WO2021169515A1 - 一种设备间数据交互的方法及相关设备 - Google Patents

一种设备间数据交互的方法及相关设备 Download PDF

Info

Publication number
WO2021169515A1
WO2021169515A1 PCT/CN2020/137291 CN2020137291W WO2021169515A1 WO 2021169515 A1 WO2021169515 A1 WO 2021169515A1 CN 2020137291 W CN2020137291 W CN 2020137291W WO 2021169515 A1 WO2021169515 A1 WO 2021169515A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
wearable device
mobile terminal
devices
target wearable
Prior art date
Application number
PCT/CN2020/137291
Other languages
English (en)
French (fr)
Inventor
刘江明
柯波
杨得
姚超群
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021169515A1 publication Critical patent/WO2021169515A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/72409User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories
    • H04M1/724094Interfacing with a device worn on the user's body to provide access to telephonic functionalities, e.g. accepting a call, reading or composing a message
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/725Cordless telephones
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B2071/0658Position or arrangement of display
    • A63B2071/0661Position or arrangement of display arranged on the user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/72409User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories
    • H04M1/72412User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories using two-way short-range wireless interfaces

Definitions

  • This application belongs to the field of Internet technology, and in particular relates to a method of data interaction between devices and related devices.
  • the smart wearable device can be flexibly worn on various parts of the body, such as the wrist, chest, or waist, to detect the user's movement information.
  • the embodiments of the present application provide a method for data interaction between devices and related devices, which can facilitate the user to understand the motion state.
  • an embodiment of the present application provides a method for data interaction between devices, including: each wearable device sends collected data to a mobile terminal, wherein each wearable device is worn on different parts of the user's body; the mobile terminal The data collected by each wearable device is preprocessed, and the preprocessed data is sent to a target wearable device, and the target wearable device is a wearable device that is worn on a preset part of the user's body among the various wearable devices.
  • each wearable device is worn on different parts of the user's body, and the collected data is sent to the mobile terminal.
  • the mobile terminal preprocesses the data collected by each wearable device, and sends the preprocessed data to the target wearable device. Since the target wearable device is a wearable device that is worn on a preset part of the user's body among various wearable devices, it is convenient for the user to view, so that when it is inconvenient for the user to view mobile terminals such as mobile phones, the target wearable device can view the motion data through the target wearable device in a timely manner. Understand the state of exercise.
  • an embodiment of the present application provides a method for data interaction between devices, including: a mobile terminal obtains data collected by various wearable devices, which are worn on different parts of the user's body; The data is preprocessed, and the preprocessed data is sent to a target wearable device, where the target wearable device is a wearable device that is worn on a preset part of the user's body among the various wearable devices.
  • the mobile terminal acquires data collected by wearable devices worn on different parts of the user's body, preprocesses the data, and sends the data to one of the wearable devices, that is, the target wearable device.
  • the target wearable device Set the position so that the user can view it in time, so that when it is not convenient for the user to view the mobile terminal such as the mobile phone, the user can view the motion data through the target wearable device and understand the motion status in time.
  • the mobile terminal sends the preprocessed data to the target wearing device, including:
  • the mobile terminal obtains the status information of the target wearable device and/or the physiological index information of the user during exercise, determines the corresponding data transmission strategy according to the status information and/or the physiological index information, and determines the corresponding data transmission strategy according to the determined
  • the data transmission strategy sends the preprocessed data to the target wearable device, wherein the physiological index information is obtained from the preprocessed data.
  • the mobile terminal determines the corresponding data transmission strategy according to the state information and/or physiological index information of the target wearable device, and sends the preprocessed data to the target wearable device according to the determined data transmission strategy, so that the The energy consumption of the wearable device and the user's exercise status formulate an appropriate data transmission strategy.
  • the corresponding data transmission strategy is determined according to the state information and/or the physiological indicator information, and the preprocessed data transmission strategy is performed according to the determined data transmission strategy.
  • the data sent to the target wearable device includes:
  • the target wearable device Determine the first transmission frequency and/or the second transmission frequency according to the status information and/or the physiological index information, and send the preprocessed data to the The target wearable device, wherein the data transmitted by the first transmission frequency is data displayed in the foreground of the target wearable device, and the data transmitted by the second transmission frequency is data displayed in the background of the target wearable device.
  • the first transmission frequency is greater than the second transmission frequency, that is, for the data displayed on the current display interface of the target wearable device, a higher transmission frequency is used, and for the current display of the target wearable device Data not displayed on the interface uses a lower transmission frequency, thereby reducing energy consumption during data transmission.
  • the first transmission frequency and the second transmission frequency are determined according to the status information and/or physiological index information of the target wearable device. For example, when the target wearable device is in a bright screen state, a higher data transmission frequency is used. When the wearable device is in the off-screen state, a lower transmission frequency is used. When the user's physiological index data is relatively stable, a lower data transmission frequency is used to further reduce the energy consumption during data transmission.
  • the state information of the target wearable device includes screen state information of the target wearable device and/or power information of the target wearable device; the physiological index information includes heart rate information.
  • the sending the preprocessed data to the target wearable device includes:
  • the method before the mobile terminal acquires the data collected by each wearable device, the method further includes:
  • the mobile terminal acquires a preset instruction sent by the user; the mobile terminal sends the preset instruction to each wearable device to trigger each wearable device to collect data, so as to realize the management of each wearable device by the mobile terminal.
  • the method further includes:
  • the mobile terminal acquires the movement state change instruction sent by the target wearable device; the mobile terminal sends the movement state change instruction to the respective wearable devices. That is, the target wearable device can realize the control of the motion state of each wearable device through the mobile terminal, so that when the user is inconvenient to use the mobile terminal, the target wearable device can control the movement in time through the target wearable device.
  • an apparatus for data interaction between devices including:
  • An acquisition module configured to acquire data collected by various wearable devices, which are worn on different parts of the user's body
  • the sending module is used to preprocess the acquired data and send the preprocessed data to a target wearable device, which is a wearable device worn on a preset part of the user's body among the various wearable devices .
  • the sending module is specifically configured to:
  • the strategy sends the preprocessed data to the target wearable device, wherein the physiological index information is obtained from the preprocessed data.
  • the sending module is specifically further configured to:
  • the target wearable device Determine the first transmission frequency and/or the second transmission frequency according to the status information and/or the physiological index information, and send the preprocessed data to the The target wearable device, wherein the data transmitted by the first transmission frequency is data displayed in the foreground of the target wearable device, and the data transmitted by the second transmission frequency is data displayed in the background of the target wearable device.
  • the state information of the target wearable device includes screen state information of the target wearable device and/or power information of the target wearable device; the physiological index information includes heart rate information.
  • the sending module is specifically further configured to:
  • the change data of the current frame data relative to the previous frame data is sent to the target wearable device.
  • the apparatus for data interaction between devices further includes:
  • the trigger module is used to obtain the preset instruction sent by the user; send the preset instruction to each wearable device to trigger the each wearable device to collect data.
  • the apparatus for data interaction between devices further includes:
  • the control module is used to obtain the movement state change instruction sent by the target wearable device; and send the movement state change instruction to the respective wearable devices.
  • an embodiment of the present application provides a mobile terminal, including a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor executes the computer program, The method for data interaction between devices as described in the above second aspect is implemented.
  • an embodiment of the present application provides a system for data interaction between devices, which is characterized in that it includes at least two wearable devices and the mobile terminal as described in the fifth aspect.
  • an embodiment of the present application provides a computer-readable storage medium that stores a computer program, and is characterized in that, when the computer program is executed by a processor, the implementation is as described in the above-mentioned second aspect. The method of data interaction between devices described.
  • the embodiments of the present application provide a computer program product, which when the computer program product runs on a mobile terminal, causes the mobile terminal to execute the method for data interaction between devices as described in the second aspect.
  • FIG. 1 is a schematic diagram of a system for data interaction between devices provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a mobile terminal to which the method for data interaction between devices provided by an embodiment of the present application is applicable;
  • FIG. 3 is a schematic structural diagram of a wearable device to which the method for data interaction between devices provided by an embodiment of the present application is applicable;
  • FIG. 4 is a schematic flowchart of a method for data interaction between devices provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an application scenario of a method for data interaction between devices provided by an embodiment of the present application
  • FIG. 6 is another application scenario diagram of a method for data interaction between devices provided by an embodiment of the present application.
  • FIG. 7 is another application scenario diagram of the method for data interaction between devices provided by an embodiment of the present application.
  • FIG. 8 is another application scenario diagram of the method for data interaction between devices provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of heart rate interval division according to an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a method for data interaction between devices provided by another embodiment of the present application.
  • the term “if” can be construed as “when” or “once” or “in response to determination” or “in response to detecting “.
  • the phrase “if determined” or “if detected [described condition or event]” can be interpreted as meaning “once determined” or “in response to determination” or “once detected [described condition or event]” depending on the context ]” or “in response to detection of [condition or event described]”.
  • the method for data interaction between devices is applied to a system for data interaction between devices.
  • the system for data interaction between devices includes a mobile terminal 100 and at least two wearable devices.
  • Each wearable device is worn by a user. Different parts of the body.
  • each wearable device is a running detection device worn on the waist, a heart rate detection device worn on the chest, a gait detection device worn on the ankle, and a smart watch worn on the wrist.
  • one wearable device is worn on a preset part of the user's body and is the target wearable device 200, and the remaining wearable devices are the data collection device 300.
  • the preset part of the user's body includes a part that is convenient for the user to view the target wearable device during the exercise, such as the wrist.
  • each wearable device collects data, and the data includes the user's exercise information and physiological index information, and each wearable device sends the collected data to the mobile terminal 100.
  • the mobile terminal 100 obtains the data, it preprocesses the data, for example, to remove repeated data and data with large errors, and calculate the values corresponding to preset variables such as movement speed and energy consumption.
  • the mobile terminal 100 preprocesses the data, it sends the preprocessed data to the target wearable device 200, and the target wearable device 200 displays the preprocessed data.
  • the target wearable device Since the target wearable device is worn on a preset part of the user's body, it is a convenient part for the user to view during exercise. When the user is in the exercise process, such as outdoor running or swimming, it is inconvenient to view the mobile terminal 100.
  • the target wearable device can be used 200 Obtain sports information, understand sports status, and improve user experience.
  • the mobile terminal involved in the embodiment of the application may be a mobile phone, a tablet computer, an augmented reality (AR)/virtual reality (VR) device, etc.
  • the embodiment of the application does not impose any restriction on the specific type of the mobile terminal.
  • FIG. 2 is a schematic structural diagram of a mobile terminal 100 according to an embodiment of the present application.
  • the mobile terminal 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2.
  • Mobile communication module 150 wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194, and Subscriber identification module (subscriber identification module, SIM) card interface 195, etc.
  • SIM Subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light Sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the mobile terminal 100.
  • the mobile terminal 100 may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU), etc.
  • AP application processor
  • modem processor modem processor
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the different processing units may be independent devices or integrated in one or more processors.
  • the controller can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching instructions and executing instructions.
  • a memory may also be provided in the processor 110 to store instructions and data.
  • the memory in the processor 110 is a cache memory.
  • the memory can store instructions or data that have just been used or recycled by the processor 110. If the processor 110 needs to use the instruction or data again, it can be directly called from the memory. Repeated accesses are avoided, the waiting time of the processor 110 is reduced, and the efficiency of the system is improved.
  • the processor 110 may include one or more interfaces.
  • the interface can include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, and a universal asynchronous transmitter (universal asynchronous) interface.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • UART universal asynchronous transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB Universal Serial Bus
  • the I2C interface is a bidirectional synchronous serial bus, including a serial data line (SDA) and a serial clock line (SCL).
  • the processor 110 may include multiple sets of I2C buses.
  • the processor 110 may be coupled to the touch sensor 180K, charger, flash, camera 193, etc., respectively through different I2C bus interfaces.
  • the processor 110 may couple the touch sensor 180K through an I2C interface, so that the processor 110 and the touch sensor 180K communicate through an I2C bus interface to implement the touch function of the mobile terminal 100.
  • the I2S interface can be used for audio communication.
  • the processor 110 may include multiple sets of I2S buses.
  • the processor 110 may be coupled with the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170.
  • the audio module 170 may transmit audio signals to the wireless communication module 160 through an I2S interface, so as to realize the function of answering calls through a Bluetooth headset.
  • the PCM interface can also be used for audio communication to sample, quantize and encode analog signals.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 may also transmit audio signals to the wireless communication module 160 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a two-way communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • the UART interface is generally used to connect the processor 110 and the wireless communication module 160.
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to realize the Bluetooth function.
  • the audio module 170 may transmit audio signals to the wireless communication module 160 through a UART interface, so as to realize the function of playing music through a Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with the display screen 194, the camera 193 and other peripheral devices.
  • the MIPI interface includes a camera serial interface (camera serial interface, CSI), a display serial interface (display serial interface, DSI), and so on.
  • the processor 110 and the camera 193 communicate through a CSI interface to implement the shooting function of the mobile terminal 100.
  • the processor 110 and the display screen 194 communicate through a DSI interface to realize the display function of the mobile terminal 100.
  • the GPIO interface can be configured through software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193, the display screen 194, the wireless communication module 160, the audio module 170, the sensor module 180, and so on.
  • the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 130 is an interface that complies with the USB standard specification, and specifically may be a Mini USB interface, a Micro USB interface, a USB Type C interface, and so on.
  • the USB interface 130 can be used to connect a charger to charge the mobile terminal 100, and can also be used to transfer data between the mobile terminal 100 and peripheral devices. It can also be used to connect earphones and play audio through earphones. This interface can also be used to connect to other mobile terminals, such as AR devices.
  • the interface connection relationship between the modules illustrated in the embodiment of the present application is merely a schematic description, and does not constitute a structural limitation of the mobile terminal 100.
  • the mobile terminal 100 may also adopt different interface connection modes or a combination of multiple interface connection modes in the foregoing embodiments.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the charging management module 140 may receive the charging input of the wired charger through the USB interface 130.
  • the charging management module 140 may receive the wireless charging input through the wireless charging coil of the mobile terminal 100. While the charging management module 140 charges the battery 142, it can also supply power to the mobile terminal through the power management module 141.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the display screen 194, the camera 193, and the wireless communication module 160.
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (leakage, impedance).
  • the power management module 141 may also be provided in the processor 110.
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the mobile terminal 100 may be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor, and the baseband processor.
  • the antenna 1 and the antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the mobile terminal 100 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 may provide a wireless communication solution including 2G/3G/4G/5G and the like applied to the mobile terminal 100.
  • the mobile communication module 150 may include at least one filter, a switch, a power amplifier, a low noise amplifier (LNA), and the like.
  • the mobile communication module 150 can receive electromagnetic waves by the antenna 1, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic waves for radiation via the antenna 1.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the application processor outputs a sound signal through an audio device (not limited to the speaker 170A, the receiver 170B, etc.), or displays an image or video through the display screen 194.
  • the modem processor may be an independent device.
  • the modem processor may be independent of the processor 110 and be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the mobile terminal 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), and global navigation satellites. System (global navigation satellite system, GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 160 may also receive a signal to be sent from the processor 110, perform frequency modulation, amplify, and convert it into electromagnetic waves to radiate through the antenna 2.
  • the antenna 1 of the mobile terminal 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the mobile terminal 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite-based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite-based augmentation systems
  • the mobile terminal 100 implements a display function through a GPU, a display screen 194, and an application processor.
  • the GPU is an image processing microprocessor, which is connected to the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations and is used for graphics rendering.
  • the processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos, and the like.
  • the display screen 194 includes a display panel.
  • the display panel can use liquid crystal display (LCD), organic light-emitting diode (OLED), active matrix organic light-emitting diode or active-matrix organic light-emitting diode (active-matrix organic light-emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • active-matrix organic light-emitting diode active-matrix organic light-emitting diode
  • AMOLED flexible light-emitting diode (FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (QLED), etc.
  • the mobile terminal 100 may include one or N display screens 194, and N is a positive integer greater than one.
  • the mobile terminal 100 can implement a shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, and an application processor.
  • the ISP is used to process the data fed back from the camera 193. For example, when taking a picture, the shutter is opened, the light is transmitted to the photosensitive element of the camera through the lens, the light signal is converted into an electrical signal, and the photosensitive element of the camera transfers the electrical signal to the ISP for processing and transforms it into an image visible to the naked eye.
  • ISP can also optimize the image noise, brightness, and skin color. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be provided in the camera 193.
  • the camera 193 is used to capture still images or videos.
  • the object generates an optical image through the lens and is projected to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transfers the electrical signal to the ISP to convert it into a digital image signal.
  • ISP outputs digital image signals to DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other formats of image signals.
  • the mobile terminal 100 may include 1 or N cameras 193, and N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the mobile terminal 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • the mobile terminal 100 may support one or more video codecs. In this way, the mobile terminal 100 can play or record videos in multiple encoding formats, such as: moving picture experts group (MPEG) 1, MPEG2, MPEG3, MPEG4, and so on.
  • MPEG moving picture experts group
  • MPEG2 MPEG2, MPEG3, MPEG4, and so on.
  • NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • applications such as intelligent cognition of the mobile terminal 100 can be realized, such as image recognition, face recognition, voice recognition, text understanding, and so on.
  • the external memory interface 120 may be used to connect an external memory card, such as a Micro SD card, so as to expand the storage capacity of the mobile terminal 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example, save music, video and other files in an external memory card.
  • the internal memory 121 may be used to store computer executable program code, where the executable program code includes instructions.
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, an application program (such as a sound playback function, an image playback function, etc.) required by at least one function, and the like.
  • the data storage area can store data (such as audio data, phone book, etc.) created during the use of the mobile terminal 100.
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, a universal flash storage (UFS), and the like.
  • the processor 110 executes various functional applications and data processing of the mobile terminal 100 by running instructions stored in the internal memory 121 and/or instructions stored in a memory provided in the processor.
  • the mobile terminal 100 can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the earphone interface 170D, and the application processor. For example, music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into an analog audio signal for output, and is also used to convert an analog audio input into a digital audio signal.
  • the audio module 170 can also be used to encode and decode audio signals.
  • the audio module 170 may be provided in the processor 110, or part of the functional modules of the audio module 170 may be provided in the processor 110.
  • the speaker 170A also called “speaker” is used to convert audio electrical signals into sound signals.
  • the mobile terminal 100 can listen to music through the speaker 170A, or listen to a hands-free call.
  • the receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the mobile terminal 100 answers a call or voice message, it can receive the voice by bringing the receiver 170B close to the human ear.
  • the microphone 170C also called “microphone”, “microphone”, is used to convert sound signals into electrical signals.
  • the user can make a sound by approaching the microphone 170C through the human mouth, and input the sound signal into the microphone 170C.
  • the mobile terminal 100 may be provided with at least one microphone 170C.
  • the mobile terminal 100 may be provided with two microphones 170C, which can implement noise reduction functions in addition to collecting sound signals.
  • the mobile terminal 100 may also be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and realize directional recording functions.
  • the earphone interface 170D is used to connect wired earphones.
  • the earphone interface 170D may be a USB interface 130, or a 3.5mm open mobile terminal platform (OMTP) standard interface, or a cellular telecommunications industry association (cellular telecommunications industry association of the USA, CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association
  • the pressure sensor 180A is used to sense the pressure signal and can convert the pressure signal into an electrical signal.
  • the pressure sensor 180A may be provided on the display screen 194.
  • the capacitive pressure sensor may include at least two parallel plates with conductive materials. When a force is applied to the pressure sensor 180A, the capacitance between the electrodes changes.
  • the mobile terminal 100 determines the intensity of the pressure according to the change in capacitance.
  • the mobile terminal 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the mobile terminal 100 may also calculate the touched position according to the detection signal of the pressure sensor 180A.
  • touch operations that act on the same touch position but have different touch operation strengths may correspond to different operation instructions. For example: when a touch operation whose intensity of the touch operation is less than the first pressure threshold is applied to the short message application icon, an instruction to view the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold acts on the short message application icon, an instruction to create a new short message is executed.
  • the gyro sensor 180B may be used to determine the movement posture of the mobile terminal 100.
  • the angular velocity of the mobile terminal 100 around three axes ie, x, y, and z axes
  • the gyro sensor 180B can be used for image stabilization.
  • the gyro sensor 180B detects the shake angle of the mobile terminal 100, calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to counteract the shake of the mobile terminal 100 through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • the air pressure sensor 180C is used to measure air pressure.
  • the mobile terminal 100 calculates the altitude based on the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the mobile terminal 100 may use the magnetic sensor 180D to detect the opening and closing of the flip holster.
  • the mobile terminal 100 may detect the opening and closing of the flip according to the magnetic sensor 180D.
  • features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the mobile terminal 100 in various directions (generally three axes). When the mobile terminal 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of the mobile terminal, and used in applications such as horizontal and vertical screen switching, pedometers and so on.
  • the mobile terminal 100 can measure the distance by infrared or laser. In some embodiments, when shooting a scene, the mobile terminal 100 may use the distance sensor 180F to measure the distance to achieve fast focusing.
  • the proximity light sensor 180G may include, for example, a light emitting diode (LED) and a light detector such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the mobile terminal 100 emits infrared light to the outside through the light emitting diode.
  • the mobile terminal 100 uses a photodiode to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the mobile terminal 100. When insufficient reflected light is detected, the mobile terminal 100 may determine that there is no object in the vicinity of the mobile terminal 100.
  • the mobile terminal 100 can use the proximity light sensor 180G to detect that the user holds the mobile terminal 100 close to the ear to talk, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in leather case mode, and the pocket mode will automatically unlock and lock the screen.
  • the ambient light sensor 180L is used to sense the brightness of the ambient light.
  • the mobile terminal 100 can adaptively adjust the brightness of the display screen 194 according to the perceived brightness of the ambient light.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the mobile terminal 100 is in a pocket to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the mobile terminal 100 can use the collected fingerprint characteristics to implement fingerprint unlocking, access application locks, fingerprint photographs, fingerprint answering calls, and so on.
  • the temperature sensor 180J is used to detect temperature.
  • the mobile terminal 100 uses the temperature detected by the temperature sensor 180J to execute a temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold, the mobile terminal 100 reduces the performance of the processor located near the temperature sensor 180J, so as to reduce power consumption and implement thermal protection.
  • the mobile terminal 100 when the temperature is lower than another threshold, the mobile terminal 100 heats the battery 142 to avoid abnormal shutdown of the mobile terminal 100 due to low temperature.
  • the mobile terminal 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also called “touch device”.
  • the touch sensor 180K may be disposed on the display screen 194, and the touch screen is composed of the touch sensor 180K and the display screen 194, which is also called a “touch screen”.
  • the touch sensor 180K is used to detect touch operations acting on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • the visual output related to the touch operation can be provided through the display screen 194.
  • the touch sensor 180K may also be disposed on the surface of the mobile terminal 100, which is different from the position of the display screen 194.
  • the bone conduction sensor 180M can acquire vibration signals.
  • the bone conduction sensor 180M can obtain the vibration signal of the vibrating bone mass of the human voice.
  • the bone conduction sensor 180M can also contact the human pulse and receive the blood pressure pulse signal.
  • the bone conduction sensor 180M may also be provided in the earphone, combined with the bone conduction earphone.
  • the audio module 170 can parse the voice signal based on the vibration signal of the vibrating bone block of the voice obtained by the bone conduction sensor 180M, and realize the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beating signal obtained by the bone conduction sensor 180M, and realize the heart rate detection function.
  • the button 190 includes a power-on button, a volume button, and so on.
  • the button 190 may be a mechanical button. It can also be a touch button.
  • the mobile terminal 100 may receive key input, and generate key signal input related to user settings and function control of the mobile terminal 100.
  • the motor 191 can generate vibration prompts.
  • the motor 191 can be used for incoming call vibration notification, and can also be used for touch vibration feedback.
  • touch operations for different applications can correspond to different vibration feedback effects.
  • Acting on touch operations in different areas of the display screen 194, the motor 191 can also correspond to different vibration feedback effects.
  • Different application scenarios for example: time reminding, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 192 may be an indicator light, which may be used to indicate the charging status, power change, or to indicate messages, missed calls, notifications, and so on.
  • the SIM card interface 195 is used to connect to the SIM card.
  • the SIM card can be inserted into the SIM card interface 195 or pulled out from the SIM card interface 195 to achieve contact and separation with the mobile terminal 100.
  • the mobile terminal 100 may support 1 or N SIM card interfaces, and N is a positive integer greater than 1.
  • the SIM card interface 195 can support Nano SIM cards, Micro SIM cards, SIM cards, etc.
  • the same SIM card interface 195 can insert multiple cards at the same time. The types of the multiple cards can be the same or different.
  • the SIM card interface 195 can also be compatible with different types of SIM cards.
  • the SIM card interface 195 may also be compatible with external memory cards.
  • the mobile terminal 100 interacts with the network through the SIM card to implement functions such as call and data communication.
  • the mobile terminal 100 adopts an eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the mobile terminal 100 and cannot be separated from the mobile terminal 100.
  • FIG. 3 is a schematic structural diagram of a wearable device involved in an embodiment of the present application.
  • the wearable device provided by the embodiment of the present application includes components such as a processor 210, a memory 220, an input unit 230, a display unit 240, a sensor 250, an audio circuit 260, a wireless communication module 270, and a power supply 280.
  • the structure of the wearable device shown in FIG. 3 does not constitute a limitation on the wearable device, and may include more or fewer components than shown in the figure, or a combination of certain components, or different component arrangements.
  • the processor 210 is the control center of the wearable device. It uses various interfaces and lines to connect the various parts of the entire wearable device, runs or executes software programs and/or modules stored in the memory 220, and calls data stored in the memory 220 , Perform various functions of the wearable device and process data, so as to monitor the wearable device as a whole.
  • the processor 210 may include one or more processing units; preferably, the processor 210 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs, etc. , The modem processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 210.
  • the memory 220 may be used to store software programs and modules.
  • the processor 210 executes various functional applications and data processing of the wearable device by running the software programs and modules stored in the memory 220.
  • the memory 220 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of wearable devices (such as audio data, phone book, etc.), etc.
  • the memory 220 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the input unit 230 may be used to receive inputted number or character information, and generate key signal input related to user settings and function control of the wearable device.
  • the input unit 230 may include a touch panel 231 and other input devices 232.
  • the touch panel 231 also called a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 231 or near the touch panel 231. Operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 231 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 210, and can receive and execute the commands sent by the processor 210.
  • the touch panel 231 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the input unit 230 may also include other input devices 232.
  • other input devices 232 may include, but are not limited to, one or more of volume control buttons, switch buttons, and the like.
  • the display unit 240 may be used to display information input by the user or information provided to the user and various menus of the wearable device.
  • the display unit 240 may include a display panel 241.
  • the display panel 241 may be configured in the form of a liquid crystal display (Liquid Crystal Disslay, LCD), organic light emitting diode (Rrganic Light-Emitting Dirde, RLED), etc.
  • the touch panel 231 can cover the display panel 241. When the touch panel 231 detects a touch operation on or near it, it transmits it to the processor 210 to determine the type of the touch event, and then the processor 210 responds to the touch event. The type provides corresponding visual output on the display panel 241.
  • the touch panel 231 and the display panel 241 are used as two independent components to implement the input and input functions of the wearable device, in some embodiments, the touch panel 231 and the display panel 241 may be combined. Integrate to realize the input and output functions of the wearable device.
  • the wearable device may also include at least one sensor 250, such as a capacitive sensor, a motion sensor, and other sensors.
  • the capacitance sensor is used to detect the capacitance between the human body and the wearable device, and the capacitance can reflect whether the human body and the wearable device are in good contact.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes), and can detect the magnitude and direction of gravity when stationary, and can be used for applications that recognize the posture of wearable devices (such as horizontal and vertical screen switching) , Related games, magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; as for wearable devices, gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors can also be configured, I won't repeat them here.
  • the audio circuit 260, the speaker 261, and the microphone 262 can provide an audio interface between the user and the wearable device.
  • the audio circuit 260 can transmit the electric signal converted from the received audio data to the speaker 261, and the speaker 261 converts it into a sound signal for output; on the other hand, the microphone 262 converts the collected sound signal into an electric signal, and the audio circuit 260 After being received, it is converted into audio data, and then the audio data is input to the processor 210, or the audio data is output to the memory 220 for further processing.
  • the wireless communication module 270 can be used to support wireless communication between wearable devices and other electronic devices including BT, WLAN (such as Wi-Fi), Zigbee, FM, NFC, IR, or general 2.4G/5G wireless communication technology Data exchange.
  • the wearable device also includes a power source 280 (such as a battery) for supplying power to various components.
  • a power source 280 such as a battery
  • the power source can be logically connected to the processor 210 through a power management system, so that functions such as charging, discharging, and power management are realized through the power management system.
  • FIG. 4 shows a schematic flowchart of a method for data interaction between devices provided in an embodiment of the present application, and the method is executed by the mobile terminal 100. As shown in Figure 4, the method includes:
  • the mobile terminal acquires data collected by various wearable devices, which are worn on different parts of the user's body.
  • each wearable device can be viewed and managed through the mobile terminal.
  • various wearable devices that are communicatively connected with the mobile terminal can be viewed through the mobile terminal.
  • Each wearable device is a smart bracelet, a smart watch, a gait detection device, and a heart rate detection device.
  • the mobile terminal determines the wearing position of each wearable device according to the preset corresponding relationship between the wearable device and the wearing position. For example, it is determined that the smart bracelet is worn on the wrist, the smart watch is worn on the wrist, the gait detection device is worn on the ankle, and the heart rate detection device is worn on the chest.
  • the mobile terminal is provided with a mode selection interface for the user to select a sport mode.
  • the mobile terminal When the user selects one of the sport modes, the mobile terminal generates a motion start instruction and sends the exercise start instruction to
  • Each wearable device triggers each wearable device to start collecting data, and sends the collected data to the mobile terminal.
  • the data collected by each wearable device includes the user's exercise information and physiological index information, such as position information, running start time information, foot lift height information, heart rate information, and so on.
  • the mobile terminal preprocesses the acquired data, and sends the preprocessed data to a target wearable device, where the target wearable device is a wearable device worn on a preset part of the user's body among the various wearable devices.
  • preprocessing the data includes using a preset filtering strategy to remove duplicate data, removing data with large errors according to a preset data range, and calculating a current value corresponding to a preset variable according to a preset calculation method. For example, in the data collected by each wearable device, there are multiple data of location information and heart rate information, then one of the location information is taken, and the heart rate information with errors is removed according to the set heart rate range corresponding to each sport mode, or only selected The heart rate information of the heart rate detection device is removed from the heart rate information of the smart bracelet to obtain each variable of the exercise information and a data corresponding to each variable.
  • the preprocessed data includes position information, time information, heart rate information and other variables and One data corresponding to each variable.
  • the mobile terminal can also calculate the preset variables according to the obtained data corresponding to each variable, for example, calculate the running speed, exercise frequency and other information according to the position information and time information, and the data corresponding to each variable can characterize the user's exercise state And physiological state.
  • the target wearable device After the mobile terminal sends the preprocessed data to the target wearable device worn on a preset part of the user’s body, the target wearable device displays the preprocessed data.
  • the preset part includes the user’s convenience for viewing the target wearable device during exercise. Location, such as the wrist.
  • the mobile terminal determines the wearing part of each wearable device, according to the sport mode selected by the user, it determines the wearable device that is convenient for the user to view in the current sport mode, that is, the target wearable device, and the rest of the wearable devices For data collection equipment. For example, if each wearable device currently in communication with the mobile terminal is a smart bracelet, a smart watch, a gait detection device, and a heart rate detection device.
  • the smart watch worn on the wrist is set as the target wearable device, and the smart bracelet and gait detection device And the heart rate detection device is set as a data collection device to facilitate the user to view the target wearable device during exercise and understand the exercise status.
  • the target wearable device displays preprocessed data, including running start time, running speed, energy consumption, etc., for the user to view during exercise.
  • the target wearable device when the user operates the target wearable device and sends a motion state change instruction to the target wearable device, the target wearable device sends the motion state change instruction to the mobile terminal, and the mobile terminal sends the received motion state change instruction To each wearable device to trigger each wearable device to change the motion state according to the motion state change instruction.
  • the target wearable device detects that the user touches the operation of "end exercise”, “stop exercise” or “resuming exercise”
  • it will correspond to "end exercise”, "stop exercise” or “resuming exercise”.
  • the user can control the movement by operating the target wearable device state.
  • the mobile terminal obtains the user's physiological index information from the preprocessed data, and obtains the target wearable device's status information sent by the target wearable device, according to the target wearable device's status information and/or physiology
  • the index information determines the corresponding data transmission strategy, and sends the preprocessed data to the target wearable device according to the determined data transmission strategy.
  • the state information of the target wearable device includes screen state information of the target wearable device and/or power information of the target wearable device, and the physiological index information includes heart rate information.
  • the state information of the target wearable device is related to the energy consumption of the target wearable device, and the user's physiological index information is related to the exercise state.
  • the data transmission strategy can be adjusted in real time to make the data transmission strategy consistent with
  • the energy consumption of the target wearable device is adapted to the motion state, so that the data transmission strategy can be flexibly adjusted and the energy consumption of data transmission can be reduced.
  • the mobile terminal may determine a data transmission strategy according to the screen state of the target wearable device, and different screen states use different data transmission frequencies. If the target wearable device is currently in the on-screen state, a higher data transmission frequency is adopted, and if the target wearable device is currently in the off-screen state, a lower data transmission frequency is adopted, thereby reducing the energy consumption of data transmission in the off-screen state.
  • the mobile terminal can also calculate the data transmission frequency based on the power information of the target wearable device. If the current power of the target wearable device is greater than the preset power value, a higher data transmission frequency is used. If the current power of the target wearable device is less than the preset power value, a lower data transmission frequency is used to reduce the data in the low power state Transmission energy consumption.
  • the mobile terminal can also calculate the data transmission frequency based on the user's current heart rate information. If the current heart rate value is greater than the preset heart rate value, a higher data transmission frequency is used, and if the current heart rate value is less than the preset heart rate value, a lower data transmission frequency is used.
  • the mobile terminal can also determine the data transmission strategy based on the foreground display data and the background display data on the target wearable device.
  • the data that needs to be displayed on the target wearable device includes foreground display data and background display data.
  • the data currently displayed on the display interface of the target wearable device is the data displayed in the foreground, and the data not displayed on the display interface is the data displayed in the background.
  • the data to be displayed on the target wearable device includes 20 items of data
  • the display interface of the target wearable device can only display 4 items of data at a time
  • the data to be displayed needs to be divided into 5 screens for display.
  • the data currently displayed on the display interface of the target wearable device is the data displayed in the foreground
  • the remaining data is the data displayed in the background.
  • the data transmission frequency is the first transmission frequency
  • the data transmission frequency is the second transmission frequency.
  • the first transmission frequency is greater than the second transmission frequency. At the same time, it saves energy consumption in the data transmission process displayed in the background.
  • the mobile terminal can also calculate the data transmission frequency of the data displayed in the foreground and the data transmission frequency of the data displayed in the background according to the screen state of the target wearable device, the power information and the heart rate information of the target wearable device.
  • F 1 K 1 *P 1 +K 2 *P 2 +K 3 *P 3
  • F 2 K 4 *P 1 +K 5 *P 2 +K 6 *P 3
  • F 1 represents the data transmission frequency of the data displayed in the foreground
  • F 2 represents the data transmission frequency of the data displayed in the background
  • P 1 represents the battery level of the target wearable device
  • P 2 represents the identification of the heart rate interval of the target wearable device
  • K 1 , K 2 , K 3 , K 4 , K 5 and K 6 are all coefficients.
  • the ordinate in the figure represents the heart rate value
  • the abscissa represents the exercise state.
  • Different exercise states correspond to different heart rate intervals
  • each heart rate interval corresponds to a P2 value.
  • P2 is determined according to the heart rate interval corresponding to the heart rate value collected by the target wearable device, and then the corresponding data transmission frequency is calculated according to the calculation formula of the data transmission frequency.
  • the corresponding heart rate interval is 50-80, during fast walking or jogging, the corresponding heart rate interval is 80-110, during aerobic basic exercise, the corresponding heart rate interval is 110-150, and during advanced aerobic exercise, The corresponding heart rate interval is 160-170, etc.
  • the data transmission frequency can be calculated.
  • K 1 , K 2 , K 3 , K 4 , K 5 and K 6 are based on the collected screen status of the target wearable device, the battery information of the target wearable device, heart rate information, and the target wearable device
  • the data displayed in the foreground of the target wearable device, the data displayed in the background of the target wearable device, and the set data transmission frequency are fitted by fitting, so that a more appropriate data transmission frequency can be calculated according to the current state of the target wearable device.
  • the mobile terminal determines the change data in the current frame data relative to the previous frame data according to the previous frame data adjacent to the current frame data, and only sends the changed data To the target wearable device, unchanged data is not sent.
  • the mobile terminal sends the first frame of data, it sends all the first frame of data to the target wearable device, that is, full frame transmission.
  • the mobile terminal sends the data frame after the first frame of data, only the changed data is sent. That is, the differential frame is sent.
  • the data to be sent includes multiple fields and a current value corresponding to each field, where the fields include exercise speed, exercise distance, energy consumption, and heart rate.
  • each field and the current value corresponding to each field are all sent to the target wearable device.
  • the first frame of data includes the movement speed field, the movement distance field, the energy consumption field, and the heart rate. Fields and the current value corresponding to each field.
  • the mobile terminal sends the data frame after the first frame of data to the target wearable device, it does not send fields, only the current value corresponding to each field, and for the value corresponding to each field in the current frame, if the value corresponding to the field is relatively There is no change in the previous frame, and there is no need to send the current value corresponding to this field.
  • the mobile terminal only sends the current values of the movement distance and energy consumption to the target wearable device, thereby reducing the amount of data that needs to be transmitted , Thereby reducing energy consumption during data transmission.
  • the mobile terminal sends the current frame data
  • the data transmission frequency of the current frame data is determined according to the calculation method of the data transmission frequency of the foreground data.
  • the change data in the frame data corresponds to the data displayed in the background, and the data transmission frequency of the current frame data is determined according to the calculation method of the data transmission frequency of the background data.
  • the mobile terminal acquires data collected by wearable devices worn on different parts of the user's body, preprocesses the acquired data, and then sends the preprocessed data to the target wearable device worn on a preset part of the user's body , In order to facilitate the user to view the target wearable device, so that when the user is inconvenient to use the mobile terminal, the target wearable device can understand the motion state.
  • FIG. 10 shows a specific flowchart of a method for data interaction between devices provided in an embodiment of the present application. As shown in FIG. 10, the method includes:
  • S201 The mobile terminal obtains a preset instruction sent by a user.
  • the preset instruction includes a movement start instruction.
  • S202 The mobile terminal sends a preset instruction to each wearable device.
  • each wearable device is worn on different parts of the user's body, for example, wrists, ankles, waist, and so on.
  • the mobile terminal obtains the wearing position of each wearable device according to the type of each wearable device.
  • the preset instruction also includes a sports mode, for example, outdoor running, indoor running, swimming, and so on.
  • the mobile terminal determines the part that is convenient for the user to view in the current sport mode according to the current sport mode and the wearing part of each wearable device, and the wearable device worn by this part is used as the target wearable device, and the other wearable devices worn by the other parts are data collection devices.
  • the instruction is sent to the target wearable device and the data collection device at the same time.
  • Each wearable device collects data according to a preset instruction, and sends the collected data to the mobile terminal.
  • S204 The mobile terminal preprocesses the acquired data.
  • the mobile terminal preprocesses the acquired data according to the preset filtering strategy and calculation strategy, and calculates the current value of the preset variable, for example, removing duplicate data, removing data with large errors, and calculating the preset according to the preset formula.
  • the current value of the variable, etc. so that each variable corresponds to a current value.
  • the preset variables include exercise speed, position information, heart rate information and so on.
  • the target wearable device sends the state information of the target wearable device to the mobile terminal.
  • the status information of the target wearable device includes screen status information of the target wearable device and/or power information of the target wearable device.
  • the mobile terminal obtains the physiological index information of the user during exercise from the preprocessed data, and calculates the first transmission frequency and the second transmission frequency according to the state information and the physiological index information of the target wearable device.
  • the physiological index information includes heart rate information, and the first transmission frequency is greater than the second transmission frequency.
  • the first transmission frequency is calculated based on the screen state information of the target wearable device, the power information of the target wearable device, and the heart rate information of the user.
  • the target wearable device is in the on-screen state
  • the higher data transmission frequency is used
  • the target wearable device is in the off-screen state
  • the lower data transmission frequency is used
  • the higher data transmission frequency is used.
  • Data transmission frequency is used.
  • the target wearable device When the target wearable device is in a low battery state, use a lower data transmission frequency; when the user's heart rate is higher, it means that the user exercises more vigorously, and the higher the frequency of data generation, the higher the data transmission frequency , On the contrary, when the user's heart rate is low, a lower data transmission frequency is used, thereby saving data transmission energy consumption.
  • the second transmission frequency is calculated according to the screen status information of the target wearable device, the power information of the target wearable device, and the user's heart rate information, so as to adjust the data transmission frequency according to the device status and the frequency of data generation, so as to save the energy of the target wearable device. Consumption.
  • the mobile terminal determines the change data of the current frame data relative to the previous frame data according to the current frame data and the previous frame data of the preprocessed data, and sends the change data to the target wearable device. That is, the data transmission method using differential frame transmission.
  • the target wearable device obtains the motion state change instruction sent by the user.
  • the movement state change instruction is a movement end instruction, a movement suspension instruction or a movement recovery instruction.
  • the target wearable device sends the motion state change instruction to the mobile terminal.
  • S212 The mobile terminal sends the motion state change instruction to each wearable device.
  • Each wearable device switches to a corresponding exercise state according to the exercise state change instruction.
  • each wearable device is worn on a different part of the user's body, and among each wearable device, the wearable device worn on a preset part of the user's body is used as the target wearable device.
  • each wearable device collects data, it sends the data to the mobile
  • the mobile terminal preprocesses the data, and the mobile terminal determines the corresponding data transmission strategy according to the target wearable device status information and/or the user's physiological index information, and sends the preprocessed data to the target wearable device according to the data transmission strategy.
  • the preset part is to facilitate the user to view the target wearable device during exercise. If the user is inconvenient to use the mobile terminal during the exercise, by viewing the target wearable device, he can understand the movement status and control each of them through the target wearable device. The movement status of the wearable device.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the computer program can be stored in a computer-readable storage medium. When executed by the processor, the steps of the foregoing method embodiments can be implemented.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file, or some intermediate forms.
  • the computer-readable medium may at least include: any entity or device capable of carrying the computer program code to the camera device/mobile terminal, recording medium, computer memory, read-only memory (ROM, Read-Only Memory), and random access memory (RAM, Random Access Memory), electric carrier signal, telecommunications signal and software distribution medium.
  • ROM read-only memory
  • RAM random access memory
  • electric carrier signal telecommunications signal and software distribution medium.
  • U disk mobile hard disk, floppy disk or CD-ROM, etc.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the disclosed apparatus/network equipment and method may be implemented in other ways.
  • the device/network device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division, and there may be other divisions in actual implementation, such as multiple units.
  • components can be combined or integrated into another system, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Telephone Function (AREA)

Abstract

本申请适用于互联网技术领域,提供了一种设备间数据交互的方法及相关设备,设备间数据交互的方法包括:各个穿戴设备将采集的数据发送至移动终端,其中,各个穿戴设备佩戴在用户身体的不同部位;移动终端对各个穿戴设备采集的数据进行预处理,将预处理后的数据发送至目标穿戴设备,目标穿戴设备为各个穿戴设备中佩戴在用户身体的预设部位的穿戴设备,以便于用户在运动过程中查看目标穿戴设备,从而在用户不方便使用移动终端时,通过目标穿戴设备可以及时了解运动状态。

Description

一种设备间数据交互的方法及相关设备
本申请要求于2020年02月27日提交国家知识产权局、申请号为202010128182.6、申请名称为“一种设备间数据交互的方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于互联网技术领域,尤其涉及设备间数据交互的方法及相关设备。
背景技术
随着智能穿戴技术的发展,智能穿戴设备的种类越来越多。智能穿戴设备可以灵活佩戴在身体的各个部位,例如手腕、胸部或者腰部等,以检测用户的运动信息。
由于佩戴在胸部或者腰部等部位的智能穿戴设备不方便用户查看运动数据,现有的解决方案一般是将各智能穿戴设备的运动数据发送至移动终端,例如手机等,以方便用户查看运动数据。但是在一些场合下,例如,跑步、游泳等场合,用户不方便查看手机,从而也不方便了解运动状态。
发明内容
本申请实施例提供了设备间数据交互的方法及相关设备,可以方便用户了解运动状态。
第一方面,本申请实施例提供了一种设备间数据交互的方法,包括:各个穿戴设备将采集的数据发送至移动终端,其中,所述各个穿戴设备佩戴在用户身体的不同部位;移动终端对所述各个穿戴设备采集的数据进行预处理,将预处理后的数据发送至目标穿戴设备,所述目标穿戴设备为所述各个穿戴设备中佩戴在用户身体的预设部位的穿戴设备。
上述实施例中,各个穿戴设备佩戴在用户身体的不同部位,将采集的数据发送至移动终端,移动终端对各个穿戴设备采集的数据进行预处理,将预处理后的数据发送至目标穿戴设备,由于目标穿戴设备为各个穿戴设备中佩戴在用户身体的预设部位的穿戴设备,以便于用户查看,从而使用户在不方便查看手机等移动终端时,可以通过目标穿戴设备查看运动数据,以及时了解运动状态。
第二方面,本申请实施例提供了一种设备间数据交互的方法,包括:移动终端获取各个穿戴设备采集的数据,所述各个穿戴设备佩戴在用户身体的不同部位;移动终端对获取的所述数据进行预处理,将预处理后的数据发送至目标穿戴设备,所述目标穿戴设备为所述各个穿戴设备中佩戴在用户身体的预设部位的穿戴设备。
上述实施例中,移动终端获取佩戴于用户身体不同部位的穿戴设备所采集的数据,对数据进行预处理后,发送至其中一个穿戴设备,即目标穿戴设备,目标穿戴设备佩戴于用户身体的预设部位,以便于用户及时查看,从而使用户在不方便查看手机等移动终端时,可以通过目标穿戴设备查看运动数据,以及时了解运动状态。
在第二方面的一种可能的实现方式中,移动终端将预处理后的数据发送至目标穿 戴设备,包括:
移动终端获取目标穿戴设备的状态信息和/或所述用户在运动过程中的生理指标信息,根据所述状态信息和/或所述生理指标信息确定相应的数据传输策略,并根据确定的所述数据传输策略将所述预处理后的数据发送至所述目标穿戴设备,其中所述生理指标信息从所述预处理后的数据中获取。
上述实施例中,移动终端根据目标穿戴设备的状态信息和/或生理指标信息确定相应的数据传输策略,并根据确定的数据传输策略将预处理后的数据发送至目标穿戴设备,从而可以根据目标穿戴设备的能耗情况和用户的运动状况制定合适的数据传输策略。
在第二方面的一种可能的实现方式中,所述根据所述状态信息和/或所述生理指标信息确定相应的数据传输策略,并根据确定的所述数据传输策略将所述预处理后的数据发送至所述目标穿戴设备,包括:
根据所述状态信息和/或所述生理指标信息确定第一传输频率和/或第二传输频率,采用第一传输频率和/或第二传输频率将所述预处理后的数据发送至所述目标穿戴设备,其中所述第一传输频率传输的数据为所述目标穿戴设备前台显示的数据,所述第二传输频率传输的数据为所述目标穿戴设备后台显示的数据。
在第二方面的一种可能的实现方式中,第一传输频率大于第二传输频率,即对于目标穿戴设备的当前显示界面显示的数据,采用较高的传输频率,对于目标穿戴设备的当前显示界面未显示的数据,采用较低的传输频率,从而降低数据传输过程中的能耗。同时,第一传输频率和第二传输频率是根据目标穿戴设备的状态信息和/或生理指标信息确定的,例如,当目标穿戴设备为亮屏状态时,采用较高的数据传输频率,当目标穿戴设备为熄屏状态时,采用较低的传输频率,当用户的生理指标数据较稳定时,采用较低的数据传输频率,以进一步降低数据传输过程中的能耗。
在第二方面的一种可能的实现方式中,所述目标穿戴设备的状态信息包括目标穿戴设备的屏幕状态信息和/或目标穿戴设备的电量信息;所述生理指标信息包括心率信息。
在第二方面的一种可能的实现方式中,所述将预处理后的数据发送至目标穿戴设备,包括:
根据所述预处理后的数据的当前帧数据和上一帧数据,确定所述当前帧数据相对于所述上一帧数据的变化数据,其中,所述当前帧数据和所述上一帧数据为相邻的两帧数据;将所述当前帧数据相对于所述上一帧数据的变化数据发送至所述目标穿戴设备。即只发送相对于上一帧数据的变化数据,不变的数据不发送,从而节省数据传输能耗。
在第二方面的一种可能的实现方式中,所述移动终端获取各个穿戴设备采集的数据之前,所述方法还包括:
移动终端获取用户发送的预设指令;移动终端将所述预设指令发送至所述各个穿戴设备,以触发所述各个穿戴设备采集数据,实现移动终端对各个穿戴设备的管理。
在第二方面的一种可能的实现方式中,所述将预处理后的数据发送至目标穿戴设备之后,所述方法还包括:
移动终端获取所述目标穿戴设备发送的运动状态改变指令;移动终端将所述运动状态改变指令发送至所述各个穿戴设备。即目标穿戴设备通过移动终端可以实现对各个穿戴设备的运动状态的控制,从而在用户不方便使用移动终端时,通过目标穿戴设备及时控制运动。
第三方面,本申请实施例提供了一种设备间数据交互的装置,包括:
获取模块,用于获取各个穿戴设备采集的数据,所述各个穿戴设备佩戴在用户身体的不同部位;
发送模块,用于对获取的所述数据进行预处理,将预处理后的数据发送至目标穿戴设备,所述目标穿戴设备为所述各个穿戴设备中佩戴在用户身体的预设部位的穿戴设备。
在第三方面的一种可能的实现方式中,所述发送模块具体用于:
获取目标穿戴设备的状态信息和/或所述用户在运动过程中的生理指标信息,根据所述状态信息和/或所述生理指标信息确定相应的数据传输策略,并根据确定的所述数据传输策略将所述预处理后的数据发送至所述目标穿戴设备,其中所述生理指标信息从所述预处理后的数据中获取。
在第三方面的一种可能的实现方式中,所述发送模块具体还用于:
根据所述状态信息和/或所述生理指标信息确定第一传输频率和/或第二传输频率,采用第一传输频率和/或第二传输频率将所述预处理后的数据发送至所述目标穿戴设备,其中所述第一传输频率传输的数据为所述目标穿戴设备前台显示的数据,所述第二传输频率传输的数据为所述目标穿戴设备后台显示的数据。
在第三方面的一种可能的实现方式中,所述目标穿戴设备的状态信息包括目标穿戴设备的屏幕状态信息和/或目标穿戴设备的电量信息;所述生理指标信息包括心率信息。
在第三方面的一种可能的实现方式中,所述发送模块具体还用于:
根据所述预处理后的数据的当前帧数据和上一帧数据,确定所述当前帧数据相对于所述上一帧数据的变化数据,其中,所述当前帧数据和所述上一帧数据为相邻的两帧数据;
将所述当前帧数据相对于所述上一帧数据的变化数据发送至所述目标穿戴设备。
在第三方面的一种可能的实现方式中,所述设备间数据交互的装置还包括:
触发模块,用于获取用户发送的预设指令;将所述预设指令发送至所述各个穿戴设备,以触发所述各个穿戴设备采集数据。
在第三方面的一种可能的实现方式中,所述设备间数据交互的装置还包括:
控制模块,用于获取所述目标穿戴设备发送的运动状态改变指令;将所述运动状态改变指令发送至所述各个穿戴设备。
第四方面,本申请实施例提供了一种移动终端,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述第二方面所述的设备间数据交互的方法。
第五方面,本申请实施例提供了一种设备间数据交互的系统,其特征在于,包括至少两个穿戴设备以及如上述第五方面所述的移动终端。
第六方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如上述第二方面所述的设备间数据交互的方法。
第七方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在移动终端上运行时,使得移动终端执行如上述第二方面所述的设备间数据交互的方法。
可以理解的是,上述第三方面至第七方面的有益效果可以参见上述第二方面中的相关描述,在此不再赘述。
附图说明
图1是本申请一实施例提供的设备间数据交互的系统的示意图;
图2是本申请一实施例提供的设备间数据交互的方法所适用的移动终端的结构示意图;
图3是本申请一实施例提供的设备间数据交互的方法所适用的穿戴设备的结构示意图;
图4是本申请一实施例提供的设备间数据交互的方法的流程示意图;
图5是本申请一实施例提供的设备间数据交互的方法的应用场景示意图;
图6是本申请一实施例提供的设备间数据交互的方法的另一应用场景图;
图7是本申请一实施例提供的设备间数据交互的方法的又一应用场景图;
图8是本申请一实施例提供的设备间数据交互的方法的又一应用场景图;
图9是本申请一实施例提供的心率区间划分示意图。
图10是本申请另一实施例提供的设备间数据交互的方法的流程示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
另外,在本申请的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说 明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
如图1所示,本申请实施例提供的设备间数据交互的方法应用于设备间数据交互的系统,设备间数据交互的系统包括移动终端100以及至少两个穿戴设备,各个穿戴设备佩戴在用户身体的不同部位。例如,各个穿戴设备分别为佩戴于腰部的跑步检测设备、佩戴于胸部的心率检测设备、佩戴于脚腕的步态检测设备以及佩戴于手腕的智能手表等。各个穿戴设备中,其中一个穿戴设备佩戴于用户身体的预设部位,为目标穿戴设备200,其余的穿戴设备为数据收集设备300。其中,用户身体的预设部位包括用户在运动过程中方便用户查看目标穿戴设备的部位,例如手腕。用户穿戴各个穿戴设备后,各个穿戴设备采集数据,数据包括用户的运动信息和生理指标信息,各个穿戴设备将采集的数据发送至移动终端100。移动终端100获取数据后,对数据进行预处理,例如,去除重复数据和误差较大的数据,计算出运动速度、能量消耗等预设变量对应的数值。移动终端100对数据进行预处理后,将预处理后的数据发送至目标穿戴设备200,目标穿戴设备200显示预处理后的数据。由于目标穿戴设备佩戴于用户身体的预设部位,为用户在运动过程中方便查看的部位,当用户在运动过程中,例如户外跑步或者游泳时,不方便查看移动终端100,可以通过目标穿戴设备200获取运动信息,了解运动状态,提高用户体验。
本申请实施例涉及的移动终端可以是手机、平板电脑、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备等,本申请实施例对移动终端的具体类型不作任何限制。
为了便于理解,首先介绍本申请实施例所涉及的移动终端。请参阅图2,图2是本申请实施例提供的移动终端100的结构示意图。
移动终端100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本申请实施例示意的结构并不构成对移动终端100的具体限定。在本申请另一些实施例中,移动终端100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit, GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现移动终端100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial  interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现移动终端100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现移动终端100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为移动终端100充电,也可以用于移动终端100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他移动终端,例如AR设备等。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对移动终端100的结构限定。在本申请另一些实施例中,移动终端100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过移动终端100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为移动终端供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
移动终端100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。移动终端100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在移动终端100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在移动终端100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,移动终端100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得移动终端100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
移动终端100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,移动终端100可以包括1个或N个显示屏194,N为大于1的正整数。
移动终端100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头 被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,移动终端100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当移动终端100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。移动终端100可以支持一种或多种视频编解码器。这样,移动终端100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现移动终端100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展移动终端100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储移动终端100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在内部存储器121的指令,和/或存储在设置于处理器中的存储器的指令,执行移动终端100的各种功能应用以及数据处理。
移动终端100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。移动终端100可 以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当移动终端100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。移动终端100可以设置至少一个麦克风170C。在另一些实施例中,移动终端100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,移动终端100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动移动终端平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。移动终端100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,移动终端100根据压力传感器180A检测所述触摸操作强度。移动终端100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定移动终端100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定移动终端100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测移动终端100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消移动终端100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,移动终端100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。移动终端100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当移动终端100是翻盖机时,移动终端100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测移动终端100在各个方向上(一般为三轴)加速度的大小。当移动终端100静止时可检测出重力的大小及方向。还可以用于识别移动终端姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。移动终端100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,移动终端100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。移动终端100通过发光二极管向外发射红外光。移动终端100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定移动终端100附近有物体。当检测到不充分的反射光时,移动终端100可以确定移动终端100附近没有物体。移动终端100可以利用接近光传感器180G检测用户手持移动终端100贴近耳朵通话,以便自动熄熄屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。移动终端100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测移动终端100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。移动终端100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,移动终端100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,移动终端100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,移动终端100对电池142加热,以避免低温导致移动终端100异常关机。在其他一些实施例中,当温度低于又一阈值时,移动终端100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控器件”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于移动终端100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。移动终端100可以接收按键输入,产生与移动终端100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不 同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和移动终端100的接触和分离。移动终端100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。移动终端100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,移动终端100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在移动终端100中,不能和移动终端100分离。
请参阅图3,图3是本申请实施例所涉及的穿戴设备的结构示意图。如图3所示,本申请实施例提供的穿戴设备包括处理器210、存储器220、输入单元230、显示单元240、传感器250、音频电路260、无线通信模块270、电源280等部件。本领域技术人员可以理解,图3中示出的穿戴设备结构并不构成对穿戴设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图3对穿戴设备的各个构成部件进行具体的介绍:
处理器210是穿戴设备的控制中心,利用各种接口和线路连接整个穿戴设备的各个部分,通过运行或执行存储在存储器220内的软件程序和/或模块,以及调用存储在存储器220内的数据,执行穿戴设备的各种功能和处理数据,从而对穿戴设备进行整体监控。可选的,处理器210可包括一个或多个处理单元;优选的,处理器210可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器210中。
存储器220可用于存储软件程序以及模块,处理器210通过运行存储在存储器220的软件程序以及模块,从而执行可穿戴设备的各种功能应用以及数据处理。存储器220可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据可穿戴设备的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器220可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元230可用于接收输入的数字或字符信息,以及产生与穿戴设备的用户设置以及功能控制有关的键信号输入。具体地,输入单元230可包括触控面板231以及其他输入设备232。触控面板231,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板231上或在触控面板231附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板231可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的 触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器210,并能接收处理器210发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板231。除了触控面板231,输入单元230还可以包括其他输入设备232。具体地,其他输入设备232可以包括但不限于音量控制按键、开关按键等中的一种或多种。
显示单元240可用于显示由用户输入的信息或提供给用户的信息以及穿戴设备的各种菜单。显示单元240可包括显示面板241,可选的,可以采用液晶显示器(Liquid Crystal Disslay,LCD)、有机发光二极管(Rrganic Light-Emitting Dirde,RLED)等形式来配置显示面板241。进一步的,触控面板231可覆盖显示面板241,当触控面板231检测到在其上或附近的触摸操作后,传送给处理器210以确定触摸事件的类型,随后处理器210根据触摸事件的类型在显示面板241上提供相应的视觉输出。虽然在图3中,触控面板231与显示面板241是作为两个独立的部件来实现可穿戴设备的输入和输入功能,但是在某些实施例中,可以将触控面板231与显示面板241集成而实现穿戴设备的输入和输出功能。
穿戴设备还可包括至少一种传感器250,比如电容传感器、运动传感器以及其他传感器。具体地,电容传感器用于检测人体与可穿戴设备之间的电容,该电容可以反映人体与可穿戴设备是否接触良好。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别可穿戴设备姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于可穿戴设备还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路260、扬声器261,传声器262可提供用户与穿戴设备之间的音频接口。音频电路260可将接收到的音频数据转换后的电信号,传输到扬声器261,由扬声器261转换为声音信号输出;另一方面,传声器262将收集的声音信号转换为电信号,由音频电路260接收后转换为音频数据,再将音频数据输入处理器210,或者将音频数据输出至存储器220以便进一步处理。
无线通信模块270可以用于,支持可穿戴设备与其他电子设备之间包括BT,WLAN(如Wi-Fi),Zigbee,FM,NFC,IR,或通用2.4G/5G无线通信技术等无线通信的数据交换。
穿戴设备还包括给各个部件供电的电源280(比如电池),优选的,电源可以通过电源管理系统与处理器210逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
请参见图4,图4示出了本申请实施例中提供的设备间数据交互的方法的流程示意图,该方法执行主体为移动终端100。如图4所示,该方法包括:
S101:移动终端获取各个穿戴设备采集的数据,所述各个穿戴设备佩戴在用户身体的不同部位。
在一种可能的实现方式中,各个穿戴设备与移动终端建立通讯连接后,通过移动终端可以查看和管理各个穿戴设备。例如,如图5所示,通过移动终端可以查看与移 动终端通讯连接的各个穿戴设备,各个穿戴设备分别为智能手环、智能手表、步态检测设备和心率检测设备。移动终端根据预设的穿戴设备与佩戴部位的对应关系,确定出各穿戴设备的佩戴部位。例如,确定出智能手环佩戴于手腕,智能手表佩戴于手腕,步态检测设备佩戴于脚腕,心率检测设备佩戴于胸部。如图6所示,在一种应用场景中,移动终端设有供用户选择运动模式的模式选择界面,当用户选择其中一种运动模式时,移动终端生成运动开始指令,将运动开始指令发送至各个穿戴设备,以触发各个穿戴设备开始采集数据,并将采集的数据发送至移动终端。其中,各个穿戴设备采集的数据包括用户的运动信息和生理指标信息,例如,位置信息、跑步开始时间信息、抬脚高度信息、心率信息等。
S102:移动终端对获取的所述数据进行预处理,将预处理后的数据发送至目标穿戴设备,所述目标穿戴设备为所述各个穿戴设备中佩戴在用户身体的预设部位的穿戴设备。
其中,对数据进行预处理包括采用预设筛选策略去除重复数据、按照预设的数据范围去除误差较大的数据、根据预设的计算方法计算出预设变量对应的当前值等。例如,各个穿戴设备采集的数据中,位置信息和心率信息的数据有多个,则取其中一个位置信息,按照设定的每种运动模式对应的心率范围去除有误差的心率信息,或者仅选取心率检测设备的心率信息,去除智能手环的心率信息,从而得到运动信息的各个变量以及每个变量对应的一个数据,例如,预处理后的数据包括位置信息、时间信息、心率信息等变量以及与每个变量对应的一个数据。移动终端还可以再根据得到的各个变量对应的数据计算出预设变量,例如,根据位置信息和时间信息计算出跑步速度、运动频率等信息,通过各个变量对应的数据,可以表征用户的运动状态和生理状态。
移动终端将预处理后的数据发送至佩戴在用户身体的预设部位的目标穿戴设备后,目标穿戴设备显示预处理后的数据,预设部位包括用户在运动过程中方便用户查看目标穿戴设备的部位,例如手腕。
在一种可能的实现方式中,移动终端确定出各穿戴设备的佩戴部位后,根据用户选择的运动模式,确定出当前运动模式下方便用户查看的穿戴设备,即目标穿戴设备,则其余穿戴设备为数据收集设备。例如,若当前与移动终端通讯连接的各个穿戴设备分别为智能手环、智能手表、步态检测设备和心率检测设备。如图6所示,当用户打开模式选择界面,若移动终端检测到用户触摸“户外跑步”的操作时,将佩戴于手腕的智能手表设置为目标穿戴设备,将智能手环、步态检测设备和心率检测设备设置为数据收集设备,以方便用户在运动过程中查看目标穿戴设备,了解运动状态。例如,如图7所示,目标穿戴设备显示预处理后的数据,包括跑步开始时间、跑步速度、能量消耗等,供用户在运动过程中查看。
在一种可能的实现方式中,当用户操作目标穿戴设备,向目标穿戴设备发送运动状态改变指令时,目标穿戴设备将运动状态改变指令发送至移动终端,移动终端将接收的运动状态改变指令发送至各个穿戴设备,以触发各个穿戴设备根据运动状态改变指令改变运动状态。例如,如图8所示,当目标穿戴设备检测到用户触摸“结束运动”、“中止运动”或者“恢复运动”的操作时,对应将“结束运动”、“中止运动”或者“恢复运动”的指令发送至移动终端,移动终端根据对应的指令控制各个穿戴设备切换至对应的运 动状态,从而实现目标穿戴设备对各个穿戴设备的控制,用户在运动过程中,可以通过操作目标穿戴设备控制运动状态。
在一种可能的实现方式中,移动终端从预处理后的数据中获取用户的生理指标信息,并获取目标穿戴设备发送的目标穿戴设备的状态信息,根据目标穿戴设备的状态信息和/或生理指标信息确定相应的数据传输策略,并根据确定的数据传输策略将预处理后的数据发送至目标穿戴设备。在一种可能的实现方式中,目标穿戴设备的状态信息包括目标穿戴设备的屏幕状态信息和/或目标穿戴设备的电量信息,生理指标信息包括心率信息。目标穿戴设备的状态信息与目标穿戴设备的能耗相关,用户的生理指标信息与运动状态相关,根据目标穿戴设备的状态信息和/或生理指标信息实时调整数据传输策略,可以使数据传输策略与目标穿戴设备的能耗以及运动状态相适配,从而可以灵活调整数据传输策略,降低数据传输的能耗。
示例性地,移动终端可以根据目标穿戴设备的屏幕状态确定数据传输策略,不同的屏幕状态采用不同的数据传输频率。若目标穿戴设备当前为亮屏状态,采用较高的数据传输频率,若目标穿戴设备当前为熄屏状态,采用较低的数据传输频率,从而在熄屏状态下降低数据传输能耗。
移动终端也可以根据目标穿戴设备的电量信息计算数据传输频率。若目标穿戴设备当前的电量大于预设电量值,采用较高的数据传输频率,若目标穿戴设备当前的电量小于预设电量值,采用较低的数据传输频率,从而在低电量状态下降低数据传输能耗。
移动终端也可以根据用户当前的心率信息计算数据传输频率。若当前心率值大于预设心率值,采用较高的数据传输频率,若当前心率值小于预设心率值,采用较低的数据传输频率。
移动终端也可以根据目标穿戴设备上的前台显示数据和后台显示数据确定数据传输策略。其中,目标穿戴设备上需要显示的数据包括前台显示数据和后台显示数据,目标穿戴设备的显示界面上当前显示的数据为前台显示的数据,未在显示界面显示的数据为后台显示的数据。示例性地,当目标穿戴设备上需要显示多项数据,且不能全部显示在同一个界面上时,需要分屏幕显示。例如,若目标穿戴设备上需要显示的数据包括20项数据,目标穿戴设备的显示界面一次只能显示4项数据,则需要将待显示的数据分为5屏显示。目标穿戴设备的显示界面当前显示的数据为前台显示的数据,其余数据为后台显示的数据。当用户通过按键或者滑动屏幕进行翻页操作以查看新的数据时,翻页后,显示界面上当前显示的数据变为前台显示的数据,其余数据为后台显示的数据。对于前台显示的数据,数据传输频率为第一传输频率,对于后台显示的数据,数据传输频率为第二传输频率,其中,第一传输频率大于第二传输频率,从而在保证用户正常查看数据的同时,节省后台显示的数据传输过程中的能耗。
移动终端也可以根据目标穿戴设备的屏幕状态、目标穿戴设备的电量信息和心率信息分别计算出前台显示的数据的数据传输频率和后台显示的数据的数据传输频率。
例如,对于前台显示的数据,根据公式F 1=K 1*P 1+K 2*P 2+K 3*P 3计算数据传输频率,对于后台显示的数据,根据公式F 2=K 4*P 1+K 5*P 2+K 6*P 3计算数据传输频率。其中,F 1表示前台显示的数据的数据传输频率,F 2表示后台显示的数据的数据传输频率, P 1表示目标穿戴设备的电量值,P 2表示目标穿戴设备的心率区间的标识,P 3表示目标穿戴设备的数据显示状态,例如,P 3=1表示熄屏状态,P 3=2表示亮屏状态。K 1、K 2、K 3、K 4、K 5和K 6均为系数。
在一种可能的实现方式中,如图9所示,图中纵坐标表示心率值,横坐标表示运动状态,不同的运动状态对应的心率区间不同,每个心率区间对应一个P2值。用户运动过程中,根据目标穿戴设备采集的心率值所对应的心率区间确定P2,再根据数据传输频率的计算公式计算出对应的数据传输频率。例如,步行时,对应的心率区间为50-80,快走或者慢跑时,对应的心率区间为80-110,有氧基础运动时,对应的心率区间为110-150,有氧进阶运动时,对应的心率区间为160-170等,根据对应的心率区间,再结合目标穿戴设备的电量值以及数据显示状态,即可计算出数据传输频率。
在一种可能的实现方式中,K 1、K 2、K 3、K 4、K 5和K 6是根据采集的目标穿戴设备的屏幕状态、目标穿戴设备的电量信息、心率信息、目标穿戴设备的前台显示的数据、目标穿戴设备的后台显示的数据以及设定的数据传输频率拟合所得到的,从而可以根据目标穿戴设备的当前状态,计算出更合适的数据传输频率。
在一种可能的实现方式中,移动终端在发送当前帧数据之前,根据与当前帧数据相邻的上一帧数据确定当前帧数据中相对于上一帧数据的变化数据,仅将变化数据发送至目标穿戴设备,不变的数据不发送。示例性地,移动终端在发送第一帧数据时,将第一帧数据全部发送至目标穿戴设备,即全帧发送,移动终端在发送第一帧数据之后的数据帧时,仅发送变化数据,即差分帧发送。例如,当前运动状态下,需要发送的数据包括多个字段以及与每个字段对应的当前值,其中,字段包括运动速度、运动距离、能量消耗以及心率。移动终端向目标穿戴设备发送第一帧数据时,将各个字段以及各个字段对应的当前值全部发送至目标穿戴设备,例如,第一帧数据包括运动速度字段、运动距离字段、能量消耗字段、心率字段以及与每个字段对应的当前值。当移动终端向目标穿戴设备发送第一帧数据之后的数据帧时,不发送字段,仅发送每个字段对应的当前值,且对于当前帧中每个字段对应的值,若字段对应的值相对于上一帧未发生改变,也不需要发送该字段对应的当前值。例如,若第二帧数据相对于第一帧数据的运动速度以及心率值均未发生变化,则移动终端仅将运动距离和能量消耗的当前值发送至目标穿戴设备,从而减少需传输的数据量,进而降低在数据传输过程中的能耗。
需要说明的是,移动终端在发送当前帧数据时,若当前帧数据中的变化数据对应前台显示的数据,则根据前台数据的数据传输频率的计算方法确定当前帧数据的数据传输频率,若当前帧数据中的变化数据对应后台显示的数据,则根据后台数据的数据传输频率的计算方法确定当前帧数据的数据传输频率。
上述实施例中,移动终端获取佩戴于用户身体的不同部位的穿戴设备采集的数据,对获取的数据进行预处理,再将预处理后的数据发送至佩戴在用户身体预设部位的目标穿戴设备,以方便用户查看目标穿戴设备,从而可以在用户不方便使用移动终端时,通过目标穿戴设备了解运动状态。
请参见图10,图10示出了本申请实施例中提供的设备间数据交互的方法的具体流程示意图,如图10所示,该方法包括:
S201:移动终端获取用户发送的预设指令。
其中,预设指令包括运动开始指令。
S202:移动终端将预设指令发送至各个穿戴设备。
其中,各个穿戴设备佩戴于用户身体的不同部位,例如,手腕、脚腕、腰部等。移动终端根据各个穿戴设备的类型获取各个穿戴设备的佩戴部位。
在一种可能的实现方式中,预设指令还包括运动模式,例如,户外跑步、室内跑步、游泳等。移动终端根据当前的运动模式和各个穿戴设备的佩戴部位,确定当前运动模式下方便用户查看的部位,将该部位佩戴的穿戴设备作为目标穿戴设备,其余部位佩戴的穿戴设备为数据采集设备。当移动终端获取到预设指令时,将该指令同时发送至目标穿戴设备和数据采集设备。
S203:各个穿戴设备根据预设指令采集数据,将采集的数据发送至移动终端。
S204:移动终端对获取的数据进行预处理。
具体地,移动终端根据预设筛选策略和计算策略对获取的数据进行预处理,计算出预设变量的当前值,例如,去除重复数据、去除误差较大数据、根据预设公式计算出预设变量的当前值等,从而得到每个变量对应一个当前值。其中,预设变量包括运动速度、位置信息、心率信息等。
S205:目标穿戴设备将目标穿戴设备的状态信息发送至移动终端。
其中,目标穿戴设备的状态信息包括目标穿戴设备的屏幕状态信息和/或目标穿戴设备的电量信息。
S206:移动终端从预处理后的数据中获取用户在运动过程中的生理指标信息,根据目标穿戴设备的状态信息和生理指标信息计算出第一传输频率和第二传输频率。
其中,生理指标信息包括心率信息,且第一传输频率大于第二传输频率。
S207:若当前发送的数据为目标穿戴设备前台显示的数据,采用第一传输频率发送数据。
在一种可能的实现方式中,第一传输频率是根据目标穿戴设备的屏幕状态信息、目标穿戴设备的电量信息以及用户的心率信息计算得到的。当目标穿戴设备为亮屏状态时,采用较高的数据传输频率,当目标穿戴设备为熄屏状态时,采用较低的数据传输频率;当目标穿戴设备为高电量状态时,采用较高的数据传输频率,当目标穿戴设备为低电量状态时,采用较低的数据传输频率;当用户的心率较高时,说明用户运动较剧烈,产生数据的频率越高,采用较高的数据传输频率,反之,当用户心率较低时,采用较低的数据传输频率,从而节省数据传输能耗。
S208:若当前发送的数据为目标穿戴设备后台显示的数据,采用第二传输频率发送数据。
同理,根据目标穿戴设备的屏幕状态信息、目标穿戴设备的电量信息以及用户的心率信息计算出第二传输频率,以根据设备状态及产生数据的频率调整数据传输频率,节省目标穿戴设备的能耗。
S209:移动终端根据预处理后的数据的当前帧数据和上一帧数据,确定当前帧数据相对于上一帧数据的变化数据,将变化数据发送至目标穿戴设备。即采用差分帧传输的数据传输方法。
S210:目标穿戴设备获取用户发送的运动状态改变指令。
其中,运动状态改变指令为运动结束指令、运动中止指令或运动恢复指令。
S211:目标穿戴设备将运动状态改变指令发送至移动终端。
S212:移动终端将运动状态改变指令发送至各个穿戴设备。
S213:各个穿戴设备根据运动状态改变指令切换至对应的运动状态。
上述实施例中,各个穿戴设备佩戴于用户身体的不同部位,将各个穿戴设备中,佩戴于用户身体的预设部位的穿戴设备作为目标穿戴设备,各个穿戴设备采集数据后,将数据发送至移动终端,移动终端对数据进行预处理,同时移动终端根据目标穿戴设备状态信息和/或用户的生理指标信息确定相应的数据传输策略,将预处理后的数据按照数据传输策略发送至目标穿戴设备,以节省数据传输能耗。其中,预设部位为便于用户在运动过程中查看目标穿戴设备的部位,用户在运动过程中,若不方便使用移动终端,通过查看目标穿戴设备,可以了解运动状态,并通过目标穿戴设备控制各个穿戴设备的运动状态。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质至少可以包括:能够将计算机程序代码携带到拍照装置/移动终端的任何实体或装置、记录介质、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
在本申请所提供的实施例中,应该理解到,所揭露的装置/网络设备和方法,可以 通过其它的方式实现。例如,以上所描述的装置/网络设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 设备间数据交互的方法,其特征在于,包括:
    各个穿戴设备将采集的数据发送至移动终端,其中,所述各个穿戴设备佩戴在用户身体的不同部位;
    移动终端对所述各个穿戴设备采集的数据进行预处理,将预处理后的数据发送至目标穿戴设备,所述目标穿戴设备为所述各个穿戴设备中佩戴在用户身体的预设部位的穿戴设备。
  2. 一种设备间数据交互的方法,其特征在于,包括:
    移动终端获取各个穿戴设备采集的数据,所述各个穿戴设备佩戴在用户身体的不同部位;
    移动终端对获取的所述数据进行预处理,将预处理后的数据发送至目标穿戴设备,所述目标穿戴设备为所述各个穿戴设备中佩戴在用户身体的预设部位的穿戴设备。
  3. 如权利要求1或2所述的设备间数据交互的方法,其特征在于,移动终端将预处理后的数据发送至目标穿戴设备,包括:
    移动终端获取目标穿戴设备的状态信息和/或所述用户在运动过程中的生理指标信息,根据所述状态信息和/或所述生理指标信息确定相应的数据传输策略,并根据确定的所述数据传输策略将所述预处理后的数据发送至所述目标穿戴设备,其中所述生理指标信息从所述预处理后的数据中获取。
  4. 如权利要求3所述的设备间数据交互的方法,其特征在于,所述根据所述状态信息和/或所述生理指标信息确定相应的数据传输策略,并根据确定的所述数据传输策略将所述预处理后的数据发送至所述目标穿戴设备,包括:
    根据所述状态信息和/或所述生理指标信息确定第一传输频率和/或第二传输频率,采用第一传输频率和/或第二传输频率将所述预处理后的数据发送至所述目标穿戴设备,其中所述第一传输频率传输的数据为所述目标穿戴设备前台显示的数据,所述第二传输频率传输的数据为所述目标穿戴设备后台显示的数据。
  5. 如权利要求3或4所述的设备间数据交互的方法,其特征在于,所述目标穿戴设备的状态信息包括目标穿戴设备的屏幕状态信息和/或目标穿戴设备的电量信息;所述生理指标信息包括心率信息。
  6. 如权利要求1至5任一项所述的设备间数据交互的方法,其特征在于,所述将预处理后的数据发送至目标穿戴设备,包括:
    根据所述预处理后的数据的当前帧数据和上一帧数据,确定所述当前帧数据相对于所述上一帧数据的变化数据,其中,所述当前帧数据和所述上一帧数据为相邻的两帧数据;
    将所述当前帧数据相对于所述上一帧数据的变化数据发送至所述目标穿戴设备。
  7. 如权利要求1或2所述的设备间数据交互的方法,其特征在于,所述移动终端获取各个穿戴设备采集的数据之前,所述方法还包括:
    移动终端获取用户发送的预设指令;
    移动终端将所述预设指令发送至所述各个穿戴设备,以触发所述各个穿戴设备采集数据。
  8. 如权利要求1或2所述的设备间数据交互的方法,其特征在于,所述将预处理后的数据发送至目标穿戴设备之后,所述方法还包括:
    移动终端获取所述目标穿戴设备发送的运动状态改变指令;
    移动终端将所述运动状态改变指令发送至所述各个穿戴设备。
  9. 一种移动终端,其特征在于,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求2至8任一项所述的设备间数据交互的方法。
  10. 一种设备间数据交互的系统,其特征在于,包括至少两个穿戴设备以及如权利要求9所述的移动终端。
  11. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求2至8任一项所述的设备间数据交互的方法。
PCT/CN2020/137291 2020-02-27 2020-12-17 一种设备间数据交互的方法及相关设备 WO2021169515A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010128182.6 2020-02-27
CN202010128182.6A CN113395382B (zh) 2020-02-27 2020-02-27 一种设备间数据交互的方法及相关设备

Publications (1)

Publication Number Publication Date
WO2021169515A1 true WO2021169515A1 (zh) 2021-09-02

Family

ID=77490674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137291 WO2021169515A1 (zh) 2020-02-27 2020-12-17 一种设备间数据交互的方法及相关设备

Country Status (2)

Country Link
CN (1) CN113395382B (zh)
WO (1) WO2021169515A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113778282A (zh) * 2021-09-18 2021-12-10 深圳市爱都科技有限公司 一种运动类型管理方法、系统及移动终端
CN116094680A (zh) * 2023-01-05 2023-05-09 深圳研控自动化科技股份有限公司 多通道数据传输方法、系统、设备及存储介质
CN116736971A (zh) * 2022-10-17 2023-09-12 荣耀终端有限公司 一种地图数据处理方法、地图显示方法及设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114504777B (zh) * 2022-04-19 2022-07-15 西南石油大学 基于神经网络和模糊综合评价的锻炼强度计算系统和方法
CN115136612A (zh) * 2022-05-26 2022-09-30 广东逸动科技有限公司 数据处理方法、装置、系统、安全终端、船舶及监控装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105323379A (zh) * 2014-07-31 2016-02-10 三星电子株式会社 用于提供移动终端的功能的方法和设备
CN106293033A (zh) * 2015-06-09 2017-01-04 联想(北京)有限公司 信息处理方法及电子设备
CN106708451A (zh) * 2015-11-13 2017-05-24 深圳市光峰光电技术有限公司 同屏监控智能设备状态的方法、投影设备及用户终端
WO2018142381A1 (en) * 2017-01-23 2018-08-09 Begley Luke Methods and systems for generating one or more service set identifier communication signals
CN110430558A (zh) * 2019-06-26 2019-11-08 深圳绿米联创科技有限公司 设备控制方法、装置、电子设备及存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7277492B2 (en) * 2001-08-28 2007-10-02 Sony Corporation Transmission apparatus, transmission control method, reception apparatus, and reception control method
CN103281539B (zh) * 2013-06-07 2016-10-05 华为技术有限公司 一种图像编、解码处理的方法、装置及终端
CN105101378B (zh) * 2014-05-23 2018-11-30 华为技术有限公司 一种功率控制方法及装置
CN105050164A (zh) * 2015-01-16 2015-11-11 中国矿业大学 基于数据重要性的降低wifi功耗方法
CN106774883A (zh) * 2016-12-14 2017-05-31 北京小米移动软件有限公司 运动数据展示方法及装置
CN109584766B (zh) * 2017-09-28 2022-02-25 广东美晨通讯有限公司 一种显示方法、显示装置及具有存储功能的装置
CN110113782A (zh) * 2019-04-29 2019-08-09 惠州Tcl移动通信有限公司 数据传输方法、装置及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105323379A (zh) * 2014-07-31 2016-02-10 三星电子株式会社 用于提供移动终端的功能的方法和设备
CN106293033A (zh) * 2015-06-09 2017-01-04 联想(北京)有限公司 信息处理方法及电子设备
CN106708451A (zh) * 2015-11-13 2017-05-24 深圳市光峰光电技术有限公司 同屏监控智能设备状态的方法、投影设备及用户终端
WO2018142381A1 (en) * 2017-01-23 2018-08-09 Begley Luke Methods and systems for generating one or more service set identifier communication signals
CN110430558A (zh) * 2019-06-26 2019-11-08 深圳绿米联创科技有限公司 设备控制方法、装置、电子设备及存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113778282A (zh) * 2021-09-18 2021-12-10 深圳市爱都科技有限公司 一种运动类型管理方法、系统及移动终端
CN116736971A (zh) * 2022-10-17 2023-09-12 荣耀终端有限公司 一种地图数据处理方法、地图显示方法及设备
CN116094680A (zh) * 2023-01-05 2023-05-09 深圳研控自动化科技股份有限公司 多通道数据传输方法、系统、设备及存储介质

Also Published As

Publication number Publication date
CN113395382B (zh) 2023-08-22
CN113395382A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
WO2020168965A1 (zh) 一种具有折叠屏的电子设备的控制方法及电子设备
WO2021169515A1 (zh) 一种设备间数据交互的方法及相关设备
WO2021169402A1 (zh) 一种屏幕亮度调节方法和电子设备
WO2021213165A1 (zh) 多源数据处理方法、电子设备和计算机可读存储介质
CN110798568B (zh) 具有折叠屏的电子设备的显示控制方法及电子设备
WO2021036785A1 (zh) 一种消息提醒方法及电子设备
CN110458902B (zh) 3d光照估计方法及电子设备
CN111543049B (zh) 一种拍照方法及电子设备
CN111552451A (zh) 显示控制方法及装置、计算机可读介质及终端设备
WO2022022319A1 (zh) 一种图像处理方法、电子设备、图像处理系统及芯片系统
CN113676339B (zh) 组播方法、装置、终端设备及计算机可读存储介质
EP4307692A1 (en) Method and system for adjusting volume, and electronic device
WO2022042768A1 (zh) 索引显示方法、电子设备及计算机可读存储介质
CN113467735A (zh) 图像调整方法、电子设备及存储介质
CN115665632B (zh) 音频电路、相关装置和控制方法
CN113518189A (zh) 拍摄方法、系统、电子设备及存储介质
WO2021204036A1 (zh) 睡眠风险监测方法、电子设备及存储介质
EP4307168A1 (en) Target user determination method, electronic device and computer-readable storage medium
WO2022135144A1 (zh) 自适应显示方法、电子设备及存储介质
CN113509145B (zh) 睡眠风险监测方法、电子设备及存储介质
CN113391735A (zh) 显示形态的调整方法、装置、电子设备及存储介质
CN114466238A (zh) 帧解复用方法、电子设备及存储介质
CN114362878B (zh) 数据处理方法及电子设备
WO2022252786A1 (zh) 一种窗口分屏显示方法和电子设备
WO2023207715A1 (zh) 亮屏控制方法、电子设备及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922018

Country of ref document: EP

Kind code of ref document: A1