WO2022244034A1 - Component transfer device - Google Patents

Component transfer device Download PDF

Info

Publication number
WO2022244034A1
WO2022244034A1 PCT/JP2021/018533 JP2021018533W WO2022244034A1 WO 2022244034 A1 WO2022244034 A1 WO 2022244034A1 JP 2021018533 W JP2021018533 W JP 2021018533W WO 2022244034 A1 WO2022244034 A1 WO 2022244034A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
movement
component
interference
camera
Prior art date
Application number
PCT/JP2021/018533
Other languages
French (fr)
Japanese (ja)
Inventor
大介 春日
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2023521984A priority Critical patent/JPWO2022244034A1/ja
Priority to PCT/JP2021/018533 priority patent/WO2022244034A1/en
Publication of WO2022244034A1 publication Critical patent/WO2022244034A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components

Definitions

  • the present invention relates to a component transfer device that includes a component transfer unit that picks a component from a component placement area and a camera unit that captures an image of the component in the component area.
  • a component mounting apparatus that picks up a die (bare chip) from a diced wafer and mounts it on a substrate is known.
  • a wafer camera takes an image of a wafer carried into a predetermined position (component placement area) inside the machine by a wafer feeder to recognize the wafer, and then the die is picked by a head equipped with a die holding function. The action of doing is repeated. That is, both the wafer camera and the head perform their respective required operations above the wafer carried into the machine. Therefore, there is a problem of interference between the camera unit having the wafer camera and the head unit having the head.
  • Patent Literature 1 discloses a component mounting apparatus that includes two component mounting heads whose movement regions overlap each other, and that can avoid interference between these component mounting heads.
  • this component mounting apparatus when one head starts moving into an interference area where both heads interfere with each other, and the other head is present in the interference area, the entering movement of the one head is performed. to stop
  • Patent Document 1 if the technology of Patent Document 1 is applied to prevent interference between units with different roles, such as the camera unit and head unit described above, the tact loss increases. In other words, while one of the camera unit and the head unit is in the interference area, if control is performed to make the other unit wait outside the interference area, the waiting time of the other unit becomes a bottleneck, The work cycle from imaging to component picking cannot be sped up.
  • An object of the present invention is to reduce tact loss in a component transfer device that includes a component transfer unit that picks components from a component placement area and a camera unit that captures images of components in the component area.
  • a component transfer apparatus provides a component supply unit having a component placement area in which a plurality of components are arranged, and a space above the component placement area and a predetermined component transfer unit.
  • a component transfer unit that can move horizontally along a movement axis, picks the component in the component placement area, and moves the component to the component transfer unit;
  • one of the component transfer unit and the camera unit is used as a reference to set an interference limit line that defines the accessible range of the other unit,
  • the movement range of the other unit is regulated so as not to exceed the interference limit line.
  • FIG. 1 is a top plan view showing the overall configuration of a component mounting apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view showing a head unit and a push-up unit.
  • FIG. 3 is a block diagram showing the control configuration of the component mounting apparatus.
  • FIG. 4 is a diagram showing the interference area between the head unit and the camera unit.
  • FIGS. 5A to 5E are schematic diagrams showing a series of steps from imaging the wafer by the wafer camera to picking and mounting the die by the head unit.
  • 6A to 6D are schematic diagrams showing operations of the head unit and the camera unit.
  • 7A to 7D are schematic diagrams showing operations of the head unit and the camera unit.
  • 8A to 8D are schematic diagrams showing operations of the head unit and the camera unit.
  • FIG. 1 is a top plan view showing the overall configuration of a component mounting apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view showing a head unit and a push-up unit
  • FIG. 9 is a flowchart of component mounting processing by the component mounting apparatus.
  • FIG. 10 is a flowchart of component mounting processing by the component mounting apparatus.
  • 11A to 11C are diagrams showing movement control of the head unit and camera unit in the first embodiment.
  • FIG. 12 is a graph showing movement control of the head unit and camera unit in the second embodiment.
  • FIGS. 13A to 13C are diagrams for explaining movement speed settings of the head unit and the camera unit in the second embodiment.
  • FIG. 14 is a graph showing movement control of the head unit and camera unit in the third embodiment.
  • FIGS. 15A to 15D are schematic diagrams for explaining movement control of the head unit and camera unit in the fourth embodiment.
  • the component transfer apparatus includes, for example, a taping apparatus that accommodates a die diced from a wafer on a tape, a die bonder that wire-bonds the die to a substrate, or a component mounting apparatus that mounts the die on a substrate.
  • a taping apparatus that accommodates a die diced from a wafer on a tape
  • a die bonder that wire-bonds the die to a substrate
  • a component mounting apparatus that mounts the die on a substrate.
  • FIG. 1 is a top plan view showing the overall configuration of a component mounting apparatus 1 according to an embodiment of the present invention.
  • the component mounting apparatus 1 is an apparatus that mounts a die 7a (component) diced from a wafer 7 on a substrate P.
  • FIG. The component mounting apparatus 1 includes a base 2, a conveyor 3, a head unit 4 (component transfer unit), a component supply unit 5 (component placement area), a wafer supply unit 6, a camera unit 32U, and a push-up unit 40.
  • FIG. 2 is a schematic perspective view showing the head unit 4 and the push-up unit 40 not shown in FIG.
  • the base 2 is a mounting base for various devices provided in the component mounting apparatus 1 .
  • the conveyor 3 is a transport line for the substrate P installed on the base 2 so as to extend in the X direction.
  • the conveyor 3 carries the board P from outside the machine to a predetermined mounting work position (predetermined component transfer section/board placement section), and carries the board P out of the machine from the work position after the mounting work.
  • the conveyor 3 has a clamping mechanism (not shown) that holds the substrate P at the mounting position.
  • the position where the substrate P is shown in FIG. 1 is the mounting work position.
  • the component supply unit 5 supplies a plurality of dies 7a arranged by dicing from the wafer 7 .
  • the head unit 4 picks the die 7a in the component supply unit 5, moves to the mounting work position, and mounts the die 7a on the board P.
  • the head unit 4 is provided with a plurality of heads 4H for sucking and holding the die 7a during the picking and releasing the held die 7a during the mounting.
  • the head 4H can move back and forth (up and down) in the Z direction with respect to the head unit 4 and can rotate about its axis.
  • the head unit 4 is equipped with a substrate recognition camera 31 that captures an image of the substrate P. As shown in FIG.
  • the feducial mark Fid (FIG. 6) attached to the substrate P is recognized from the photographed image of the substrate recognition camera 31 .
  • the positional deviation of the board P is recognized, and the positional deviation is corrected when the component is mounted.
  • the component mounting apparatus 1 can move the head unit 4 in at least the upper space between the component supply unit 5 and the board P held at the mounting position in the horizontal direction (X and Y directions).
  • a drive mechanism D1 is provided.
  • the first drive mechanism D1 includes a pair of Y-axis fixed rails 13, a first Y-axis servomotor 14, and a ball screw shaft 15 (first movement axis) on the +X side and the -X side, respectively. one of).
  • a pair of Y-axis fixed rails 13 are fixed on the base 2 and extend parallel to each other in the Y-direction at a predetermined interval in the X-direction.
  • the ball screw shaft 15 is arranged so as to extend in the Y direction at a position close to the Y-axis fixed rail 13 .
  • a first Y-axis servomotor 14 rotationally drives a ball screw shaft 15 .
  • a support frame 16 that supports the head unit 4 is installed between the pair of Y-axis fixed rails 13 .
  • Nuts 17 to be screwed onto the respective ball screw shafts 15 are assembled to the +X side end and -X side end of the support frame 16 .
  • the first drive mechanism D1 includes a guide member (not shown) mounted on the support frame 16, a first X-axis servomotor 18, and a ball screw shaft 19 (one of the first movement axes) as a mechanism for moving the head unit 4 in the X direction. ).
  • the guide member is a member that guides the movement of the head unit 4 in the X direction, and is fixed on the +Y side surface of the support frame 16 so as to extend in the X direction.
  • the ball screw shaft 19 is arranged in the vicinity of the guide member so as to extend in the X direction.
  • a first X-axis servomotor 18 rotationally drives a ball screw shaft 19 .
  • a nut (not shown) is attached to the head unit 4 , and the nut is screwed onto the ball screw shaft 19 .
  • the first Y-axis servomotor 14 operates to rotate the ball screw shaft 15, thereby moving the head unit 4 together with the support frame 16 in the Y direction. do. Also, the head unit 4 moves in the X direction with respect to the support frame 16 by operating the first X-axis servomotor 18 to rotate the ball screw shaft 19 .
  • the component supply unit 5 includes a wafer supply device 6 that supplies a plurality of dies 7a in the form of wafers 7 to a predetermined component extraction work position (wafer stage 10).
  • the wafer 7 is a disk-shaped semiconductor wafer on which circuit patterns and the like are already formed.
  • the wafer feeder 6 includes a wafer holding frame 8 that holds a wafer sheet 8a. An assembly of a large number of dies 7a, 7a, .
  • the wafer feeder 6 feeds the dies 7a to the component extraction work position in such a manner that the wafer holding frame 8 is replaced.
  • the component supply unit 5 may include a tape feeder for supplying components in the form of a component storage tape containing electronic components.
  • the wafer supply device 6 includes a wafer storage elevator 9, a wafer stage 10 and a wafer conveyor 11.
  • the wafer storage elevator 9 stores the wafer sheets 8a to which the wafers 7 are adhered on the wafer holding frame 8 in multiple stages.
  • a wafer stage 10 is installed on the base 2 at a position on the -Y side of the wafer storage elevator 9 .
  • the wafer stage 10 is arranged at a position aligned on the +Y side with respect to the mounting work position where the substrate P is stopped.
  • the wafer stage 108 which is the area where the diced wafer 7 is placed on the base 2, is the component placement area.
  • a wafer conveyor 11 draws the wafer holding frame 8 from the wafer storage elevator 9 onto the wafer stage 10 .
  • the camera unit 32U is a unit that is movable in the X and Y directions, and includes the wafer camera 32. Wafer camera 32 images a portion of wafer 7 positioned on wafer stage 10, that is, die 7a within the camera's field of view. Based on this captured image, the position of the die 7a to be picked up is recognized.
  • the component mounting apparatus 1 includes a second drive mechanism D2 that allows the camera unit 32U to move in at least the upper space between the component supply section 5 and a predetermined standby position in the horizontal direction (X and Y directions).
  • the second drive mechanism D2 is a drive system that is separate and independent from the first drive mechanism D1 that drives the head unit 4. As shown in FIG. In this embodiment, the standby position is a position away from the wafer stage 10 on the +Y side.
  • the second drive mechanism D2 includes a pair of Y-axis fixed rails 33 on the +X side and the -X side, and a second Y-axis servomotor 34 and a ball screw shaft arranged on the +X side as a mechanism for moving the camera unit 32U in the Y direction. 35 (one of the second movement axes).
  • a pair of Y-axis fixed rails 33 are fixed on the base 2 and extend parallel to each other in the Y-direction at a predetermined interval in the X-direction.
  • the ball screw shaft 35 is arranged so as to extend in the Y direction at a position close to the Y-axis fixed rail 33 on the +X side.
  • a second Y-axis servomotor 34 rotationally drives a ball screw shaft 35 .
  • a support frame 36 that supports the camera unit 32U is installed between the pair of Y-axis fixed rails 33 .
  • a nut 37 that is screwed onto the ball screw shaft 35 is attached to the +X side end of the support frame 36 .
  • the second drive mechanism D2 includes a guide member (not shown) mounted on the support frame 36, a second X-axis servomotor 38, and a ball screw shaft 39 (one of the second movement axes) as a mechanism for moving the camera unit 32U in the X direction. ).
  • the guide member is a member that guides movement of the camera unit 32U in the X direction, and is fixed to the -Y side surface of the support frame 36 so as to extend in the X direction.
  • the ball screw shaft 39 is arranged in the vicinity of the guide member so as to extend in the X direction.
  • a second X-axis servomotor 38 rotationally drives a ball screw shaft 39 .
  • a nut (not shown) is attached to the camera unit 32U, and the nut is screwed onto the ball screw shaft 39. As shown in FIG.
  • the second Y-axis servomotor 34 operates to rotate the ball screw shaft 35, thereby moving the camera unit 32U integrally with the support frame 36 in the Y direction. do. Also, the camera unit 32U moves in the X direction with respect to the support frame 36 by operating the second X-axis servomotor 38 to rotationally drive the ball screw shaft 39 .
  • the second X-axis and Y-axis servomotors 34 and 38 which are the driving sources of the second driving mechanism D2, have motor specifications different from those of the first X-axis and Y-axis servomotors 14 and 18, which are the driving sources of the first driving mechanism D1.
  • the first X-axis and Y-axis servomotors 14 and 18 have higher outputs. Therefore, the head unit 4 has a higher acceleration and a higher maximum moving speed than the camera unit 32U. Therefore, when moving both units at the same time, speed control may be required to avoid interference between them. This point will be described in detail later.
  • the push-up unit 40 is arranged below the component supply unit 5, and pushes up the die 7a to be picked up by the head 4H from the lower surface side of the wafer sheet 8a.
  • the push-up unit 40 is arranged on the base 2 so as to be movable in the XY directions over a range corresponding to the wafer stage 10 .
  • the push-up unit 40 is movably supported in the X direction by a support frame 42 movable along a pair of guide rails 41 extending in the Y direction.
  • a ball screw shaft 43 screwed into a nut portion (not shown) provided inside the support frame 42 is rotationally driven by a third Y-axis servomotor 44 .
  • the push-up unit 40 moves together with the support frame 42 in the Y direction.
  • the support frame 42 is provided with a ball screw shaft 45 that is screwed with a nut portion (not shown) provided inside the push-up unit 40 .
  • the ball screw shaft 45 is rotationally driven by the third X-axis servomotor 46 to move the push-up unit 40 in the X-axis direction.
  • the push-up unit 40 has a push-up pin 47 for pushing up the die 7a. When the die 7a is sucked by the head 4H, the push-up pin 47 rises to push up the die 7a through the wafer sheet 8a.
  • the push-up pin 47 is driven up and down by a pin elevating motor 48 (FIG. 3).
  • a component recognition camera 30 is installed on the base 2 .
  • the component recognition camera 30 images the die 7a sucked by the head 4H of the head unit 4 from below before being mounted on the substrate P. As shown in FIG. Based on this captured image, it is determined whether the head 4H has picked up the die 7a abnormally or picked up incorrectly.
  • FIG. 3 is a block diagram showing the control configuration of the component mounting apparatus 1.
  • the component mounting apparatus 1 includes a control section 20 that controls the operation of each section of the component mounting apparatus 1 .
  • the controller 20 is electrically connected to the devices of the head unit 4, the camera unit 32U, and the push-up unit 40, the wafer feeder 6, and the component recognition camera 30.
  • the control unit 20 functionally includes an overall control unit 21, an axis control unit 22 (movement control unit), an imaging control unit 23, an image processing unit 24, and a storage unit 25 by executing a predetermined program. to work.
  • the overall control unit 21 comprehensively controls the operation of each functional unit included in the control unit 20, and executes various arithmetic processing.
  • the axis control unit 22 is a driver that drives the servo motors provided in each unit, and operates each drive motor according to instructions from the overall control unit 21 .
  • the axis control unit 22 controls the drive of the first Y-axis servomotor 14 and the first X-axis servomotor 18 in relation to the head unit 4, thereby moving along the ball screw axes 15 and 19 (first movement axis). It controls the movement of the head unit 4 in the XY direction.
  • the axis control unit 22 also controls the driving of the Z-axis servomotor 401 to control the Z-direction movement (lifting movement) of the head 4H, and controls the driving of the R-axis servomotor 402 to move the head 4H itself. Controls rotational movement around an axis.
  • the axis control unit 22 controls the driving of the second Y-axis servomotor 34 and the second X-axis servomotor 38 to move the camera unit 32U along the ball screw axes 35 and 39 (second movement axes). to control the movement of the XY directions.
  • the axis control section 22 controls the drive of the third Y-axis servomotor 44 and the third X-axis servomotor 46 in relation to the push-up unit 40 to move the push-up unit 40 along the ball screw shafts 43 and 45 in the XY directions. Control movement.
  • the shaft control unit 22 controls the vertical movement of the push-up pin 47 by controlling the driving of the pin lifting motor 48 .
  • the imaging control unit 23 controls the imaging operations of the component recognition camera 30, board recognition camera 31, and wafer camera 32. Specifically, the imaging control unit 23 controls the operation of the component recognition camera 30 to image the die 7a or other components that are attracted to the head 4H. The imaging control unit 23 also controls the operation of the substrate recognition camera 31 to image the feducial mark Fid of the substrate P. FIG. Furthermore, the imaging control unit 23 controls the operation of the wafer camera 32 to image the die 7a within the wafer stage 10 .
  • the image processing unit 24 performs various types of image processing, including edge extraction processing, on image data input from the component recognition camera 30, board recognition camera 31, and wafer camera 32. Based on the image data after the image processing, processes such as recognition of the sucked attitude of the die 7a to the head 4H, positional recognition of the substrate P, and positional recognition of the die 7a to be sucked on the wafer stage 10 are executed.
  • the storage unit 25 stores various programs such as implementation programs and various data.
  • the storage unit 25 stores positional information of the interference area CA, information regarding the setting of the interference limit line CL, and information regarding the acceleration and movement speed of the head unit 4 and the camera unit 32U, which will be described later.
  • FIG. 4 is a top view of the component mounting apparatus 1 shown in FIG. 1, with movement ranges of the head unit 4 and the camera unit 32U added.
  • the head unit 4 has a head unit movement area A1 corresponding to the installation range of the ball screw shafts 15 and 19 extending in the XY directions.
  • the camera unit 32U has a wafer camera movement area A2 corresponding to the installation range of the ball screw shafts 35 and 39 extending in the XY directions.
  • the head unit movement area A1 has a size from the space above the component supply unit 5 (wafer stage 10) to the space above the component recognition camera 30 through the conveyor 3 in the Y direction. This is performed by the head unit 4 picking the die 7a from the wafer 7 on the wafer stage 10, recognizing the component with the component recognition camera 30, and then mounting the die 7a on the board P on the conveyor 3. according to.
  • the wafer camera movement area A2 has a size from the space above the component supply unit 5 to the space above the wafer storage elevator 9 on the +Y side in the Y direction. This is because the wafer camera 32 performs an imaging operation of the wafer 7 on the wafer stage 10 and a withdrawal operation from the wafer stage 10 to the +Y side.
  • the head unit movement area A1 and the wafer camera movement area A2 are located at heights overlapping each other in the Z direction.
  • FIG. 4 shows an interference area CA where both areas A1 and A2 overlap.
  • the interference area CA is an area where interference occurs between the head unit 4 and the camera unit 32U when they coexist. Therefore, it is necessary to control the movement of the head unit 4 and the camera unit 32U so that no collision occurs in the interference area CA.
  • FIGS. 5A to 5E are schematic diagrams showing basic operations from imaging of the wafer 7 by the wafer camera 32 to picking and mounting of the die 7a by the head unit 4.
  • 5A shows a state in which the head unit 4 is located on the most -Y side of the head unit movement area A1 shown in FIG. 4, and the wafer camera 32 is located on the most +Y side of the wafer camera movement area A2. is shown.
  • FIG. 5(B) shows a state in which the wafer camera 32 takes an image of the wafer 7 within the interference area CA, and the head 4H of the head unit 4 mounts the die 7a on the substrate P.
  • FIG. The imaging by the wafer camera 32 here is for recognizing the group of dies 7a to be picked up by the head 4H in the next picking operation.
  • the mounting operation by the head 4H here is an operation for mounting the die 7a sucked by the picking operation this time on the substrate P. As shown in FIG.
  • FIG. 5(C) shows a state in which the wafer camera 32 moves away from the interference area CA while the head unit 4 moves into the interference area CA.
  • the entry movement of the head unit 4 is movement for picking the die 7a group recognized by the imaging by the wafer camera 32 immediately before from the wafer 7.
  • FIG. The retraction movement of the wafer camera 32 is movement for avoiding interference with the head unit 4 .
  • FIG. 5C shows a state in which the head 4H is picking the die 7a.
  • FIG. 5(D) shows a state in which the head unit 4 moves away from the interference area CA while the wafer camera 32 moves into the interference area CA.
  • the retraction movement of the head unit 4 is an operation for mounting the group of dies 7a sucked by the picking operation shown in FIG.
  • the advancing movement of the wafer camera 32 is movement for imaging the group of dies 7a to be picked up by the head 4H in the next picking operation.
  • the die 7a recognition-picking-mounting cycle is executed such that the head unit 4 and the wafer camera 32 are sequentially switched in the interference area CA.
  • the other unit should not enter the interference area CA.
  • the waiting time of the other unit becomes a bottleneck, resulting in tact loss, and the cycle cannot be sped up.
  • an interference limit line CL is set in the interference area CA, with one of the head unit 4 and the camera unit 32U as a reference, which defines the accessible range of the other unit. Then, the movement range of the other unit is not prohibited from entering the interference area CA, but is restricted to a range that does not exceed the interference limit line CL, thereby reducing tact loss.
  • a mounting operation example for setting the interference limit line CL will be described below.
  • FIGS. 6A to 8D are schematic diagrams showing operations of the head unit 4 and the camera unit 32U in the mounting operation for setting the interference limit line CL.
  • the interference limit line CL set with the camera unit 32U (wafer camera 32) as a reference is indicated as "CL1”
  • the interference limit line CL set with the head unit 4 as a reference is indicated as "CL2”.
  • CL1 the interference limit line CL set with the camera unit 32U (wafer camera 32) as a reference
  • CL2 the interference limit line CL set with the head unit 4 as a reference
  • CL2 is the position to which the head unit 4 moves to the +Y side most by mounting the dies 7a for this time, or with respect to the mounting of the dies.
  • the interference limit lines CL1 and CL2 are appropriately set by the axis control section 22 according to the operating states of both units.
  • FIG. 6(A) shows a state in which the wafer camera 32 (one unit) enters the interference area CA and takes an image of the wafer 7 for the first die recognition.
  • position recognition of a group of dies 7a to be picked up by the head unit 4 in the first picking operation is performed.
  • the head unit 4 (the other unit) is away from the interference area CA and stands by at the position closest to the -Y side.
  • the interference limit line CL1 is set in the interference area CA with the wafer camera 32 as a reference.
  • the interference limit line CL1 is set with reference to the position to which the wafer camera 32 moves most to the -Y side when performing imaging for die recognition this time.
  • the movement range of the head unit 4 is restricted to a range that does not exceed the interference limit line CL1.
  • the head unit 4 can freely move on the -Y side of the interference limit line CL1, and can enter the interference area CA.
  • the substrate recognition camera 31 mounted on the head unit 4 may be caused to perform an imaging operation for recognizing the feducial mark Fid of the substrate P.
  • FIG. 6(B) shows how the head unit 4 is approaching the interference limit line CL1 in preparation for the first picking operation while the wafer camera 32 is performing imaging for die recognition. A portion of the head unit 4 has entered the interference area CA.
  • FIG. 6(C) shows a state in which the wafer camera 32 completes die recognition and retreats from the interference area CA to the +Y side, while the head unit 4 moves into the interference area CA.
  • the head unit 4 is moved aiming at the XY coordinates of the die 7a specified by the die recognition. Since the head unit 4 has already approached the interference limit line CL1, the movement time to the target coordinates is shortened. Also, if both units are moved synchronously, the tact loss can be further reduced.
  • the die 7a targeted by the first picking operation is attracted to the head 4H.
  • the wafer camera 32 waits until the work of the head unit 4 is completed.
  • the head unit 4 completes the picking operation and retreats from the interference area CA to the -Y side, while the wafer camera 32 moves into the interference area CA for the next die recognition. showing the situation.
  • an interference limit line CL2 is set with the head unit 4 as a reference. It is desirable to synchronously move both units.
  • the wafer camera 32 can enter the interference area CA, it cannot enter the interference area CA on the -Y side of the interference limit line CL2.
  • the head unit 4 is in a state of transporting the die 7a held by the head 4H to the substrate P by the picking operation.
  • FIG. 7A shows a state in which the wafer camera 32 is performing an imaging operation and the head unit 4 is performing a mounting operation. That is, the wafer camera 32 enters the interference area CA and takes an image of the wafer 7 for the next die recognition.
  • the head unit 4 mounts the die 7a, which the head 4H has picked up this time, onto the substrate P. As shown in FIG. Here, a case is illustrated in which the wafer camera 32 can move to the position of the group of dies 7a to be picked up in the next picking operation without exceeding the interference limit line CL2. .
  • FIG. 7(B) shows a state in which the wafer camera 32 is retreating from the interference area CA after the above imaging operation of the wafer camera 32 is completed.
  • the head unit 4 continues the mounting operation.
  • the imaging operation of the wafer camera 32 takes less time than the mounting operation of the head unit 4, so the wafer camera 32 can leave the interference area CA in advance.
  • FIG. 7(C) shows a state in which the head unit 4 completes the mounting operation on the board P and moves into the interference area CA for the next picking operation.
  • the head 4H of the head unit 4 picks up the group of dies 7a recognized in the previous die recognition from the wafer 7.
  • Wafer camera 32 is in a standby state. It should be noted that the wafer camera 32 of FIG. 7B may be retracted at the same time as the head unit 4 is retracted.
  • FIG. 7(D) shows a state in which the head unit 4 finishes the picking operation and moves away from the interference area CA, while the wafer camera 32 moves into the interference area CA.
  • the interference limit line CL2 is set with the head unit 4 as a reference, and the wafer camera 32 can enter the interference area CA within a range not exceeding the interference limit line CL2 to the -Y side.
  • the head unit 4 moves above the substrate P by retracting movement, and the head 4H mounts the sucked die 7a on the substrate P.
  • the wafer camera 32 takes an image of the wafer 7 in order to recognize the die 7a to be picked next time.
  • FIGS. 8(A) and (B) show operations when the mounting operation of the head unit 4 is completed earlier than the imaging operation of the wafer camera 32, contrary to FIG. 7(B).
  • FIG. 8A shows a state in which the wafer camera 32 performs the imaging operation and the head unit 4 performs the mounting operation.
  • the interference limit line CL1 is set with the wafer camera 32 (camera unit 32U) as a reference. While the wafer camera 32 is performing the imaging operation, the head unit 4 approaches the interference limit line CL1 in preparation for the first picking operation. This state is the same as in FIG. 6(B).
  • FIG. 8(C) shows a state in which the head unit 4 is making an additional retraction movement, and the wafer camera 32 is making an additional entry movement into the interference area CA.
  • the additional approach movement of the wafer camera 32 is performed when the next imaging operation for die recognition cannot be performed unless the interference limit line CL2 is exceeded. That is, when the position (second position) of the die 7a scheduled to be picked up in the next picking operation is a position where an image cannot be captured unless the wafer camera 32 moves beyond the interference limit line CL2 to the -Y side, Additional approach moves are performed.
  • the interference limit line CL2 (first interference limit line) set with reference to the head unit 4 (the other unit) in FIG. 8A is changed to the wafer camera 32 ( unit) is updated to the interference limit line CL1 (second interference limit line).
  • the wafer camera 32 performs a required imaging operation.
  • the head unit 4 performs the mounting operation or waits within a range that does not exceed the interference limit line CL1 to the +Y side. If the head unit 4 is within a range that does not exceed the interference limit line CL1, the additional retraction movement is not performed.
  • the imaging operation of the wafer camera 32 is completed, the wafer camera 32 retreats from the interference area CA while the head unit 4 moves into the interference area CA, as shown in FIG. 8(D). This state is the same as in FIG. 6(C).
  • the control unit 20 creates data of a die pickup group, which is a group of dies 7a to be picked up by the head 4H of the head unit 4 in the current and next turn, from the wafer 7 on the wafer stage 10 (step S1). .
  • a die pickup group which is a group of dies 7a to be picked up by the head 4H of the head unit 4 in the current and next turn, from the wafer 7 on the wafer stage 10 (step S1). .
  • the current and next die adsorption group data are created, and from the second turn onward, only the next data are created.
  • the axis control unit 22 sets an interference limit line CL1 with the wafer camera 32 as a reference, as illustrated in FIG. 6A (step S2).
  • the axis controller 22 drives the second Y-axis servomotor 34 and the second X-axis servomotor 38 to move the wafer camera 32 into the interference area CA (step S3).
  • the wafer camera 32 is moved to a position where the die pickup group to be picked up in the current turn enters the imaging field of view.
  • the axis control unit 22 sets a flag that restricts the moving range of the head unit 4 on the +Y side by the first Y-axis servomotor 14 to the interference limit line CL1 or its vicinity.
  • the imaging control unit 23 causes the wafer camera 32 to perform the imaging operation of the wafer 7 (step S4).
  • the image processing unit 24 performs predetermined image processing on the acquired image.
  • the image processing unit 24 recognizes the quality of the die 7a to be sucked existing within the current imaging field and recognizes the coordinates of the die 7a (step S5).
  • the axis control unit 22 determines whether or not there are other dies 7a to be recognized in this turn (step S6). This is because the field of view of the wafer camera 32 is so narrow that it may not be possible to cover all of the dies 7a to be recognized in one shot.
  • the axis control unit 22 drives the first Y-axis servomotor 14 and the first X-axis servomotor 18 to move the die 7a above the remaining die 7a. (return to step S3). If there is no other die 7a to be recognized (YES in step S6), the axis control unit 22 retracts the wafer camera 32 from the interference area CA (step S7).
  • the axis control section 22 confirms whether or not the wafer camera 32 (one unit) exists within the interference area CA (step S11). If the wafer camera 32 exists (YES in step S11), that is, if the wafer camera 32 is performing an imaging operation (required operation), the axis control unit 22 drives the first Y-axis servo motor 14. Then, the head unit 4 (the other unit) is moved to or near the interference limit line CL1 and waited (step S12/see FIG. 6B).
  • the axis control unit 22 confirms whether or not the retraction movement of the wafer camera 32 from the interference area CA has started (step S13).
  • the wafer camera 32 does not start the retraction movement (NO in step S13)
  • the head unit 4 is in a standby state.
  • the axis control unit 22 moves the head unit 4 into the interference area CA for picking the recognized die 7a (step S14). .
  • the retreat movement of the wafer camera 32 in step S7 and the entrance movement of the head unit 4 in step S14 are executed in synchronization.
  • "synchronization” typically means that the retraction movement and the entry movement are performed at the same timing, at the same acceleration, and at the same movement speed, but this embodiment is not limited to this.
  • “Synchronization” also includes the case where the retraction movement and the entry movement are executed at different accelerations and movement speeds during periods in which they partially overlap. If the wafer camera 32 has already left the interference area CA in step S11 (NO in step S11), the axis controller 22 moves the head unit 4 into the interference area CA without waiting.
  • the axis control unit 22 drives the Z-axis servomotor 401 and the R-axis servomotor 402 in addition to the first Y-axis servomotor 14 and the first X-axis servomotor 18, thereby performing a picking operation in which the die 7a is attracted to the head 4H.
  • the operation is executed (step S15).
  • the imaging control unit 23 operates the component recognition camera 30 to image the die 7a attracted to the head 4H.
  • the image processing unit 24 executes a recognition process for detecting a sucking error of the die 7a (step S16).
  • step S17 it is confirmed whether or not there is a sequence for executing the recognition process of the feducial mark Fid of the substrate P (step S17). If it is included in the sequence (YES in step S17), the imaging control unit 23 causes the board recognition camera 31 to image the feducial mark Fid (step S18). The position of the substrate P is recognized based on the image acquired by this imaging.
  • the axis control section 22 next moves the head unit 4 to the position where the die 7a sucked by the head 4H is mounted on the substrate P (step S21). After the movement, the axis control section 22 sets the interference limit line CL2 with the head unit 4 as a reference (step S22/see FIG. 6(D)). Along with the setting of the interference limit line CL2, the axis control unit 22 sets a flag that restricts the ⁇ Y side movement range of the wafer camera 32 by the second Y-axis servomotor 34 to the interference limit line CL2 or its vicinity. .
  • the axis control unit 22 drives the Z-axis servomotor 401 to lower the head 4H and mount the sucked die 7a on the substrate P (step S23). After that, it is checked whether or not the mounting of all the dies 7a sucked in this turn on the substrates P has been completed (step S24), and if not completed (NO in step S24), the process returns to step S21. On the other hand, if the mounting is completed (YES in step S24), it is checked whether the wafer camera 32 is on standby to avoid interference (step S25). If it is not waiting for interference avoidance (NO in step S25), the process returns to step S1 and shifts to the picking operation of the next turn.
  • the axis control unit 22 confirms whether or not the imaging position in the next turn recognition process is a position that does not exceed the interference limit line CL2 set in step S22 (step S31). If the imaging position does not exceed the interference limit line CL2 (YES in step S31), the axis control unit 22 moves the wafer camera 32 to the imaging position (step S32). The movement of the wafer camera 32 in step S32 (movement into the interference area CA) and the movement of the head unit 4 in step S21 (retraction movement from the interference area CA) are as shown in FIG. 7(D). can be run synchronously.
  • the imaging control unit 23 causes the wafer camera 32 to perform imaging operation of the wafer 7 (step S33). Based on the acquired image, the image processing unit 24 performs recognition processing of the die 7a (step S34). After that, it is checked whether or not the die 7a to be recognized in the current turn remains (step S35). The operations of steps S33 to S35 are the same as those of steps S4 to S6 described above.
  • step S35 When the recognition target die 7a does not remain (YES in step S35), the axis control unit 22 retracts the wafer camera 32 from the interference area CA (step S7). After that, the process returns to step S1. On the other hand, if the die 7a to be recognized remains (NO in step S35), the process returns to step S31 and the process is repeated. On the other hand, in step S31, if the imaging position exceeds the interference limit line CL2 (NO in step S31), the axis control unit 22 moves the wafer camera 32 to or near the interference limit line CL2 (step S36). ), wait.
  • the axis control unit 22 retracts the head unit 4 so as to avoid interference with the wafer camera 32. Move (step S26). Then, the current interference limit line CL2 is updated to a new interference limit line CL1 based on the wafer camera 32 (step S27).
  • the retraction movement of the head unit 4 here may be a simple retraction movement of the head unit 4 from the interference area CA, or an additional retraction according to the work area of the wafer camera 32 as shown in FIG. 8(C). Movement can be exemplified. That is, the interference limit line CL2 (first interference limit line) set on the assumption that the wafer camera 32 (one unit) performs an imaging operation at a predetermined position (first position) within the interference area CA is The interference limit line CL1 (second interference limit line) is updated assuming that the imaging operation is performed at a different position (second position) within the interference area CA. Then, the head unit 4 is made to wait at or near the interference limit line CL1 (step S12). By flexibly changing the interference limit line CL in this manner, the optimum interference limit line CL can be set according to the working mode in the interference area CA of the wafer camera 32 .
  • FIG. 11A to 11C are diagrams showing movement control of the head unit 4 and wafer camera 32 in the first embodiment.
  • the wafer camera 32 is on the side (escape side) from the interference area CA
  • the head unit 4 is on the side (chasing side) to enter the interference area CA.
  • the head unit 4 is moved in the XY directions by the first drive mechanism D1
  • the camera unit 32U is moved in the XY directions by the second drive mechanism D2 independent of the first drive mechanism D1.
  • the drive mechanisms D1 and D2 have different unit movement capabilities (acceleration and maximum movement speed), when the head unit 4 and the camera unit 32U are moved synchronously, interference may occur between the two units. That is, if the acceleration and maximum movement speed of one unit are too fast (too slow), it may collide with the other unit that is too slow (too fast).
  • FIG. 11B is a graph showing the relationship between the movement positions of the wafer camera 32 and the head unit 4 and time, showing the axial movement trajectory F11 of the wafer camera 32 and the axial movement trajectory F21 of the head unit 4.
  • the increasing direction of the vertical axis is the direction from the -Y side to the +Y side.
  • Time t11 in the axis movement trajectory F11 is the time when the wafer camera 32 on the escape side starts retracting movement from the entry position p11 in the interference area CA to the +Y side.
  • Time t12 is the time at which wafer camera 32 completes retraction movement to retraction position p12, which is a predetermined distance away from interference area CA to the +Y side.
  • the time t21 is the time when the head unit 4 on the chasing side starts entering movement from the retracted position p21 on the -Y side of the interference area CA to the +Y side.
  • time t22 is the time when the head unit 4 completes the entry movement from the retreat position p21 to the entry position p22 in the interference area CA.
  • the head unit 4 is a heavier structure than the camera unit 32U. Therefore, as the first drive mechanism D1, a mechanism having a higher unit movement capability than the second drive mechanism D2 is adopted. That is, the head unit 4 can move at a faster acceleration and moving speed than the camera unit 32U. Therefore, when the head unit 4 on the chasing side is moved along the axis movement locus Fmax that moves at the original acceleration and movement speed, it may interfere with the camera unit 32U on the escaping side.
  • the acceleration and movement speed when the camera unit 32U is moved by the second drive mechanism D2 are stored in advance in the storage section 25 (FIG. 3). Then, when the retraction movement and the entry movement are executed within an overlapping period, the axis control section 22 acquires the acceleration and movement speed of the camera unit 32U from the storage section 25, and Set the axis movement parameters of the head unit 4.
  • the first drive mechanism D1 originally has the unit movement capability to move the head unit 4 at the acceleration a1 and the movement speed v1.
  • the moving distance of the head unit 4 is the area SA surrounded by the velocity change graph shown in FIG. That is, the moving distance is represented by the following equation.
  • Movement distance v1 (acceleration time/2 + constant speed time + deceleration time/2)
  • the above constant speed time is a period during which the head unit 4 moves at a constant moving speed v1.
  • the second drive mechanism D2 has a unit movement capability to move the camera unit 32U at an acceleration a2 and a movement speed v2 (a1>a2, v1>v2).
  • the axial movement parameters of the head unit 4 are set to the same acceleration a2 and movement speed v2 as the axial movement parameters of the camera unit 32U.
  • the movement time is lengthened by the deceleration setting, and the area SB is the same as the area SA based on the original axis movement parameter.
  • the moving speed of the head unit 4 on the chasing side may be set slower than the moving speed v2 of the camera unit 32U on the escaping side.
  • the second embodiment shows an example in which the head unit 4 on the chasing side moves at the fastest acceleration and movement speed as long as it does not interfere with the wafer camera 32 on the escaping side.
  • FIG. 12 is a graph showing movement control of the head unit 4 and wafer camera 32 in the second embodiment.
  • the acceleration and movement speed of the head unit 4 on the chasing side are set so as to take the fastest axis movement trajectory F22 closest to the axis movement trajectory F11.
  • a minimum margin Ma is set between the axis movement trajectory F11 and the fastest axis movement trajectory F22 in consideration of driving errors and the like.
  • Axis control unit 22 sets acceleration a2 (first acceleration) and movement speed v2 (first movement speed) for wafer camera 32 (one unit) on the escape side, as illustrated in FIG. 11C, for example. , along the axis movement locus F11.
  • the axis control unit 22 sets the fastest acceleration a3 (second acceleration) and movement speed v3 (second movement speed) within a range that does not interfere with the wafer camera 32 and allows for the margin Ma. to move the head unit 4 (a1>a3>a2, v1>v3>v2).
  • the axis control unit 22 acquires from the storage unit 25 the acceleration and movement speed that are set when the wafer camera 32 moves away from the interference area CA. Further, the axis control unit 22 acquires XY coordinate values indicating current position information and movement target position information of the head unit 4 and wafer camera 32 .
  • the current position is the entry position p11 of the wafer camera 32 and the retreat position p21 of the head unit 4 at time t11.
  • the movement target position of the wafer camera 32 is the retreat position p12
  • the movement target position of the head unit 4 is the entry position p22.
  • the axis control unit 22 calculates the acceleration a3 and the movement speed v3 of the head unit 4 that does not interfere with the wafer camera 32 but is closest to it. By moving the head unit 4 into the interference area CA at such acceleration a3 and movement speed v3, the tact loss can be reduced to the utmost limit.
  • FIGS. 13A to 13C are diagrams for explaining the movement speed setting of the head unit 4 and wafer camera 32 in the second embodiment. As shown in FIG. 13A, it is assumed that the wafer camera 32 that has been at the entry position p11 is retracted to the retraction position p12 and the head unit 4 is moved into the interference area CA. A position p13 in the drawing indicates the position of the limit line that interferes with the entry position of the head unit 4 that performs the current picking operation.
  • FIG. 13(B) is a graph showing the relationship between the movement speed of the wafer camera 32 on the fleeing side and time.
  • the wafer camera 32 starts retracting from time T0, accelerates at an acceleration an, and retracts at a constant maximum speed V1 that can be generated by the second drive mechanism D2 from acceleration completion time T1.
  • the current time t that is, the time when the head unit 4 on the chasing side starts moving in, is the time when the wafer camera 32 is moving at the current speed Vt during the acceleration period.
  • Time T2 is the time when the wafer camera 32 exits the interference line (position p13 in FIG. 13A) with respect to the entry position of the head unit 4 this time.
  • time Tr before the time T2 is the deceleration start time Tr at which the chasing head unit 4 starts decelerating.
  • S1, S2, S3, and Sx shown in FIG. 13(B) are explained as if they simply represent distances, but actually represent areas formed by multiplying time and velocity. ing.
  • FIG. 13(C) is a graph showing the settings of the moving speed of the head unit 4 on the chasing side.
  • the head unit 4 is moved so as to have an acceleration period Ta, a constant speed period Tc in which it moves at a constant speed, and a deceleration period Td from the current time t.
  • Vmax indicates the maximum moving speed at which the head unit 4 can be moved fastest by the first drive mechanism D1.
  • the moving speed of the head unit 4 at which the head unit 4 comes closest to the wafer camera 32 is synchronously adjusted. This is the fastest moving speed of the head unit 4 that can be set when moving.
  • the head unit 4 can be moved into the above-described maximum movement speed Vmax.
  • 0.5Td ⁇ Vmax is the movement distance of the head unit 4 corresponding to the area SD of the deceleration period Td in FIG. 13(C).
  • the target moving speed Vn that satisfies the following equation (3) and the acceleration/deceleration based on Vn are the fastest moving speed of the head unit 4 within a range that does not interfere with the wafer camera 32 .
  • the target moving speed Vn may be set to a speed considering a required margin Ma, instead of being set within the limit range where interference does not occur.
  • ⁇ Third Embodiment of Movement Control> a preferred example of movement control for a unit that retreats from the interference area CA is shown.
  • high-speed movement is no longer necessary. Rather, high-speed movement may interfere with the original operation of the unit.
  • the component recognition camera 30 recognizes the die (step S16 in FIG. 9), and the substrate recognition camera 31 captures the feducial mark Fid.
  • the operation of (step S18) is pending. During these operations, if the head unit 4 shakes due to high-speed movement, there may be a case where the die 7a and the feducial mark Fid cannot be accurately recognized.
  • the axis control unit 22 performs a retraction movement of either the head unit 4 or the wafer camera 32, and in a section until the unit escapes from the interference limit line CL or the interference area CA, a predetermined
  • a high retraction speed is set, and in a section after escaping from the interference limit line CL or the interference area CA, a retraction speed lower than the high speed is set.
  • FIG. 14 is a graph showing movement control of the head unit 4 and wafer camera 32 in the third embodiment.
  • the wafer camera 32 is a unit that moves into the interference area CA (chasing side)
  • the head unit 4 is a unit that moves away from the interference area CA (escape side).
  • FIG. 14 shows an axial movement trajectory F31 of the wafer camera 32 and an axial movement trajectory F41 of the head unit 4. As shown in FIG.
  • Time t31 in the axis movement trajectory F31 is the time when the wafer camera 32 on the chasing side starts moving toward the -Y side from the retreat position p31 outside the interference area CA.
  • the wafer camera 32 is moved at a predetermined acceleration and movement speed, and reaches the target position p32 within the interference area CA.
  • Time t32 is the arrival completion time to the target position p32.
  • Time t31 in the axis movement trajectory F41 is the time when the head unit 4 on the escape side starts retreating from the entry position p41 in the interference area CA to the -Y side.
  • Time t33 is the time when the head unit 4 completes the retraction movement to the retraction position p42, which is a predetermined distance away from the interference area CA to the -Y side.
  • time t3A is the time when the head unit 4 escapes from the interference area CA (interference limit line CL1).
  • the movement speed of the head unit 4 is set to a predetermined high retraction movement speed V11 until time t3A, but is set to a retraction movement speed V12 lower than V11 after time t3A.
  • An axial movement trajectory F42 indicated by a dotted line in FIG. 14 is a movement trajectory when the head unit 4 is moved with the high evacuation movement speed V11 set for the entire period of the evacuation movement.
  • the use of the axis movement trajectory F42 leads to the retracted position p42 faster than the case of the use of the axis movement trajectory F41.
  • the head unit 4 moves at high speed even after escaping from the interference area CA, which may interfere with operations such as die recognition and feducial mark Fid recognition.
  • the operation performed by the head unit 4 after escaping from the interference area CA can be stably executed in a low speed movement state.
  • the fourth embodiment shows a specific example similar to the additional retreat movement of the head unit 4 and the additional approach movement of the wafer camera 32 shown in FIG. 8(C).
  • a recognition error caused by floating of the die 7a or the detection of a die 7a designated as a "defective die” in a pre-created wafer map can be used to identify a "non-defective die" on the wafer 7.
  • the consumption of "die” may progress. Therefore, the imaging position of the wafer 7 by the wafer camera 32 may shift to the -Y side (the side closer to the head unit 4) than planned. In this case, if the head unit 4 is on standby at the position of the interference limit line CL1, interference between both units may occur. Therefore, an additional retraction movement of the head unit 4 and an additional entry movement of the wafer camera 32 are required.
  • FIGS. 15A to 15D are schematic diagrams for explaining movement control of the head unit 4 (the other unit) and the wafer camera 32 (the one unit) in the fourth embodiment.
  • FIG. 15A schematically shows the position of a group of dies 7a on the wafer 7 to be imaged (die recognition processing/required operation) by the wafer camera 32 next.
  • An interference limit line CL1 (first interference limit line) for avoiding interference with the head unit 4 is set with the wafer camera 32 as a reference based on these XY coordinates (first position) of the die 7a to be imaged.
  • FIG. 15(B) shows a state in which the wafer camera 32 and the head unit 4 are performing operations based on the interference limit line CL1.
  • the wafer camera 32 picks up an image of the die 7a as planned, and the head unit 4 is on standby at a position where it does not exceed the +Y side of the interference limit line CL1.
  • FIG. 15(C) shows a state in which a defective die 7a-Bad is detected in the group of dies 7a to be imaged. If the substitute die for the defective die 7a-Bad does not exist in the same row as the die 7a that was scheduled to be imaged, the die 7a-N arranged in the next row on the -Y side of the wafer 7 becomes the imaging target. That is, the imaging position initially planned by the wafer camera 32 is shifted to the -Y side to the position of the XY coordinates (second position) of the die 7a-N. A new interference limit line CL1 (second interference limit line) is set according to this shift.
  • CL1 second interference limit line
  • FIG. 15(D) shows a state in which the wafer camera 32 and the head unit 4 are performing operations based on the interference limit line CL1 updated to shift to the -Y side. That is, the wafer camera 32 picks up an image of the alternative die 7a-N, and the head unit 4 waits at the last position where it does not exceed the updated interference limit line CL1 on the +Y side.
  • the optimum interference limit line CL1 can be set according to the change of the working area of the wafer camera 32.
  • a component transfer apparatus provides a component supply unit having a component placement area in which a plurality of components are arranged, and a space above the component placement area and a predetermined component transfer unit.
  • a component transfer unit that can move horizontally along a movement axis, picks the component in the component placement area, and moves the component to the component transfer unit; the component placement area and a predetermined standby a camera unit that is horizontally movable along a second movement axis in an upper space between a position and a camera unit that captures an image of the part in the part placement area; and a movement control section for controlling movement of the camera unit along the second movement axis, wherein the movement control section controls movement of the component transfer unit and the camera in a space above the component placement area.
  • one of the component transfer unit and the camera unit is used as a reference to set an interference limit line that defines the accessible range of the other unit,
  • the movement range of the other unit is regulated so as not to exceed the interference limit line.
  • the component transfer unit horizontally moves along the first movement axis, and the camera unit horizontally moves along the second movement axis. Furthermore, since both units can move above the component arrangement area, an interference area occurs where both units interfere with each other.
  • the movement control section sets an interference limit line within the interference area to regulate the movement range of the other unit. In other words, when one unit is present in the interference area, the other unit is allowed to move up to the interference limit line instead of being prevented from entering the interference area. Therefore, when a sequence is set in which the one unit is followed by the other unit at a predetermined work position in the interference area, the other unit can reach the work position more quickly. It becomes possible. Therefore, tact loss can be suppressed while avoiding interference between both units.
  • the movement control section moves the other unit to the interference limit line or its vicinity to wait while the one unit is performing a required operation in the interference area. It is desirable to
  • the other unit which next performs a required operation in the interference area, can be moved to the interference limit line or its vicinity and made to stand by. Therefore, tact loss can be minimized.
  • the movement control section executes evacuation movement of the one unit from the interference area and movement of the other unit into the interference area within periods that overlap each other. and the acceleration and acceleration of each of the retreat movement and the approach movement so that the component transfer unit that moves along the first movement axis and the camera unit that moves along the second movement axis do not interfere with each other. It is desirable to set the movement speed.
  • the other unit enters the interference area while chasing the one unit that is retreating from the interference area. Therefore, it is possible to quickly perform the work transition from one unit to the other unit in the interference area. Also, by setting the acceleration and movement speed for both units, it is possible to prevent the other unit chasing the one unit from interfering with the one unit.
  • the movement control unit sets the same acceleration and movement speed for the retreat movement and the entry movement.
  • both units move at the same acceleration and movement speed, so it is possible to reliably prevent interference between one unit and the other unit chasing it.
  • the movement control section sets a predetermined first acceleration and a first movement speed for the retraction movement of the one unit, and the movement of the other unit to the first movement as the entering movement. It is desirable to set a second acceleration and a second movement speed that are the fastest acceleration and movement speed within a range that does not interfere with the one unit that moves at the acceleration and the first movement speed.
  • the other unit chasing the one unit is moved at an acceleration and movement speed that are on the verge of interfering with the one unit. Therefore, it is possible to reduce the tact loss to the limit.
  • the movement control section sets the evacuation movement speed to a predetermined high speed in the interval until the one unit escapes from the interference limit line or the interference area in the evacuation movement of the one unit. It is desirable to set the evacuation movement speed to be lower than the high speed in the section after escaping from the interference limit line or the interference area.
  • one unit escapes from the interference area at high speed, while moving at low speed after escaping from the interference limit line or interference area. Therefore, it is possible to cause the other unit to quickly enter the interference limit line or the interference area, and to stably perform the necessary operation for the one unit after escaping from the area while moving at a low speed. .
  • the movement control section sets a first interference limit line for avoiding interference with the other unit when the one unit performs a required operation at the first position in the interference area. Then, when the one unit performs a required operation at a second position different from the first position in the interference area, a second interference limit line is set at a position different from the first interference limit line. It is preferable that the other unit is moved to the second interference limit line or its vicinity to be in a standby state.
  • the interference limit line is flexibly changed according to the working position within the interference area of one unit. That is, it is possible to set the optimum interference limit line according to the working mode in the interference area of the one unit.
  • the component placement area is an area in which a diced wafer is placed, and the component is a die.
  • the component transfer unit is a head unit having a head that attracts the die
  • the camera unit is a wafer camera that captures an image of the wafer
  • the component transfer unit is mounted with the die. It is desirable that it is a substrate placement portion where the substrate is placed.
  • this component transfer device it is possible to reduce tact loss without causing interference between the head unit and the wafer camera in the component mounting device that picks up the dies from the diced wafer and mounts the dies on the substrate. .
  • the component transfer apparatus including the component transfer unit for picking the component from the component placement area and the camera unit for capturing the image of the component in the component area can reduce the tact loss. can be reduced.

Abstract

This component transfer device comprises: a component feed part that has a component placing area; a component transfer unit that moves along a first movement axis between the component placing area and a prescribed component transfer portion, picks up a component in the component placing area, and moves the component to the component transfer portion; and a camera unit that moves along a second movement axis between the component placing area and a prescribed standby position, and images the component in the component placing area. A movement control part sets, in an interference area in an upper space of the component placing area and by using one of the component transfer unit and the camera unit as a reference, an interference limit line for defining the enterable range of the other of the units, and regulates the moving range of the other unit within a range not exceeding the interference limit line.

Description

部品移載装置Parts transfer device
 本発明は、部品配置エリアから部品をピッキングする部品移載ユニットと、前記部品エリアにおいて部品を撮像するカメラユニットとを備えた部品移載装置に関する。 The present invention relates to a component transfer device that includes a component transfer unit that picks a component from a component placement area and a camera unit that captures an image of the component in the component area.
 ダイシングされたウェハからダイ(ベアチップ)をピックアップして基板に実装する部品実装装置が知られている。この部品実装装置では、ウェハ供給機によって機内の所定位置(部品配置エリア)に搬入されたウェハを、ウェハカメラが撮像してウェハ認識を行い、次いでダイの保持機能を備えたヘッドでダイをピッキングするという動作が繰り返される。つまり、前記ウェハカメラと前記ヘッドとが、共に機内へ搬入されたウェハの上空で各々所要の動作を行う。従って、前記ウェハカメラを有するカメラユニットと、前記ヘッドを有するヘッドユニットとの干渉が問題となる。 A component mounting apparatus that picks up a die (bare chip) from a diced wafer and mounts it on a substrate is known. In this component mounting apparatus, a wafer camera takes an image of a wafer carried into a predetermined position (component placement area) inside the machine by a wafer feeder to recognize the wafer, and then the die is picked by a head equipped with a die holding function. The action of doing is repeated. That is, both the wafer camera and the head perform their respective required operations above the wafer carried into the machine. Therefore, there is a problem of interference between the camera unit having the wafer camera and the head unit having the head.
 特許文献1には、互いの移動領域が重複する2つの部品実装ヘッドを備え、これら部品実装ヘッド同士の干渉を回避できる部品実装装置が開示されている。この部品実装装置では、両ヘッドが干渉する干渉エリアに向けて、一方のヘッドが進入移動を開始する際に、他方のヘッドが干渉エリア内に存在するときは、前記一方のヘッドの前記進入移動を停止させる。 Patent Literature 1 discloses a component mounting apparatus that includes two component mounting heads whose movement regions overlap each other, and that can avoid interference between these component mounting heads. In this component mounting apparatus, when one head starts moving into an interference area where both heads interfere with each other, and the other head is present in the interference area, the entering movement of the one head is performed. to stop
 しかし、上述のカメラユニット及びヘッドユニットのように、役目の異なるユニットについての干渉防止のために特許文献1の技術を適用した場合、タクトロスが大きくなる。すなわち、前記カメラユニット及び前記ヘッドユニットのいずれか一方ユニットが干渉エリア内に存在する間、他方ユニットを前記干渉エリア外で待機させる制御を行うと、他方ユニットの待機時間がネックになって、部品撮像から部品ピッキングに至る作業サイクルを高速化できない。 However, if the technology of Patent Document 1 is applied to prevent interference between units with different roles, such as the camera unit and head unit described above, the tact loss increases. In other words, while one of the camera unit and the head unit is in the interference area, if control is performed to make the other unit wait outside the interference area, the waiting time of the other unit becomes a bottleneck, The work cycle from imaging to component picking cannot be sped up.
特許第4166263号公報Japanese Patent No. 4166263
 本発明の目的は、部品配置エリアから部品をピッキングする部品移載ユニットと、前記部品エリアにおいて部品を撮像するカメラユニットとを備えた部品移載装置において、タクトロスを低減することにある。 An object of the present invention is to reduce tact loss in a component transfer device that includes a component transfer unit that picks components from a component placement area and a camera unit that captures images of components in the component area.
 本発明の一局面に係る部品移載装置は、複数個の部品が配置された部品配置エリアを有する部品供給部と、前記部品配置エリアと所定の部品移載部との間の上方空間を第1移動軸に沿って水平方向に移動可能であり、前記部品配置エリアにおいて前記部品をピッキングし、前記部品移載部へ前記部品を移動する部品移載ユニットと、前記部品配置エリアと所定の待機位置との間の上方空間を第2移動軸に沿って水平方向に移動可能であり、前記部品配置エリアにおいて前記部品を撮像するカメラユニットと、前記部品移載ユニットの前記第1移動軸に沿った移動、及び前記カメラユニットの前記第2移動軸に沿った移動を制御する移動制御部と、を備え、前記移動制御部は、前記部品配置エリアの上方空間において前記部品移載ユニットと前記カメラユニットとが並存した場合に両者が干渉する干渉エリア内に、前記部品移載ユニット及び前記カメラユニットのいずれか一方ユニットを基準として、他方ユニットの進入可能範囲を定める干渉リミットラインを設定し、前記他方ユニットの移動範囲を、前記干渉リミットラインを超過しない範囲に規制する。 A component transfer apparatus according to one aspect of the present invention provides a component supply unit having a component placement area in which a plurality of components are arranged, and a space above the component placement area and a predetermined component transfer unit. 1 a component transfer unit that can move horizontally along a movement axis, picks the component in the component placement area, and moves the component to the component transfer unit; the component placement area and a predetermined standby a camera unit that is horizontally movable along a second movement axis in an upper space between a position and a camera unit that captures an image of the part in the part placement area; and a movement control section for controlling movement of the camera unit along the second movement axis, wherein the movement control section controls movement of the component transfer unit and the camera in a space above the component placement area. In an interference area where the two units interfere with each other when the two units coexist, one of the component transfer unit and the camera unit is used as a reference to set an interference limit line that defines the accessible range of the other unit, The movement range of the other unit is regulated so as not to exceed the interference limit line.
図1は、本発明の実施形態に係る部品実装装置の全体構成を示す、上面視の平面図である。FIG. 1 is a top plan view showing the overall configuration of a component mounting apparatus according to an embodiment of the present invention. 図2は、ヘッドユニット及び突き上げユニットを示す概略斜視図である。FIG. 2 is a schematic perspective view showing a head unit and a push-up unit. 図3は、前記部品実装装置の制御構成を示すブロック図である。FIG. 3 is a block diagram showing the control configuration of the component mounting apparatus. 図4は、ヘッドユニットとカメラユニットとの干渉エリアを示す図である。FIG. 4 is a diagram showing the interference area between the head unit and the camera unit. 図5(A)~(E)は、ウェハカメラによるウェハの撮像から、ヘッドユニットによるダイのピッキング及び実装までの一連の工程を示す模式図である。FIGS. 5A to 5E are schematic diagrams showing a series of steps from imaging the wafer by the wafer camera to picking and mounting the die by the head unit. 図6(A)~(D)は、ヘッドユニット及びカメラユニットの動作を示す模式図である。6A to 6D are schematic diagrams showing operations of the head unit and the camera unit. 図7(A)~(D)は、ヘッドユニット及びカメラユニットの動作を示す模式図である。7A to 7D are schematic diagrams showing operations of the head unit and the camera unit. 図8(A)~(D)は、ヘッドユニット及びカメラユニットの動作を示す模式図である。8A to 8D are schematic diagrams showing operations of the head unit and the camera unit. 図9は、部品実装装置による部品実装処理のフローチャートである。FIG. 9 is a flowchart of component mounting processing by the component mounting apparatus. 図10は、部品実装装置による部品実装処理のフローチャートである。FIG. 10 is a flowchart of component mounting processing by the component mounting apparatus. 図11(A)~(C)は、第1実施形態におけるヘッドユニット及びカメラユニットの移動制御を示す図である。11A to 11C are diagrams showing movement control of the head unit and camera unit in the first embodiment. 図12は、第2実施形態におけるヘッドユニット及びカメラユニットの移動制御を示すグラフである。FIG. 12 is a graph showing movement control of the head unit and camera unit in the second embodiment. 図13(A)~(C)は、第2実施形態におけるヘッドユニット及びカメラユニットの移動速度設定を説明するための図である。FIGS. 13A to 13C are diagrams for explaining movement speed settings of the head unit and the camera unit in the second embodiment. 図14は、第3実施形態におけるヘッドユニット及びカメラユニットの移動制御を示すグラフである。FIG. 14 is a graph showing movement control of the head unit and camera unit in the third embodiment. 図15(A)~(D)は、第4実施形態におけるヘッドユニット及びカメラユニットの移動制御を説明するための模式図である。FIGS. 15A to 15D are schematic diagrams for explaining movement control of the head unit and camera unit in the fourth embodiment.
 以下、本発明の実施形態を、図面に基づいて詳細に説明する。本発明に係る部品移載装置は、例えばウェハからダイシングされたダイをテープに収容するテーピング装置、前記ダイを基板にワイヤボンディングするダイボンダ、或いは前記ダイを基板に実装する部品実装装置などの各種装置に適用することができる。ここでは、本発明の部品移載装置が、部品実装装置に適用される例について説明する。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. The component transfer apparatus according to the present invention includes, for example, a taping apparatus that accommodates a die diced from a wafer on a tape, a die bonder that wire-bonds the die to a substrate, or a component mounting apparatus that mounts the die on a substrate. can be applied to Here, an example in which the component transfer device of the present invention is applied to a component mounting device will be described.
 [部品実装装置の説明]
 図1は、本発明の実施形態に係る部品実装装置1の全体構成を示す、上面視の平面図である。部品実装装置1は、ウェハ7からダイシングされたダイ7a(部品)を基板Pに実装する装置である。部品実装装置1は、基台2、コンベア3、ヘッドユニット4(部品移載ユニット)、部品供給部5(部品配置エリア)、ウェハ供給装置6、カメラユニット32U及び突き上げユニット40を含む。図2は、ヘッドユニット4と、図1では表出しない突き上げユニット40とを示す概略斜視図である。
[Description of component mounter]
FIG. 1 is a top plan view showing the overall configuration of a component mounting apparatus 1 according to an embodiment of the present invention. The component mounting apparatus 1 is an apparatus that mounts a die 7a (component) diced from a wafer 7 on a substrate P. FIG. The component mounting apparatus 1 includes a base 2, a conveyor 3, a head unit 4 (component transfer unit), a component supply unit 5 (component placement area), a wafer supply unit 6, a camera unit 32U, and a push-up unit 40. FIG. 2 is a schematic perspective view showing the head unit 4 and the push-up unit 40 not shown in FIG.
 基台2は、部品実装装置1が備える各種の機器の搭載ベースである。コンベア3は、基台2上にX方向に延びるように設置された、基板Pの搬送ラインである。コンベア3は、機外から所定の実装作業位置(所定の部品移載部/基板配置部)に基板Pを搬入し、実装作業後に基板Pを前記作業位置から機外へ搬出する。コンベア3は、基板Pを上記実装作業位置で保持する図略のクランプ機構を有する。なお、図1中に基板Pが示されている位置が、前記実装作業位置である。部品供給部5は、複数個のダイ7aを、ウェハ7からダイシングされた配置状態で供給する。 The base 2 is a mounting base for various devices provided in the component mounting apparatus 1 . The conveyor 3 is a transport line for the substrate P installed on the base 2 so as to extend in the X direction. The conveyor 3 carries the board P from outside the machine to a predetermined mounting work position (predetermined component transfer section/board placement section), and carries the board P out of the machine from the work position after the mounting work. The conveyor 3 has a clamping mechanism (not shown) that holds the substrate P at the mounting position. The position where the substrate P is shown in FIG. 1 is the mounting work position. The component supply unit 5 supplies a plurality of dies 7a arranged by dicing from the wafer 7 .
 ヘッドユニット4は、部品供給部5においてダイ7aをピッキングし、上記実装作業位置へ移動すると共に、基板Pにダイ7aを実装する。ヘッドユニット4は、前記ピッキングの際にダイ7aを吸着して保持し、前記実装の際に保持しているダイ7aをリリースする複数のヘッド4Hを備える。ヘッド4Hは、ヘッドユニット4に対するZ方向への進退(昇降)移動と、軸回りの回転移動とが可能である。ヘッドユニット4には、基板Pを撮像する基板認識カメラ31が搭載されている。基板認識カメラ31の撮影画像より、基板Pに付されたフェデューシャルマークFid(図6)が認識される。これにより基板Pの位置ずれが認識され、部品実装時に前記位置ずれの補正が為される。 The head unit 4 picks the die 7a in the component supply unit 5, moves to the mounting work position, and mounts the die 7a on the board P. The head unit 4 is provided with a plurality of heads 4H for sucking and holding the die 7a during the picking and releasing the held die 7a during the mounting. The head 4H can move back and forth (up and down) in the Z direction with respect to the head unit 4 and can rotate about its axis. The head unit 4 is equipped with a substrate recognition camera 31 that captures an image of the substrate P. As shown in FIG. The feducial mark Fid (FIG. 6) attached to the substrate P is recognized from the photographed image of the substrate recognition camera 31 . As a result, the positional deviation of the board P is recognized, and the positional deviation is corrected when the component is mounted.
 部品実装装置1は、ヘッドユニット4を、少なくとも部品供給部5と前記実装作業位置で保持された基板Pとの間の上方空間を、水平方向(X及びY方向)に移動可能とする第1駆動機構D1を備える。第1駆動機構D1は、ヘッドユニット4のY方向の移動機構として、それぞれ+X側及び-X側で一対のY軸固定レール13、第1Y軸サーボモータ14及びボールねじ軸15(第1移動軸の一つ)を備える。一対のY軸固定レール13は、基台2上に固定され、X方向に所定間隔を隔てて互いに平行にY方向に延びている。ボールねじ軸15は、Y軸固定レール13に近接する位置においてY方向に延びるように配置されている。第1Y軸サーボモータ14は、ボールねじ軸15を回転駆動する。一対のY軸固定レール13間には、ヘッドユニット4を支持する支持フレーム16が架設されている。支持フレーム16の+X側端部及び-X側端部には、各ボールねじ軸15に螺合されるナット17が組付けられている。 The component mounting apparatus 1 can move the head unit 4 in at least the upper space between the component supply unit 5 and the board P held at the mounting position in the horizontal direction (X and Y directions). A drive mechanism D1 is provided. As a mechanism for moving the head unit 4 in the Y direction, the first drive mechanism D1 includes a pair of Y-axis fixed rails 13, a first Y-axis servomotor 14, and a ball screw shaft 15 (first movement axis) on the +X side and the -X side, respectively. one of). A pair of Y-axis fixed rails 13 are fixed on the base 2 and extend parallel to each other in the Y-direction at a predetermined interval in the X-direction. The ball screw shaft 15 is arranged so as to extend in the Y direction at a position close to the Y-axis fixed rail 13 . A first Y-axis servomotor 14 rotationally drives a ball screw shaft 15 . A support frame 16 that supports the head unit 4 is installed between the pair of Y-axis fixed rails 13 . Nuts 17 to be screwed onto the respective ball screw shafts 15 are assembled to the +X side end and -X side end of the support frame 16 .
 第1駆動機構D1は、ヘッドユニット4のX方向の移動機構として、支持フレーム16に搭載された図略のガイド部材、第1X軸サーボモータ18及びボールねじ軸19(第1移動軸の一つ)を備える。前記ガイド部材は、ヘッドユニット4のX方向の移動をガイドする部材であり、支持フレーム16の+Y側面においてX方向に延びるように固定されている。ボールねじ軸19は、前記ガイド部材に近接して、X方向に延在するよう配設されている。第1X軸サーボモータ18は、ボールねじ軸19を回転駆動する。ヘッドユニット4には図略のナットが付設され、当該ナットはボールねじ軸19に螺合されている。 The first drive mechanism D1 includes a guide member (not shown) mounted on the support frame 16, a first X-axis servomotor 18, and a ball screw shaft 19 (one of the first movement axes) as a mechanism for moving the head unit 4 in the X direction. ). The guide member is a member that guides the movement of the head unit 4 in the X direction, and is fixed on the +Y side surface of the support frame 16 so as to extend in the X direction. The ball screw shaft 19 is arranged in the vicinity of the guide member so as to extend in the X direction. A first X-axis servomotor 18 rotationally drives a ball screw shaft 19 . A nut (not shown) is attached to the head unit 4 , and the nut is screwed onto the ball screw shaft 19 .
 以上の構成を備える第1駆動機構D1によれば、第1Y軸サーボモータ14が作動してボールねじ軸15が回転駆動されることにより、ヘッドユニット4が支持フレーム16と一体にY方向に移動する。また、第1X軸サーボモータ18が作動してボールねじ軸19が回転駆動されることにより、ヘッドユニット4が支持フレーム16に対してX方向に移動する。 According to the first drive mechanism D1 having the above configuration, the first Y-axis servomotor 14 operates to rotate the ball screw shaft 15, thereby moving the head unit 4 together with the support frame 16 in the Y direction. do. Also, the head unit 4 moves in the X direction with respect to the support frame 16 by operating the first X-axis servomotor 18 to rotate the ball screw shaft 19 .
 部品供給部5は、複数個のダイ7aをウェハ7の形態で、所定の部品取出作業位置(ウェハステージ10)へ供給するウェハ供給装置6を備える。ウェハ7は、円盤形状の半導体ウェハであって、回路パターン等が既に形成されている。ウェハ供給装置6は、ウェハシート8aを保持するウェハ保持枠8を含む。ウェハシート8aには、ウェハ7を碁盤目状にダイシングされて形成された多数のダイ7a,7a…の集合体が貼着されている。ウェハ供給装置6は、ウェハ保持枠8を入れ替える態様で、ダイ7aを前記部品取出作業位置へ供給する。なお、部品供給部5は、ウェハ供給装置6に加えて、電子部品を収容した部品収容テープの形態で部品供給するテープフィーダを備えていても良い。 The component supply unit 5 includes a wafer supply device 6 that supplies a plurality of dies 7a in the form of wafers 7 to a predetermined component extraction work position (wafer stage 10). The wafer 7 is a disk-shaped semiconductor wafer on which circuit patterns and the like are already formed. The wafer feeder 6 includes a wafer holding frame 8 that holds a wafer sheet 8a. An assembly of a large number of dies 7a, 7a, . The wafer feeder 6 feeds the dies 7a to the component extraction work position in such a manner that the wafer holding frame 8 is replaced. In addition to the wafer supply device 6, the component supply unit 5 may include a tape feeder for supplying components in the form of a component storage tape containing electronic components.
 ウェハ供給装置6は、ウェハ収納エレベータ9、ウェハステージ10及びウェハコンベア11を含む。ウェハ収納エレベータ9は、ウェハ7が貼着されたウェハシート8aをウェハ保持枠8に保持した状態で、上下多段に収納している。ウェハステージ10は、ウェハ収納エレベータ9の-Y側の位置において、基台2上に設置されている。基板Pの停止位置となる前記実装作業位置に対して、ウェハステージ10は+Y側に並ぶ位置に配置されている。本実施形態では、ダイシングされたウェハ7が基台2上で配置されるエリアとなるウェハステージ108が、部品配置エリアとなる。ウェハコンベア11は、ウェハ収納エレベータ9からウェハステージ10上にウェハ保持枠8を引き出す。 The wafer supply device 6 includes a wafer storage elevator 9, a wafer stage 10 and a wafer conveyor 11. The wafer storage elevator 9 stores the wafer sheets 8a to which the wafers 7 are adhered on the wafer holding frame 8 in multiple stages. A wafer stage 10 is installed on the base 2 at a position on the -Y side of the wafer storage elevator 9 . The wafer stage 10 is arranged at a position aligned on the +Y side with respect to the mounting work position where the substrate P is stopped. In this embodiment, the wafer stage 108, which is the area where the diced wafer 7 is placed on the base 2, is the component placement area. A wafer conveyor 11 draws the wafer holding frame 8 from the wafer storage elevator 9 onto the wafer stage 10 .
 カメラユニット32Uは、X方向及びY方向に移動可能なユニットであって、ウェハカメラ32を備えている。ウェハカメラ32は、ウェハステージ10上に位置決めされたウェハ7の一部分、つまりカメラ視野内のダイ7aを撮像する。この撮像画像に基づいて、ピックアップ対象のダイ7aの位置認識が為される。部品実装装置1は、カメラユニット32Uを、少なくとも部品供給部5と所定の待機位置との間の上方空間を、水平方向(X及びY方向)に移動可能とする第2駆動機構D2を備える。この第2駆動機構D2は、ヘッドユニット4を駆動する第1駆動機構D1とは別個に独立した駆動系である。なお、本実施形態では、前記待機位置は、ウェハステージ10から+Y側に離間した位置である。 The camera unit 32U is a unit that is movable in the X and Y directions, and includes the wafer camera 32. Wafer camera 32 images a portion of wafer 7 positioned on wafer stage 10, that is, die 7a within the camera's field of view. Based on this captured image, the position of the die 7a to be picked up is recognized. The component mounting apparatus 1 includes a second drive mechanism D2 that allows the camera unit 32U to move in at least the upper space between the component supply section 5 and a predetermined standby position in the horizontal direction (X and Y directions). The second drive mechanism D2 is a drive system that is separate and independent from the first drive mechanism D1 that drives the head unit 4. As shown in FIG. In this embodiment, the standby position is a position away from the wafer stage 10 on the +Y side.
 第2駆動機構D2は、カメラユニット32UのY方向の移動機構として、+X側及び-X側で一対のY軸固定レール33と、+X側に配置された第2Y軸サーボモータ34及びボールねじ軸35(第2移動軸の一つ)とを備える。一対のY軸固定レール33は、基台2上に固定され、X方向に所定間隔を隔てて互いに平行にY方向に延びている。ボールねじ軸35は、+X側のY軸固定レール33に近接する位置においてY方向に延びるように配置されている。第2Y軸サーボモータ34は、ボールねじ軸35を回転駆動する。一対のY軸固定レール33間には、カメラユニット32Uを支持する支持フレーム36が架設されている。支持フレーム36の+X側端部には、ボールねじ軸35に螺合されるナット37が組付けられている。 The second drive mechanism D2 includes a pair of Y-axis fixed rails 33 on the +X side and the -X side, and a second Y-axis servomotor 34 and a ball screw shaft arranged on the +X side as a mechanism for moving the camera unit 32U in the Y direction. 35 (one of the second movement axes). A pair of Y-axis fixed rails 33 are fixed on the base 2 and extend parallel to each other in the Y-direction at a predetermined interval in the X-direction. The ball screw shaft 35 is arranged so as to extend in the Y direction at a position close to the Y-axis fixed rail 33 on the +X side. A second Y-axis servomotor 34 rotationally drives a ball screw shaft 35 . A support frame 36 that supports the camera unit 32U is installed between the pair of Y-axis fixed rails 33 . A nut 37 that is screwed onto the ball screw shaft 35 is attached to the +X side end of the support frame 36 .
 第2駆動機構D2は、カメラユニット32UのX方向の移動機構として、支持フレーム36に搭載された図略のガイド部材、第2X軸サーボモータ38及びボールねじ軸39(第2移動軸の一つ)を備える。前記ガイド部材は、カメラユニット32UのX方向の移動をガイドする部材であり、支持フレーム36の-Y側面においてX方向に延びるように固定されている。ボールねじ軸39は、前記ガイド部材に近接して、X方向に延在するよう配設されている。第2X軸サーボモータ38は、ボールねじ軸39を回転駆動する。カメラユニット32Uには図略のナットが付設され、当該ナットはボールねじ軸39に螺合されている。 The second drive mechanism D2 includes a guide member (not shown) mounted on the support frame 36, a second X-axis servomotor 38, and a ball screw shaft 39 (one of the second movement axes) as a mechanism for moving the camera unit 32U in the X direction. ). The guide member is a member that guides movement of the camera unit 32U in the X direction, and is fixed to the -Y side surface of the support frame 36 so as to extend in the X direction. The ball screw shaft 39 is arranged in the vicinity of the guide member so as to extend in the X direction. A second X-axis servomotor 38 rotationally drives a ball screw shaft 39 . A nut (not shown) is attached to the camera unit 32U, and the nut is screwed onto the ball screw shaft 39. As shown in FIG.
 以上の構成を備える第2駆動機構D2によれば、第2Y軸サーボモータ34が作動してボールねじ軸35が回転駆動されることにより、カメラユニット32Uが支持フレーム36と一体にY方向に移動する。また、第2X軸サーボモータ38が作動してボールねじ軸39が回転駆動されることにより、カメラユニット32Uが支持フレーム36に対してX方向に移動する。 According to the second drive mechanism D2 having the above configuration, the second Y-axis servomotor 34 operates to rotate the ball screw shaft 35, thereby moving the camera unit 32U integrally with the support frame 36 in the Y direction. do. Also, the camera unit 32U moves in the X direction with respect to the support frame 36 by operating the second X-axis servomotor 38 to rotationally drive the ball screw shaft 39 .
 なお、第2駆動機構D2における駆動源の第2X軸、Y軸サーボモータ34、38は、第1駆動機構D1の駆動源である第1X軸、Y軸サーボモータ14、18とはモータスペックが異なる。ヘッドユニット4よりもカメラユニット32Uの方が軽量であるため、第1X軸、Y軸サーボモータ14、18の方が高出力である。このため、カメラユニット32Uよりもヘッドユニット4の方が、加速度が高く、最高移動速度も速い。従って、両ユニットを同時に移動させる場合には、これらの干渉を回避するための速度制御が必要となる場合が生じる。この点については、後記で詳述する。 The second X-axis and Y- axis servomotors 34 and 38, which are the driving sources of the second driving mechanism D2, have motor specifications different from those of the first X-axis and Y- axis servomotors 14 and 18, which are the driving sources of the first driving mechanism D1. different. Since the camera unit 32U is lighter than the head unit 4, the first X-axis and Y- axis servomotors 14 and 18 have higher outputs. Therefore, the head unit 4 has a higher acceleration and a higher maximum moving speed than the camera unit 32U. Therefore, when moving both units at the same time, speed control may be required to avoid interference between them. This point will be described in detail later.
 突き上げユニット40は、部品供給部5の下方に配置され、ヘッド4Hが吸着すべきダイ7aを、ウェハシート8aの下面側から突き上げる。突き上げユニット40は、ウェハステージ10に対応する程度の範囲にわたってXY方向に移動可能に、基台2上に配置されている。突き上げユニット40は、Y方向に延びる一対のガイドレール41に沿って移動可能な支持フレーム42に、X方向に移動可能に支持されている。 The push-up unit 40 is arranged below the component supply unit 5, and pushes up the die 7a to be picked up by the head 4H from the lower surface side of the wafer sheet 8a. The push-up unit 40 is arranged on the base 2 so as to be movable in the XY directions over a range corresponding to the wafer stage 10 . The push-up unit 40 is movably supported in the X direction by a support frame 42 movable along a pair of guide rails 41 extending in the Y direction.
 支持フレーム42の内部に設けられた図略のナット部分に螺合するボールねじ軸43が、第3Y軸サーボモータ44により回転駆動される。これにより、突き上げユニット40が支持フレーム42と一体にY方向に移動する。また、支持フレーム42には、突き上げユニット40の内部に設けられた図略のナット部分と螺合するボールねじ軸45が配設されている。ボールねじ軸45が第3X軸サーボモータ46により回転駆動されることで、突き上げユニット40がX軸方向に移動する。突き上げユニット40は、ダイ7aを突き上げる突き上げピン47を有する。ヘッド4Hによるダイ7aの吸着時に、突き上げピン47が上昇し、ウェハシート8aを通してダイ7aを突き上げる。突き上げピン47は、ピン昇降モータ48(図3)によって昇降駆動される。 A ball screw shaft 43 screwed into a nut portion (not shown) provided inside the support frame 42 is rotationally driven by a third Y-axis servomotor 44 . As a result, the push-up unit 40 moves together with the support frame 42 in the Y direction. Further, the support frame 42 is provided with a ball screw shaft 45 that is screwed with a nut portion (not shown) provided inside the push-up unit 40 . The ball screw shaft 45 is rotationally driven by the third X-axis servomotor 46 to move the push-up unit 40 in the X-axis direction. The push-up unit 40 has a push-up pin 47 for pushing up the die 7a. When the die 7a is sucked by the head 4H, the push-up pin 47 rises to push up the die 7a through the wafer sheet 8a. The push-up pin 47 is driven up and down by a pin elevating motor 48 (FIG. 3).
 基台2には、部品認識カメラ30が据え付けられている。部品認識カメラ30は、ヘッドユニット4のヘッド4Hに吸着されているダイ7aを、基板Pへの実装の前に下側から撮像する。この撮像画像に基づいて、ヘッド4Hによるダイ7aの吸着異常や吸着ミス等が判定される。 A component recognition camera 30 is installed on the base 2 . The component recognition camera 30 images the die 7a sucked by the head 4H of the head unit 4 from below before being mounted on the substrate P. As shown in FIG. Based on this captured image, it is determined whether the head 4H has picked up the die 7a abnormally or picked up incorrectly.
 [部品実装装置の制御構成]
 図3は、部品実装装置1の制御構成を示すブロック図である。部品実装装置1は、当該部品実装装置1の各部の動作を統括的に制御する制御部20を備える。制御部20には、ヘッドユニット4、カメラユニット32U及び突き上げユニット40が備える各機器と、ウェハ供給装置6及び部品認識カメラ30とが電気的に接続されている。制御部20は、予め定められたプログラムが実行されることで、機能的に全体制御部21、軸制御部22(移動制御部)、撮像制御部23、画像処理部24及び記憶部25を具備するように動作する。
[Control Configuration of Component Mounting Device]
FIG. 3 is a block diagram showing the control configuration of the component mounting apparatus 1. As shown in FIG. The component mounting apparatus 1 includes a control section 20 that controls the operation of each section of the component mounting apparatus 1 . The controller 20 is electrically connected to the devices of the head unit 4, the camera unit 32U, and the push-up unit 40, the wafer feeder 6, and the component recognition camera 30. FIG. The control unit 20 functionally includes an overall control unit 21, an axis control unit 22 (movement control unit), an imaging control unit 23, an image processing unit 24, and a storage unit 25 by executing a predetermined program. to work.
 全体制御部21は、制御部20が備える各機能部の動作を統括的に制御すると共に、各種の演算処理を実行する。軸制御部22は、各ユニットが備えるサーボモータを駆動するドライバであり、全体制御部21からの指示に従って各駆動モータを動作させる。具体的には軸制御部22は、ヘッドユニット4に関し、第1Y軸サーボモータ14及び第1X軸サーボモータ18の駆動を制御することにより、ボールねじ軸15、19(第1移動軸)に沿ったヘッドユニット4のXY方向の移動を制御する。また、軸制御部22は、Z軸サーボモータ401の駆動を制御してヘッド4HのZ方向の移動(昇降移動)を制御すると共に、R軸サーボモータ402の駆動を制御してヘッド4Hの自軸回りの回転移動を制御する。 The overall control unit 21 comprehensively controls the operation of each functional unit included in the control unit 20, and executes various arithmetic processing. The axis control unit 22 is a driver that drives the servo motors provided in each unit, and operates each drive motor according to instructions from the overall control unit 21 . Specifically, the axis control unit 22 controls the drive of the first Y-axis servomotor 14 and the first X-axis servomotor 18 in relation to the head unit 4, thereby moving along the ball screw axes 15 and 19 (first movement axis). It controls the movement of the head unit 4 in the XY direction. The axis control unit 22 also controls the driving of the Z-axis servomotor 401 to control the Z-direction movement (lifting movement) of the head 4H, and controls the driving of the R-axis servomotor 402 to move the head 4H itself. Controls rotational movement around an axis.
 軸制御部22は、カメラユニット32Uに関し、第2Y軸サーボモータ34及び第2X軸サーボモータ38の駆動を制御することにより、ボールねじ軸35、39(第2移動軸)に沿ったカメラユニット32UのXY方向の移動を制御する。また、軸制御部22は、突き上げユニット40に関し、第3Y軸サーボモータ44及び第3X軸サーボモータ46の駆動を制御することにより、ボールねじ軸43、45に沿った突き上げユニット40のXY方向の移動を制御する。また、軸制御部22は、ピン昇降モータ48の駆動を制御することにより、突き上げピン47の昇降移動を制御する。 Regarding the camera unit 32U, the axis control unit 22 controls the driving of the second Y-axis servomotor 34 and the second X-axis servomotor 38 to move the camera unit 32U along the ball screw axes 35 and 39 (second movement axes). to control the movement of the XY directions. In addition, the axis control section 22 controls the drive of the third Y-axis servomotor 44 and the third X-axis servomotor 46 in relation to the push-up unit 40 to move the push-up unit 40 along the ball screw shafts 43 and 45 in the XY directions. Control movement. Further, the shaft control unit 22 controls the vertical movement of the push-up pin 47 by controlling the driving of the pin lifting motor 48 .
 撮像制御部23は、部品認識カメラ30、基板認識カメラ31及びウェハカメラ32の撮像動作を制御する。具体的には撮像制御部23は、部品認識カメラ30の動作を制御して、ヘッド4Hに吸着されたダイ7a又は他の部品を撮像させる。また、撮像制御部23は、基板認識カメラ31の動作を制御して、基板PのフェデューシャルマークFidを撮像させる。さらに、撮像制御部23は、ウェハカメラ32の動作を制御して、ウェハステージ10内のダイ7aを撮像させる。 The imaging control unit 23 controls the imaging operations of the component recognition camera 30, board recognition camera 31, and wafer camera 32. Specifically, the imaging control unit 23 controls the operation of the component recognition camera 30 to image the die 7a or other components that are attracted to the head 4H. The imaging control unit 23 also controls the operation of the substrate recognition camera 31 to image the feducial mark Fid of the substrate P. FIG. Furthermore, the imaging control unit 23 controls the operation of the wafer camera 32 to image the die 7a within the wafer stage 10 .
 画像処理部24は、部品認識カメラ30、基板認識カメラ31及びウェハカメラ32から入力される画像データに対しエッジ抽出処理等を含む各種の画像処理を施す。画像処理後の画像データに基づき、ダイ7aのヘッド4Hへの吸着姿勢の認識、基板Pの位置認識、ウェハステージ10において吸着すべきダイ7aの位置認識等の処理が実行される。 The image processing unit 24 performs various types of image processing, including edge extraction processing, on image data input from the component recognition camera 30, board recognition camera 31, and wafer camera 32. Based on the image data after the image processing, processes such as recognition of the sucked attitude of the die 7a to the head 4H, positional recognition of the substrate P, and positional recognition of the die 7a to be sucked on the wafer stage 10 are executed.
 記憶部25は、実装プログラムなどの各種プログラムや各種データを記憶する。本実施形態では、記憶部25は、後述する干渉エリアCAの位置情報や干渉リミットラインCLの設定に関する情報、ヘッドユニット4及びカメラユニット32Uの加速度や移動速度に関する情報を記憶する。 The storage unit 25 stores various programs such as implementation programs and various data. In the present embodiment, the storage unit 25 stores positional information of the interference area CA, information regarding the setting of the interference limit line CL, and information regarding the acceleration and movement speed of the head unit 4 and the camera unit 32U, which will be described later.
 [装置内レイアウトと基本動作]
 次に、部品実装装置1におけるヘッドユニット4及びカメラユニット32Uのレイアウトと、当該部品実装装置1の基本動作について説明する。図4は、図1に示した部品実装装置1の上面図に、ヘッドユニット4及びカメラユニット32Uの移動範囲を付記した図である。ヘッドユニット4は、各々XY方向に延びるボールねじ軸15、19の架設範囲に対応した、ヘッドユニット移動エリアA1を有している。同様に、カメラユニット32Uは、各々XY方向に延びるボールねじ軸35、39の架設範囲に対応したウェハカメラ移動エリアA2を有している。
[Equipment layout and basic operation]
Next, the layout of the head unit 4 and the camera unit 32U in the component mounting apparatus 1 and the basic operation of the component mounting apparatus 1 will be described. FIG. 4 is a top view of the component mounting apparatus 1 shown in FIG. 1, with movement ranges of the head unit 4 and the camera unit 32U added. The head unit 4 has a head unit movement area A1 corresponding to the installation range of the ball screw shafts 15 and 19 extending in the XY directions. Similarly, the camera unit 32U has a wafer camera movement area A2 corresponding to the installation range of the ball screw shafts 35 and 39 extending in the XY directions.
 ヘッドユニット移動エリアA1は、Y方向において、部品供給部5(ウェハステージ10)の上方空間から、コンベア3上を通って部品認識カメラ30の上方空間に至るサイズを有している。これは、ヘッドユニット4が、ウェハステージ10上のウェハ7からダイ7aをピッキングし、部品認識カメラ30で部品認識を行った後、コンベア3上の基板Pにダイ7aを実装する動作を行うことによる。ウェハカメラ移動エリアA2は、Y方向において、部品供給部5の上方空間から、+Y側のウェハ収納エレベータ9の手前の上方空間に至るサイズを有している。これは、ウェハカメラ32が、ウェハステージ10上のウェハ7の撮像動作と、ウェハステージ10上から+Y側への退避動作とを行うことによる。なお、図示は省くが、ヘッドユニット移動エリアA1とウェハカメラ移動エリアA2とは、Z方向に互いに重なる高さ位置にある。 The head unit movement area A1 has a size from the space above the component supply unit 5 (wafer stage 10) to the space above the component recognition camera 30 through the conveyor 3 in the Y direction. This is performed by the head unit 4 picking the die 7a from the wafer 7 on the wafer stage 10, recognizing the component with the component recognition camera 30, and then mounting the die 7a on the board P on the conveyor 3. according to. The wafer camera movement area A2 has a size from the space above the component supply unit 5 to the space above the wafer storage elevator 9 on the +Y side in the Y direction. This is because the wafer camera 32 performs an imaging operation of the wafer 7 on the wafer stage 10 and a withdrawal operation from the wafer stage 10 to the +Y side. Although not shown, the head unit movement area A1 and the wafer camera movement area A2 are located at heights overlapping each other in the Z direction.
 このように、ヘッドユニット4及びカメラユニット32Uは、共にウェハステージ10上のウェハ7に対して作業を行うので、ヘッドユニット移動エリアA1とウェハカメラ移動エリアA2とは、ウェハステージ10の上方空間において重なり合う。図4には、両エリアA1、A2が重なり合う干渉エリアCAが示されている。干渉エリアCAは、ヘッドユニット4とカメラユニット32Uとが並存した場合に、両者に干渉が生じるエリアである。従って、干渉エリアCAにおいて衝突が生じないよう、ヘッドユニット4及びカメラユニット32Uの移動を制御する必要がある。 In this way, both the head unit 4 and the camera unit 32U operate on the wafer 7 on the wafer stage 10. Therefore, the head unit movement area A1 and the wafer camera movement area A2 are located in the space above the wafer stage 10. overlap. FIG. 4 shows an interference area CA where both areas A1 and A2 overlap. The interference area CA is an area where interference occurs between the head unit 4 and the camera unit 32U when they coexist. Therefore, it is necessary to control the movement of the head unit 4 and the camera unit 32U so that no collision occurs in the interference area CA.
 図5(A)~(E)は、ウェハカメラ32によるウェハ7の撮像から、ヘッドユニット4によるダイ7aのピッキング及び実装までの基本動作を示す模式図である。各図には、ヘッドユニット4及びウェハカメラ32(カメラユニット32U)、ウェハ7、基板P及び干渉エリアCAが簡略的に示されている。図5(A)は、ヘッドユニット4が、図4に示すヘッドユニット移動エリアA1の最も-Y側に位置し、ウェハカメラ32が、ウェハカメラ移動エリアA2の最も+Y側に位置している状態を示している。 FIGS. 5A to 5E are schematic diagrams showing basic operations from imaging of the wafer 7 by the wafer camera 32 to picking and mounting of the die 7a by the head unit 4. FIG. Each figure schematically shows the head unit 4, the wafer camera 32 (camera unit 32U), the wafer 7, the substrate P, and the interference area CA. 5A shows a state in which the head unit 4 is located on the most -Y side of the head unit movement area A1 shown in FIG. 4, and the wafer camera 32 is located on the most +Y side of the wafer camera movement area A2. is shown.
 図5(B)は、ウェハカメラ32が干渉エリアCA内でウェハ7の撮像を行い、ヘッドユニット4のヘッド4Hが基板Pにダイ7aの実装動作を行っている状態を示している。ここでのウェハカメラ32の撮像は、次回のピッキング動作でヘッド4Hが吸着するダイ7a群の認識のための撮像である。一方、ここでのヘッド4Hによる実装動作は、今回のピッキング動作で吸着したダイ7aを基板Pに実装するための動作である。 FIG. 5(B) shows a state in which the wafer camera 32 takes an image of the wafer 7 within the interference area CA, and the head 4H of the head unit 4 mounts the die 7a on the substrate P. FIG. The imaging by the wafer camera 32 here is for recognizing the group of dies 7a to be picked up by the head 4H in the next picking operation. On the other hand, the mounting operation by the head 4H here is an operation for mounting the die 7a sucked by the picking operation this time on the substrate P. As shown in FIG.
 図5(C)は、ウェハカメラ32が干渉エリアCAから退出する退避移動を行う一方、ヘッドユニット4が干渉エリアCAへ入る進入移動を行っている状態を示している。ヘッドユニット4の進入移動は、直前にウェハカメラ32による撮像で認識したダイ7a群を、ウェハ7からピッキングするための移動である。ウェハカメラ32の退避移動は、ヘッドユニット4との干渉を回避するための移動である。図5(C)は、ヘッド4Hがダイ7aをピッキングしている状態である。 FIG. 5(C) shows a state in which the wafer camera 32 moves away from the interference area CA while the head unit 4 moves into the interference area CA. The entry movement of the head unit 4 is movement for picking the die 7a group recognized by the imaging by the wafer camera 32 immediately before from the wafer 7. FIG. The retraction movement of the wafer camera 32 is movement for avoiding interference with the head unit 4 . FIG. 5C shows a state in which the head 4H is picking the die 7a.
 図5(D)は、ヘッドユニット4が干渉エリアCAから退避移動を行う一方、ウェハカメラ32が干渉エリアCAへ進入移動を行っている状態を示している。ヘッドユニット4の退避移動は、図5(C)のピッキング動作で吸着したダイ7a群を基板Pに実装するための動作である。ウェハカメラ32の進入移動は、次回のピッキング動作でヘッド4Hが吸着するダイ7a群を撮像するための移動である。 FIG. 5(D) shows a state in which the head unit 4 moves away from the interference area CA while the wafer camera 32 moves into the interference area CA. The retraction movement of the head unit 4 is an operation for mounting the group of dies 7a sucked by the picking operation shown in FIG. The advancing movement of the wafer camera 32 is movement for imaging the group of dies 7a to be picked up by the head 4H in the next picking operation.
 以上の通り、ダイ7aの認識~ピッキング~実装のサイクルが、干渉エリアCAにヘッドユニット4とウェハカメラ32とが順次入れ替わるようにして実行される。ヘッドユニット4とウェハカメラ32との干渉を確実に回避するには、いずれか一方ユニットが干渉エリアCAに存在している限り、他方ユニットを干渉エリアCAに進入させない制御を行えば良い。しかし、このような制御を行うと、他方ユニットの待機時間がネックになってタクトロスが生じ、前記サイクルを高速化できない。 As described above, the die 7a recognition-picking-mounting cycle is executed such that the head unit 4 and the wafer camera 32 are sequentially switched in the interference area CA. In order to reliably avoid interference between the head unit 4 and the wafer camera 32, as long as one of the units exists in the interference area CA, the other unit should not enter the interference area CA. However, if such control is performed, the waiting time of the other unit becomes a bottleneck, resulting in tact loss, and the cycle cannot be sped up.
 この問題に鑑み本実施形態では、干渉エリアCA内に、ヘッドユニット4とカメラユニット32Uのいずれか一方ユニットを基準として、他方ユニットの進入可能範囲を定める干渉リミットラインCLを設定する。そして、前記他方ユニットの移動範囲を、干渉エリアCAへの進入禁止ではなく、干渉リミットラインCLを超過しない範囲に規制することで、タクトロスを低減する。以下、干渉リミットラインCLを設定する実装動作例を説明する。 In view of this problem, in the present embodiment, an interference limit line CL is set in the interference area CA, with one of the head unit 4 and the camera unit 32U as a reference, which defines the accessible range of the other unit. Then, the movement range of the other unit is not prohibited from entering the interference area CA, but is restricted to a range that does not exceed the interference limit line CL, thereby reducing tact loss. A mounting operation example for setting the interference limit line CL will be described below.
 [干渉リミットラインを設定する実装動作]
 図6(A)~図8(D)は、干渉リミットラインCLを設定する実装動作における、ヘッドユニット4及びカメラユニット32Uの動作を示す模式図である。これらの図では、カメラユニット32U(ウェハカメラ32)を基準として設定される干渉リミットラインCLを「CL1」、ヘッドユニット4を基準として設定される干渉リミットラインCLを「CL2」として記載している。詳しくは「CL2」は、ヘッドユニット4が今回分のダイ7aの実装を行う際に、当該ダイ実装により、若しくは、当該ダイ実装に関して最も+Y側に移動する位置である。干渉リミットラインCL1、CL2は、両ユニットの動作状態に応じて、軸制御部22が適宜設定する。
[Mounting operation to set the interference limit line]
FIGS. 6A to 8D are schematic diagrams showing operations of the head unit 4 and the camera unit 32U in the mounting operation for setting the interference limit line CL. In these figures, the interference limit line CL set with the camera unit 32U (wafer camera 32) as a reference is indicated as "CL1", and the interference limit line CL set with the head unit 4 as a reference is indicated as "CL2". . Specifically, "CL2" is the position to which the head unit 4 moves to the +Y side most by mounting the dies 7a for this time, or with respect to the mounting of the dies. The interference limit lines CL1 and CL2 are appropriately set by the axis control section 22 according to the operating states of both units.
 図6(A)は、ウェハカメラ32(一方ユニット)が初回のダイ認識のため、干渉エリアCAに進入してウェハ7の撮像を行っている状態を示している。このダイ認識では、ヘッドユニット4による初回のピッキング動作で吸着される予定のダイ7aの群の位置認識が行われる。ヘッドユニット4(他方ユニット)は、干渉エリアCAから離れ、最も-Y側の位置で待機している。この状態では、ウェハカメラ32が作業を行うので、ウェハカメラ32を基準として干渉エリアCAに干渉リミットラインCL1が設定される。 FIG. 6(A) shows a state in which the wafer camera 32 (one unit) enters the interference area CA and takes an image of the wafer 7 for the first die recognition. In this die recognition, position recognition of a group of dies 7a to be picked up by the head unit 4 in the first picking operation is performed. The head unit 4 (the other unit) is away from the interference area CA and stands by at the position closest to the -Y side. In this state, since the wafer camera 32 performs the work, the interference limit line CL1 is set in the interference area CA with the wafer camera 32 as a reference.
 干渉リミットラインCL1は、ウェハカメラ32が今回のダイ認識の撮像を行う際に、最も-Y側に移動する位置を参照して設定される。この場合、ヘッドユニット4の移動範囲は、干渉リミットラインCL1を超過しない範囲に規制される。換言すると、ヘッドユニット4は、干渉リミットラインCL1よりも-Y側であれば自在に移動可能であり、干渉エリアCA内へも進入可能である。例えば、ダイ認識の間に、ヘッドユニット4に搭載されている基板認識カメラ31に、基板PのフェデューシャルマークFidを認識する撮像動作を行わせても良い。 The interference limit line CL1 is set with reference to the position to which the wafer camera 32 moves most to the -Y side when performing imaging for die recognition this time. In this case, the movement range of the head unit 4 is restricted to a range that does not exceed the interference limit line CL1. In other words, the head unit 4 can freely move on the -Y side of the interference limit line CL1, and can enter the interference area CA. For example, during die recognition, the substrate recognition camera 31 mounted on the head unit 4 may be caused to perform an imaging operation for recognizing the feducial mark Fid of the substrate P. FIG.
 図6(B)は、ウェハカメラ32がダイ認識の撮像を行っている間に、ヘッドユニット4が初回のピッキング動作に備えて、干渉リミットラインCL1へ接近している様子を示している。ヘッドユニット4の一部は、干渉エリアCA内へ進入している。 FIG. 6(B) shows how the head unit 4 is approaching the interference limit line CL1 in preparation for the first picking operation while the wafer camera 32 is performing imaging for die recognition. A portion of the head unit 4 has entered the interference area CA.
 図6(C)は、ウェハカメラ32がダイ認識を終えて干渉エリアCAから+Y側へ退避移動する一方で、ヘッドユニット4が干渉エリアCAへ進入移動している様子を示している。ヘッドユニット4は、前記ダイ認識によって特定されたダイ7aのXY座標を目指して移動される。ヘッドユニット4は既に干渉リミットラインCL1まで接近しているので、目標座標への移動時間は短くなる。また、両ユニットを同期的に移動させれば、よりタクトロスが低減できる。移動後、初回のピッキング動作で対象とされたダイ7aがヘッド4Hに吸着される。ウェハカメラ32は、ヘッドユニット4の作業が完了するまで待機する。 FIG. 6(C) shows a state in which the wafer camera 32 completes die recognition and retreats from the interference area CA to the +Y side, while the head unit 4 moves into the interference area CA. The head unit 4 is moved aiming at the XY coordinates of the die 7a specified by the die recognition. Since the head unit 4 has already approached the interference limit line CL1, the movement time to the target coordinates is shortened. Also, if both units are moved synchronously, the tact loss can be further reduced. After the movement, the die 7a targeted by the first picking operation is attracted to the head 4H. The wafer camera 32 waits until the work of the head unit 4 is completed.
 図6(D)は、ヘッドユニット4がピッキング動作を終えて干渉エリアCAから-Y側へ退避移動する一方で、ウェハカメラ32が次回のダイ認識のために干渉エリアCAへ進入移動している様子を示している。この際、ヘッドユニット4を基準として干渉リミットラインCL2が設定される。この両ユニットの移動も同期的に行わせることが望ましい。ウェハカメラ32は、干渉エリアCAへ進入できるものの、干渉リミットラインCL2よりも-Y側の干渉エリアCAへは進入できない状態となる。ヘッドユニット4は、ピッキング動作によりヘッド4Hが保持したダイ7aを基板Pに搬送している状態である。 In FIG. 6D, the head unit 4 completes the picking operation and retreats from the interference area CA to the -Y side, while the wafer camera 32 moves into the interference area CA for the next die recognition. showing the situation. At this time, an interference limit line CL2 is set with the head unit 4 as a reference. It is desirable to synchronously move both units. Although the wafer camera 32 can enter the interference area CA, it cannot enter the interference area CA on the -Y side of the interference limit line CL2. The head unit 4 is in a state of transporting the die 7a held by the head 4H to the substrate P by the picking operation.
 図7(A)は、ウェハカメラ32が撮像動作を、ヘッドユニット4が実装動作を、それぞれ行っている状態を示している。すなわち、ウェハカメラ32は、次回のダイ認識のため、干渉エリアCAに進入してウェハ7の撮像を行う。ヘッドユニット4は、ヘッド4Hが今回吸着したダイ7aの基板Pへの実装動作を行う。ここでは、次回のダイ認識の撮像、つまり次回のピッキング動作で吸着される予定のダイ7aの群の位置に、ウェハカメラ32が干渉リミットラインCL2を超過することなく移動できる場合を例示している。 FIG. 7A shows a state in which the wafer camera 32 is performing an imaging operation and the head unit 4 is performing a mounting operation. That is, the wafer camera 32 enters the interference area CA and takes an image of the wafer 7 for the next die recognition. The head unit 4 mounts the die 7a, which the head 4H has picked up this time, onto the substrate P. As shown in FIG. Here, a case is illustrated in which the wafer camera 32 can move to the position of the group of dies 7a to be picked up in the next picking operation without exceeding the interference limit line CL2. .
 図7(B)は、ウェハカメラ32の上記撮像動作が終わり、干渉エリアCAからウェハカメラ32が退避移動している状態である。ヘッドユニット4は実装動作を継続している。一般に、ウェハカメラ32の撮像動作の方がヘッドユニット4の実装動作よりも作業時間が短いので、ウェハカメラ32の干渉エリアCAからの先行退出が可能である。 FIG. 7(B) shows a state in which the wafer camera 32 is retreating from the interference area CA after the above imaging operation of the wafer camera 32 is completed. The head unit 4 continues the mounting operation. In general, the imaging operation of the wafer camera 32 takes less time than the mounting operation of the head unit 4, so the wafer camera 32 can leave the interference area CA in advance.
 図7(C)は、ヘッドユニット4が、基板Pへの実装動作を終えて、次回のピッキング動作のために干渉エリアCAへ進入移動を行っている状態を示している。進入移動後、ヘッドユニット4のヘッド4Hは、ウェハ7から先のダイ認識で認識されたダイ7aの群を吸着する。ウェハカメラ32は待機状態である。なお、図7(B)のウェハカメラ32が退避移動を、ヘッドユニット4の進入移動と同時期に行わせても良い。 FIG. 7(C) shows a state in which the head unit 4 completes the mounting operation on the board P and moves into the interference area CA for the next picking operation. After moving into the head unit 4, the head 4H of the head unit 4 picks up the group of dies 7a recognized in the previous die recognition from the wafer 7. As shown in FIG. Wafer camera 32 is in a standby state. It should be noted that the wafer camera 32 of FIG. 7B may be retracted at the same time as the head unit 4 is retracted.
 図7(D)は、ヘッドユニット4がピッキング動作を終えて、干渉エリアCAから退避移動を行う一方、ウェハカメラ32が干渉エリアCAへ進入移動を行っている状態を示している。この際も、ヘッドユニット4を基準として干渉リミットラインCL2が設定され、ウェハカメラ32は干渉リミットラインCL2を-Y側へ超過しない範囲において、干渉エリアCAへ進入可能となる。ヘッドユニット4は、退避移動によって基板Pの上空へ移動し、ヘッド4Hは吸着したダイ7aを基板Pに実装する。ウェハカメラ32は、進入移動後、次回にピッキングされるダイ7aの認識のため、ウェハ7の撮像を行う。 FIG. 7(D) shows a state in which the head unit 4 finishes the picking operation and moves away from the interference area CA, while the wafer camera 32 moves into the interference area CA. Also in this case, the interference limit line CL2 is set with the head unit 4 as a reference, and the wafer camera 32 can enter the interference area CA within a range not exceeding the interference limit line CL2 to the -Y side. The head unit 4 moves above the substrate P by retracting movement, and the head 4H mounts the sucked die 7a on the substrate P. As shown in FIG. After moving in, the wafer camera 32 takes an image of the wafer 7 in order to recognize the die 7a to be picked next time.
 図8(A)及び(B)は、図7(B)とは逆に、ヘッドユニット4の実装動作の方がウェハカメラ32の撮像動作よりも先に終了した場合の動作を示している。図8(A)は、図7(A)と同様に、ウェハカメラ32が撮像動作を、ヘッドユニット4が実装動作を、それぞれ行っている状態を示している。ヘッドユニット4の実装動作が先に完了した場合、図8(B)に示すように、ウェハカメラ32(カメラユニット32U)を基準として干渉リミットラインCL1が設定される。ヘッドユニット4は、ウェハカメラ32が撮像動作を行っている間に、初回のピッキング動作に備えて、干渉リミットラインCL1へ接近する。この状態は、図6(B)と同じである。 FIGS. 8(A) and (B) show operations when the mounting operation of the head unit 4 is completed earlier than the imaging operation of the wafer camera 32, contrary to FIG. 7(B). Similar to FIG. 7A, FIG. 8A shows a state in which the wafer camera 32 performs the imaging operation and the head unit 4 performs the mounting operation. When the mounting operation of the head unit 4 is completed first, as shown in FIG. 8B, the interference limit line CL1 is set with the wafer camera 32 (camera unit 32U) as a reference. While the wafer camera 32 is performing the imaging operation, the head unit 4 approaches the interference limit line CL1 in preparation for the first picking operation. This state is the same as in FIG. 6(B).
 図8(C)は、ヘッドユニット4が追加退避移動を、ウェハカメラ32が干渉エリアCAへの追加進入移動を、それぞれ行っている状態を示している。ウェハカメラ32の追加進入移動は、次回のダイ認識の撮像動作を、干渉リミットラインCL2を超過しないと行えない場合に実行される。すなわち、次回のピッキング動作で吸着される予定のダイ7aの位置(第2位置)が、ウェハカメラ32が干渉リミットラインCL2を-Y側に超過するまで移動しないと撮像できない位置の場合に、前記追加進入移動が実行される。 FIG. 8(C) shows a state in which the head unit 4 is making an additional retraction movement, and the wafer camera 32 is making an additional entry movement into the interference area CA. The additional approach movement of the wafer camera 32 is performed when the next imaging operation for die recognition cannot be performed unless the interference limit line CL2 is exceeded. That is, when the position (second position) of the die 7a scheduled to be picked up in the next picking operation is a position where an image cannot be captured unless the wafer camera 32 moves beyond the interference limit line CL2 to the -Y side, Additional approach moves are performed.
 この場合、図8(A)ではヘッドユニット4(他方ユニット)を基準として設定されている干渉リミットラインCL2(第1干渉リミットライン)が、図8(C)に示すように、ウェハカメラ32(一方ユニット)を基準とした干渉リミットラインCL1(第2干渉リミットライン)に更新される。その後、ウェハカメラ32は、所要の撮像動作を行う。ヘッドユニット4は、干渉リミットラインCL1を+Y側へ超過しない範囲で、実装動作を行う、若しくは待機する。なお、ヘッドユニット4が干渉リミットラインCL1を超過しない範囲にあれば、前記追加退避移動は行われない。ウェハカメラ32の撮像動作が完了したら、図8(D)に示すように、ウェハカメラ32は干渉エリアCAから退避移動する一方で、ヘッドユニット4が干渉エリアCAへ進入移動する。この状態は、図6(C)と同じである。 In this case, the interference limit line CL2 (first interference limit line) set with reference to the head unit 4 (the other unit) in FIG. 8A is changed to the wafer camera 32 ( unit) is updated to the interference limit line CL1 (second interference limit line). After that, the wafer camera 32 performs a required imaging operation. The head unit 4 performs the mounting operation or waits within a range that does not exceed the interference limit line CL1 to the +Y side. If the head unit 4 is within a range that does not exceed the interference limit line CL1, the additional retraction movement is not performed. When the imaging operation of the wafer camera 32 is completed, the wafer camera 32 retreats from the interference area CA while the head unit 4 moves into the interference area CA, as shown in FIG. 8(D). This state is the same as in FIG. 6(C).
 [部品実装処理のフロー]
 続いて、図9及び図10のフローチャートに基づいて、図6~図8で説明したカメラユニット32U及びヘッドユニット4の進入移動及び退避移動を伴う、部品実装装置1による部品実装動作を説明する。制御部20(図3)は、ウェハステージ10のウェハ7から、今回及び次回のターンでヘッドユニット4のヘッド4Hに吸着させるダイ7aの群であるダイ吸着グループのデータを作成する(ステップS1)。なお、部品実装装置1の初動ターンのみ、今回及び次回のダイ吸着グループデータが作成され、2ターン目以降は次回分だけが作成される。
[Part mounting process flow]
9 and 10, the component mounting operation by the component mounting apparatus 1, which accompanies the approaching movement and retracting movement of the camera unit 32U and the head unit 4 described with reference to FIGS. 6 to 8, will be described. The control unit 20 (FIG. 3) creates data of a die pickup group, which is a group of dies 7a to be picked up by the head 4H of the head unit 4 in the current and next turn, from the wafer 7 on the wafer stage 10 (step S1). . Incidentally, only the first turn of the component mounting apparatus 1, the current and next die adsorption group data are created, and from the second turn onward, only the next data are created.
 ウェハカメラ32(カメラユニット32U)側の動作に関し、軸制御部22は、図6(A)に例示したように、ウェハカメラ32を基準とした干渉リミットラインCL1を設定する(ステップS2)。次いで軸制御部22は、第2Y軸サーボモータ34及び第2X軸サーボモータ38を駆動して、干渉エリアCAにウェハカメラ32を進入移動させる(ステップS3)。詳しくは、今回のターンで吸着するダイ吸着グループが撮像視野に入る位置に、ウェハカメラ32が移動される。なお、干渉リミットラインCL1の設定に併せて軸制御部22は、第1Y軸サーボモータ14によるヘッドユニット4の+Y側の移動範囲を、干渉リミットラインCL1又はその近傍に規制するフラグを設定する。 Regarding the operation of the wafer camera 32 (camera unit 32U), the axis control unit 22 sets an interference limit line CL1 with the wafer camera 32 as a reference, as illustrated in FIG. 6A (step S2). Next, the axis controller 22 drives the second Y-axis servomotor 34 and the second X-axis servomotor 38 to move the wafer camera 32 into the interference area CA (step S3). Specifically, the wafer camera 32 is moved to a position where the die pickup group to be picked up in the current turn enters the imaging field of view. Along with the setting of the interference limit line CL1, the axis control unit 22 sets a flag that restricts the moving range of the head unit 4 on the +Y side by the first Y-axis servomotor 14 to the interference limit line CL1 or its vicinity.
 続いて、撮像制御部23がウェハカメラ32に、ウェハ7の撮像動作を実行させる(ステップS4)。取得された画像に対し、画像処理部24が所定の画像処理を実行する。画像処理部24は、今回の撮像視野内において存在する吸着対象のダイ7aの良否認識及びそのダイ7aの座標認識を行う(ステップS5)。 Subsequently, the imaging control unit 23 causes the wafer camera 32 to perform the imaging operation of the wafer 7 (step S4). The image processing unit 24 performs predetermined image processing on the acquired image. The image processing unit 24 recognizes the quality of the die 7a to be sucked existing within the current imaging field and recognizes the coordinates of the die 7a (step S5).
 軸制御部22は、今回のターンでの認識対象とするダイ7aが他に存在するか否かを判定する(ステップS6)。これは、ウェハカメラ32の撮像視野が狭く、一度の撮像で認識対象とするダイ7aの全てをカバーできない場合があるからである。認識対象とするダイ7aが残存している場合(ステップS6でNO)、軸制御部22は、第1Y軸サーボモータ14及び第1X軸サーボモータ18を駆動して、前記残存するダイ7aの上空にヘッドユニット4を移動させる(ステップS3に戻る)。他の認識対象のダイ7aが残存していない場合(ステップS6でYES)、軸制御部22は、ウェハカメラ32を干渉エリアCAから退避移動させる(ステップS7)。 The axis control unit 22 determines whether or not there are other dies 7a to be recognized in this turn (step S6). This is because the field of view of the wafer camera 32 is so narrow that it may not be possible to cover all of the dies 7a to be recognized in one shot. When the die 7a to be recognized remains (NO in step S6), the axis control unit 22 drives the first Y-axis servomotor 14 and the first X-axis servomotor 18 to move the die 7a above the remaining die 7a. (return to step S3). If there is no other die 7a to be recognized (YES in step S6), the axis control unit 22 retracts the wafer camera 32 from the interference area CA (step S7).
 ヘッドユニット4側の動作に関し、軸制御部22は、干渉エリアCA内にウェハカメラ32(一方ユニット)が存在しているか否かを確認する(ステップS11)。ウェハカメラ32が存在している場合(ステップS11でYES)、つまりウェハカメラ32が撮像動作(所要の動作)を実行している場合、軸制御部22は、第1Y軸サーボモータ14を駆動して、ヘッドユニット4(他方ユニット)を干渉リミットラインCL1又はその近傍まで移動させ、待機させる(ステップS12/図6(B)参照)。 Regarding the operation on the side of the head unit 4, the axis control section 22 confirms whether or not the wafer camera 32 (one unit) exists within the interference area CA (step S11). If the wafer camera 32 exists (YES in step S11), that is, if the wafer camera 32 is performing an imaging operation (required operation), the axis control unit 22 drives the first Y-axis servo motor 14. Then, the head unit 4 (the other unit) is moved to or near the interference limit line CL1 and waited (step S12/see FIG. 6B).
 その後、軸制御部22は、ウェハカメラ32の干渉エリアCAからの退避移動が開始されたか否かを確認する(ステップS13)。ウェハカメラ32が退避移動を開始しない場合(ステップS13でNO)、ヘッドユニット4は待機状態となる。一方、ウェハカメラ32が退避移動を開始する場合(ステップS13でYES)、軸制御部22は、認識されたダイ7aのピッキングのため、ヘッドユニット4を干渉エリアCAへ進入移動させる(ステップS14)。 After that, the axis control unit 22 confirms whether or not the retraction movement of the wafer camera 32 from the interference area CA has started (step S13). When the wafer camera 32 does not start the retraction movement (NO in step S13), the head unit 4 is in a standby state. On the other hand, when the wafer camera 32 starts retracting movement (YES in step S13), the axis control unit 22 moves the head unit 4 into the interference area CA for picking the recognized die 7a (step S14). .
 この場合、図6(C)に示すように、ステップS7におけるウェハカメラ32の退避移動と、ステップS14におけるヘッドユニット4の進入移動とが、同期して実行される。ここでの「同期」とは、典型的には前記退避移動と前記進入移動とが、同じタイミングで同一加速度、同一移動速度で実行される場合であるが、本実施形態ではこれに限らない。前記退避移動と前記進入移動とが、一部重複する期間に、異なる加速度、移動速度で実行される場合も「同期」に包含される。なお、ステップS11においてウェハカメラ32が既に干渉エリアCAから退避している場合は(ステップS11でNO)、軸制御部22はヘッドユニット4を、待機させることなく干渉エリアCAへ進入移動させる。 In this case, as shown in FIG. 6(C), the retreat movement of the wafer camera 32 in step S7 and the entrance movement of the head unit 4 in step S14 are executed in synchronization. Here, "synchronization" typically means that the retraction movement and the entry movement are performed at the same timing, at the same acceleration, and at the same movement speed, but this embodiment is not limited to this. "Synchronization" also includes the case where the retraction movement and the entry movement are executed at different accelerations and movement speeds during periods in which they partially overlap. If the wafer camera 32 has already left the interference area CA in step S11 (NO in step S11), the axis controller 22 moves the head unit 4 into the interference area CA without waiting.
 その後、軸制御部22は、第1Y軸サーボモータ14及び第1X軸サーボモータ18に加えて、Z軸サーボモータ401及びR軸サーボモータ402を駆動して、ヘッド4Hにダイ7aを吸着するピッキング動作を実行させる(ステップS15)。続いて、撮像制御部23が部品認識カメラ30を動作させて、ヘッド4Hに吸着されたダイ7aを撮像する。撮像された画像に基づき、画像処理部24がダイ7aの吸着ミス等を検出する認識処理を実行する(ステップS16)。そして、基板PのフェデューシャルマークFidの認識処理を実行するシーケンスが存在するか否かが確認される(ステップS17)。シーケンスに組み込まれている場合(ステップS17でYES)、撮像制御部23は基板認識カメラ31にフェデューシャルマークFidを撮像させる(ステップS18)。この撮像で取得された画像に基づいて、基板Pの位置認識が為される。 After that, the axis control unit 22 drives the Z-axis servomotor 401 and the R-axis servomotor 402 in addition to the first Y-axis servomotor 14 and the first X-axis servomotor 18, thereby performing a picking operation in which the die 7a is attracted to the head 4H. The operation is executed (step S15). Subsequently, the imaging control unit 23 operates the component recognition camera 30 to image the die 7a attracted to the head 4H. Based on the captured image, the image processing unit 24 executes a recognition process for detecting a sucking error of the die 7a (step S16). Then, it is confirmed whether or not there is a sequence for executing the recognition process of the feducial mark Fid of the substrate P (step S17). If it is included in the sequence (YES in step S17), the imaging control unit 23 causes the board recognition camera 31 to image the feducial mark Fid (step S18). The position of the substrate P is recognized based on the image acquired by this imaging.
 図10を参照して、次に軸制御部22は、ヘッド4Hに吸着されたダイ7aの基板Pへの搭載位置に、ヘッドユニット4を移動させる(ステップS21)。移動後、軸制御部22は、ヘッドユニット4を基準とした干渉リミットラインCL2を設定する(ステップS22/図6(D)参照)。なお、干渉リミットラインCL2の設定に併せて軸制御部22は、第2Y軸サーボモータ34によるウェハカメラ32の-Y側の移動範囲を、干渉リミットラインCL2又はその近傍に規制するフラグを設定する。 Referring to FIG. 10, the axis control section 22 next moves the head unit 4 to the position where the die 7a sucked by the head 4H is mounted on the substrate P (step S21). After the movement, the axis control section 22 sets the interference limit line CL2 with the head unit 4 as a reference (step S22/see FIG. 6(D)). Along with the setting of the interference limit line CL2, the axis control unit 22 sets a flag that restricts the −Y side movement range of the wafer camera 32 by the second Y-axis servomotor 34 to the interference limit line CL2 or its vicinity. .
 続いて軸制御部22は、Z軸サーボモータ401を駆動してヘッド4Hを下降させ、吸着しているダイ7aを基板Pへ搭載させる(ステップS23)。その後、今回のターンで吸着したダイ7aの全ての基板Pへの搭載が完了したか否かが確認され(ステップS24)、未完了の場合(ステップS24でNO)、ステップS21に戻る。一方、搭載が完了した場合(ステップS24でYES)、ウェハカメラ32が干渉回避のために待機中であるか否かが確認される(ステップS25)。干渉回避待ちではない場合(ステップS25でNO)、ステップS1に戻り、次のターンのピッキング動作に移行する。 Subsequently, the axis control unit 22 drives the Z-axis servomotor 401 to lower the head 4H and mount the sucked die 7a on the substrate P (step S23). After that, it is checked whether or not the mounting of all the dies 7a sucked in this turn on the substrates P has been completed (step S24), and if not completed (NO in step S24), the process returns to step S21. On the other hand, if the mounting is completed (YES in step S24), it is checked whether the wafer camera 32 is on standby to avoid interference (step S25). If it is not waiting for interference avoidance (NO in step S25), the process returns to step S1 and shifts to the picking operation of the next turn.
 ヘッドユニット4側のステップS21~S25の動作に並行して、ウェハカメラ32側では、次のターンでピッキング対象となるダイ7aの認識処理が実行される。まず、軸制御部22は、次ターンの認識処理での撮像位置が、ステップS22で設定された干渉リミットラインCL2を超過しない位置であるか否かを確認する(ステップS31)。干渉リミットラインCL2を超過しない撮像位置である場合(ステップS31でYES)、軸制御部22は、ウェハカメラ32を当該撮像位置へ移動させる(ステップS32)。このステップS32におけるウェハカメラ32の移動(干渉エリアCAへの進入移動)と、先述のステップS21のヘッドユニット4の移動(干渉エリアCAからの退避移動)とは、図7(D)に示すように、同期して実行させることができる。 In parallel with the operations of steps S21 to S25 on the head unit 4 side, on the wafer camera 32 side, recognition processing of the die 7a to be picked in the next turn is executed. First, the axis control unit 22 confirms whether or not the imaging position in the next turn recognition process is a position that does not exceed the interference limit line CL2 set in step S22 (step S31). If the imaging position does not exceed the interference limit line CL2 (YES in step S31), the axis control unit 22 moves the wafer camera 32 to the imaging position (step S32). The movement of the wafer camera 32 in step S32 (movement into the interference area CA) and the movement of the head unit 4 in step S21 (retraction movement from the interference area CA) are as shown in FIG. 7(D). can be run synchronously.
 撮像位置へ移動後、撮像制御部23がウェハカメラ32に、ウェハ7の撮像動作を実行させる(ステップS33)。取得された画像に基づき、画像処理部24がダイ7aの認識処理を行う(ステップS34)。その後、今回のターンでの認識対象とするダイ7aが残存しているか否かが確認される(ステップS35)。これらステップS33~S35の動作は、先述のステップS4~S6と同様である。 After moving to the imaging position, the imaging control unit 23 causes the wafer camera 32 to perform imaging operation of the wafer 7 (step S33). Based on the acquired image, the image processing unit 24 performs recognition processing of the die 7a (step S34). After that, it is checked whether or not the die 7a to be recognized in the current turn remains (step S35). The operations of steps S33 to S35 are the same as those of steps S4 to S6 described above.
 認識対象のダイ7aが残存していない場合(ステップS35でYES)、軸制御部22はウェハカメラ32を干渉エリアCAから退避移動させる(ステップS7)。その後、ステップS1に戻る。これに対し、認識対象のダイ7aが残存している場合(ステップS35でNO)、ステップS31に戻って処理が繰り返される。一方、ステップS31において、撮像位置が干渉リミットラインCL2を超過する撮像位置である場合(ステップS31でNO)、軸制御部22はウェハカメラ32を干渉リミットラインCL2又はその近傍まで移動させ(ステップS36)、待機させる。 When the recognition target die 7a does not remain (YES in step S35), the axis control unit 22 retracts the wafer camera 32 from the interference area CA (step S7). After that, the process returns to step S1. On the other hand, if the die 7a to be recognized remains (NO in step S35), the process returns to step S31 and the process is repeated. On the other hand, in step S31, if the imaging position exceeds the interference limit line CL2 (NO in step S31), the axis control unit 22 moves the wafer camera 32 to or near the interference limit line CL2 (step S36). ), wait.
 ヘッドユニット4側の処理に戻り、ウェハカメラ32が干渉回避待ちの状態である場合(ステップS25でYES)、軸制御部22は、ウェハカメラ32との干渉を回避できるよう、ヘッドユニット4を退避移動させる(ステップS26)。そして、現状の干渉リミットラインCL2が、ウェハカメラ32を基準とする新たな干渉リミットラインCL1に更新される(ステップS27)。 Returning to the processing on the side of the head unit 4, if the wafer camera 32 is waiting for interference avoidance (YES in step S25), the axis control unit 22 retracts the head unit 4 so as to avoid interference with the wafer camera 32. Move (step S26). Then, the current interference limit line CL2 is updated to a new interference limit line CL1 based on the wafer camera 32 (step S27).
 ここでのヘッドユニット4の退避移動としては、単純にヘッドユニット4を干渉エリアCAから退避させる移動、若しくは、図8(C)に示したような、ウェハカメラ32の作業領域に応じた追加退避移動を例示することができる。すなわち、ウェハカメラ32(一方ユニット)が干渉エリアCA内の所定位置(第1位置)で撮像動作を実行させることを想定して設定されている干渉リミットラインCL2(第1干渉リミットライン)を、干渉エリアCA内の異なる位置(第2位置)で撮像動作を実行させることを想定する干渉リミットラインCL1(第2干渉リミットライン)に更新する。そして、ヘッドユニット4を干渉リミットラインCL1又はその近傍で待機させる(ステップS12)。このように、干渉リミットラインCLをフレキシブルに変更することで、ウェハカメラ32の干渉エリアCA内における作業態様に応じて、最適な干渉リミットラインCLを設定することができる。 The retraction movement of the head unit 4 here may be a simple retraction movement of the head unit 4 from the interference area CA, or an additional retraction according to the work area of the wafer camera 32 as shown in FIG. 8(C). Movement can be exemplified. That is, the interference limit line CL2 (first interference limit line) set on the assumption that the wafer camera 32 (one unit) performs an imaging operation at a predetermined position (first position) within the interference area CA is The interference limit line CL1 (second interference limit line) is updated assuming that the imaging operation is performed at a different position (second position) within the interference area CA. Then, the head unit 4 is made to wait at or near the interference limit line CL1 (step S12). By flexibly changing the interference limit line CL in this manner, the optimum interference limit line CL can be set according to the working mode in the interference area CA of the wafer camera 32 .
 [ヘッドユニット及びカメラユニットの移動制御例]
 続いて、ヘッドユニット4及びウェハカメラ32(カメラユニット32U)の具体的な移動制御例について説明する。上述の通り、本実施形態では、ヘッドユニット4及びウェハカメラ32のいずれか一方ユニットの干渉エリアCAからの退避移動と、他方ユニットの干渉エリアCAへの進入移動とが、互いに重複する期間内に実行されることがある。この場合、ヘッドユニット4とウェハカメラ32とが互いに干渉しないよう、その反面、タクトロスを可及的に抑制できるよう、軸制御部22は前記退避移動及び前記進入移動の各々の加速度及び移動速度を設定する。以下、前記移動制御の各種の態様を例示する。
[Example of movement control of head unit and camera unit]
Next, a specific movement control example of the head unit 4 and wafer camera 32 (camera unit 32U) will be described. As described above, in the present embodiment, one of the head unit 4 and the wafer camera 32 retreats from the interference area CA and moves the other unit into the interference area CA within a period of overlap. may be executed. In this case, the axis control unit 22 controls the acceleration and movement speed of each of the retraction movement and the entry movement so that the head unit 4 and the wafer camera 32 do not interfere with each other and, on the other hand, the tact loss can be suppressed as much as possible. set. Various aspects of the movement control are exemplified below.
 <移動制御の第1実施形態>
 図11(A)~(C)は、第1実施形態におけるヘッドユニット4及びウェハカメラ32の移動制御を示す図である。ここでは、図11(A)に示すように、ウェハカメラ32が干渉エリアCAから退避移動する側(逃げる側)で、ヘッドユニット4が干渉エリアCAへの進入移動する側(追う側)である場合を例示する。既述の通り、ヘッドユニット4は第1駆動機構D1でXY方向に移動され、カメラユニット32Uは第1駆動機構D1から独立した第2駆動機構D2でXY方向に移動される。両駆動機構D1、D2によるユニット移動能力(加速度及び最高移動速度)は異なるため、同期的にヘッドユニット4とカメラユニット32Uを移動させる場合、両ユニットに干渉が生じ得る。すなわち、一方ユニットの加速度及び最高移動速度が速すぎる(遅すぎる)と、遅すぎる(速すぎる)他方ユニットと衝突が生じ得る。
<First Embodiment of Movement Control>
11A to 11C are diagrams showing movement control of the head unit 4 and wafer camera 32 in the first embodiment. Here, as shown in FIG. 11A, the wafer camera 32 is on the side (escape side) from the interference area CA, and the head unit 4 is on the side (chasing side) to enter the interference area CA. Illustrate the case. As described above, the head unit 4 is moved in the XY directions by the first drive mechanism D1, and the camera unit 32U is moved in the XY directions by the second drive mechanism D2 independent of the first drive mechanism D1. Since the drive mechanisms D1 and D2 have different unit movement capabilities (acceleration and maximum movement speed), when the head unit 4 and the camera unit 32U are moved synchronously, interference may occur between the two units. That is, if the acceleration and maximum movement speed of one unit are too fast (too slow), it may collide with the other unit that is too slow (too fast).
 第1実施形態では、ウェハカメラ32の干渉エリアCAからの退避移動と、ヘッドユニット4の干渉エリアCAへの進入移動とが、同一の加速度及び移動速度に設定される例を示す。図11(B)は、ウェハカメラ32及びヘッドユニット4の移動位置と時間との関係を示すグラフであって、ウェハカメラ32の軸移動軌跡F11及びヘッドユニット4の軸移動軌跡F21が示されている。当該グラフにおいて、縦軸の増加方向は、-Y側から+Y側へ向かう方向である。 In the first embodiment, an example is shown in which the retreating movement of the wafer camera 32 from the interference area CA and the entering movement of the head unit 4 into the interference area CA are set to the same acceleration and movement speed. FIG. 11B is a graph showing the relationship between the movement positions of the wafer camera 32 and the head unit 4 and time, showing the axial movement trajectory F11 of the wafer camera 32 and the axial movement trajectory F21 of the head unit 4. there is In the graph, the increasing direction of the vertical axis is the direction from the -Y side to the +Y side.
 軸移動軌跡F11において時刻t11は、逃げる側のウェハカメラ32が、干渉エリアCA内の進入位置p11から+Y側へ退避移動を開始する時刻である。また、時刻t12は、ウェハカメラ32が、干渉エリアCAから+Y側へ所定距離だけ離れた退避位置p12への退避移動を完了する時刻である。一方、軸移動軌跡F21において時刻t21は、追う側のヘッドユニット4が、干渉エリアCAの-Y側の退避位置p21から+Y側への進入移動を開始する時刻である。ここでは、t21がt11よりも遅い時刻である例を示しているが、t21=t11としても良い。また、時刻t22は、ヘッドユニット4が、退避位置p21から干渉エリアCA内の進入位置p22への進入移動を完了する時刻である。このように、同一の加速度及び移動速度で移動する軸移動軌跡F11、F21にてウェハカメラ32及びヘッドユニット4を移動させれば、両ユニットの干渉を確実に回避することができる。 Time t11 in the axis movement trajectory F11 is the time when the wafer camera 32 on the escape side starts retracting movement from the entry position p11 in the interference area CA to the +Y side. Time t12 is the time at which wafer camera 32 completes retraction movement to retraction position p12, which is a predetermined distance away from interference area CA to the +Y side. On the other hand, in the axial movement locus F21, the time t21 is the time when the head unit 4 on the chasing side starts entering movement from the retracted position p21 on the -Y side of the interference area CA to the +Y side. Here, an example is shown in which t21 is later than t11, but t21=t11 may be set. Further, time t22 is the time when the head unit 4 completes the entry movement from the retreat position p21 to the entry position p22 in the interference area CA. Thus, by moving the wafer camera 32 and the head unit 4 along the axial movement trajectories F11 and F21 that move at the same acceleration and movement speed, it is possible to reliably avoid interference between the two units.
 一般に、カメラユニット32Uに比べてヘッドユニット4の方が重い構造物である。このため、第1駆動機構D1として、第2駆動機構D2よりも高いユニット移動能力を具備する機構が採用される。つまり、ヘッドユニット4の方がカメラユニット32Uよりも速い加速度及び移動速度で移動可能である。従って、追う側のヘッドユニット4が本来の加速度及び移動速度で移動する軸移動軌跡Fmaxで移動されると、逃げる側のカメラユニット32Uに干渉することがある。 In general, the head unit 4 is a heavier structure than the camera unit 32U. Therefore, as the first drive mechanism D1, a mechanism having a higher unit movement capability than the second drive mechanism D2 is adopted. That is, the head unit 4 can move at a faster acceleration and moving speed than the camera unit 32U. Therefore, when the head unit 4 on the chasing side is moved along the axis movement locus Fmax that moves at the original acceleration and movement speed, it may interfere with the camera unit 32U on the escaping side.
 上記の干渉を防止するために、第2駆動機構D2によるカメラユニット32Uの移動の際の加速度及び移動速度が、予め記憶部25(図3)に記憶される。そして、前記退避移動及び前記進入移動が重複する期間内に実行して行われる場合、軸制御部22はカメラユニット32Uの加速度及び移動速度を記憶部25から取得して、第1駆動機構D1によるヘッドユニット4の軸移動パラメータを設定する。 In order to prevent the above interference, the acceleration and movement speed when the camera unit 32U is moved by the second drive mechanism D2 are stored in advance in the storage section 25 (FIG. 3). Then, when the retraction movement and the entry movement are executed within an overlapping period, the axis control section 22 acquires the acceleration and movement speed of the camera unit 32U from the storage section 25, and Set the axis movement parameters of the head unit 4.
 図11(C)を参照して、第1駆動機構D1がヘッドユニット4を、本来は加速度a1及び移動速度v1で移動させるユニット移動能力を具備しているとする。この場合、図11(C)に示す速度変化グラフで囲まれる面積SAがヘッドユニット4の移動距離となる。つまり、移動距離は次式で表される。
  移動距離=v1・(加速時間/2+一定速度時間+減速時間/2)
 上記の一定速度時間は、一定移動速度v1でヘッドユニット4が移動する期間である。減速度が加速度a1と同一であるとすると、
  移動距離=v1・(加速時間+一定速度時間)
で表される。
Referring to FIG. 11(C), it is assumed that the first drive mechanism D1 originally has the unit movement capability to move the head unit 4 at the acceleration a1 and the movement speed v1. In this case, the moving distance of the head unit 4 is the area SA surrounded by the velocity change graph shown in FIG. That is, the moving distance is represented by the following equation.
Movement distance = v1 (acceleration time/2 + constant speed time + deceleration time/2)
The above constant speed time is a period during which the head unit 4 moves at a constant moving speed v1. Assuming that the deceleration is the same as the acceleration a1,
Movement distance = v1 (acceleration time + constant speed time)
is represented by
 一方、第2駆動機構D2がカメラユニット32Uを、加速度a2及び移動速度v2で移動させるユニット移動能力を具備しているとする(a1>a2、v1>v2)。この場合、ヘッドユニット4の軸移動パラメータが、カメラユニット32Uの軸移動パラメータと同一の加速度a2及び移動速度v2に減速設定される。但し、前記減速設定の分だけ移動時間を長くし、その面積SBが本来の軸移動パラメータによる面積SAと同一とする。このような減速設定により、ヘッドユニット4とカメラユニット32Uとが、同一の加速度及び移動速度で移動することとなり、両ユニットの干渉を確実に回避できる。なお、追う側のヘッドユニット4の移動速度を、逃げる側のカメラユニット32Uの移動速度v2よりも遅く設定しても良い。 On the other hand, it is assumed that the second drive mechanism D2 has a unit movement capability to move the camera unit 32U at an acceleration a2 and a movement speed v2 (a1>a2, v1>v2). In this case, the axial movement parameters of the head unit 4 are set to the same acceleration a2 and movement speed v2 as the axial movement parameters of the camera unit 32U. However, the movement time is lengthened by the deceleration setting, and the area SB is the same as the area SA based on the original axis movement parameter. With such a deceleration setting, the head unit 4 and the camera unit 32U move at the same acceleration and movement speed, thereby reliably avoiding interference between the two units. The moving speed of the head unit 4 on the chasing side may be set slower than the moving speed v2 of the camera unit 32U on the escaping side.
 <移動制御の第2実施形態>
 第2実施形態では、追う側のヘッドユニット4が、逃げる側のウェハカメラ32に干渉しない限りにおいて、最速の加速度及び移動速度で移動する例を示す。図12は、第2実施形態におけるヘッドユニット4及びウェハカメラ32の移動制御を示すグラフである。第1実施形態では、ウェハカメラ32の軸移動軌跡F11とヘッドユニット4の軸移動軌跡F21とが、同一の加速度及び移動速度で形成される例を示した。これに対し第2実施形態では、追う側のヘッドユニット4の加速度及び移動速度が、軸移動軌跡F11に最接近する最速軸移動軌跡F22を取るように設定される。但し、最接近とはいえども、駆動誤差等を見込んで、軸移動軌跡F11と最速軸移動軌跡F22との間には最小限のマージンMaが設定される。
<Second Embodiment of Movement Control>
The second embodiment shows an example in which the head unit 4 on the chasing side moves at the fastest acceleration and movement speed as long as it does not interfere with the wafer camera 32 on the escaping side. FIG. 12 is a graph showing movement control of the head unit 4 and wafer camera 32 in the second embodiment. In the first embodiment, an example in which the axial movement trajectory F11 of the wafer camera 32 and the axial movement trajectory F21 of the head unit 4 are formed with the same acceleration and movement speed was shown. On the other hand, in the second embodiment, the acceleration and movement speed of the head unit 4 on the chasing side are set so as to take the fastest axis movement trajectory F22 closest to the axis movement trajectory F11. However, even with the closest approach, a minimum margin Ma is set between the axis movement trajectory F11 and the fastest axis movement trajectory F22 in consideration of driving errors and the like.
 軸制御部22が、逃げる側のウェハカメラ32(一方ユニット)について、例えば図11(C)に例示したように、加速度a2(第1加速度)及び移動速度v2(第1移動速度)に設定し、軸移動軌跡F11に沿って移動させる場合を想定する。同じ加速度a2及び移動速度v2でヘッドユニット4(他方ユニット)を移動させると、軸移動軌跡F21を形成する。しかし、軸移動軌跡F11、F21間には距離を詰める余裕がある。そこで、軸制御部22は、ウェハカメラ32に対して干渉せず、且つ、マージンMaを見込んだ範囲における、最速の加速度a3(第2加速度)及び移動速度v3(第2移動速度)を設定して、ヘッドユニット4を移動させる(a1>a3>a2、v1>v3>v2)。 Axis control unit 22 sets acceleration a2 (first acceleration) and movement speed v2 (first movement speed) for wafer camera 32 (one unit) on the escape side, as illustrated in FIG. 11C, for example. , along the axis movement locus F11. When the head unit 4 (the other unit) is moved at the same acceleration a2 and movement speed v2, an axis movement trajectory F21 is formed. However, there is room to shorten the distance between the axis movement trajectories F11 and F21. Therefore, the axis control unit 22 sets the fastest acceleration a3 (second acceleration) and movement speed v3 (second movement speed) within a range that does not interfere with the wafer camera 32 and allows for the margin Ma. to move the head unit 4 (a1>a3>a2, v1>v3>v2).
 具体的には軸制御部22は、ウェハカメラ32が干渉エリアCAから退避移動を行う際に設定されている加速度及び移動速度を、記憶部25から取得する。さらに、軸制御部22は、ヘッドユニット4及びウェハカメラ32の現在位置情報及び移動目標位置情報を示すXY座標値を取得する。図12の例では、現在位置は、時刻t11におけるウェハカメラ32の進入位置p11及びヘッドユニット4の退避位置p21である。ウェハカメラ32の移動目標位置は退避位置p12、ヘッドユニット4の移動目標位置は進入位置p22である。これらの情報を参照して、軸制御部22は、ウェハカメラ32に対して干渉はしないが最接近するヘッドユニット4の加速度a3及び移動速度v3を算出する。このような加速度a3及び移動速度v3にてヘッドユニット4を干渉エリアCAへ進入移動させることで、タクトロスを極限まで削減することができる。 Specifically, the axis control unit 22 acquires from the storage unit 25 the acceleration and movement speed that are set when the wafer camera 32 moves away from the interference area CA. Further, the axis control unit 22 acquires XY coordinate values indicating current position information and movement target position information of the head unit 4 and wafer camera 32 . In the example of FIG. 12, the current position is the entry position p11 of the wafer camera 32 and the retreat position p21 of the head unit 4 at time t11. The movement target position of the wafer camera 32 is the retreat position p12, and the movement target position of the head unit 4 is the entry position p22. With reference to these pieces of information, the axis control unit 22 calculates the acceleration a3 and the movement speed v3 of the head unit 4 that does not interfere with the wafer camera 32 but is closest to it. By moving the head unit 4 into the interference area CA at such acceleration a3 and movement speed v3, the tact loss can be reduced to the utmost limit.
 図13(A)~(C)は、第2実施形態におけるヘッドユニット4及びウェハカメラ32の移動速度設定を説明するための図である。図13(A)に示すように、進入位置p11に存在していたウェハカメラ32が退避位置p12へ退避移動し、ヘッドユニット4が干渉エリアCA内へ進入移動するケースを想定する。図中の位置p13は、今回のピッキング動作を実行するヘッドユニット4の進入位置に対して、干渉が生じるリミットラインの位置を示している。 FIGS. 13A to 13C are diagrams for explaining the movement speed setting of the head unit 4 and wafer camera 32 in the second embodiment. As shown in FIG. 13A, it is assumed that the wafer camera 32 that has been at the entry position p11 is retracted to the retraction position p12 and the head unit 4 is moved into the interference area CA. A position p13 in the drawing indicates the position of the limit line that interferes with the entry position of the head unit 4 that performs the current picking operation.
 図13(B)は、逃げる側のウェハカメラ32の移動速度と時間との関係を示すグラフである。ウェハカメラ32は、時刻T0から退避移動を開始し、加速度anで加速し、加速完了時刻T1より第2駆動機構D2が発生可能な最高速度V1の一定速度で退避移動を行うものとする。現在時刻t、つまり追う側のヘッドユニット4が進入移動を開始する時刻は、加速期間中において現在速度Vtでウェハカメラ32が移動している時刻とする。時刻T2は、ウェハカメラ32が今回のヘッドユニット4の進入位置に対する干渉ライン(図13(A)の位置p13)を抜ける時刻である。なお、時刻T2より手前の時刻Trは、追う側のヘッドユニット4が減速を開始する減速開始時刻Trである。なお、図13(B)に示されているS1、S2、S3、Sxは、次の説明では単純に距離を表すように説明しているが、実際は時間と速度との乗算からなる面積を示している。 FIG. 13(B) is a graph showing the relationship between the movement speed of the wafer camera 32 on the fleeing side and time. The wafer camera 32 starts retracting from time T0, accelerates at an acceleration an, and retracts at a constant maximum speed V1 that can be generated by the second drive mechanism D2 from acceleration completion time T1. The current time t, that is, the time when the head unit 4 on the chasing side starts moving in, is the time when the wafer camera 32 is moving at the current speed Vt during the acceleration period. Time T2 is the time when the wafer camera 32 exits the interference line (position p13 in FIG. 13A) with respect to the entry position of the head unit 4 this time. Note that the time Tr before the time T2 is the deceleration start time Tr at which the chasing head unit 4 starts decelerating. In the following description, S1, S2, S3, and Sx shown in FIG. 13(B) are explained as if they simply represent distances, but actually represent areas formed by multiplying time and velocity. ing.
 ウェハカメラ32の、現在時刻tの位置からの残り加速距離S1と、加速完了後、ウェハカメラ32が一定速度で移動する一定速距離S2と、時刻T0から加速完了までの時間に相当する加速完了時刻T1とは、次式で表される。
  S1=(0.5(V1+Vt))・(T1-t)
  S2=V1・(T2-T1)
  T1=V1/an
The remaining acceleration distance S1 of the wafer camera 32 from the position at the current time t, the constant speed distance S2 over which the wafer camera 32 moves at a constant speed after the completion of acceleration, and the completion of acceleration corresponding to the time from time T0 to the completion of acceleration. Time T1 is represented by the following equation.
S1=(0.5(V1+Vt))・(T1−t)
S2=V1.(T2-T1)
T1=V1/an
 また、ウェハカメラ32が、退避移動の開始位置(時刻T0)から前記干渉ラインを抜ける位置p13までの距離S3と、時刻T0から前記干渉ラインを抜けるまでの時間に相当する時刻T2と、現在時刻tから前記干渉ラインを抜けるまでの時間Txとは、次式で表される。
  S3=0.5(V1・T1)+V1・(T2-T1)
    =-0.5(V1・T1)+V1・T2
  T2=(S3+0.5(V1・T1))/V1
  Tx=T2-t
Further, the distance S3 from the start position (time T0) of the retraction movement to the position p13 where the wafer camera 32 exits the interference line, the time T2 corresponding to the time from the time T0 to exiting the interference line, and the current time The time Tx from t to passing through the interference line is expressed by the following equation.
S3=0.5(V1.T1)+V1.(T2-T1)
=-0.5(V1・T1)+V1・T2
T2=(S3+0.5(V1T1))/V1
Tx = T2-t
 図13(C)は、追う側のヘッドユニット4の移動速度の設定状況を示すグラフである。ヘッドユニット4は、現在時刻tから、加速期間Ta、一定速度で移動する一定速期間Tc、及び減速期間Tdを具備するように移動される。なお、Vmaxは、第1駆動機構D1でヘッドユニット4を最も速く移動させ得る最高移動速度を示す。 FIG. 13(C) is a graph showing the settings of the moving speed of the head unit 4 on the chasing side. The head unit 4 is moved so as to have an acceleration period Ta, a constant speed period Tc in which it moves at a constant speed, and a deceleration period Td from the current time t. Vmax indicates the maximum moving speed at which the head unit 4 can be moved fastest by the first drive mechanism D1.
 先ず、現在時刻tからヘッドユニット4を最高移動速度Vmaxで移動させてもウェハカメラ32との干渉が生じない場合は、退避移動と進入移動とが同期的に行われる場合であっても、ヘッドユニット4の減速制御は不要となる。減速制御が不要な条件は、ウェハカメラ32が現在位置p11から干渉ラインの位置p13を抜けるまでの距離をSxとすると、次式を満たすことである。
  Sx-Td・V1>(Tc+0.5Ta)・Vmax ・・・(1)
 なお、Td・V1は、図13(B)において、減速開始時刻Trから干渉ラインを抜ける時刻T2までの面積SCに相当するウェハカメラ32の移動距離である。
First, if no interference with the wafer camera 32 occurs even if the head unit 4 is moved at the maximum moving speed Vmax from the current time t, even if the retraction movement and the entry movement are performed synchronously, the head Deceleration control of the unit 4 becomes unnecessary. A condition for not requiring deceleration control is to satisfy the following equation, where Sx is the distance from the current position p11 until the wafer camera 32 exits the position p13 of the interference line.
Sx−Td·V1>(Tc+0.5Ta)·Vmax (1)
Note that Td·V1 is the movement distance of the wafer camera 32 corresponding to the area SC from the deceleration start time Tr to the time T2 when the interference line is passed in FIG. 13B.
 ヘッドユニット4が減速を開始する減速開始時刻Trに、ヘッドユニット4がウェハカメラ32に最接近(マージンMaを介在した最接近でも良い)する状態となるヘッドユニット4の移動速度が、同期的な移動を行う場合において設定し得るヘッドユニット4の最速の移動速度となる。次式(2)を満たす場合、ヘッドユニット4を上記の最高移動速度Vmaxで進入移動を行わせることができる。
  0.5Td・Vmax<Td・V1 ・・・(2)
 なお、0.5Td・Vmaxは、図13(C)において、減速期間Tdの面積SDに相当するヘッドユニット4の移動距離である。
At the deceleration start time Tr at which the head unit 4 starts decelerating, the moving speed of the head unit 4 at which the head unit 4 comes closest to the wafer camera 32 (it may come closest to the wafer camera 32 with the margin Ma interposed) is synchronously adjusted. This is the fastest moving speed of the head unit 4 that can be set when moving. When the following expression (2) is satisfied, the head unit 4 can be moved into the above-described maximum movement speed Vmax.
0.5Td.Vmax<Td.V1 (2)
0.5Td·Vmax is the movement distance of the head unit 4 corresponding to the area SD of the deceleration period Td in FIG. 13(C).
 これに対し、上記の式(1)及び式(2)を満たさない場合、つまりヘッドユニット4を上記の最高移動速度Vmaxで進入移動させるとウェハカメラ32に干渉する場合、ヘッドユニット4の減速制御が必要となる。この場合、軸制御部22は、加速期間Ta及び減速期間Tdを固定して、一定速期間Tcの移動速度を下げ、干渉の生じない目標移動速度Vnを探知する。移動速度を下げることで、一定速期間Tcが増加する。Tcの増加分をΔTcとすると、
  ΔTc=0.5(Vmax-Vn)・(Ta+Td)
となる。そして、下記(3)式を満たす目標移動速度Vn、並びにVnを基準とする加減速度が、ウェハカメラ32に干渉しない範囲で最も速いヘッドユニット4の移動速度となる。
  Sx-0.5Td・Vn>(Tc+ΔTc+0.5Ta)・Vn ・・・(3)
 もちろん、目標移動速度Vnを、干渉が発生しないギリギリの範囲で設定するのではなく、所要のマージンMaを考慮した速度に設定しても良い。例えば、上記(3)式の不等号を等号に置き換えた次の(3A)式;
  Sx-0.5Td・Vn=(Tc+ΔTc+0.5Ta)・Vn ・・・(3A)
に基づき算出した速度Vnから、所定のマージンMa分を減算した速度を目標移動速度に設定することができる。
On the other hand, if the above equations (1) and (2) are not satisfied, that is, if the head unit 4 is moved at the maximum moving speed Vmax and the wafer camera 32 is interfered with, deceleration control of the head unit 4 is performed. Is required. In this case, the axis control unit 22 fixes the acceleration period Ta and the deceleration period Td, lowers the moving speed during the constant speed period Tc, and detects the target moving speed Vn that does not cause interference. Decreasing the moving speed increases the constant speed period Tc. Assuming that the increase in Tc is ΔTc,
ΔTc = 0.5 (Vmax-Vn) (Ta + Td)
becomes. Then, the target moving speed Vn that satisfies the following equation (3) and the acceleration/deceleration based on Vn are the fastest moving speed of the head unit 4 within a range that does not interfere with the wafer camera 32 .
Sx−0.5Td·Vn>(Tc+ΔTc+0.5Ta)·Vn (3)
Of course, the target moving speed Vn may be set to a speed considering a required margin Ma, instead of being set within the limit range where interference does not occur. For example, the following equation (3A) in which the inequality sign in the above equation (3) is replaced with an equal sign;
Sx−0.5Td·Vn=(Tc+ΔTc+0.5Ta)·Vn (3A)
A speed obtained by subtracting a predetermined margin Ma from the speed Vn calculated based on the above can be set as the target movement speed.
 <移動制御の第3実施形態>
 第3実施形態では、干渉エリアCAから退避移動するユニットについての好ましい移動制御例を示す。ヘッドユニット4又はウェハカメラ32の退避移動は、タクトロスの低減のため、干渉エリアCA内では可及的に高速移動させることが望ましい。反面、干渉エリアCAを脱出した後は、もはや高速移動は必要ではない。むしろ、高速移動を行うと、ユニット本来の動作に支障を来す場合がある。
<Third Embodiment of Movement Control>
In the third embodiment, a preferred example of movement control for a unit that retreats from the interference area CA is shown. In order to reduce the tact loss, it is desirable to move the head unit 4 or the wafer camera 32 as fast as possible within the interference area CA. On the other hand, after escaping the interference area CA, high-speed movement is no longer necessary. Rather, high-speed movement may interfere with the original operation of the unit.
 例えば、ヘッドユニット4には、ダイ7aのピッキングを行って干渉エリアCAを脱出した後、部品認識カメラ30によるダイ認識(図9のステップS16)、基板認識カメラ31によるフェデューシャルマークFidの撮像(ステップS18)の動作が控えている。これらの動作の際、高速移動によりヘッドユニット4に揺れが発生すると、ダイ7aやフェデューシャルマークFidの認識が正確に行えないケースが生じ得る。この点に鑑み、第3実施形態では、軸制御部22が、ヘッドユニット4又はウェハカメラ32のうち退避移動を行う一方ユニットが干渉リミットラインCL若しくは干渉エリアCAから脱出するまでの区間では所定の高速の退避移動速度に設定し、干渉リミットラインCL若しくは干渉エリアCAから脱出した後の区間では、前記高速よりも低速の退避移動速度に設定する例を示す。 For example, in the head unit 4, after picking the die 7a and escaping the interference area CA, the component recognition camera 30 recognizes the die (step S16 in FIG. 9), and the substrate recognition camera 31 captures the feducial mark Fid. The operation of (step S18) is pending. During these operations, if the head unit 4 shakes due to high-speed movement, there may be a case where the die 7a and the feducial mark Fid cannot be accurately recognized. In view of this point, in the third embodiment, the axis control unit 22 performs a retraction movement of either the head unit 4 or the wafer camera 32, and in a section until the unit escapes from the interference limit line CL or the interference area CA, a predetermined An example is shown in which a high retraction speed is set, and in a section after escaping from the interference limit line CL or the interference area CA, a retraction speed lower than the high speed is set.
 図14は、第3実施形態におけるヘッドユニット4及びウェハカメラ32の移動制御を示すグラフである。ここでは、ウェハカメラ32が干渉エリアCAへ進入移動するユニット(追い側)、ヘッドユニット4が干渉エリアCAから退避移動するユニット(逃げる側)である場合を示している。図14には、ウェハカメラ32の軸移動軌跡F31及びヘッドユニット4の軸移動軌跡F41が示されている。 FIG. 14 is a graph showing movement control of the head unit 4 and wafer camera 32 in the third embodiment. Here, the wafer camera 32 is a unit that moves into the interference area CA (chasing side), and the head unit 4 is a unit that moves away from the interference area CA (escape side). FIG. 14 shows an axial movement trajectory F31 of the wafer camera 32 and an axial movement trajectory F41 of the head unit 4. As shown in FIG.
 軸移動軌跡F31において時刻t31は、追い側のウェハカメラ32が、干渉エリアCA外の退避位置p31から-Y側へ進入移動を開始する時刻である。ウェハカメラ32は、所定の加速度及び移動速度で移動され、干渉エリアCA内の目標位置p32に到達する。時刻t32は、目標位置p32への到達完了時刻である。 Time t31 in the axis movement trajectory F31 is the time when the wafer camera 32 on the chasing side starts moving toward the -Y side from the retreat position p31 outside the interference area CA. The wafer camera 32 is moved at a predetermined acceleration and movement speed, and reaches the target position p32 within the interference area CA. Time t32 is the arrival completion time to the target position p32.
 軸移動軌跡F41において時刻t31は、逃げる側のヘッドユニット4が、干渉エリアCA内の進入位置p41から-Y側へ退避移動を開始する時刻である。時刻t33は、ヘッドユニット4が、干渉エリアCAから-Y側へ所定距離だけ離れた退避位置p42への退避移動を完了する時刻である。また、時刻t3Aは、ヘッドユニット4が、干渉エリアCA(干渉リミットラインCL1)から脱出する時刻である。 Time t31 in the axis movement trajectory F41 is the time when the head unit 4 on the escape side starts retreating from the entry position p41 in the interference area CA to the -Y side. Time t33 is the time when the head unit 4 completes the retraction movement to the retraction position p42, which is a predetermined distance away from the interference area CA to the -Y side. Further, time t3A is the time when the head unit 4 escapes from the interference area CA (interference limit line CL1).
 ヘッドユニット4の移動速度は、時刻t3Aまでは所定の高速の退避移動速度V11に設定されるが、時刻t3A以降はV11よりも低速の退避移動速度V12に設定される。図14に点線で示す軸移動軌跡F42は、退避移動の全期間を高速の退避移動速度V11に設定してヘッドユニット4を移動させた場合の移動軌跡である。当然、軸移動軌跡F42を採用した方が、軸移動軌跡F41を採用する場合よりも速く退避位置p42に到達する。しかし、軸移動軌跡F42であると、干渉エリアCAを脱出した後においてもヘッドユニット4が高速移動を行うことになり、ダイ認識やフェデューシャルマークFidの認識等の動作に支障が生じ得る。しかし、ヘッドユニット4を軸移動軌跡F41に沿って移動させることで、干渉エリアCAからの脱出後にヘッドユニット4が行う動作を、低速移動状態で安定的に実行させることができる。 The movement speed of the head unit 4 is set to a predetermined high retraction movement speed V11 until time t3A, but is set to a retraction movement speed V12 lower than V11 after time t3A. An axial movement trajectory F42 indicated by a dotted line in FIG. 14 is a movement trajectory when the head unit 4 is moved with the high evacuation movement speed V11 set for the entire period of the evacuation movement. Naturally, the use of the axis movement trajectory F42 leads to the retracted position p42 faster than the case of the use of the axis movement trajectory F41. However, with the axis movement locus F42, the head unit 4 moves at high speed even after escaping from the interference area CA, which may interfere with operations such as die recognition and feducial mark Fid recognition. However, by moving the head unit 4 along the axial movement locus F41, the operation performed by the head unit 4 after escaping from the interference area CA can be stably executed in a low speed movement state.
 <移動制御の第4実施形態>
 第4実施形態では、図8(C)に示したヘッドユニット4の追加退避移動及びウェハカメラ32の追加進入移動に類する具体例を示す。ウェハカメラ32によるダイ認識処理では、ダイ7aの浮き等に起因する認識エラーや、予め作成されているウェハマップで「不良品ダイ」と指定されたダイ7aの検出によって、ウェハ7上の「良品ダイ」の消費が進行することがある。このため、ウェハカメラ32によるウェハ7の撮像位置が、予定よりも-Y側(ヘッドユニット4に接近する側)にシフトすることがある。この場合、ヘッドユニット4を干渉リミットラインCL1の位置で待機させていると、両ユニットの干渉が発生し得る。従って、ヘッドユニット4の追加退避移動及びウェハカメラ32の追加進入移動が必要となる。
<Fourth Embodiment of Movement Control>
The fourth embodiment shows a specific example similar to the additional retreat movement of the head unit 4 and the additional approach movement of the wafer camera 32 shown in FIG. 8(C). In the die recognition processing by the wafer camera 32, a recognition error caused by floating of the die 7a or the detection of a die 7a designated as a "defective die" in a pre-created wafer map can be used to identify a "non-defective die" on the wafer 7. The consumption of "die" may progress. Therefore, the imaging position of the wafer 7 by the wafer camera 32 may shift to the -Y side (the side closer to the head unit 4) than planned. In this case, if the head unit 4 is on standby at the position of the interference limit line CL1, interference between both units may occur. Therefore, an additional retraction movement of the head unit 4 and an additional entry movement of the wafer camera 32 are required.
 図15(A)~(D)は、第4実施形態におけるヘッドユニット4(他方ユニット)及びウェハカメラ32(一方ユニット)の移動制御を説明するための模式図である。図15(A)は、ウェハ7において次にウェハカメラ32で撮像(ダイ認識処理/所要の動作)が行われるダイ7aの群の位置を模式的に示している。これら撮像予定のダイ7aのXY座標(第1位置)に基づいて、ウェハカメラ32を基準として、ヘッドユニット4との干渉を回避する干渉リミットラインCL1(第1干渉リミットライン)が設定される。 FIGS. 15A to 15D are schematic diagrams for explaining movement control of the head unit 4 (the other unit) and the wafer camera 32 (the one unit) in the fourth embodiment. FIG. 15A schematically shows the position of a group of dies 7a on the wafer 7 to be imaged (die recognition processing/required operation) by the wafer camera 32 next. An interference limit line CL1 (first interference limit line) for avoiding interference with the head unit 4 is set with the wafer camera 32 as a reference based on these XY coordinates (first position) of the die 7a to be imaged.
 図15(B)は、干渉リミットラインCL1に依拠した動作を、ウェハカメラ32及びヘッドユニット4が実行している状態を示している。すなわち、ウェハカメラ32は、予定されたダイ7aの撮像を行い、ヘッドユニット4は干渉リミットラインCL1を+Y側に超過しないギリギリの位置で待機している。 FIG. 15(B) shows a state in which the wafer camera 32 and the head unit 4 are performing operations based on the interference limit line CL1. In other words, the wafer camera 32 picks up an image of the die 7a as planned, and the head unit 4 is on standby at a position where it does not exceed the +Y side of the interference limit line CL1.
 図15(C)は、撮像予定のダイ7a群に不良品ダイ7a-Badが検出された状態を示している。不良品ダイ7a-Badの代替ダイが、撮像予定としていたダイ7aと同じ行に存在しない場合、ウェハ7における-Y側の次の行に配列されているダイ7a-Nが撮像対象となる。つまり、ウェハカメラ32が当初予定していた撮像位置が、ダイ7a-NのXY座標(第2位置)の位置へ、-Y側にシフトすることになる。このシフトに応じて、新たな干渉リミットラインCL1(第2干渉リミットライン)が設定される。 FIG. 15(C) shows a state in which a defective die 7a-Bad is detected in the group of dies 7a to be imaged. If the substitute die for the defective die 7a-Bad does not exist in the same row as the die 7a that was scheduled to be imaged, the die 7a-N arranged in the next row on the -Y side of the wafer 7 becomes the imaging target. That is, the imaging position initially planned by the wafer camera 32 is shifted to the -Y side to the position of the XY coordinates (second position) of the die 7a-N. A new interference limit line CL1 (second interference limit line) is set according to this shift.
 図15(D)は、-Y側にシフトするよう更新された干渉リミットラインCL1に依拠した動作を、ウェハカメラ32及びヘッドユニット4が実行している状態を示している。すなわち、ウェハカメラ32は、代替のダイ7a-Nの撮像を行い、ヘッドユニット4は更新後の干渉リミットラインCL1を+Y側に超過しないギリギリの位置で待機する。第4実施形態によれば、ウェハカメラ32の作業領域の変更に合わせて、最適な干渉リミットラインCL1を設定することができる。 FIG. 15(D) shows a state in which the wafer camera 32 and the head unit 4 are performing operations based on the interference limit line CL1 updated to shift to the -Y side. That is, the wafer camera 32 picks up an image of the alternative die 7a-N, and the head unit 4 waits at the last position where it does not exceed the updated interference limit line CL1 on the +Y side. According to the fourth embodiment, the optimum interference limit line CL1 can be set according to the change of the working area of the wafer camera 32. FIG.
 [上記実施形態に含まれる発明]
 本発明の一局面に係る部品移載装置は、複数個の部品が配置された部品配置エリアを有する部品供給部と、前記部品配置エリアと所定の部品移載部との間の上方空間を第1移動軸に沿って水平方向に移動可能であり、前記部品配置エリアにおいて前記部品をピッキングし、前記部品移載部へ前記部品を移動する部品移載ユニットと、前記部品配置エリアと所定の待機位置との間の上方空間を第2移動軸に沿って水平方向に移動可能であり、前記部品配置エリアにおいて前記部品を撮像するカメラユニットと、前記部品移載ユニットの前記第1移動軸に沿った移動、及び前記カメラユニットの前記第2移動軸に沿った移動を制御する移動制御部と、を備え、前記移動制御部は、前記部品配置エリアの上方空間において前記部品移載ユニットと前記カメラユニットとが並存した場合に両者が干渉する干渉エリア内に、前記部品移載ユニット及び前記カメラユニットのいずれか一方ユニットを基準として、他方ユニットの進入可能範囲を定める干渉リミットラインを設定し、前記他方ユニットの移動範囲を、前記干渉リミットラインを超過しない範囲に規制する。
[Inventions included in the above embodiments]
A component transfer apparatus according to one aspect of the present invention provides a component supply unit having a component placement area in which a plurality of components are arranged, and a space above the component placement area and a predetermined component transfer unit. 1 a component transfer unit that can move horizontally along a movement axis, picks the component in the component placement area, and moves the component to the component transfer unit; the component placement area and a predetermined standby a camera unit that is horizontally movable along a second movement axis in an upper space between a position and a camera unit that captures an image of the part in the part placement area; and a movement control section for controlling movement of the camera unit along the second movement axis, wherein the movement control section controls movement of the component transfer unit and the camera in a space above the component placement area. In an interference area where the two units interfere with each other when the two units coexist, one of the component transfer unit and the camera unit is used as a reference to set an interference limit line that defines the accessible range of the other unit, The movement range of the other unit is regulated so as not to exceed the interference limit line.
 この部品移載装置によれば、部品移載ユニットは第1移動軸に沿って、カメラユニットは第2移動軸に沿って、各々独立して水平移動する。さらに、両ユニットとも部品配置エリアの上空に移動可能であるので、両者が干渉する干渉エリアが発生する。このような部品移載装置おいて、移動制御部は、前記干渉エリア内に干渉リミットラインを設定し、他方ユニットの移動範囲を規制する。換言すると、一方ユニットが干渉エリア内に存在している場合に、他方ユニットを前記干渉エリアへ進入させないのではなく、干渉リミットラインまでは移動可能とする。このため、前記一方ユニットに続いて前記他方ユニットが前記干渉エリアの所定の作業位置で所要の動作を行うシーケンスが設定されている場合に、前記他方ユニットを前記作業位置へより速く到達させることが可能となる。従って、両ユニットの干渉を回避しながら、タクトロスを抑制することができる。 According to this component transfer device, the component transfer unit horizontally moves along the first movement axis, and the camera unit horizontally moves along the second movement axis. Furthermore, since both units can move above the component arrangement area, an interference area occurs where both units interfere with each other. In such a component transfer apparatus, the movement control section sets an interference limit line within the interference area to regulate the movement range of the other unit. In other words, when one unit is present in the interference area, the other unit is allowed to move up to the interference limit line instead of being prevented from entering the interference area. Therefore, when a sequence is set in which the one unit is followed by the other unit at a predetermined work position in the interference area, the other unit can reach the work position more quickly. It becomes possible. Therefore, tact loss can be suppressed while avoiding interference between both units.
 上記の部品移載装置において、前記移動制御部は、前記一方ユニットが前記干渉エリア内において所要の動作を実行している間、前記他方ユニットを前記干渉リミットライン又はその近傍まで移動させて待機状態とすることが望ましい。 In the above component transfer apparatus, the movement control section moves the other unit to the interference limit line or its vicinity to wait while the one unit is performing a required operation in the interference area. It is desirable to
 この部品移載装置によれば、次に干渉エリアで所要の動作を行う他方ユニットを、干渉リミットライン又はその近傍まで移動させて待機させることができる。従って、タクトロスを最小限に抑制することができる。 According to this component transfer device, the other unit, which next performs a required operation in the interference area, can be moved to the interference limit line or its vicinity and made to stand by. Therefore, tact loss can be minimized.
 上記の部品移載装置において、前記移動制御部は、前記一方ユニットの前記干渉エリアからの退避移動と、他方ユニットの前記干渉エリアへの進入移動とを、互いに重複する期間内に実行するものであって、前記第1移動軸に沿って移動する部品移載ユニットと、前記第2移動軸に沿って移動するカメラユニットとが互いに干渉しないよう、前記退避移動及び前記進入移動の各々の加速度及び移動速度を設定することが望ましい。 In the above-described component transfer apparatus, the movement control section executes evacuation movement of the one unit from the interference area and movement of the other unit into the interference area within periods that overlap each other. and the acceleration and acceleration of each of the retreat movement and the approach movement so that the component transfer unit that moves along the first movement axis and the camera unit that moves along the second movement axis do not interfere with each other. It is desirable to set the movement speed.
 この部品移載装置によれば、干渉エリアから退避する一方ユニットを追い掛けるようにして、他方ユニットが前記干渉エリアへ進入する。このため、干渉エリアにおける一方ユニットから他方ユニットへの作業遷移を速やかに行わせることができる。また、両ユニットについての前記加速度及び移動速度の設定により、一方ユニットを追い掛ける他方ユニットが、前記一方ユニットに干渉しないようにすることができる。 According to this component transfer device, the other unit enters the interference area while chasing the one unit that is retreating from the interference area. Therefore, it is possible to quickly perform the work transition from one unit to the other unit in the interference area. Also, by setting the acceleration and movement speed for both units, it is possible to prevent the other unit chasing the one unit from interfering with the one unit.
 この場合、前記移動制御部は、前記退避移動と前記進入移動とを、同一の加速度及び移動速度に設定することが望ましい。 In this case, it is desirable that the movement control unit sets the same acceleration and movement speed for the retreat movement and the entry movement.
 この部品移載装置によれば、両ユニットが同一の加速度及び移動速度で移動するので、一方ユニットと、これを追い掛ける他方ユニットとの間に、確実に干渉が発生しないようにすることができる。 According to this parts transfer device, both units move at the same acceleration and movement speed, so it is possible to reliably prevent interference between one unit and the other unit chasing it.
 上記の部品移載装置において、前記移動制御部は、前記一方ユニットの前記退避移動について所定の第1加速度及び第1移動速度を設定した場合に、前記進入移動として、前記他方ユニットが前記第1加速度及び前記第1移動速度で移動する前記一方ユニットに対して干渉しない範囲における、最速の加速度及び移動速度となる第2加速度及び第2移動速度を設定することが望ましい。 In the component transfer apparatus described above, the movement control section sets a predetermined first acceleration and a first movement speed for the retraction movement of the one unit, and the movement of the other unit to the first movement as the entering movement. It is desirable to set a second acceleration and a second movement speed that are the fastest acceleration and movement speed within a range that does not interfere with the one unit that moves at the acceleration and the first movement speed.
 この部品移載装置によれば、一方ユニットを追い掛ける他方ユニットが、当該一方ユニットに対して干渉寸前となる加速度及び移動速度で移動される。従って、タクトロスを極限まで削減することが可能となる。 According to this component transfer device, the other unit chasing the one unit is moved at an acceleration and movement speed that are on the verge of interfering with the one unit. Therefore, it is possible to reduce the tact loss to the limit.
 上記の部品移載装置において、前記移動制御部は、前記一方ユニットの前記退避移動において、前記一方ユニットが前記干渉リミットライン若しくは前記干渉エリアから脱出するまでの区間では所定の高速の退避移動速度に設定し、前記干渉リミットライン若しくは前記干渉エリアから脱出した後の区間では、前記高速よりも低速の退避移動速度に設定することが望ましい。 In the above-described component transfer apparatus, the movement control section sets the evacuation movement speed to a predetermined high speed in the interval until the one unit escapes from the interference limit line or the interference area in the evacuation movement of the one unit. It is desirable to set the evacuation movement speed to be lower than the high speed in the section after escaping from the interference limit line or the interference area.
 この部品移載装置によれば、一方ユニットは高速で干渉エリアから脱出する一方で、前記干渉リミットライン若しくは前記干渉エリアからの脱出後は低速で移動する。このため、他方ユニットの前記干渉リミットライン若しくは前記干渉エリアへの進入を速やかに行わせると共に、一方ユニットについて前記エリアからの脱出後に必要な動作を、低速移動状態で安定的に実行させることができる。 According to this component transfer device, one unit escapes from the interference area at high speed, while moving at low speed after escaping from the interference limit line or interference area. Therefore, it is possible to cause the other unit to quickly enter the interference limit line or the interference area, and to stably perform the necessary operation for the one unit after escaping from the area while moving at a low speed. .
 上記の部品移載装置において、前記移動制御部は、前記一方ユニットが前記干渉エリア内の第1位置で所要の動作を実行するに際して、前記他方ユニットとの干渉を回避する第1干渉リミットラインを設定し、続いて前記一方ユニットが前記干渉エリア内の前記第1位置とは異なる第2位置で所要の動作を実行するに際して、前記第1干渉リミットラインとは異なる位置に第2干渉リミットラインを設定し、前記他方ユニットを前記第2干渉リミットライン又はその近傍まで移動させて待機状態とすることが望ましい。 In the component transfer apparatus described above, the movement control section sets a first interference limit line for avoiding interference with the other unit when the one unit performs a required operation at the first position in the interference area. Then, when the one unit performs a required operation at a second position different from the first position in the interference area, a second interference limit line is set at a position different from the first interference limit line. It is preferable that the other unit is moved to the second interference limit line or its vicinity to be in a standby state.
 この部品移載装置によれば、干渉リミットラインが、一方ユニットの干渉エリア内の作業位置によってフレキシブルに変更される。すなわち、前記一方ユニットの干渉エリア内における作業態様に応じて、最適な干渉リミットラインを設定することができる。 According to this parts transfer device, the interference limit line is flexibly changed according to the working position within the interference area of one unit. That is, it is possible to set the optimum interference limit line according to the working mode in the interference area of the one unit.
 上記の部品移載装置において、前記部品配置エリアは、ダイシングされたウェハが配置されるエリアであって、前記部品はダイであることが望ましい。また、前記部品移載ユニットは、前記ダイを吸着するヘッドを有するヘッドユニットであり、前記カメラユニットは、前記ウェハを撮像するウェハカメラであり、前記部品移載部は、前記ダイが実装される基板が配置される基板配置部であることが望ましい。 In the component transfer apparatus described above, it is preferable that the component placement area is an area in which a diced wafer is placed, and the component is a die. Further, the component transfer unit is a head unit having a head that attracts the die, the camera unit is a wafer camera that captures an image of the wafer, and the component transfer unit is mounted with the die. It is desirable that it is a substrate placement portion where the substrate is placed.
 この部品移載装置によれば、ダイシングされたウェハからダイを吸着し、基板に前記ダイを実装する部品実装装置において、ヘッドユニットとウェハカメラとを干渉させることなく、タクトロスを削減することができる。 According to this component transfer device, it is possible to reduce tact loss without causing interference between the head unit and the wafer camera in the component mounting device that picks up the dies from the diced wafer and mounts the dies on the substrate. .
 以上説明した本発明に係る部品移載装置によれば、部品配置エリアから部品をピッキングする部品移載ユニットと、前記部品エリアにおいて部品を撮像するカメラユニットとを備えた部品移載装置において、タクトロスを低減することができる。 According to the component transfer apparatus according to the present invention described above, the component transfer apparatus including the component transfer unit for picking the component from the component placement area and the camera unit for capturing the image of the component in the component area can reduce the tact loss. can be reduced.

Claims (9)

  1.  複数個の部品が配置された部品配置エリアを有する部品供給部と、
     前記部品配置エリアと所定の部品移載部との間の上方空間を第1移動軸に沿って水平方向に移動可能であり、前記部品配置エリアにおいて前記部品をピッキングし、前記部品移載部へ前記部品を移動する部品移載ユニットと、
     前記部品配置エリアと所定の待機位置との間の上方空間を第2移動軸に沿って水平方向に移動可能であり、前記部品配置エリアにおいて前記部品を撮像するカメラユニットと、
     前記部品移載ユニットの前記第1移動軸に沿った移動、及び前記カメラユニットの前記第2移動軸に沿った移動を制御する移動制御部と、を備え、
     前記移動制御部は、
      前記部品配置エリアの上方空間において前記部品移載ユニットと前記カメラユニットとが並存した場合に両者が干渉する干渉エリア内に、前記部品移載ユニット及び前記カメラユニットのいずれか一方ユニットを基準として、他方ユニットの進入可能範囲を定める干渉リミットラインを設定し、
      前記他方ユニットの移動範囲を、前記干渉リミットラインを超過しない範囲に規制する、部品移載装置。
    a component supply unit having a component arrangement area in which a plurality of components are arranged;
    An upper space between the component placement area and a predetermined component transfer section is horizontally movable along a first movement axis, and the component is picked in the component placement area and transferred to the component transfer section. a component transfer unit that moves the component;
    a camera unit that is horizontally movable along a second movement axis in an upper space between the component placement area and a predetermined standby position and that captures an image of the component in the component placement area;
    a movement control unit that controls movement of the component transfer unit along the first movement axis and movement of the camera unit along the second movement axis;
    The movement control unit is
    In an interference area where the component transfer unit and the camera unit interfere when they coexist in the space above the component placement area, with either the component transfer unit or the camera unit as a reference, Set the interference limit line that determines the possible entry range of the other unit,
    A component transfer device that regulates the movement range of the other unit to a range that does not exceed the interference limit line.
  2.  請求項1に記載の部品移載装置において、
     前記移動制御部は、前記一方ユニットが前記干渉エリア内において所要の動作を実行している間、前記他方ユニットを前記干渉リミットライン又はその近傍まで移動させて待機状態とする、部品移載装置。
    In the component transfer device according to claim 1,
    The movement control unit moves the other unit to the interference limit line or its vicinity and puts it in a standby state while the one unit is performing a required operation in the interference area.
  3.  請求項1又は2に記載の部品移載装置において、
     前記移動制御部は、前記一方ユニットの前記干渉エリアからの退避移動と、他方ユニットの前記干渉エリアへの進入移動とを、互いに重複する期間内に実行するものであって、
     前記第1移動軸に沿って移動する部品移載ユニットと、前記第2移動軸に沿って移動するカメラユニットとが互いに干渉しないよう、前記退避移動及び前記進入移動の各々の加速度及び移動速度を設定する、部品移載装置。
    In the component transfer device according to claim 1 or 2,
    The movement control unit executes evacuation movement of the one unit from the interference area and movement of the other unit into the interference area within overlapping periods,
    The acceleration and movement speed of each of the retraction movement and the entry movement are adjusted so that the component transfer unit that moves along the first movement axis and the camera unit that moves along the second movement axis do not interfere with each other. Parts transfer device to be set.
  4.  請求項3に記載の部品移載装置において、
     前記移動制御部は、前記退避移動と前記進入移動とを、同一の加速度及び移動速度に設定する、部品移載装置。
    In the component transfer device according to claim 3,
    The component transfer device, wherein the movement control section sets the retraction movement and the entry movement to the same acceleration and movement speed.
  5.  請求項3に記載の部品移載装置において、
     前記移動制御部は、前記一方ユニットの前記退避移動について所定の第1加速度及び第1移動速度を設定した場合に、
     前記進入移動として、前記他方ユニットが前記第1加速度及び前記第1移動速度で移動する前記一方ユニットに対して干渉しない範囲における、最速の加速度及び移動速度となる第2加速度及び第2移動速度を設定する、部品移載装置。
    In the component transfer device according to claim 3,
    When the movement control unit sets a predetermined first acceleration and a first movement speed for the evacuation movement of the one unit,
    As the approach movement, a second acceleration and a second movement speed that are the fastest acceleration and movement speed within a range in which the other unit does not interfere with the one unit moving at the first acceleration and the first movement speed. Parts transfer device to be set.
  6.  請求項1又は2に記載の部品移載装置において、
     前記移動制御部は、前記一方ユニットの前記退避移動において、前記一方ユニットが前記干渉リミットライン若しくは前記干渉エリアから脱出するまでの区間では所定の高速の退避移動速度に設定し、前記干渉リミットライン若しくは前記干渉エリアから脱出した後の区間では、前記高速よりも低速の退避移動速度に設定する、部品移載装置。
    In the component transfer device according to claim 1 or 2,
    In the evacuation movement of the one unit, the movement control unit sets a evacuation movement speed to a predetermined high speed in a section until the one unit escapes from the interference limit line or the interference area. A component transfer device, wherein in a section after escaping from the interference area, the retraction movement speed is set to be lower than the high speed.
  7.  請求項2に記載の部品移載装置において、
     前記移動制御部は、
      前記一方ユニットが前記干渉エリア内の第1位置で所要の動作を実行するに際して、前記他方ユニットとの干渉を回避する第1干渉リミットラインを設定し、
      続いて前記一方ユニットが前記干渉エリア内の前記第1位置とは異なる第2位置で所要の動作を実行するに際して、前記第1干渉リミットラインとは異なる位置に第2干渉リミットラインを設定し、前記他方ユニットを前記第2干渉リミットライン又はその近傍まで移動させて待機状態とする、部品移載装置。
    In the component transfer device according to claim 2,
    The movement control unit is
    setting a first interference limit line for avoiding interference with the other unit when the one unit performs a required operation at a first position within the interference area;
    Subsequently, when the one unit performs a required operation at a second position different from the first position in the interference area, a second interference limit line is set at a position different from the first interference limit line, A component transfer device, wherein the other unit is moved to the second interference limit line or its vicinity to be in a standby state.
  8.  請求項1~7のいずれか1項に記載の部品移載装置において、
     前記部品配置エリアは、ダイシングされたウェハが配置されるエリアであって、前記部品はダイである、部品移載装置。
    In the component transfer device according to any one of claims 1 to 7,
    The component transfer device, wherein the component placement area is an area in which a diced wafer is placed, and the component is a die.
  9.  請求項8に記載の部品移載装置において、
     前記部品移載ユニットは、前記ダイを吸着するヘッドを有するヘッドユニットであり、
     前記カメラユニットは、前記ウェハを撮像するウェハカメラであり、
     前記部品移載部は、前記ダイが実装される基板が配置される基板配置部である、部品移載装置。
    In the component transfer device according to claim 8,
    The component transfer unit is a head unit having a head for sucking the die,
    The camera unit is a wafer camera that images the wafer,
    The component transfer device, wherein the component transfer unit is a substrate placement unit on which a substrate on which the die is mounted is arranged.
PCT/JP2021/018533 2021-05-17 2021-05-17 Component transfer device WO2022244034A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023521984A JPWO2022244034A1 (en) 2021-05-17 2021-05-17
PCT/JP2021/018533 WO2022244034A1 (en) 2021-05-17 2021-05-17 Component transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018533 WO2022244034A1 (en) 2021-05-17 2021-05-17 Component transfer device

Publications (1)

Publication Number Publication Date
WO2022244034A1 true WO2022244034A1 (en) 2022-11-24

Family

ID=84140401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018533 WO2022244034A1 (en) 2021-05-17 2021-05-17 Component transfer device

Country Status (2)

Country Link
JP (1) JPWO2022244034A1 (en)
WO (1) WO2022244034A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059955A (en) * 2001-08-08 2003-02-28 Matsushita Electric Ind Co Ltd Apparatus and method for packaging electronic component
JP2007053271A (en) * 2005-08-19 2007-03-01 Matsushita Electric Ind Co Ltd Method of mounting electronic component
JP2009238873A (en) * 2008-03-26 2009-10-15 Panasonic Corp Component-mounting method
JP2010278187A (en) * 2009-05-28 2010-12-09 Yamaha Motor Co Ltd Head moving apparatus and component mounting apparatus
JP2018064045A (en) * 2016-10-13 2018-04-19 富士機械製造株式会社 Device for optimizing attachment processing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059955A (en) * 2001-08-08 2003-02-28 Matsushita Electric Ind Co Ltd Apparatus and method for packaging electronic component
JP2007053271A (en) * 2005-08-19 2007-03-01 Matsushita Electric Ind Co Ltd Method of mounting electronic component
JP2009238873A (en) * 2008-03-26 2009-10-15 Panasonic Corp Component-mounting method
JP2010278187A (en) * 2009-05-28 2010-12-09 Yamaha Motor Co Ltd Head moving apparatus and component mounting apparatus
JP2018064045A (en) * 2016-10-13 2018-04-19 富士機械製造株式会社 Device for optimizing attachment processing

Also Published As

Publication number Publication date
JPWO2022244034A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
KR100532015B1 (en) Device for transferring/holding sheetlike member and its method
EP3125280B1 (en) Die mounting system and die mounting method
US6918176B2 (en) Mounting apparatus of electronic parts and mounting methods of the same
JP2007012929A (en) Method for checking interference of surface mounting machine, device for checking interference, surface mounting machine with the device and mounting system
EP1255430A1 (en) Positioning control method and positioning control device, and electronic part mounting device using this
KR20170108786A (en) Die bonder and bonding method
JP2016219474A (en) Component extracting device, component extracting method and component mounting device
JP2013254887A (en) Component mounting apparatus and component mounting method
JP5927496B2 (en) Component mounting apparatus and component mounting method
JP2016219472A (en) Component extracting device, component extracting method and component mounting device
WO2022244034A1 (en) Component transfer device
KR20190019286A (en) Wafer supply module and die bonding apparatus including the same
JPWO2015097865A1 (en) Component mounting apparatus and component mounting method
EP2955986B1 (en) System comprising a component mounting machine and a die supply apparatus
KR102329100B1 (en) Mounting device and manufacturing method of semiconductor device
JP2016219473A (en) Component extracting device, component extracting method and component mounting device
EP2894956B1 (en) Control system and control method for component mounting machine
JP6204995B2 (en) Board work equipment
JP5873988B2 (en) Parts transfer device
US11153999B2 (en) Work machine
JP6788772B2 (en) Component mounting device and component mounting method
WO2024057433A1 (en) Component mounter and component imaging method
KR20230159508A (en) parts transfer device
JP6887024B2 (en) Mounting device
JP4672541B2 (en) Component transfer device and surface mounter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023521984

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE