WO2022242599A1 - 光学传感器模组及电子设备 - Google Patents

光学传感器模组及电子设备 Download PDF

Info

Publication number
WO2022242599A1
WO2022242599A1 PCT/CN2022/093070 CN2022093070W WO2022242599A1 WO 2022242599 A1 WO2022242599 A1 WO 2022242599A1 CN 2022093070 W CN2022093070 W CN 2022093070W WO 2022242599 A1 WO2022242599 A1 WO 2022242599A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
retaining wall
optical sensor
surrounding
light guide
Prior art date
Application number
PCT/CN2022/093070
Other languages
English (en)
French (fr)
Inventor
李航
郝晓悦
曹伟龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022242599A1 publication Critical patent/WO2022242599A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0088Positioning aspects of the light guide or other optical sheets in the package
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/06Hermetically-sealed casings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/06Hermetically-sealed casings
    • H05K5/069Other details of the casing, e.g. wall structure, passage for a connector, a cable, a shaft

Definitions

  • the present application relates to the technical field of electronic products, in particular to an optical sensor module and electronic equipment.
  • Optical sensor modules generally include multiple structural parts such as lenses and light-shielding walls.
  • the assembly process between the optical sensor module and the housing of the electronic equipment is complicated and the structural parts There are a lot of gaps between them, which will damage the sealing performance of electronic equipment.
  • the application discloses an optical sensor module and electronic equipment.
  • the housing of the electronic device is provided with a through hole for installing the optical sensor module
  • the optical sensor module includes a light guide column and surrounding barriers arranged around the light guide column.
  • the first end of the light guide column protrudes relative to the top surface of the surrounding retaining wall, so that the light guide column can be directly attached to the through hole, reducing the gap between the optical sensor module and the housing, and improving the sealing performance of the electronic device.
  • the present application provides an electronic device, which includes a casing and an optical sensor module, the optical sensor is fixedly connected to the casing, the optical sensor module includes a light guide column and surrounding barriers arranged around the light guide column, and the light guide column and the surrounding
  • the retaining wall is fixedly connected, the first end of the light guide column protrudes relative to the first surface of the surrounding retaining wall, the first end includes a top surface and side surfaces, and the side of the first end surrounds the top surface of the first end and is opposite to the surrounding
  • the first side of the retaining wall is exposed;
  • the housing has a through hole and an inner side wall, the first end is located in the through hole, the top surface of the first end is exposed relative to the housing and the side of the first end faces the hole wall of the through hole,
  • the surrounding retaining wall is located inside the housing, and the top surface of the surrounding retaining wall is fixedly connected to the inner wall of the housing.
  • the first end of the light guide column is embedded in the casing, and the side of the first end is attached to the hole wall of the through hole;
  • the inner side and the first surface of the surrounding blocking wall are attached to the inner side wall of the housing to define the assembly position of the light guide column.
  • the first end of the light guide rod is embedded in the through hole, and the top surface of the first end is exposed relative to the housing, so that the optical sensor module occupies a smaller area of the appearance surface of the electronic device, so the appearance of the electronic device is better .
  • the light guide column is directly attached to the through hole, which reduces the gap between the optical sensor module and the housing, and improves the sealing performance of the electronic device.
  • the smooth transition between the appearance surface of the optical sensor and the appearance surface of the casing makes the appearance of the electronic device more beautiful, and at the same time makes the appearance surface of the electronic device fit to the user smoother and more comfortable to touch, so as to improve the user experience.
  • the experience of wearing electronic devices is the appearance surface of the optical sensor.
  • the light guide column includes a first lens, a second lens, and an intermediate barrier fixedly connected to the surrounding barriers.
  • the intermediate barrier is arranged between the first lens and the second lens, and is respectively connected to the second lens.
  • One lens is fixedly connected with the second lens, the top surface of the first lens, the top surface of the middle retaining wall and the top surface of the second lens together form the top surface of the first end, and the middle retaining wall is made of opaque material.
  • the opposite sides of the first lens and the second lens are separated by an intermediate barrier, and the intermediate barrier is made of an opaque material, which can prevent the detection light in the first lens and the second lens from propagating to the other side , to avoid the problem of light crossing between the first lens and the second lens, prevent the detection light emitted by the transmitter from interfering with the detection results, improve the accuracy of the detection results, and further improve the detection performance of the optical sensor module.
  • the surrounding retaining wall and the intermediate retaining wall are integrally formed.
  • the middle retaining wall and the surrounding retaining wall can be obtained by casting at the same time, and the bonding strength of the joint surface formed by casting is higher, which improves the structural stability of the optical sensor module.
  • the intermediate retaining wall may also be fixedly connected to the surrounding retaining walls in other ways, such as glue and the like.
  • the light guide column and the surrounding barrier are integrally formed, and the first lens and the second lens are integrally formed by in-film injection molding on the basis of the surrounding barrier and the intermediate barrier.
  • the lens is integrally molded with the middle retaining wall and the surrounding retaining wall through in-film injection molding, which saves the step of fixing the lens, the intermediate retaining wall and the surrounding retaining wall through glue, etc., thereby reducing points.
  • Glue gaps and simplify the process.
  • the bonding strength of the bonding surface formed by casting is higher, which improves the structural stability of the optical sensor module.
  • the light guide column further includes a connecting material
  • the connecting material is fixedly connected to the first lens and the second lens
  • the connecting material and the first lens and the second lens are integrally formed to improve structural integrity.
  • the connecting material, the first lens and the second lens can be obtained by casting at the same time.
  • the connecting material is a straight-through structure or a non-straight-through structure.
  • the connecting material may include two connecting segments fixedly connected and an intermediate segment, wherein the two connecting segments are respectively fixedly connected to the first lens and the second lens, and the intermediate segment is located between the two connecting segments.
  • the middle section of the straight-through structure is linear, and the middle section of the non-straight-through structure is zigzag, that is, there are bends. Therefore, light travels a short distance in the straight-through structure and is easy to travel between the two lenses, but the liquid material can flow from one lens to the other more smoothly during the casting process, improving yield and production efficiency.
  • the light travels a long distance in the non-straight-through structure of the material, and can undergo more reflections and refractions at the bend of the material, thereby reducing the propagation of light in the two lenses and reducing the degree of light channeling. Improve the detection performance of the optical sensor module.
  • the light guide column further includes a first gate fixedly connected to the peripheral side of the first lens, and a second gate fixedly connected to the peripheral side of the second lens.
  • the first lens and the second lens can be produced by double gate injection molding, that is, the melted liquid material is poured into the mold from two gates, and the two lenses are molded by two gates at the same time.
  • the first lens and the second lens there may be no connecting material between the first lens and the second lens, that is, the first lens and the second lens are independent of each other, and there is no transmission channel for detecting light between the two lenses, which effectively solves the problem of the two lenses.
  • the light channeling problem between them improves the detection effect of the optical sensor module.
  • the area of the top surface of the first lens is smaller than the area of the top surface of the second lens, so as to increase the probability that the reflected detection light enters the second lens, so that more detection light can be received end capture, thereby improving the accuracy of detection.
  • the optical sensor module further includes a circuit board and a sensing element fixedly connected to the circuit board
  • the light guide column includes a second end opposite to the first end, the second end and the surrounding barrier
  • the wall encloses a receiving groove
  • the sensing element is located in the receiving groove
  • the periphery of the circuit board is fixedly connected with the second surface of the surrounding retaining wall
  • the second surface is opposite to the first surface.
  • the sensing element may be electrically connected to the circuit board.
  • the sensing element can be used to emit and receive detection light, and can also transmit the optical information in the received detection light through the circuit board.
  • the sensing element includes a transmitting end and a receiving end arranged at intervals, the transmitting end is set corresponding to the first lens, and is used to emit detection light to the first lens; the receiving end is set corresponding to the second lens, and is used to receive The detection light reflected by the object to be measured through the second lens.
  • the transmitting end may emit detection light, and transmit to the outside of the electronic device through the first lens.
  • the detection light encounters the object to be measured, it is reflected and changes the propagation direction; the reflected detection light can enter from the second mirror, and after propagating in the second mirror, it is received by the receiving end to realize the detection function.
  • the present application provides an optical sensor module applied to electronic equipment.
  • the electronic device includes a casing, the casing has a through hole and an inner wall;
  • the optical sensor includes a light guide column and a surrounding barrier wall arranged around the light guide column, the light guide column is fixedly connected to the surrounding barrier wall, and the first end of the light guide column is opposite to the surrounding barrier wall
  • the first surface of the first end is raised, and the first end includes a top surface and a side surface, and the side surface of the first end surrounds the top surface of the first end and is exposed relative to the surrounding retaining wall; the first end is used to be embedded in the through hole, and the surrounding retaining wall
  • the top surface of the wall is used to fix the inner side wall of the connection housing.
  • the first end of the light guide column is embedded in the casing, and the side of the first end is attached to the hole wall of the through hole;
  • the inner side and the first surface of the surrounding blocking wall are attached to the inner side wall of the housing to define the assembly position of the light guide column.
  • the first end of the light guide rod is embedded in the through hole, and the top surface of the first end is exposed relative to the housing, so that the optical sensor module occupies a smaller area of the appearance surface of the electronic device, so the appearance of the electronic device is better .
  • the light guide column is directly attached to the through hole, which reduces the gap between the optical sensor module and the housing, and improves the sealing performance of the electronic device.
  • the light guide column includes a first lens, a second lens, and an intermediate barrier fixedly connected to the surrounding barriers.
  • the intermediate barrier is arranged between the first lens and the second lens, and is respectively connected to the second lens.
  • One lens is fixedly connected with the second lens, the top surface of the first lens, the top surface of the middle retaining wall and the top surface of the second lens together form the top surface of the first end, and the middle retaining wall is made of opaque material.
  • the opposite sides of the first lens and the second lens are separated by an intermediate barrier, and the intermediate barrier is made of an opaque material, which can prevent the detection light in the first lens and the second lens from propagating to the other side , to avoid the problem of light crossing between the first lens and the second lens, prevent the detection light emitted by the transmitter from interfering with the detection results, improve the accuracy of the detection results, and further improve the detection performance of the optical sensor module.
  • the surrounding retaining wall and the intermediate retaining wall are integrally formed.
  • the middle retaining wall and the surrounding retaining wall can be obtained by casting at the same time, and the bonding strength of the joint surface formed by casting is higher, which improves the structural stability of the optical sensor module.
  • the light guide column and the surrounding barrier are integrally formed, and the first lens and the second lens are integrally formed by in-film injection molding on the basis of the surrounding barrier and the intermediate barrier.
  • the lens is integrally molded with the middle retaining wall and the surrounding retaining wall through in-film injection molding, which saves the step of fixing the lens, the intermediate retaining wall and the surrounding retaining wall through glue, etc., thereby reducing points.
  • Glue gaps and simplify the process.
  • the bonding strength of the bonding surface formed by casting is higher, which improves the structural stability of the optical sensor module.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by the present application in some embodiments.
  • Fig. 2 is a schematic diagram of the internal structure of the electronic device shown in Fig. 1;
  • Fig. 3 is an exploded schematic diagram of the structure shown in Fig. 2;
  • Fig. 4 is a schematic structural view of the optical sensor module shown in Fig. 2;
  • Fig. 5 is a partially exploded schematic diagram of the structure of the optical sensor module shown in Fig. 4;
  • Fig. 6 is a schematic diagram of the structure shown in Fig. 5 at another angle;
  • Fig. 7 is a structural schematic diagram of a part of the structure of the optical sensor module shown in Fig. 4 at another angle;
  • Fig. 8 is an exploded schematic view of the structure shown in Fig. 7;
  • Fig. 9 is a schematic diagram of the internal structure of the optical sensor module shown in Fig. 4;
  • Fig. 10 is a schematic diagram of the partial structure shown in Fig. 8.
  • Fig. 11 is a schematic diagram of the structure shown in Fig. 10 in some other embodiments.
  • Fig. 12 is a schematic diagram of some other embodiments of the partial structure of the optical sensor module shown in Fig. 8;
  • Fig. 13 is a schematic diagram of a partial structure of the optical sensor module shown in Fig. 12;
  • Fig. 14 is a schematic diagram of some other embodiments of the structure shown in Fig. 13 .
  • FIG. 1 is a schematic structural diagram of an electronic device 100 provided in this application in some embodiments.
  • the electronic device 100 may be a wearable electronic product.
  • Wearable electronic products can have computing functions, and can also realize wireless network access through mobile communication networks or WIFI; or realize communication connections with external devices through mobile communication networks, WIFI or Bluetooth.
  • Wearable electronic products can be watches supported by the wrist (including watches and wristbands, etc.), shoes supported by the feet (including shoes, socks or other products worn on the legs in the future), and supported by the head
  • the glass category including glasses, helmets, headbands, headphones, etc.
  • the electronic device 100 may also be an electronic product such as a mobile phone or a tablet computer.
  • the electronic device 100 is an earphone as an example for illustration.
  • the electronic device 100 may include a casing 1 and an optical sensor module 2 , and the optical sensor module 2 is installed on the casing 1 .
  • the exterior surface of the electronic device 100 is jointly composed of the exterior surface of the optical sensor module 2 and the exterior surface of the casing 1 .
  • the optical sensor module 2 can be tested using the principle of light reflection. Specifically, the detection light is emitted from the appearance surface of the optical sensor module 2 , is reflected after hitting the object to be measured, and enters from the appearance surface after changing the propagation direction. In this application, the surface used to make the detection light exit from the interior of the electronic device 100 or enter the interior from the exterior is the exterior surface of the optical sensor module 2 .
  • the object to be tested may be the user's skin, or other objects such as clothing.
  • the optical sensor module 2 can be used to detect the user's heart rate, blood oxygen and other data.
  • the appearance surface 20 of the optical sensor module 2 may contact or be close to the user's skin.
  • the appearance surface contacting or being close to the user's skin can prevent ambient light from entering from the appearance surface, and avoid the influence of ambient light on the detection results.
  • the closer distance between the appearance surface and the user's skin can improve the accuracy of the detection result and improve the performance of the optical sensor module 2 .
  • the optical sensor module 2 can also be used as a proximity sensor or a distance sensor for detecting environmental data around the electronic device 100 so that the electronic device 100 can perform preset functions according to the environmental data.
  • the casing 1 may further include a speaker hole 11, through which the sound information generated by the electronic device 100 can be transmitted to the outside of the electronic device 100, so that more sound can be transmitted to the Set the orientation to improve the directionality and efficiency of sound information transmission.
  • FIG. 2 is a schematic diagram of the internal structure of the electronic device 100 shown in FIG. 1
  • FIG. 3 is an exploded schematic diagram of the structure shown in FIG. 2
  • the housing 1 may be provided with a through hole 12 and an inner side wall 13
  • the optical sensor module 2 is installed in the casing 1 and fixedly connected with the casing 1 .
  • the appearance surface of the optical sensor module 2 is exposed through the through hole 12 .
  • the smooth transition between the appearance surface of the optical sensor module 2 and the appearance surface of the housing 1 makes the appearance of the electronic device 100 more beautiful, and at the same time makes the appearance surface of the electronic device 100 fit to the user smoother and more comfortable to the touch, so as to Improve the user's experience when wearing the electronic device 100 .
  • the optical sensor module 2 may include a light guide column 21 and surrounding barrier walls 22 arranged around the light guide column 21 .
  • the first end portion 211 of the light guide column 21 protrudes relative to the first surface 221 of the surrounding wall 22 .
  • the first end portion 211 of the light guide column 21 may include a top surface 2111 and a side surface 2112, and the side surface 2112 of the first end portion 211 surrounds the top surface 2111 of the first end portion 211 and is opposite to the first surface 221 of the surrounding wall 22. exposed.
  • the top surface 2111 of the first end portion 211 is the appearance surface of the optical sensor module 2 .
  • orientation words such as “top” and “side” involved in this application are described with reference to the orientation of the attached drawings, and do not indicate or imply that the referred device or element must have a specific orientation , are constructed and operated in a particular lens orientation and therefore are not to be construed as limitations on the application.
  • FIG. 2, FIG. 3 and FIG. 4 Please refer to FIG. 2, FIG. 3 and FIG. 4 together.
  • the first end 211 of the light guide rod 21 is embedded in the housing 1, and the first end
  • the side surface 2112 of the portion 211 is attached to the hole wall 121 of the through hole 12;
  • the surrounding retaining wall 22 is located inside the housing 1 and the first surface 221 of the surrounding retaining wall 22 is attached to the inner side wall 13 of the housing 1, defining the guide The assembly position of light column 21.
  • the first end portion 211 of the light guide column 21 is embedded in the through hole 12, and the top surface 2111 of the first end portion 211 is exposed relative to the housing 1, so that the optical sensor module 2 occupies half of the appearance surface of the electronic device 100.
  • the area is smaller, so the appearance of the electronic device 100 is better.
  • the light guide post 21 is directly attached to the through hole 12 , which reduces the gap between the optical sensor module 2 and the housing 1 , and improves the sealing performance of the electronic device 100 .
  • the first surface 221 of the surrounding retaining wall 22 and the inner side wall 13 of the housing 1 can be fixedly connected by means of gluing, etc., so that the optical sensor module 2 is fixedly connected with the housing 1, thereby preventing the light guide column 21 from facing each other. Vibration of the through hole 12 affects the accuracy and stability of the detection effect of the optical sensor module 2 .
  • the optical sensor module 2 and the housing 1 may also be fixedly connected in other ways, which is not limited in this application.
  • the optical sensor module 2 is fixedly connected to the housing 1 by bonding the first surface 221 of the surrounding retaining wall 22 to the inner side wall 13 of the housing 1, so that the connection between the optical sensor module 2 and the housing can be improved.
  • bonding the first surface 221 of the surrounding wall 22 to the inner wall 13 of the casing 1 can also improve the sealing performance between the optical sensor module 2 and the casing 1 .
  • the glue between the first surface 221 of the surrounding retaining wall 22 and the inner side wall 13 of the housing 1 is evenly distributed, and it is difficult to generate gaps, thereby preventing impurities such as water or dust from entering the interior of the electronic device 100, and improving the performance of the electronic device 100. Sealing performance.
  • FIG. 5 is a partially exploded schematic diagram of the structure of the optical sensor module 2 shown in FIG. 4
  • FIG. 6 is a schematic diagram of the structure shown in FIG. 5 at another angle.
  • the optical sensor module 2 may further include a circuit board 23 and a sensing element 24 fixedly connected to the circuit board 23 .
  • the sensing element 24 may be electrically connected to the circuit board 23 .
  • the sensing element 24 can be used to emit and receive detection light, and can also transmit the optical information in the received detection light through the circuit board 23 .
  • the light guide column 21 may include a second end portion 212 opposite to the first end portion 211 .
  • the second end portion 212 and the surrounding retaining wall 22 enclose a receiving groove 220 , and the sensing element 24 can be accommodated in the receiving groove 220 .
  • the peripheral portion of the circuit board 23 can be fixedly connected to the second surface 222 of the surrounding retaining wall 22 , and the second surface 222 is opposite to the first surface 221 .
  • the circuit board 23 is fixedly connected to the surrounding retaining wall 22 to limit the relative position of the sensing element 24 and the light guide column 21, and also prevent the sensing element 24 from deviating from the assembly of the sensing element 24 when the electronic device 100 shakes.
  • the position improves the detection stability of the optical sensor module 2.
  • the sensing element 24 is roughly facing the light guide column 21, so that the detection light emitted from the sensing element 24 can be transmitted to the outside of the electronic device 100 through the light guide column 21 as much as possible, and the sensing element 24 can also be able to More detection light reflected from the outside of the electronic device 100 is received, thereby improving the transmission efficiency of the detection light and the detection performance of the optical sensor module 2 .
  • the surrounding retaining wall 22 may include a first positioning part 223 and a second positioning part 224 .
  • the first locating member 223 and the second locating member 224 are both disposed on the peripheral side of the surrounding retaining wall 22 , and are disposed on two opposite sides of the surrounding retaining wall 22 .
  • the first positioning part 223 and the second positioning part 224 can protrude relative to the second surface 222 of the surrounding retaining wall 22 to limit the relative position of the circuit board 23 and the surrounding retaining wall 22, so as to facilitate the assembly of the circuit board 23 and the sensing element 24 .
  • the surrounding retaining wall 22 may further include a third positioning member 225 disposed on the second surface 222 .
  • the first positioning part 223 , the second positioning part 224 and the third positioning part 225 can be arranged in a triangle to jointly define the relative position of the circuit board 23 and the surrounding retaining wall 22 , which is more convenient for the assembly of the circuit board 23 and the sensing element 24 .
  • the circuit board 23 may include a positioning hole 230 corresponding to the position of the third positioning member 225 .
  • the positioning hole 230 can be sleeved on the third positioning member 225 , which improves positioning accuracy and reduces assembly difficulty.
  • the first positioning part 223, the second positioning part 224 and the third positioning part 225 can further define the relative position of the sensing element 24 and the light guide column 21, and can also prevent the sensing element 24 from deviating from the sensor when the electronic device 100 is shaken. The assembly position of the sensing element 24 improves the detection stability of the optical sensor module 2 .
  • the circuit board 23 may be a flexible circuit board or a rigid circuit board, which is not strictly limited in this embodiment of the present application. Polyester materials such as polyimide can be used for flexible circuit boards.
  • FIG. 7 is a structural diagram of a part of the optical sensor module 2 shown in FIG. 4 at another angle.
  • the light guide column 21 may include a first lens 213 , a second lens 215 and a middle blocking wall 214 .
  • the intermediate wall 214 is disposed between the first lens 213 and the second lens 215 and is fixedly connected to the first lens 213 and the second lens 215 respectively.
  • the top surface of the first lens 213 , the top surface of the second lens 215 and the top surface of the intermediate wall 214 together constitute the top surface 2111 of the first end portion 211 .
  • FIG. 8 is an exploded view of the structure shown in FIG. 7 .
  • the light guide column 21 may also include a connecting material 216 fixedly connecting the first lens 213 and the second lens 215 . Both ends of the connecting material 216 can be arranged on the peripheral sides of the first lens 213 and the second lens 215 respectively, and can be arranged at any position on the peripheral sides of the first lens 213 and the second lens 215 .
  • the side wall of the surrounding retaining wall 22 may be provided with a groove 226 having the same structure as the connecting material 216 .
  • the light guide column 21 can cooperate with the groove 226 of the surrounding barrier wall 22 through the connecting material 216 to define the relative positions of the first lens 213 , the second lens 215 and the surrounding barrier wall 22 .
  • the intermediate retaining wall 214 is fixedly connected to the surrounding retaining wall 22 , and the top surface of the intermediate retaining wall 214 is exposed relative to the surrounding retaining wall 22 .
  • the connecting material 216 cooperates with the groove 226 of the surrounding retaining wall 22 to define the first lens 213
  • the positional relationship between the second lens 215 and the middle retaining wall 214 makes the top surface of the first lens 213 and the top surface of the second lens 215 and the top surface of the middle retaining wall 214 smoothly transition, and the top surface of the first end portion 211 2111 smooth.
  • the connecting material 216 and the first lens 213 and the second lens 215 may be integrally formed to improve structural integrity.
  • the connecting material 216, the first lens 213 and the second lens 215 can be obtained by casting at the same time.
  • the intermediate retaining wall 214 and the surrounding retaining wall 22 may be integrally formed.
  • the intermediate retaining wall 214 and the surrounding retaining wall 22 can be obtained simultaneously by casting.
  • the intermediate retaining wall 214 may also be fixedly connected to the surrounding retaining wall 22 in other ways, such as glue or the like.
  • the connecting material 216 , the first lens 213 and the second lens 215 can be integrally molded on the basis of the intermediate barrier 214 and the surrounding barrier 22 through in-film injection molding.
  • the middle retaining wall 214 and the surrounding retaining wall 22 are used as a part of the mould, and the melt of the lens is directly cast in the space of the mold including the intermediate retaining wall 214 and the surrounding retaining wall 22, so that the connecting material 216 and the first retaining wall
  • the first lens 213, the second lens 215, the middle retaining wall 214 and the surrounding retaining wall 22 are integrated into one body.
  • the light guide column 21 may not include the connecting material 216 to reduce material consumption and cost.
  • the lens is integrally molded with the intermediate retaining wall 214 and the surrounding retaining wall 22 through in-film injection molding, which saves the step of fixing the lens with the intermediate retaining wall 214 and the surrounding retaining wall 22 through glue or the like. , thereby reducing dispensing gaps and simplifying the process. Moreover, there are almost no gaps between the bonding surfaces formed by casting, so the appearance effect and sealing effect of the obtained optical sensor module 2 are better. In addition, the bonding strength of the bonding surface formed by casting is higher, which improves the structural stability of the optical sensor module 2 .
  • the integrally formed structure of the connecting material 216 and the first lens 213 and the second lens 215 may also be fixedly connected with the intermediate barrier 214 and the surrounding barrier 22 by other means, such as glue and the like.
  • Glue dispensing grooves may be provided on the surfaces of the intermediate retaining wall 214 and the peripheral retaining wall 22 that are in contact with the integrally formed structure.
  • glue can be applied in the dispensing tank, and after the glue solidifies, the assembly of the light guide column 21 and the surrounding retaining wall 22 is completed.
  • the lens can be fixedly connected to the surrounding retaining wall 22 and the intermediate retaining wall 214 in other ways, such as fixing with fasteners, fixing with heat and pressure, etc., which is not limited in this application.
  • the first lens 213 , the second lens 215 and the connecting material 216 can be made of optically transparent materials, such as optical crystals, optical glass, optical plastics, and the like.
  • FIG. 9 is a schematic diagram of the internal structure of the optical sensor module 2 shown in FIG. 4 .
  • the dotted line with the arrow in FIG. 9 shows the propagation path of the detection light in some embodiments provided in the present application.
  • the sensing element 24 may include a transmitting end 241 and a receiving end 242 arranged at intervals, respectively corresponding to the first lens 213 and the second lens 215 .
  • the transmitting end 241 can emit detection light, and propagate to the outside of the electronic device 100 through the first lens 213 .
  • the detection light encounters the object to be tested, it is reflected and changes the propagation direction; the reflected detection light can enter from the second mirror 215, and after propagating in the second mirror 215, it is received by the receiving end 242 to realize the detection function.
  • the area of the top surface of the first lens 213 can be smaller than the area of the top surface of the second lens 215, so as to increase the probability that the reflected detection light enters the second lens 215, so that more detection light can be received Terminal 242 captures, thereby improving the accuracy of detection.
  • the intermediate barrier 214 may be made of opaque material.
  • the opposite sides of the first lens 213 and the second lens 215 are separated by an intermediate barrier 214, and the intermediate barrier 214 is made of an opaque material, which can block the detection in the first lens 213 and the second lens 215.
  • the light is transmitted to the other side, avoiding the problem of light crossing between the first lens 213 and the second lens 215, preventing the detection light emitted by the transmitting end 241 from interfering with the detection results, improving the accuracy of the detection results, and further improving the optical sensor Detection performance of module 2.
  • the surrounding wall 22 can also be made of opaque material, so as to prevent other light in the inner cavity of the housing 1 of the electronic device 100 or ambient light from the outside of the electronic device 100 from entering the light guide column 21, which will affect the detection results. Improve the accuracy of detection and the detection performance of the optical sensor module 2. Understandably, in this application, the opaque material may be a material with a low light transmittance, and the light transmittance of the opaque material is not strictly limited to zero.
  • FIG. 10 is a schematic diagram of a part of the structure shown in FIG. 8 .
  • the dotted line with the arrow in FIG. 10 shows the propagation path of the detection light in the continuous material 216 in some embodiments provided by the present application. It can be understood that the detection light can propagate in any direction in the continuous material 216, and the dotted line with an arrow in the figure shows one of the propagation directions, which does not indicate or imply that the detection light must have a specific direction, so it cannot be understood For the limitation of this application.
  • the first lens 213 and the second lens 215 can be integrally formed by single-gate injection molding, that is, the melted liquid material is poured into the mold from one gate, and two lenses can be obtained by one molding, reducing the process flow ,Increase productivity.
  • the spaced first lens 213 and the second lens 215 are injection-molded through one gate, so a connecting material 216 is needed to connect the two lenses.
  • the detection light can be transmitted from one lens to the other through the connecting material 216, resulting in the problem of light channeling, the detection light will be reflected and refracted many times in the connecting material 216, thereby reducing the transmission of light in the two lenses and reducing the The degree of light channeling improves the quality of detection.
  • FIG. 11 is a schematic diagram of the structure shown in FIG. 10 in some other embodiments.
  • the connecting material 216 may adopt a non-straight-through structure as shown in FIG. 10 , or may adopt a straight-through structure as shown in FIG. 11 .
  • the connecting material 216 may include two connecting segments fixedly connected and an intermediate segment, wherein the two connecting segments are fixedly connected to the first lens 213 and the second lens 215 respectively, and the intermediate segment is located between the two connecting segments .
  • the middle section of the straight-through structure is linear, and the middle section of the non-straight-through structure is zigzag, that is, there are bends. Therefore, in this embodiment, the light travels short distance in the straight-through structure of the connecting material 216, and the light is easy to propagate in the two lenses, but the liquid material can flow from one lens to the other more smoothly during the casting process. In the process, improve the yield rate and production efficiency.
  • light travels a long distance in the connecting material 216 of the non-straight-through structure, and can go through more reflections and refractions at the bend of the connecting material 216, thereby reducing the transmission of light in the two lenses and reducing light crossing. To a certain extent, the detection performance of the optical sensor module 2 is improved.
  • FIG. 12 is a schematic diagram of the partial structure of the optical sensor module 2 shown in FIG. 8 in other embodiments
  • FIG. 13 is a partial structure of the optical sensor module 2 shown in FIG. 12 schematic diagram.
  • the light guide column 21 may further include a first gate 217 fixedly connected to the peripheral side of the first lens 213 , and a second gate 218 fixedly connected to the peripheral side of the second lens 215 .
  • the first gate 217 and the second gate 218 may be respectively disposed on the same side of the first lens 213 and the second lens 215 .
  • the first lens 213 and the second lens 215 can be produced by double-gate injection molding, that is, the melted liquid material is poured into the mold from two gates, and the two lenses are simultaneously injected by the two gates. Casting.
  • the first lens 213 and the second lens 215 there may be no connecting material 216 between the first lens 213 and the second lens 215, that is, the first lens 213 and the second lens 215 are independent of each other, and there is no transmission channel for detecting light between the two lenses.
  • the light channeling problem between the two lenses is effectively solved, and the detection effect of the optical sensor module 2 is improved.
  • the surrounding retaining wall 22 may also be provided with grooves matching the gate shape at corresponding positions.
  • the first gate 217 and the second gate 218 can cooperate with the groove to play a role in defining the first lens 213, the second lens 215 and the The effect of the relative positions of the surrounding retaining walls 22 reduces assembly difficulty and improves efficiency.
  • FIG. 14 is a schematic diagram of the structure shown in FIG. 13 in some other embodiments.
  • the first gate 217 and the second gate 218 may also be respectively disposed on two sides of the first lens 213 and the second lens 215 away from each other. It can be understood that the gate can be arranged at any position on the periphery of the lens, which is not limited in this embodiment.
  • the light guide column 21 may not be provided with the first gate 217 and/or the second gate 218, so as to prevent the detection light from being emitted from the gate and affecting the optical sensor module. 2 detection effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Signal Processing (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本申请公开一种光学传感器模组及电子设备。电子设备的壳体设有用于安装光学传感器模组的通孔,光学传感器模组包括导光柱和围绕导光柱设置的周围挡墙。导光柱的第一端部相对周围挡墙的顶面凸起,以使导光柱能够直接贴合通孔,减少了光学传感器模组与壳体之间的缝隙,提升电子设备的密封性能。

Description

光学传感器模组及电子设备
本申请要求于2021年05月18日提交中国专利局、申请号为202110538713.3、申请名称为“光学传感器模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子产品技术领域,尤其涉及一种光学传感器模组及电子设备。
背景技术
光学传感器模组一般包括镜片和遮光挡墙等多个结构件,将光学传感器模组集成在电子设备上时,光学传感器模组和电子设备的壳体之间的组装工艺复杂、且结构件之间留有大量缝隙,损害电子设备的密封性能。
发明内容
本申请公开一种光学传感器模组及电子设备。在本申请中,电子设备的壳体设有用于安装光学传感器模组的通孔,光学传感器模组包括导光柱和围绕导光柱设置的周围挡墙。导光柱的第一端部相对周围挡墙的顶面凸起,以使导光柱能够直接贴合通孔,减少了光学传感器模组与壳体之间的缝隙,提升电子设备的密封性能。
第一方面,本申请提供一种电子设备,包括壳体和光学传感器模组,光学传感器与壳体固定连接,光学传感器模组包括导光柱和围绕导光柱设置的周围挡墙,导光柱与周围挡墙固定连接,导光柱的第一端部相对周围挡墙的第一面凸起,第一端部包括顶面和侧面,第一端部的侧面环绕第一端部的顶面且相对周围挡墙的第一面露出;壳体具有通孔和内侧壁,第一端部位于通孔,第一端部的顶面相对壳体露出且第一端部的侧面面向通孔的孔壁,周围挡墙位于壳体的内侧,周围挡墙的顶面固定连接壳体的内侧壁。
在本申请中,当光学传感器模组安装于壳体时,导光柱的第一端部嵌入到壳体内,第一端部的侧面与通孔的孔壁贴合;周围挡墙位于壳体的内侧且周围挡墙的第一面与壳体的内侧壁贴合,限定了导光柱的装配位置。
此外,导光柱的第一端部嵌入通孔,且第一端部的顶面相对壳体露出,使得光学传感器模组占用电子设备的外观面的面积较小,因此电子设备的外观效果更好。导光柱直接贴合通孔,减少了光学传感器模组与壳体之间的缝隙,提升电子设备的密封性能。
一种可能的实现方式中,光学传感器的外观面与壳体的外观面平滑过渡,使得电子设备的外形更加美观,同时使得电子设备贴合用户的外观面更加光滑,触感更加舒适,以提升用户穿戴电子设备时的体验感。其中,第一端部的顶面即为光学传感器的外观面。
一种可能的实现方式中,导光柱包括第一镜片、第二镜片、以及与周围挡墙固定连接的中间挡墙,中间挡墙设置在第一镜片和第二镜片之间,且分别与第一镜片和第二镜片固定连接,第一镜片的顶面、中间挡墙的顶面与第二镜片的顶面共同构成第一端部的顶面,中间挡墙采用不透光材料。
在本申请中,第一镜片和第二镜片相对的侧面被中间挡墙隔开,且中间挡墙采用不透光材料,能够阻挡第一镜片和第二镜片中的检测光线传播至另一侧,避免第一镜片和第二镜片 之间的窜光问题,防止发射端发出的检测光线对检测结果造成干扰,提升检测结果的准确性,并进一步提升光学传感器模组的检测性能。
一种可能的实现方式中,周围挡墙与中间挡墙为一体成型结构。例如,中间挡墙与周围挡墙可以通过浇铸的方式同时得到,通过铸造形成的结合面的结合强度更高,提高光学传感器模组的结构稳定性。在其他一些实现方式中,中间挡墙也可以采用其他方式与周围挡墙固定连接,例如粘胶等。
一种可能的实现方式中,导光柱和周围挡墙为一体成型结构,第一镜片和第二镜片在周围挡墙与中间挡墙的基础上通过膜内注塑的方式一体成型。
在本申请中,镜片与中间挡墙和周围挡墙通过膜内注塑的方式一体成型,省去了将镜片与中间挡墙和周围挡墙通过粘胶等方式固定连接的步骤,从而减少了点胶缝隙并简化了工艺流程。而且,通过铸造形成的结合面之间几乎不存在缝隙,因此得到的光学传感器模组的外观效果和密封效果更好。此外,通过铸造形成的结合面的结合强度更高,提高光学传感器模组的结构稳定性。
一种可能的实现方式中,导光柱还包括连料,连料固定连接第一镜片和第二镜片,连料与第一镜片、第二镜片是一体成型结构,以提高结构的完整性。例如,连料与第一镜片、第二镜片可以通过浇铸的方式同时得到。
一种可能的实现方式中,连料为直通式结构或非直通式结构。具体地,连料可以包括固定连接的两个连接段和一个中间段,其中,两个连接段分别与第一镜片和第二镜片固定连接,中间段位于两个连接段之间。直通式结构的中间段为直线型,非直通式结构的中间段为折线型,也即存在弯折处。因此,光线在直通式结构的连料中传播路程短,易于在两个镜片之间传播,但在浇铸过程中液态材料能够更顺利地从一个镜片中流到另一个镜片中,提高良品率和生产效率。此外,光线在非直通式结构的连料中传播路程长,且能够在连料的弯折处经过更多次的反射和折射,从而减少光线在两个镜片中的传播,减轻窜光程度,提升光学传感器模组的检测性能。
一种可能的实现方式中,导光柱还包括固定连接于第一镜片周侧的第一浇口、和固定连接于第二镜片周侧的第二浇口。第一镜片和第二镜片可以采用双浇口注塑成型的方式制作,也即将融化后的液态材料从两个浇口中倒入模具,两个镜片分别由两个浇口同时浇铸成型。
在本实现方式中第一镜片和第二镜片之间可以不设连料,也即第一镜片和第二镜片彼此独立,两个镜片之间没有检测光线的传输通道,有效解决了两个镜片之间的窜光问题,提升光学传感器模组的检测效果。
一种可能的实现方式中,第一镜片的顶面的面积小于第二镜片的顶面的面积,以增加被反射的检测光线射入第二镜片的概率,使得更多的检测光线能够被接收端捕捉,从而提高检测的准确性。
一种可能的实现方式中,光学传感器模组还包括电路板和与电路板固定连接的传感元件,导光柱包括与第一端部相背的第二端部,第二端部和周围挡墙合围出容纳槽,传感元件位于容纳槽,电路板的周部与周围挡墙的第二面固定连接,第二面与第一面相对设置。
在本申请中,传感元件可以与电路板电连接。传感元件可以用于发射、接收检测光线,也可以将接收到的检测光线中的光学信息通过电路板传送出去。
一种可能的实现方式中,传感元件包括间隔设置的发射端和接收端,发射端对应第一镜片设置,用于向第一镜片发射检测光线;接收端对应第二镜片设置,用于接收经第二镜片的被待测物反射的检测光线。
在本申请中,发射端可以发出检测光线,并通过第一镜片传播至电子设备的外部。当检测光线遇到待测物后被反射,改变传播方向;被反射的检测光线可以从第二镜片射入,在第二镜片中传播后,被接收端接收,以实现检测功能。
第二方面,本申请提供一种光学传感器模组,应用于电子设备。电子设备包括壳体,壳体具有通孔和内侧壁;光学传感器包括导光柱和围绕导光柱设置的周围挡墙,导光柱与周围挡墙固定连接,导光柱的第一端部相对周围挡墙的第一面凸起,第一端部包括顶面和侧面,第一端部的侧面环绕第一端部的顶面且相对周围挡墙露出;第一端部用于嵌入通孔,周围挡墙的顶面用于固定连接壳体的内侧壁。
在本申请中,当光学传感器模组安装于壳体时,导光柱的第一端部嵌入到壳体内,第一端部的侧面与通孔的孔壁贴合;周围挡墙位于壳体的内侧且周围挡墙的第一面与壳体的内侧壁贴合,限定了导光柱的装配位置。
此外,导光柱的第一端部嵌入通孔,且第一端部的顶面相对壳体露出,使得光学传感器模组占用电子设备的外观面的面积较小,因此电子设备的外观效果更好。导光柱直接贴合通孔,减少了光学传感器模组与壳体之间的缝隙,提升电子设备的密封性能。
一种可能的实现方式中,导光柱包括第一镜片、第二镜片、以及与周围挡墙固定连接的中间挡墙,中间挡墙设置在第一镜片和第二镜片之间,且分别与第一镜片和第二镜片固定连接,第一镜片的顶面、中间挡墙的顶面与第二镜片的顶面共同构成第一端部的顶面,中间挡墙采用不透光材料。
在本申请中,第一镜片和第二镜片相对的侧面被中间挡墙隔开,且中间挡墙采用不透光材料,能够阻挡第一镜片和第二镜片中的检测光线传播至另一侧,避免第一镜片和第二镜片之间的窜光问题,防止发射端发出的检测光线对检测结果造成干扰,提升检测结果的准确性,并进一步提升光学传感器模组的检测性能。
一种可能的实现方式中,周围挡墙与中间挡墙为一体成型结构。例如,中间挡墙与周围挡墙可以通过浇铸的方式同时得到,通过铸造形成的结合面的结合强度更高,提高光学传感器模组的结构稳定性。
一种可能的实现方式中,导光柱和周围挡墙为一体成型结构,第一镜片和第二镜片在周围挡墙与中间挡墙的基础上通过膜内注塑的方式一体成型。
在本申请中,镜片与中间挡墙和周围挡墙通过膜内注塑的方式一体成型,省去了将镜片与中间挡墙和周围挡墙通过粘胶等方式固定连接的步骤,从而减少了点胶缝隙并简化了工艺流程。而且,通过铸造形成的结合面之间几乎不存在缝隙,因此得到的光学传感器模组的外观效果和密封效果更好。此外,通过铸造形成的结合面的结合强度更高,提高光学传感器模组的结构稳定性。
附图说明
图1是本申请提供的电子设备在一些实施例中的结构示意图;
图2是图1所示电子设备的内部结构示意图;
图3是图2所示结构的分解示意图;
图4是图2所示光学传感器模组的结构示意图;
图5是图4所示光学传感器模组结构的部分分解示意图;
图6是图5所示结构在另一角度的示意图;
图7是图4所示光学传感器模组的部分结构在另一角度的结构示意图;
图8是图7所示结构的分解示意图;
图9是图4所示光学传感器模组的内部结构示意图;
图10是图8所示部分结构的示意图;
图11是图10所示结构在其他一些实施例中的示意图;
图12是图8所示光学传感器模组的部分结构在另一些实施例中的示意图;
图13是图12所示光学传感器模组的部分结构的示意图;
图14是图13所示结构在其他一些实施例中的示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。其中,本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
请参阅图1,图1是本申请提供的电子设备100在一些实施例中的结构示意图。电子设备100可以是可穿戴的电子产品。可穿戴电子产品可以具备计算功能,也可以通过移动通讯网络或WIFI等方式来实现无线网络接入;或通过移动通讯网络、WIFI或蓝牙等方式实现与外部设备的通信连接。可穿戴电子产品可以是以手腕为支撑的watch类(包括手表和腕带等产品),以脚为支撑的shoes类(包括鞋、袜子或者将来的其他腿上佩戴产品),以头部为支撑的glass类(包括眼镜、头盔、头带、耳机等),也可以是智能服装、书包、拐杖、配饰等。在其他一些实施例中,电子设备100也可以是手机、平板电脑等电子产品,本申请实施例以电子设备100是耳机为例进行说明。
示例性的,电子设备100可以包括壳体1和光学传感器模组2,光学传感器模组2安装于壳体1。电子设备100的外观面由光学传感器模组2的外观面和壳体1的外观面共同组成。
示例性的,光学传感器模组2可以利用光线反射原理进行测试。具体地,检测光线从光学传感器模组2的外观面射出,碰到待测物之后被反射,改变传播方向后从外观面进入。在本申请中,用于使检测光线从电子设备100的内部射出外部,或从外部射入内部的表面为光学传感器模组2的外观面。示例性的,待测物可以是用户的皮肤,也可以是衣物等其他物体。光学传感器模组2可以用于检测用户的心率、血氧等数据。
示例性的,当用户佩戴电子设备100时,光学传感器模组2的外观面20可以接触或贴近用户的皮肤。一方面,外观面接触或贴近用户皮肤能够防止环境光线从外观面进入,避免环境光线对检测结果造成影响。另一方面,外观面与用户皮肤距离较近,能够提升检测结果的准确性,以提升光学传感器模组2的性能。
在其他一些实施例中,光学传感器模组2也可以用作接近光传感器或距离传感器,用于检测电子设备100周围的环境数据,以使电子设备100能够根据环境数据完成预设的功能。
示例性的,壳体1还可以包括扬声孔11,电子设备100产生的声音信息可以通过扬声孔11传播至电子设备100的外部,使得更多的声音能够通过扬声孔11传播至预设的方位,以提高声音信息传输的方向性和效率。
请一并参阅图2和图3,图2是图1所示电子设备100的内部结构示意图,图3是图2所示结构的分解示意图。示例性的,壳体1可以设有通孔12和内侧壁13。光学传感器模组2安装于壳体1、且与壳体1固定连接。光学传感器模组2的外观面通过通孔12露出。
示例性的,光学传感器模组2的外观面与壳体1的外观面平滑过渡,使得电子设备100的外形更加美观,同时使得电子设备100贴合用户的外观面更加光滑,触感更加舒适,以提 升用户穿戴电子设备100时的体验感。
请参阅图4,图4是图2所示光学传感器模组2的结构示意图。示例性的,光学传感器模组2可以包括导光柱21和围绕导光柱21设置的周围挡墙22。导光柱21的第一端部211相对周围挡墙22的第一面221凸起。具体地,导光柱21的第一端部211可以包括顶面2111和侧面2112,第一端部211的侧面2112环绕第一端部211的顶面2111且相对周围挡墙22的第一面221露出。其中,第一端部211的顶面2111即为光学传感器模组2的外观面。可以理解的是,本申请中涉及的“顶”、“侧”等方位用词,是参考附加图式的方位进行的描述,并不是指示或暗指所指的装置或元件必须具有特定的方位、以特定镜片的方位构造和操作,因此不能理解为对本申请的限制。
请一并参阅图2、图3和图4,在本申请中,当光学传感器模组2安装于壳体1时,导光柱21的第一端部211嵌入到壳体1内,第一端部211的侧面2112与通孔12的孔壁121贴合;周围挡墙22位于壳体1的内侧且周围挡墙22的第一面221与壳体1的内侧壁13贴合,限定了导光柱21的装配位置。
在本实施例中,导光柱21的第一端部211嵌入通孔12,且第一端部211的顶面2111相对壳体1露出,使得光学传感器模组2占用电子设备100的外观面的面积较小,因此电子设备100的外观效果更好。此外,导光柱21直接贴合通孔12,减少了光学传感器模组2与壳体1之间的缝隙,提升电子设备100的密封性能。
示例性的,周围挡墙22的第一面221与壳体1的内侧壁13可以通过胶粘等方式固定连接,以使光学传感器模组2与壳体1固定连接,从而避免导光柱21相对通孔12晃动,影响光学传感器模组2的检测效果的精确度和稳定性。在其他一些实施例中,光学传感器模组2与壳体1也可以通过其他方式固定连接,本申请对此不作限定。
在本申请中,通过将周围挡墙22的第一面221与壳体1的内侧壁13粘合的方式将光学传感器模组2与壳体1固定连接,能够提升光学传感器模组2与壳体1之间固定的牢固性。可以理解地,第一端部211的侧面2112与通孔12的孔壁121皆沿垂向设置,胶水会在重力的作用下流动,使得导光柱21的侧面2112与通孔12的孔壁121之间的胶水分布不均匀。若将导光柱21的侧面2112与通孔12的孔壁121通过胶水粘和,则会导致粘合部位胶水分布不均匀,且易产生空隙,影响光学传感器模组2与壳体1之间固定的牢固性。
此外,将周围挡墙22的第一面221与壳体1的内侧壁13粘合,还可以提升光学传感器模组2与壳体1之间的密封性能。具体地,周围挡墙22的第一面221与壳体1的内侧壁13之间的胶水分布均匀,不易产生空隙,从而防止水或灰尘等杂质进入电子设备100的内部,提升电子设备100的密封性能。
请一并参阅图5和图6,图5是图4所示光学传感器模组2结构的部分分解示意图,图6是图5所示结构在另一角度的示意图。
示例性的,光学传感器模组2还可以包括电路板23和与电路板23固定连接的传感元件24。传感元件24可以与电路板23电连接。传感元件24可以用于发射、接收检测光线,也可以将接收到的检测光线中的光学信息通过电路板23传送出去。
示例性的,导光柱21可以包括与第一端部211相背的第二端部212。第二端部212和周围挡墙22合围出容纳槽220,传感元件24可以容纳于容纳槽220。电路板23的周部可以与周围挡墙22的第二面222固定连接,第二面222与第一面221相对设置。
在本申请中,电路板23与周围挡墙22固定连接,以限定传感元件24与导光柱21的相对位置,还可以避免传感元件24在电子设备100晃动时偏离传感元件24的装配位置,提高 光学传感器模组2的检测稳定性。
示例性的,传感元件24大致正对导光柱21,可以使得从传感元件24发出的检测光线能够尽可能多地通过导光柱21传输至电子设备100外部,也可以使得传感元件24能够接收更多的从电子设备100外部反射回来的检测光线,从而提升检测光线的传输效率和光学传感器模组2的检测性能。
示例性的,周围挡墙22可以包括第一定位件223和第二定位件224。第一定位件223和第二定位件224均设于周围挡墙22的周侧,且设置于周围挡墙22相对的两侧。第一定位件223和第二定位件224可以相对周围挡墙22的第二面222凸起,以限定电路板23与周围挡墙22的相对位置,便于电路板23和传感元件24的装配。
示例性的,周围挡墙22还可以包括设于第二面222的第三定位件225。第一定位件223、第二定位件224和第三定位件225可以呈三角形排布,共同限定电路板23与周围挡墙22的相对位置,更便于电路板23和传感元件24的装配。
示例性的,电路板23可以包括定位孔230,对应第三定位件225的位置设置。当将电路板23与周围挡墙22装配在一起时,定位孔230可以套设于第三定位件225,提高定位的精度,并降低装配难度。此外,第一定位件223、第二定位件224和第三定位件225能够进一步地限定传感元件24与导光柱21的相对位置,还可以避免传感元件24在电子设备100晃动时偏离传感元件24的装配位置,提高光学传感器模组2的检测稳定性。
示例性的,电路板23可以是柔性电路板,也可以是硬质电路板,本申请实施例对此不作严格限定。柔性电路板可采用聚酰亚胺等聚酯材料。
请参阅图7,图7是图4所示光学传感器模组2的部分结构在另一角度的结构示意图。示例性的,导光柱21可以包括第一镜片213、第二镜片215和中间挡墙214。中间挡墙214设置在第一镜片213和第二镜片215之间、且分别与第一镜片213和第二镜片215固定连接。第一镜片213的顶面、第二镜片215的顶面和中间挡墙214的顶面共同构成第一端部211的顶面2111。
请一并参阅图7和图8,图8是图7所示结构的分解示意图。导光柱21还可以包括固定连接第一镜片213和第二镜片215的连料216。连料216两端可以分别设于第一镜片213和第二镜片215的周侧、且可以设于第一镜片213和第二镜片215的周侧的任意位置。周围挡墙22的侧壁可以设有与连料216结构相同的凹槽226。
示例性的,导光柱21可以通过连料216与周围挡墙22的凹槽226配合,以限定第一镜片213、第二镜片215与周围挡墙22的相对位置。
示例性的,中间挡墙214与周围挡墙22固定连接,且中间挡墙214的顶面相对周围挡墙22露出。当第一镜片213、第二镜片215和连料216与中间挡墙214和周围挡墙22安装在一起时,连料216与周围挡墙22的凹槽226配合,以限定第一镜片213、第二镜片215与中间挡墙214的位置关系,使得第一镜片213的顶面和第二镜片215的顶面与中间挡墙214的顶面能够平滑过渡,且第一端部211的顶面2111光滑。
示例性的,连料216与第一镜片213、第二镜片215可以是一体成型结构,以提高结构的完整性。例如,连料216与第一镜片213、第二镜片215可以通过浇铸的方式同时得到。
示例性的,中间挡墙214与周围挡墙22可以是一体成型结构。例如,中间挡墙214与周围挡墙22可以通过浇铸的方式同时得到。在其他一些实施例中,中间挡墙214也可以采用其他方式与周围挡墙22固定连接,例如粘胶等。
示例性的,连料216与第一镜片213、第二镜片215可以在中间挡墙214与周围挡墙22 的基础上通过膜内注塑的方式一体成型。在模内注塑时,中间挡墙214与周围挡墙22作为模具的一部分,将镜片的熔液直接浇铸在包括中间挡墙214与周围挡墙22的模具的空间内,使连料216与第一镜片213、第二镜片215与中间挡墙214与周围挡墙22接合成一体。在本实施例中,导光柱21也可以不包括连料216,以减少用料并节省成本。
在本实施例中,镜片与中间挡墙214和周围挡墙22通过膜内注塑的方式一体成型,省去了将镜片与中间挡墙214和周围挡墙22通过粘胶等方式固定连接的步骤,从而减少了点胶缝隙并简化了工艺流程。而且,通过铸造形成的结合面之间几乎不存在缝隙,因此得到的光学传感器模组2的外观效果和密封效果更好。此外,通过铸造形成的结合面的结合强度更高,提高光学传感器模组2的结构稳定性。
在其他一些实施例中,连料216与第一镜片213、第二镜片215的一体成型结构也可以通过其他方式与中间挡墙214和周围挡墙22固定连接,例如粘胶等。中间挡墙214和周围挡墙22与一体成型结构接触的表面可以设有点胶槽。在将一体成型结构与中间挡墙214和周围挡墙22装配在一起时,可以通过在点胶槽中涂抹胶水,待胶水凝固后,完成导光柱21和周围挡墙22的组装。可理解地,镜片与周围挡墙22和中间挡墙214还可以采用其他方式固定连接,如紧固件固定、热压固定等,本申请对此不作限定。
示例性的,第一镜片213、第二镜片215与连料216可以采用光学透明材料,例如光学晶体、光学玻璃、光学塑料等。
请一并参阅图2和图9,图9是图4所示光学传感器模组2的内部结构示意图。图9中带箭头的虚线示意出了在本申请提供的一些实施例中,检测光线的传播路径。
示例性的,传感元件24可以包括间隔设置的发射端241和接收端242,分别对应第一镜片213和第二镜片215。在本申请中,发射端241可以发出检测光线,并通过第一镜片213传播至电子设备100的外部。当检测光线遇到待测物后被反射,改变传播方向;被反射的检测光线可以从第二镜片215射入,在第二镜片215中传播后,被接收端242接收,以实现检测功能。
示例性的,第一镜片213的顶面的面积可以小于第二镜片215的顶面的面积,以增加被反射的检测光线射入第二镜片215的概率,使得更多的检测光线能够被接收端242捕捉,从而提高检测的准确性。
示例性的,中间挡墙214可以采用不透光材料。在本申请中,第一镜片213和第二镜片215相对的侧面被中间挡墙214隔开,且中间挡墙214采用不透光材料,能够阻挡第一镜片213和第二镜片215中的检测光线传播至另一侧,避免第一镜片213和第二镜片215之间的窜光问题,防止发射端241发出的检测光线对检测结果造成干扰,提升检测结果的准确性,并进一步提升光学传感器模组2的检测性能。
此外,周围挡墙22也可以采用不透光材料,从而阻挡电子设备100的壳体1内腔中的其他光线或来自电子设备100外部的环境光线进入导光柱21,对检测结果造成影响,进一步提升检测的准确性,以及光学传感器模组2的检测性能。可理解地,在本申请中,不透光材料可以是透光率较低的材料,并不严格限定不透光材料的透光率为零。
请参阅图10,图10是图8所示部分结构的示意图。图10中带箭头的虚线示意出了在本申请提供的一些实施例中,检测光线在连料216中的传播路径。可以理解地,检测光线可以在连料216中沿任意方向传播,图中带箭头的虚线示意出了其中一个传播方向,并不是指示或暗指检测光线的传播必须具有特定的方向,因此不能理解为对本申请的限制。
示例性的,第一镜片213和第二镜片215可以采用单浇口注塑成型的方式一体成型,也 即将融化后的液态材料从一个浇口中倒入模具,一次成型得到两个镜片,减少工艺流程,提高生产效率。在本实施例中,间隔设置的第一镜片213和第二镜片215通过一个浇口注塑成型,因此需要连料216将两个镜片连接起来。虽然检测光线能够从一个镜片通过连料216传播至另一个镜片,导致窜光问题,但是检测光线在连料216中会经过多次反射和折射,从而减少光线在两个镜片中的传播,减轻窜光程度,提升检测质量。
请一并参阅图10和图11,图11是图10所示结构在其他一些实施例中的示意图。示例性的,连料216可以采用如图10所示的非直通式结构,也可以采用如图11所示的直通式结构。
示例性的,连料216可以包括固定连接的两个连接段和一个中间段,其中,两个连接段分别与第一镜片213和第二镜片215固定连接,中间段位于两个连接段之间。直通式结构的中间段为直线型,非直通式结构的中间段为折线型,也即存在弯折处。因此,在本实施例中,光线在直通式结构的连料216中传播路程短,光线易于在两个镜片中传播,但在浇铸过程中液态材料能够更顺利地从一个镜片中流到另一个镜片中,提高良品率和生产效率。此外,光线在非直通式结构的连料216中传播路程长,且能够在连料216的弯折处经过更多次的反射和折射,从而减少光线在两个镜片中的传播,减轻窜光程度,提升光学传感器模组2的检测性能。
请一并参阅图12和图13,图12是图8所示光学传感器模组2的部分结构在另一些实施例中的示意图,图13是图12所示光学传感器模组2的部分结构的示意图。
示例性的,导光柱21还可以包括固定连接于第一镜片213周侧的第一浇口217、和固定连接于第二镜片215周侧的第二浇口218。例如,第一浇口217和第二浇口218可以分别设置于第一镜片213和第二镜片215的同侧。
示例性的,第一镜片213和第二镜片215可以采用双浇口注塑成型的方式制作,也即将融化后的液态材料从两个浇口中倒入模具,两个镜片分别由两个浇口同时浇铸成型。
在本实施例中,第一镜片213和第二镜片215之间可以不设连料216,也即第一镜片213和第二镜片215彼此独立,两个镜片之间没有检测光线的传输通道,有效解决了两个镜片之间的窜光问题,提升光学传感器模组2的检测效果。
相应地,周围挡墙22也可以在相应位置设有匹配浇口形状的凹槽。当第一镜片213、第二镜片215和周围挡墙22装配在一起时,第一浇口217和第二浇口218可以与凹槽配合,起到限定第一镜片213、第二镜片215和周围挡墙22相对位置的作用,降低装配难度,提升效率。
请参阅图14,图14是图13所示结构在其他一些实施例中的示意图。示例性的,第一浇口217和第二浇口218也可以分别设置于第一镜片213和第二镜片215相互远离的两侧。可以理解地,浇口可以设置于镜片周侧的任意位置,本实施例对此不作限定。
请一并参阅图13和图14,示例性的,导光柱21也可以不设第一浇口217和/或第二浇口218,以避免检测光线从浇口处射出,影响光学传感器模组2的检测效果。
以上描述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内;在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种电子设备,其特征在于,包括壳体和光学传感器模组,所述光学传感器与所述壳体固定连接,所述光学传感器模组包括导光柱和围绕所述导光柱设置的周围挡墙,所述导光柱与所述周围挡墙固定连接,所述导光柱的第一端部相对所述周围挡墙的第一面凸起,所述第一端部包括顶面和侧面,所述第一端部的侧面环绕所述第一端部的顶面且相对所述周围挡墙的第一面露出;
    所述壳体具有通孔和内侧壁,所述第一端部位于所述通孔,所述第一端部的顶面相对所述壳体露出且所述第一端部的侧面面向所述通孔的孔壁,所述周围挡墙位于所述壳体的内侧,所述周围挡墙的顶面固定连接所述壳体的内侧壁。
  2. 根据权利要求1所述的电子设备,其特征在于,所述光学传感器的外观面与所述壳体的外观面平滑过渡,所述第一端部的顶面即为所述光学传感器的外观面。
  3. 根据权利要求1或2所述的电子设备,其特征在于,所述导光柱包括第一镜片、第二镜片、以及与所述周围挡墙固定连接的中间挡墙,所述中间挡墙设置在所述第一镜片和所述第二镜片之间,且分别与所述第一镜片和所述第二镜片固定连接,所述第一镜片的顶面、所述中间挡墙的顶面与所述第二镜片的顶面共同构成所述第一端部的顶面,所述中间挡墙采用不透光材料。
  4. 根据权利要求3所述的电子设备,其特征在于,所述周围挡墙与所述中间挡墙为一体成型结构。
  5. 根据权利要求3或4所述的电子设备,其特征在于,所述导光柱和所述周围挡墙为一体成型结构,所述第一镜片和所述第二镜片在所述周围挡墙与所述中间挡墙的基础上通过膜内注塑的方式一体成型。
  6. 根据权利要求3至5中任一项所述的电子设备,其特征在于,所述导光柱还包括连料,所述连料固定连接所述第一镜片和所述第二镜片,所述连料与所述第一镜片、所述第二镜片是一体成型结构。
  7. 根据权利要求6所述的电子设备,其特征在于,所述连料为直通式结构或非直通式结构。
  8. 根据权利要求5所述的电子设备,其特征在于,所述导光柱还包括固定连接于所述第一镜片周侧的第一浇口、和固定连接于所述第二镜片周侧的第二浇口。
  9. 根据权利要求3所述的电子设备,其特征在于,所述第一镜片的顶面的面积小于所述第二镜片的顶面的面积。
  10. 根据权利要求3至9中任一项所述的电子设备,其特征在于,所述光学传感器模组还包括电路板和与所述电路板固定连接的传感元件,所述导光柱包括与所述第一端部相背的第二端部,所述第二端部和所述周围挡墙合围出容纳槽,所述传感元件位于所述容纳槽,所述电路板的周部与所述周围挡墙的第二面固定连接,所述第二面与所述第一面相对设置。
  11. 根据权利要求10所述的电子设备,其特征在于,所述传感元件包括间隔设置的发射端和接收端,所述发射端对应所述第一镜片设置,用于向所述第一镜片发射检测光线;所述接收端对应所述第二镜片设置,用于接收经所述第二镜片的被待测物反射的所述检测光线。
  12. 一种光学传感器模组,应用于电子设备,其特征在于,所述电子设备包括壳体,所述壳体具有通孔和内侧壁;所述光学传感器包括导光柱和围绕所述导光柱设置的周围挡墙,所述导光柱与所述周围挡墙固定连接,所述导光柱的第一端部相对所述周围挡墙的第一面凸起,所述第一端部包括顶面和侧面,所述第一端部的侧面环绕所述第一端部的顶面且相对所述周 围挡墙露出;所述第一端部用于嵌入所述通孔,所述周围挡墙的顶面用于固定连接所述壳体的内侧壁。
  13. 根据权利要求12所述的光学传感器模组,其特征在于,所述导光柱包括第一镜片、第二镜片、以及与所述周围挡墙固定连接的中间挡墙,所述中间挡墙设置在所述第一镜片和所述第二镜片之间,且分别与所述第一镜片和所述第二镜片固定连接,所述第一镜片的顶面、所述中间挡墙的顶面与所述第二镜片的顶面共同构成所述第一端部的顶面,所述中间挡墙采用不透光材料。
  14. 根据权利要求13所述的光学传感器模组,其特征在于,所述周围挡墙与所述中间挡墙为一体成型结构。
  15. 根据权利要求13或14所述的光学传感器模组,其特征在于,所述导光柱和所述周围挡墙为一体成型结构,所述第一镜片和所述第二镜片在所述周围挡墙与所述中间挡墙的基础上通过膜内注塑的方式一体成型。
PCT/CN2022/093070 2021-05-18 2022-05-16 光学传感器模组及电子设备 WO2022242599A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110538713.3A CN115379678A (zh) 2021-05-18 2021-05-18 光学传感器模组及电子设备
CN202110538713.3 2021-05-18

Publications (1)

Publication Number Publication Date
WO2022242599A1 true WO2022242599A1 (zh) 2022-11-24

Family

ID=84058269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093070 WO2022242599A1 (zh) 2021-05-18 2022-05-16 光学传感器模组及电子设备

Country Status (2)

Country Link
CN (1) CN115379678A (zh)
WO (1) WO2022242599A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306503A (ja) * 2007-06-07 2008-12-18 Casio Hitachi Mobile Communications Co Ltd 電子機器
CN208924284U (zh) * 2018-09-12 2019-05-31 Oppo广东移动通信有限公司 一种传感器组件和电子装置
CN110753140A (zh) * 2019-09-30 2020-02-04 华为技术有限公司 终端、灯罩及环境光接近模组
CN211698242U (zh) * 2019-03-27 2020-10-16 亿光电子工业股份有限公司 检测装置和检测系统
WO2020231053A1 (ko) * 2019-05-13 2020-11-19 삼성전자 주식회사 센서 모듈을 포함하는 전자 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306503A (ja) * 2007-06-07 2008-12-18 Casio Hitachi Mobile Communications Co Ltd 電子機器
CN208924284U (zh) * 2018-09-12 2019-05-31 Oppo广东移动通信有限公司 一种传感器组件和电子装置
CN211698242U (zh) * 2019-03-27 2020-10-16 亿光电子工业股份有限公司 检测装置和检测系统
WO2020231053A1 (ko) * 2019-05-13 2020-11-19 삼성전자 주식회사 센서 모듈을 포함하는 전자 장치
CN110753140A (zh) * 2019-09-30 2020-02-04 华为技术有限公司 终端、灯罩及环境光接近模组

Also Published As

Publication number Publication date
CN115379678A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN207502817U (zh) 可头戴式设备中的布线
CN108738267A (zh) 包括防水结构的电子设备
CN102033661B (zh) 光学指示装置以及电子设备
KR102559386B1 (ko) 카메라를 포함하는 전자 장치
CN109061902B (zh) 一种电子组件及眼镜
CN109274787B (zh) 电子装置
CN109032433B (zh) 接近传感器及电子装置
CN109120752B (zh) 电子装置
EP3925201B1 (en) Electronic device including display
CN113037894B (zh) 一种电子设备
WO2019128645A1 (zh) 电子组件及电子设备
KR20180042472A (ko) 전자 장치
WO2022242599A1 (zh) 光学传感器模组及电子设备
KR20220010326A (ko) 웨어러블 장치
WO2020038056A1 (zh) 飞行时间组件及电子设备
KR102554098B1 (ko) 하우징, 하우징 제조 방법 및 그것을 포함하는 전자 장치
CN213938296U (zh) 外壳组件以及电子设备
WO2022116687A1 (zh) 血压检测模块、绑带组件及可穿戴设备
CN109151112A (zh) 飞行时间组件及移动终端
JP5576339B2 (ja) 防水筺体およびそれを備える電子機器
CN114786398A (zh) 密封结构和电子设备
CN208874600U (zh) 电子装置
US11877405B2 (en) Electronic device including display
US11529789B2 (en) Mobile terminal
WO2023077956A1 (zh) 壳体组件、可穿戴设备及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22803919

Country of ref document: EP

Kind code of ref document: A1