实施方式中,获取单元获取测试回路被切断且处于自由衰减状态的被测马达的加速度时用于:获取测试回路被切断且处于自由衰减状态的被测马达的目标加速度,目标加速度由测试回路被切断且处于自由衰减状态的被测马达的加速度被信号调理处理得到。
第四方面,本申请提供了另一种马达阻尼的测算装置,包括:生成单元、获取单元和计算单元,生成单元用于产生驱动信号驱动被测马达运行;获取单元用于获取处于自由衰减状态的被测马达的加速度;计算单元用于利用处于自由衰减状态的被测马达的加速度,获得被测马达的总阻尼。
本方面提供的马达阻尼的测算装置中,生成单元产生的驱动信号驱动被测马达运行,在驱动信号的截止时刻,被测马达处于自由衰减状态,计算单元可以通过获取单元获取的处于自由衰减状态的被测马达的加速度,获得被测马达的阻尼即为被测马达的总阻尼。
在一种可能的实现方式中,获取处于自由衰减状态的被测马达的加速度可以是:获取处于自由衰减状态的被测马达的目标加速度,目标加速度由处于自由衰减状态的被测马达的加速度被信号调理处理得到。
第五方面,本申请提供了一种电子设备,包括:一个或多个处理器以及用于存储程序的存储器,一个或多个处理器执行存储器中程序时,实现上述第一方面或第一方面的可能的实现方式中任一所述的马达阻尼的测算方法。
第六方面,本申请提供了一种马达阻尼的测算系统,包括:处理器,用于装设被测马达的测试工装,与处理器连接的加速度计,以及设置于处理器连接被测马达的支路上的开关;加速度计用于检测被测马达,得到被测马达的加速度;处理器用于执行如上述第一方面或第一方面的可能的实现方式中任一所述的马达阻尼的测算方法。
本申请提供的马达阻尼的测算系统中,驱动信号驱动被测马达运行,在驱动信号的截止时刻,被测马达处于自由衰减状态,而通过生成的关断信号切断被测马达的测试回路,可以去除被测马达在运行过程中的电磁阻尼,因此,处理器可以通过加速度计检测的处于测试回路被切断且处于自由衰减状态的被测马达的加速度,计算被测马达的阻尼即为被测马达的机械阻尼。
在一种可能的实现方式中,处理器连接被测马达的支路上还设置有取样电阻器和功率放大器。
在一种可能的实现方式中,加速度计还连接有信号调理器,信号调理器对加速度计输出的加速度进行信号调理后提供于处理器。
在一种可能的实现方式中,开关为光耦继电器。
在一种可能的实现方式中,测试工装内部设置有与被测马达的构造相适配的马达安装区。
附图说明
图1为本申请实施例提供的电子设备的结构示意图;
图2a为本申请实施例提供的马达阻尼的测算系统的结构图;
图2b和图2c为本申请实施例提供的马达阻尼的测算系统的电路简图;
图3a为本申请实施例提供的马达阻尼的测算方法的流程图;
图3b为本申请实施例提供的线性马达的振幅和时间关系的展示图;
图4a为本申请实施例提供的马达阻尼的测算方法的流程图;
图4b为本申请实施例提供的线性马达的振幅和时间关系的展示图;
图5为本申请实施例提供的马达阻尼的测算装置的结构示意图;
图6为本申请实施例提供的马达阻尼的测算装置的结构示意图;
图7为本申请实施例提供的执行被测马达的测算方法的电子设备的结构图。
具体实施方式
本申请说明书和权利要求书及附图说明中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于限定特定顺序。
在本申请中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
图1示出了电子设备100的结构示意图。
电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气 压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
处理器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现电子设备100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现电子设备100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现电子设备100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大 器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting  diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在内部存储器121的指令,和/或存储在设置于处理器中的存储器的指令,执行电子设备100的各种功能应用以及数据处理。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测所述触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测电子设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,电子设备100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当电子设备100是翻盖机时,电子设备100可以根据磁传感器 180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备100附近有物体。当检测到不充分的反射光时,电子设备100可以确定电子设备100附近没有物体。电子设备100可以利用接近光传感器180G检测用户手持电子设备100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,电子设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,电子设备100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备100对电池142加热,以避免低温导致电子设备100异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控器件”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。电子设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备100中,不能和电子设备100分离。
电子设备100中的马达191的技术参数,对马达模型的建立至关重要,也直接决定马达191的性能。在马达的技术参数中,马达阻尼是较为关键的参数。因此,需要有一种能够实现对马达阻尼的测算的方案。
马达在一次驱动力的作用而发生振动后,由于外界因素或本身固有因素引起其振动幅度逐渐下降,这种导致马达的振动幅度逐渐下降的因素,就可以称之为阻尼。马达的阻尼被分为总阻尼、机械阻尼和电磁阻尼,机械阻尼和电磁阻尼之和就等于总阻尼。
本申请实施例提供了一种马达阻尼的测算系统,如图2a所示,马达阻尼的测算系统包括:
上位机201、数据采集卡202、测试工装203、加速度计204和继电器205;在需要对被测马达206进行阻尼测算时,数据采集卡202分别与上位机201和加速度计204连接,被测马达206设置于测试工装203内,将数据采集卡202和加速度计204分别与被测马达206进行连接,还需要将继电器205连接于数据采集卡202和被测马达206的连接支路上。
需要指出的是,继电器包括常开和常闭两种类型,常开是指默认状态下继电器一直处于断开状态,在收到指令时才会闭合;常闭则是指默认状态下继电器一直处于闭合状态,在收到指令时才断开。本申请实施例中,继电器205属于常闭类型。
数据采集卡202和上位机201能够进行信号交互,上位机201可以下发指令到数据采集卡202,也可以读取数据采集卡202的数据。数据采集卡202是一种能够响应上位机指令,生成控制命令作用于其他设备,并能够从检测设备或者被测单元中自动采集非电量信号或者电量信号的部件。本实施例中,在上位机201的控制下,数据采集卡202可以生成模拟信号和数字信号两种类型的信号,被测马达206受模拟信号的驱动而运行,在需要控 制继电器205通断时,数据采集卡202生成数字信号,该数字信号作用于继电器205的控制端口,以控制继电器205开闭。
在图2b和图2c展示的电路简图中,信号可以理解成数据采集卡受上位机控制而发出的模拟信号,其通过被测马达的供电电路提供给被测马达。M指代测试工装的质量,R1指代取样电阻,K指代继电器。在图2b中,继电器K属于常闭状态,继电器K收到指令而断开则由图2c所示。
在被测马达206运行过程中,加速度计204检测其加速度,数据采集卡202可以从加速度计204中获取被测马达206的加速度,上位机201对被测马达206的加速度进行分析和处理,计算被测马达的阻尼。
利用本实施例提供的马达阻尼的测算系统测算被测马达206的总阻尼时,数据采集卡202产生驱动信号,被测马达206按照驱动信号驱动而运行。在驱动信号的截止时刻,驱动信号不再向被测马达206输入,被测马达206处于自由衰减状态。其中,自由衰减状态是指在初始扭矩作用下发生扭转并除去扭矩后,马达的振幅随时间衰减的状态。加速度计204在此刻检测得到的被测马达206的加速度可以用于计算被测马达206的总阻尼。具体的,数据采集卡202获取处于自由衰减状态的被测马达的加速度,提供于上位机201,上位机201利用处于自由衰减状态的被测马达的加速度,计算被测马达的总阻尼。
由于机械阻尼和电磁阻尼之和为总阻尼,因此,若需要测算机械阻尼,则需要在马达运行时,去掉电磁阻尼的影响。具体的,数据采集卡202生成驱动信号,被测马达206按照驱动信号驱动而运行,在驱动信号的截止时刻,上位机201下发控制指令,数据采集卡202响应控制指令而生成关断信号,继电器205受该关断信号控制而断开,切断了被测马达206供电回路(也称测试回路)。被测马达206供电回路被切断,电磁阻尼则可自然消除,加速度计204对在测试回路被切断且处于自由衰减状态的被测马达进行测速,得到的加速度可用于计算得到被测马达的机械阻尼。
具体的,数据采集卡202获取测试回路被切断且处于自由衰减状态的被测马达的加速度,提供于上位机201,上位机201利用测试回路被切断且处于自由衰减状态的被测马达的加速度,计算被测马达的机械阻尼。
若需要测算被测马达的电磁阻尼,则利用计算得到的总阻尼减去机械阻尼即可。
还需要说明的是,被测马达206在被测试阻尼时,需要安装于测试工装203中,最简单的,测试工装可以是一个具有一定厚度的测试板,被测马达206放置于测试板表面,该测试板的材料没有限制条件,能够保证被测马达206运行时不会在测试板表面滑动即可。测试工装203还可以是一个框型结构的部件,被测马达206装设于其内部,如此可以避免测试过程中外界因素的干扰。可选地,测试工装203内部设置有与被测马达206的构造相适配的马达安装区。并且,由于被测马达种类不同,外部构造不同,因此,测试工装203内部的马达安装区也需要是多样化,以保证与每一种类型的被测马达的外部构造相适配。
可选地,数据采集卡202输出的模拟信号功率小,为了能驱动被测马达,则在数据采集卡202连接被测马达的支路上除了设置继电器205之外,还可以连接取样电阻器207和功率放大器208,同样如图2a所示。还需要说明的是,继电器205、取样电阻器207和功 率放大器208的连接位置是可以调整的,只要保证三者属于串联即可。继电器205、取样电阻器207和功率放大器208也可以集成为一个设备。
可选地,加速度计和数据采集卡之间还可以连接信号调理器。若数据采集卡无法直接解析加速度计的检测信号,则需要由信号调理器对加速度计的检测信号进行信号调理,得到能够被数据采集卡解析的信号。可知的,信号解调器可以对加速度计的检测信号进行信号转换、线性化处理、放大和滤波等处理,得到能够被数据采集卡解析的信号。
需要说明的是,图2a展示的上位机201和数据采集卡202的工作可以总结为:上位机201和数据采集卡202配合完成:产生驱动信号驱动被测马达运行,在驱动信号的截止时刻,生成关断信号切断被测马达的测试回路,获取测试回路被切断且处于自由衰减状态的被测马达的加速度,利用测试回路被切断且处于自由衰减状态的被测马达的加速度,计算被测马达的阻尼。
可选地,还可以配合完成:产生驱动信号驱动被测马达运行,获取处于自由衰减状态的被测马达的加速度,利用处于自由衰减状态的被测马达的加速度,计算被测马达的总阻尼。
需要指出的是,可以采用一个集成器件如处理器,来统一执行上位机201和数据采集卡202的工作内容。基于此,处理器的功能如下:
产生驱动信号驱动被测马达运行,在驱动信号的截止时刻,生成关断信号切断被测马达的测试回路,获取测试回路被切断且处于自由衰减状态的被测马达的加速度,利用测试回路被切断且处于自由衰减状态的被测马达的加速度,计算被测马达的机械阻尼。
在一个可能的实现方式中,处理器还可以产生驱动信号驱动被测马达运行,获取处于自由衰减状态的被测马达的加速度,利用处于自由衰减状态的被测马达的加速度,计算被测马达的总阻尼。
另外,图2a中绘示的继电器,并不是唯一一种能够通断被测马达的测试回路的器件,可以用其他开关来代替,当然比较常用的是光耦继电器。
基于上述实施例介绍的一种处理器的工作过程,本申请实施例还提供了一种马达阻尼的测算方法,如图3a所示,包括步骤:
S301、产生驱动信号驱动被测马达。
按照测试用例来完成被测马达的阻尼测算,测试用例中包括本次测试的多种测试参数,例如驱动信号的持续时间等。并且,若对被测马达的机械阻尼进行测试,由于需要屏蔽掉被测马达的电磁阻尼,测试参数还可以包括关断信号的发生时刻,关断信号的发生时刻要与驱动信号的截止时刻相同。
S302、在驱动信号的截止时刻,生成关断信号切断被测马达的测试回路。
可选地,步骤S202的一种实施方式,包括:
在驱动信号的截止时刻,生成关断信号驱动开关断开以切断被测马达的测试回路;其中,开关接入被测马达的测试回路。
按照测试用例产生驱动信号驱动被测马达持续运行过程中,会不断监测是否达到驱动信号的截止时刻,若达到该时刻,则生成关断信号。
S303、获取测试回路被切断且处于自由衰减状态的被测马达的加速度。
可选地,步骤S203的一种实施方式,包括:
获取测试回路被切断且处于自由衰减状态的被测马达的目标加速度,目标加速度,由测试回路被切断且处于自由衰减状态的被测马达的加速度被信号调理处理得到。
S304、利用测试回路被切断且处于自由衰减状态的被测马达的加速度,获得被测马达的阻尼。
利用测试回路被切断且处于自由衰减状态的被测马达的加速度,通过下述转换公式,可以计算出线性马达的振幅。
Figure PCTCN2022073171-appb-000001
a(0)为马达的加速度,y 0为马达的振幅值,w n为马达的自由振荡角频率,ξ为阻尼系数。
参见图3b,该图展示有从被测马达的测试回路被切断,处于自由衰减状态的起始时刻到被测马达振动停止时刻之间的振幅。在图3b展示的线性马达的振幅和时间关系的展示图中,检测振幅的两个波峰。利用两个波峰的振幅值y 1和y 2,两个波峰的发生时刻t 1和t 2,计算被测马达在t 1和t 2的时间段内的幅度下降的速度,也可以称为被测马达的机械阻尼,被测马达的机械阻尼的计算公式为:D t=20×log(y 1/y 2)/(t 2-t 1)。
还需要说明的是,本实施例中,获取处于自由衰减状态的被测马达的加速度,也可以是:经过被信号调理后的加速度。
本申请另一实施例提供了一种马达阻尼的测算方法,如图4a所示,包括步骤:
S401、产生驱动信号驱动被测马达。
S402、获取处于自由衰减状态的被测马达的加速度。
S403、利用处于自由衰减状态的被测马达的加速度,获得计算被测马达的总阻尼。
本实施例的测算方法测算被测马达的总阻尼,测试用例包括驱动被测马达运行的多种参数。
被测马达的测试回路未被切断,利用被测马达的加速度可以计算被测马达的总阻尼。在获取到处于自由衰减状态的被测马达的加速度后,同样通过上述内容提出的转换公式处理处于自由衰减状态的被测马达的加速度,可以得到线性马达的振幅。
参见图4b,该图展示有从被测马达处于自由衰减状态的起始时刻到被测马达振动停止时刻之间的振幅。在图4b展示的线性马达的振幅和时间关系的展示图中,检测振幅的两个波峰。利用两个波峰的振幅值y 1和y 2,两个波峰的发生时刻t 1和t 2,计算被测马达的总阻尼:D m=20×log(y 1/y 2)/(t 2-t 1)。
本实施例中,获取处于自由衰减状态的被测马达的加速度,也可以是:经过被信号调理后的加速度。
本申请实施例还提供了一种马达阻尼的测算装置,如图5所示,包括:
第一生成单元501,用于产生驱动信号驱动被测马达。
第二生成单元502,用于在驱动信号的截止时刻,生成关断信号切断被测马达的测试回路。
在一个可能的实施方式中,第二生成单元502在驱动信号的截止时刻,生成关断信号切断被测马达的测试回路时,用于:在驱动信号的截止时刻,生成关断信号驱动开关断开以切断被测马达的测试回路,开关接入被测马达的测试回路。
获取单元503,用于获取测试回路被切断且处于自由衰减状态的被测马达的加速度。
在一个可能的实施方式中,获取单元503获取测试回路被切断且处于自由衰减状态的被测马达的加速度时,用于:获取测试回路被切断且处于自由衰减状态的被测马达的目标加速度,目标加速度由测试回路被切断且处于自由衰减状态的被测马达的加速度被信号调理处理得到。
计算单元504,用于利用测试回路被切断且处于自由衰减状态的被测马达的加速度,计算被测马达的阻尼。
本申请上述几个实施例公开的马达阻尼的测算装置中的单元的具体工作过程,可参见对应方法实施例内容。
本申请另一个实施例还提供了一种马达阻尼的测算装置,如图6所示,包括:
生成单元601,用于产生驱动信号驱动被测马达。
获取单元602,用于获取处于自由衰减状态的被测马达的加速度;
计算单元603,用于利用处于自由衰减状态的被测马达的加速度,计算被测马达的总阻尼。
可选地,获取单元602获取处于自由衰减状态的被测马达的加速度时,用于:
获取处于自由衰减状态的被测马达的目标加速度,目标加速度由处于自由衰减状态的被测马达的加速度被信号调理处理得到。
本申请上述几个实施例公开的马达阻尼的测算装置中的单元的具体工作过程,可参见对应方法实施例内容。
图7为本申请实施例公开的一种电子设备,包括:一个或多个处理器701以及用于存储程序的存储器702。可选的,还可以包括I/O子系统703以及显示屏704。
其中,一个或多个处理器701执行存储器702中程序时,实现上述方法实施例提供马达阻尼的测算方法。
本实施例提供的电子设备中的处理器实现上述方法实施例提供马达阻尼的测算方法时,与马达阻尼的测算系统中的加速度计进行数据交互,完成设置于被测马达的测试工装内的被测马达的阻尼测试。
可选的,显示屏704通过I/O子系统703与处理器701相连,其中,显示屏704可以包括显示面板7041以及触屏面板7042。显示面板7041可以用于显示被测马达的加速度和计算得到的阻尼,触屏面板7042可以用于人机交互。
可选的,I/O子系统703中具体可以包括图1所示的各种控制器。电子设备还可以包括电源、其它输入设备和传感器。
本申请一实施例示出一种可读存储介质,当可读存储介质中的指令由电子设备的处理器执行时,使得电子设备能够执行如上述任一实施例中的马达阻尼的测算方法。
可选地,可读存储介质可以是非临时性计算机可读存储介质,例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。

Claims (10)

  1. 一种马达阻尼的测算方法,应用于马达阻尼的测算系统,所述马达阻尼的测算系统包括处理器,其特征在于,包括:
    产生驱动信号驱动被测马达;
    在所述驱动信号的截止时刻,生成关断信号切断所述被测马达的测试回路,所述驱动信号的截止时刻,所述被测马达处于自由衰减状态;
    获取测试回路被切断且处于自由衰减状态的被测马达的加速度;
    利用所述测试回路被切断且处于自由衰减状态的被测马达的加速度,获得所述被测马达的阻尼。
  2. 根据权利要求1所述的马达阻尼的测算方法,其特征在于,所述在所述驱动信号的截止时刻,生成关断信号切断所述被测马达的测试回路,包括:
    在所述驱动信号的截止时刻,生成所述关断信号驱动开关断开以切断所述被测马达的测试回路;其中,所述开关接入所述被测马达的测试回路。
  3. 根据权利要求1所述的马达阻尼的测算方法,其特征在于,所述获取测试回路被切断且处于自由衰减状态的被测马达的加速度,包括:
    获取所述测试回路被切断且处于自由衰减状态的被测马达的目标加速度,所述目标加速度,由所述测试回路被切断且处于自由衰减状态的被测马达的加速度被信号调理处理得到。
  4. 一种马达阻尼的测算方法,应用于处理器,其特征在于,包括:
    产生驱动信号驱动被测马达,所述驱动信号的截止时刻,所述被测马达处于自由衰减状态;
    获取处于自由衰减状态的被测马达的加速度;
    利用所述处于自由衰减状态的被测马达的加速度,获得所述被测马达的总阻尼。
  5. 根据权利要求4所述的马达阻尼的测算方法,其特征在于,所述获取处于自由衰减状态的被测马达的加速度,包括:
    获取处于自由衰减状态的被测马达的目标加速度,所述目标加速度由处于自由衰减状态的被测马达的加速度被信号调理处理得到。
  6. 一种马达阻尼的测算系统,其特征在于,包括:处理器,用于装设被测马达的测试工装,与所述处理器连接的加速度计,以及设置于所述处理器连接所述被测马达的支路上的开关;其中:
    所述加速度计用于检测所述被测马达,得到所述被测马达的加速度;
    所述处理器用于执行如权利要求1至3中任意一项所述马达阻尼的测算方法,或者用于执行如权利要求4或5所述马达阻尼的测算方法。
  7. 根据权利要求6所述的马达阻尼的测试系统,其特征在于,所述处理器连接所述被测马达的支路上还设置有取样电阻器和功率放大器。
  8. 根据权利要求6所述的马达阻尼的测试系统,其特征在于,所述加速度计还连接有信号调理器,所述信号调理器对所述加速度计输出的加速度进行信号调理后提供于所述处理器。
  9. 根据权利要求6所述的马达阻尼的测试系统,其特征在于,所述开关为光耦继电器。
  10. 根据权利要求6至9任意一项所述的马达阻尼的测试系统,其特征在于,所述测试工装内部设置有与所述被测马达的构造相适配的马达安装区。
PCT/CN2022/073171 2021-05-24 2022-01-21 马达阻尼的测算方法和系统 WO2022247324A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22748211.4A EP4116722A4 (en) 2021-05-24 2022-01-21 METHODS AND SYSTEM FOR MEASURING ENGINE DAMPING
US17/799,382 US20240183754A1 (en) 2021-05-24 2022-01-21 Method and System for Measuring Motor Damping

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110566568 2021-05-24
CN202110566568.X 2021-05-24
CN202110661936.9 2021-06-15
CN202110661936.9A CN115389927B (zh) 2021-05-24 2021-06-15 马达阻尼的测算方法和系统

Publications (1)

Publication Number Publication Date
WO2022247324A1 true WO2022247324A1 (zh) 2022-12-01

Family

ID=84113708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073171 WO2022247324A1 (zh) 2021-05-24 2022-01-21 马达阻尼的测算方法和系统

Country Status (4)

Country Link
US (1) US20240183754A1 (zh)
EP (1) EP4116722A4 (zh)
CN (1) CN115389927B (zh)
WO (1) WO2022247324A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI815739B (zh) * 2022-11-29 2023-09-11 士林電機廠股份有限公司 伺服馬達驅動控制系統及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040135535A1 (en) * 2002-10-02 2004-07-15 Siemens Aktiengesellschaft Method and apparatus for damping mechanical oscillations of a shaft in machine tools, manufacturing machines and robots
CN101097247A (zh) * 2006-06-30 2008-01-02 台达电子工业股份有限公司 马达的测试方法及测试电路
US7529459B1 (en) * 2008-06-10 2009-05-05 Alliance Fiber Optic Products, Inc. Electrical reset of optical functions for tunable fiber optical devices
CN111552371A (zh) * 2019-12-25 2020-08-18 瑞声科技(新加坡)有限公司 激励电压生成方法、装置、设备及介质、测试方法及系统
CN111965537A (zh) * 2020-06-30 2020-11-20 瑞声新能源发展(常州)有限公司科教城分公司 马达参数测试方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262708A (en) * 1991-05-30 1993-11-16 Ncr Corporation System and method for reducing oscillation of a stepper motor
CN1186600C (zh) * 2002-07-22 2005-01-26 西安交通大学 高速旋转机械半速涡动在线稳定性特征提取与监测方法
KR101337903B1 (ko) * 2011-05-06 2013-12-09 기아자동차주식회사 Abs 작동시 진동 저감을 위한 모터 제어 방법
CN105745031A (zh) * 2013-12-06 2016-07-06 富士通株式会社 驱动装置、电子设备、驱动控制程序、以及驱动信号的生成方法
CN105587475B (zh) * 2015-12-16 2018-12-21 北京金风科创风电设备有限公司 风力发电机组及其塔架系统状态的检测方法和装置
RU2659762C1 (ru) * 2017-01-09 2018-07-03 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет науки и технологий имени академика М.Ф. Решетнева" (СибГУ им. М.Ф. Решетнева) Способ определения демпфирующих свойств элементов трансмиссии и стенд для его осуществления
CN107014480B (zh) * 2017-01-24 2019-09-13 瑞声科技(新加坡)有限公司 线性马达位移振幅检测方法和检测装置
US11175739B2 (en) * 2018-01-26 2021-11-16 Immersion Corporation Method and device for performing actuator control based on an actuator model
CN109269745B (zh) * 2018-10-30 2021-01-19 湖南科技大学 基于托辊激振法的大型斗轮机悬臂低频振动测试方法
US20200150767A1 (en) * 2018-11-09 2020-05-14 Immersion Corporation Devices and methods for controlling a haptic actuator
CN110146810B (zh) * 2019-04-23 2021-09-10 瑞声科技(新加坡)有限公司 一种线性马达测试参数的确定方法及装置
CN110259700B (zh) * 2019-06-10 2021-07-02 河南晶锐冷却技术股份有限公司 一种泵的性能评估方法
CN112527094A (zh) * 2019-09-18 2021-03-19 华为技术有限公司 一种人体姿态检测方法及电子设备
CN112532145B (zh) * 2019-09-18 2023-03-28 华为技术有限公司 马达振动控制方法及电子设备
CN110912338B (zh) * 2019-12-04 2020-11-17 武汉久久智造科技有限公司 一种摇摆驱动装置
CN111182140B (zh) * 2019-12-26 2021-07-16 Oppo广东移动通信有限公司 马达控制方法及装置、计算机可读介质及终端设备
CN111551847B (zh) * 2019-12-30 2022-06-28 瑞声科技(新加坡)有限公司 马达振子质量的估算方法、存储介质、测试终端及系统
CN111257732A (zh) * 2020-02-17 2020-06-09 上海艾为电子技术股份有限公司 一种线性马达驱动芯片测试方法和系统
CN111323614A (zh) * 2020-03-21 2020-06-23 哈尔滨工程大学 一种基于动圈反馈机构的闭环盘式光纤加速度计
CN112326240B (zh) * 2020-11-12 2022-12-20 中建八局第三建设有限公司 一种利用高层建筑调谐质量阻尼器性能检测系统的检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040135535A1 (en) * 2002-10-02 2004-07-15 Siemens Aktiengesellschaft Method and apparatus for damping mechanical oscillations of a shaft in machine tools, manufacturing machines and robots
CN101097247A (zh) * 2006-06-30 2008-01-02 台达电子工业股份有限公司 马达的测试方法及测试电路
US7529459B1 (en) * 2008-06-10 2009-05-05 Alliance Fiber Optic Products, Inc. Electrical reset of optical functions for tunable fiber optical devices
CN111552371A (zh) * 2019-12-25 2020-08-18 瑞声科技(新加坡)有限公司 激励电压生成方法、装置、设备及介质、测试方法及系统
CN111965537A (zh) * 2020-06-30 2020-11-20 瑞声新能源发展(常州)有限公司科教城分公司 马达参数测试方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4116722A4

Also Published As

Publication number Publication date
US20240183754A1 (en) 2024-06-06
EP4116722A1 (en) 2023-01-11
CN115389927A (zh) 2022-11-25
CN115389927B (zh) 2024-05-10
EP4116722A4 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
EP4020268A1 (en) Electronic device and sensor control method
CN111182140B (zh) 马达控制方法及装置、计算机可读介质及终端设备
WO2021169515A1 (zh) 一种设备间数据交互的方法及相关设备
WO2021190314A1 (zh) 触控屏的滑动响应控制方法及装置、电子设备
CN114422340A (zh) 日志上报方法、电子设备及存储介质
WO2022257563A1 (zh) 一种音量调节的方法,电子设备和系统
CN113438364B (zh) 振动调节方法、电子设备、存储介质
WO2022247324A1 (zh) 马达阻尼的测算方法和系统
CN114554012A (zh) 来电接听方法、电子设备及存储介质
CN111930335A (zh) 声音调节方法及装置、计算机可读介质及终端设备
CN111935705A (zh) 数据业务管理方法及装置、计算机可读介质及终端设备
WO2022242300A1 (zh) 线性马达的振动波形调整方法及装置
US20240185694A1 (en) Adjustment Method and Apparatus for Driving Waveform, Device, and Readable Storage Medium
CN113674258B (zh) 图像处理方法及相关设备
CN113467747B (zh) 音量调节方法、电子设备及存储介质
CN115459643A (zh) 线性马达的振动波形调整方法及装置
WO2023020420A1 (zh) 音量显示方法、电子设备及存储介质
WO2022242216A1 (zh) 振动波形的处理方法、装置、设备及可读存储介质
EP4120548A1 (en) Method and apparatus for adjusting driving waveform, and electronic device and readable storage medium
CN114115513B (zh) 一种按键控制方法和一种按键装置
WO2024001735A1 (zh) 网络连接方法、电子设备及存储介质
WO2023179432A1 (zh) 天线切换方法及终端设备
CN118057858A (zh) 数据处理方法、设备和系统
CN116069580A (zh) 处理器运行调控方法、电子设备和存储介质
CN115665632A (zh) 音频电路、相关装置和控制方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17799382

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022748211

Country of ref document: EP

Effective date: 20220812

NENP Non-entry into the national phase

Ref country code: DE