WO2022242494A1 - 流量控制阀 - Google Patents

流量控制阀 Download PDF

Info

Publication number
WO2022242494A1
WO2022242494A1 PCT/CN2022/091748 CN2022091748W WO2022242494A1 WO 2022242494 A1 WO2022242494 A1 WO 2022242494A1 CN 2022091748 W CN2022091748 W CN 2022091748W WO 2022242494 A1 WO2022242494 A1 WO 2022242494A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
valve
flow control
radius
control valve
Prior art date
Application number
PCT/CN2022/091748
Other languages
English (en)
French (fr)
Inventor
包锦峰
巫江
彼得森安德斯
Original Assignee
丹佛斯有限公司
包锦峰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丹佛斯有限公司, 包锦峰 filed Critical 丹佛斯有限公司
Priority to CA3219139A priority Critical patent/CA3219139A1/en
Priority to KR1020237039165A priority patent/KR20240009409A/ko
Priority to EP22803816.2A priority patent/EP4343180A1/en
Publication of WO2022242494A1 publication Critical patent/WO2022242494A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • F16K1/38Valve members of conical shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/42Valve seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/52Means for additional adjustment of the rate of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K21/00Fluid-delivery valves, e.g. self-closing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/0254Construction of housing; Use of materials therefor of lift valves with conical shaped valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/029Electromagnetically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K39/00Devices for relieving the pressure on the sealing faces
    • F16K39/02Devices for relieving the pressure on the sealing faces for lift valves

Definitions

  • the field of fluid control in particular relates to a flow control valve.
  • flow control valves are widely used. Driven by the actuator, the spool of the flow control valve can open or close the valve port so as to control the opening and closing or flow regulation of the flow control valve.
  • the fluid can flow between the inlet and outlet through the valve port and the gap between the valve core and the valve body.
  • the setting of the flow channel makes the flow rate of the fluid around the valve core inconsistent, especially when the fluid enters from the bottom port and exits from the side port.
  • the existence of lateral force will cause axial frictional resistance when the spool moves.
  • This frictional resistance makes the flow control valve have higher requirements on the driving force of the actuator. What’s more, the frictional resistance will cause the spool to be stuck. , resulting in a low service life of the flow control valve.
  • a flow control valve including: a valve body, with a valve hole, a pilot hole and a side hole communicating with each other; a valve core, located in the pilot hole, and can Axial movement of the valve hole to control the opening and closing of the valve hole, thereby allowing or blocking fluid flow between the valve hole and the side hole; the side hole has a connection connected to the valve hole part, the connecting part has a bored surface bored around the axis of the valve hole.
  • the valve hole includes a cylindrical portion and a conical portion, and the conical portion extends from the cylindrical portion to the connecting portion in a direction away from the axis of the valve hole.
  • the seating surface of the valve core is located at the conical portion.
  • the conical portion includes a first conical portion, a second conical portion, and a third conical portion that are sequentially connected from the cylindrical portion and whose diameter gradually expands, wherein the first conical portion forms the center of the valve core.
  • the lateral hole is a blind hole
  • the ratio of the radius of the blind hole to the radius of the cylindrical portion is 1.4-2.
  • the ratio of the radius of the blind hole to the radius of the cylindrical portion is 1.4 ⁇ 1.7.
  • the blind hole includes a cylindrical portion, and the ratio of the distance from the bottom of the cylindrical portion to the axis of the valve hole to the radius of the cylindrical portion is 1.4-2.5.
  • the ratio of the distance from the bottom of the cylindrical portion to the axis of the valve hole to the radius of the cylindrical portion is 1.8-2.0.
  • the ratio of the bore radius corresponding to the bore surface to the radius of the cylindrical portion is 1.3-2.
  • the ratio of the bore radius corresponding to the bore surface to the radius of the cylindrical portion is 1.35 ⁇ 1.45.
  • the side wall of the valve core has an annular diffuser groove arranged around the axis of the valve hole.
  • the ratio of the radius of the valve core at the annular diffuser groove to the radius of the cylindrical portion is 0.65 ⁇ 0.9.
  • the axis of the valve hole is perpendicular to the axis of the side hole.
  • a side hole and a boring surface located in the side hole are provided in the valve body of the flow control valve.
  • the boring surface is located at the connection between the side hole and the valve hole and is arranged around the axis of the valve hole.
  • the side hole and the bore surface make the valve core of the flow control valve have as little lateral force as possible when the fluid flows between the valve hole and the side hole, thereby prolonging the service life of the flow control valve.
  • Fig. 1 is a longitudinal cross-sectional view of a flow control valve provided in an embodiment of the present application in a valve-closed state.
  • Fig. 2 is a longitudinal sectional view of the valve body in Fig. 1 .
  • Fig. 3 is a cross-sectional view of A-A in Fig. 2 .
  • FIG. 4 is an isometric view of a longitudinal sectional view of the valve body in FIG. 1 .
  • the setting of the flow channel makes the flow velocity of the fluid around the valve core inconsistent.
  • the inconsistency of the flow rate will cause the fluid to generate a radial unbalanced force (also called a lateral force) on the valve core.
  • the existence of lateral force will cause axial frictional resistance when the spool moves.
  • This frictional resistance makes the flow control valve have higher requirements on the driving force of the actuator. What’s more, the frictional resistance will cause the spool to be stuck. As a result, the service life of the flow control valve is not high.
  • the embodiment of the present application provides a flow control valve 1, which is a pressure balance flow control valve.
  • the flow control valve 1 may include a valve body 2 , a valve core 3 and an actuator 4 .
  • valve body 2 is integrally provided with a valve hole 21 , a guide hole 22 and a side hole 23 . That is, the valve hole 21, the guide hole 22, and the side hole 23 are all formed of valve body parts without including other separate parts.
  • the guide hole 22 can communicate with the valve hole 21 through the side hole 23 , and the guide hole 22 is coaxial with the valve hole 21 .
  • the valve hole 21 includes a cylindrical portion 211 and a conical portion 212, and the cylindrical portion 211 forms a valve port.
  • the lower end of the cylindrical portion 211 forming the valve port on the valve body 2 has a first mounting hole 24 .
  • the side hole 23 can also be called a valve chamber, and the side end of the side hole 23 can have a second installation hole 25 .
  • the valve core 3 is located in the guide hole 22, and can move along the axial direction of the guide hole 22 to pass through the side hole 23 to abut or move away from the conical portion 212, so that the valve port formed by the cylindrical portion 211 can be controlled. Opening and closing.
  • the actuator 4 may include a housing 41 and a stator 42 arranged outside the housing 41.
  • the housing 41 and the valve body 2 form a closed chamber (not shown in the figure), in which a rotor is arranged, and the rotor is used for
  • the driving spool 3 moves axially along the guide hole 22 .
  • the execution unit is common in the art, so a detailed description thereof is omitted.
  • valve port formed by the cylindrical portion 211 When the actuator 4 drives the valve core 3 to abut against the conical portion 212, the valve port formed by the cylindrical portion 211 is in a closed valve state to block the flow of fluid between the valve hole 21 and the side hole 23; when the actuator 4 drives the valve core When away from the conical portion 212, the valve port formed by the cylindrical portion 211 is in an open state to allow fluid to flow between the valve hole 21 and the side hole 23, and the opening of the valve core 3 can control the flow of fluid.
  • the first joint pipe 5 is disposed in the first installation hole 24
  • the second joint pipe 6 is disposed in the second installation hole 25 .
  • the flow direction of the fluid is the first flow direction.
  • the flow direction of the fluid is the second flow direction.
  • the side hole 23 of the valve body 2 has a connecting portion 231 connected to the valve hole 21 , and the connecting portion 231 has a boring surface 232 formed by boring around the axis of the valve hole 21 .
  • the spool 3 of the flow control valve has as little lateral force as possible, so as to prolong the service life of the flow control valve.
  • the effect of this homogenization of the flow velocity with minimum lateral force on the spool 3 is most prominent.
  • the valve hole 21 may include a cylindrical portion 211 and a conical portion 212, the cylindrical portion 211 forms a valve port, and the conical portion 212 extends from the cylindrical portion 211 to a connecting portion 231 in a direction away from the axis of the valve hole 21,
  • the seating surface of the valve core 3 is located on the conical portion 212 .
  • the conical portion 212 may have a single conical angle, and the conical portion 212 has a simple structure and is relatively convenient to process.
  • the conical portion 212 may include a first conical portion 213 , a second conical portion 214 and a third conical portion 215 that are sequentially connected from the cylindrical portion 211 and whose diameter gradually expands. Wherein the first conical portion 213 forms a seating surface of the valve core 3 .
  • the second conical portion 214 and the third conical portion 215 can control the valve core 3 to provide different flows at different opening degrees.
  • the included angle formed by the second conical portion 214 and the axis of the valve hole 21 may be smaller than the included angle formed by the third conical portion 215 and the axis of the valve hole 21 .
  • the diameter of the opposite end of the third cone portion 215 to the second cone portion 214 may be set to be the same as the diameter of the bore surface 232 .
  • the embodiment of the present application does not specifically limit the extending direction and specific size of the lateral hole 23 .
  • the axis of the side hole 23 is perpendicular to the axis of the valve hole 21 and the side hole 23 is a blind hole.
  • the ratio of the radius of the blind hole to the radius of the cylindrical portion 211 is 1.4 ⁇ 2.
  • the ratio of the radius of the blind hole to the radius of the cylindrical portion 211 is 1.4 ⁇ 1.7.
  • a machined blind hole includes a cylindrical portion 233 and a tapered portion 234 , and the connection between the cylindrical portion 233 and the tapered portion 234 may be called the hole bottom 235 (also called the bottom of the cylindrical portion 233 ).
  • the ratio of the distance from the hole bottom 235 to the axis of the valve hole 21 to the radius of the cylindrical portion 211 is 1.4-2.5.
  • the ratio of the distance from the hole bottom 235 to the axis of the valve hole 21 to the radius of the cylindrical portion 211 is 1.8-2.0.
  • the embodiment of the present application does not specifically limit the diameter of the bore surface 232 .
  • the ratio of the bore radius corresponding to the bore surface 232 to the radius of the cylindrical portion 211 is 1.3 ⁇ 2.
  • the ratio of the bore radius corresponding to the bore surface 232 to the radius of the cylindrical portion 211 is 1.35 ⁇ 1.45.
  • the arrangement of the bore diameter of the bore surface 232 in conjunction with the arrangement of the above-mentioned valve hole 21 and the side hole 23 can make the flow rate of the fluid of the flow control valve in the second flow direction be optimally uniformed, thereby avoiding the valve core 3 being subjected to The influence of the lateral force of the fluid.
  • the valve core 3 is located in the guide hole 22 and can move along the axial direction of the guide hole 22 .
  • the valve core 3 has a closing portion 31 , and the valve core 3 can close the valve port formed by the cylindrical portion 211 through the closing portion 31 abutting against the conical portion 212 .
  • a seal ring 7 is also provided between the valve core 3 and the guide hole 22, the valve core 3 is sleeved in the guide hole 22 through the seal ring 7, and the seal ring 7 connects the housing of the actuator 4 with the valve body 21
  • the formed closed chamber is divided into two parts, and the chamber above the sealing ring 7 is a back pressure chamber.
  • the side wall of the valve core 3 may have an annular diffuser groove 32 disposed around the axis of the valve hole 21 , which is located between the sealing ring 7 and the closing portion 31 of the valve core.
  • the setting of the annular diffuser groove 32 can make the valve core reduce the resistance of the valve core to the fluid as much as possible when the fluid is flowing, so that the fluid has a more uniform flow rate.
  • the present application does not specifically limit the depth of the annular groove.
  • the ratio of the radius of the valve core 3 at the annular diffuser groove 32 to the radius of the cylindrical portion 211 is 0.65 ⁇ 0.9.
  • the sealing ring 7 may be an O-ring, a U-shaped sealing ring or a Y-shaped sealing ring, or a sealing ring with Teflon material.
  • the installation groove of the sealing ring 7 can be set on the valve core 3 or in the valve body 2 .
  • a pressure equalizing passage 33 is also provided on the valve core 3 .
  • the equalizing passage 33 can communicate with the back pressure chamber and the valve port formed by the cylindrical part 211 so that the back pressure chamber has the same pressure as the valve port.
  • the embodiment of the present application does not specifically limit the structure of the pressure equalizing passage 33 , as long as the pressure equalizing passage can realize the communication between the back pressure chamber and the valve port.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lift Valve (AREA)
  • Sliding Valves (AREA)

Abstract

提供了一种流量控制阀(1),流量控制阀(1)包括:阀体(2),具有相互连通的阀孔(21)、导向孔(22)和侧向孔(23);阀芯(3),位于导向孔(22)内,且可沿导向孔(22)的轴向移动,以控制阀孔(21)开闭,从而允许或阻断流体在阀孔(21)与侧向孔(23)之间流动;侧向孔(23)内具有与阀孔(21)连接的连接部分(231),连接部分(231)具有围绕阀孔(21)的轴线镗制而成的镗孔表面(232),流量控制阀(1)的阀体(2)上设置侧向孔(23)以及位于侧向孔(23)内的镗孔表面(232),镗孔表面(232)位于侧向孔(23)与阀孔(21)的连接之处且围绕阀孔(21)的轴线设置,侧向孔(23)及镗孔表面(232)使得流体在阀孔(21)与侧向孔(23)之间流动时流量控制阀(1)的阀芯(3)具有尽可能小的侧向力。

Description

流量控制阀
本申请要求于2021年05月17日提交中国专利局、申请号为202110537390.6、申请名称为“流量控制阀”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
流体控制领域,特别是涉及一种流量控制阀。
背景技术
在流体控制技术领域,广泛采用流量控制阀。流量控制阀的阀芯在执行器的带动下可以使得阀口打开或者关闭进而实现对流量控制阀的开闭或者流量调节的控制。
阀口打开后,流体可以通过阀口以及阀芯与阀体之间的间隙在进出口之间流通。当流体在现有的流量控制阀内流通时,其流道的设置使得流体在阀芯周围的流速会不一致,特别是在流体从下口进侧口出的情况下。这会造成流体在阀芯上产生径向不平衡力,称之为侧向力。侧向力的存在会引起阀芯移动时的轴向摩擦阻力,该摩擦阻力使得流量控制阀对执行器的驱动力的要求较高,更甚者,该摩擦阻力会造成阀芯的卡死现象,导致流量控制阀的使用寿命不高。
发明内容
为了解决上述问题,本申请提供一种流量控制阀,包括:阀体,具有相互连通的阀孔、导向孔和侧向孔;阀芯,位于所述导向孔内,且可沿所述导向孔的轴向移动,以控制所述阀孔开闭,从而允许或阻断流体在所述阀孔与所述侧向孔之间流动;所述侧向孔内具有与所述阀孔连接的连接部分,所述连接部分具有围绕所述阀孔的轴线镗制而成的镗孔表面。
可选地,所述阀孔包括圆柱部分以及圆锥部分,所述圆锥部分从所述圆柱部分起朝远离所述阀孔轴线的方向延伸至所述连接部分。
可选地,所述阀芯的落座面位于所述圆锥部分。
可选地,所述圆锥部分包括从所述圆柱部分起依次相连且直径逐渐扩大的第一圆锥部、第二圆锥部和第三圆锥部,其中所述第一圆锥部形成所述阀芯的落座面;所述第二圆 锥部与所述阀孔轴线所成的夹角小于所述第三圆锥部与所述阀孔轴线所成的夹角,以随所述阀芯的开度不同而提供不同的流通面积;所述第三圆锥部的与第二圆锥部相反一端的直径与所述镗孔表面的直径相同。
可选地,所述侧向孔为盲孔,所述盲孔的半径与所述圆柱部分的半径之比为1.4~2。
可选地,所述盲孔的半径与所述圆柱部分的半径之比为1.4~1.7。
可选地,所述盲孔包括柱状部,所述柱状部的底部至所述阀孔的轴线的距离与所述圆柱部分的半径之比为1.4-2.5。
可选地,所述柱状部的底部至所述阀孔的轴线的距离与所述圆柱部分的半径之比为1.8-2.0。
可选地,所述镗孔表面对应的镗孔半径与所述圆柱部分的半径之比为1.3~2。
可选地,所述镗孔表面对应的镗孔半径与所述圆柱部分的半径之比为1.35~1.45。
可选地,所述阀芯的侧壁上具有环绕所述阀孔轴线设置的环形扩流槽。
可选地,所述阀芯在所述环形扩流槽处的半径与所述圆柱部分的半径之比为0.65~0.9。
可选地,所述阀孔的轴线与所述侧向孔的轴线垂直。
本申请实施例在流量控制阀的阀体中设置侧向孔以及位于侧向孔内的镗孔表面,该镗孔表面位于侧向孔与阀孔的连接之处且围绕阀孔的轴线设置,该侧向孔及镗孔表面使得流体在阀孔与侧向孔之间流动时流量控制阀的阀芯具有尽可能小的侧向力从而延长流量控制阀的使用寿命。
附图说明
为了便于理解本申请,在下文中基于示例性实施例并结合附图来更详细地描述本申请。在附图中使用相同或相似的附图标记来表示相同或相似的构件。应该理解的是,附图仅是示意性的,附图中的构件的尺寸和比例不一定精确。
图1本申请实施例提供的流量控制阀的闭阀状态的纵向剖视图。
图2是图1中的阀体的纵向剖视图。
图3是图2中的A-A剖视图。
图4是图1中的阀体的纵向剖视图的轴测图。
具体实施方式
以下参照附图对本申请的流量控制阀的实施方式进行说明,说明中的“上下”的概念 与图中的上下对应。
当流体在现有的流量控制阀内流通时,其流道的设置使得流体在阀芯周围的流速会不一致。特别是在流体从下口进侧口出的情况下,流速的不一致会造成流体在阀芯上产生径向不平衡力(也可称为侧向力)。侧向力的存在会引起阀芯移动时的轴向摩擦阻力,该摩擦阻力使得流量控制阀对执行器的驱动力的要求较高,更甚者,该摩擦阻力会造成阀芯的卡死现象从而导致流量控制阀的使用寿命不高。
为了解决上述问题,本申请实施例提供一种流量控制阀1,该流量控制阀1为压力平衡型流量控制阀。如图1所示,该流量控制阀1可以包括阀体2、阀芯3、执行部4。
结合图2-4可以清晰地示出,阀体2上一体地具有阀孔21、导向孔22和侧向孔23。即,阀孔21、导向孔22和侧向孔23都由阀体零件形成,而不包括其它单独的零件。导向孔22可以通过侧向孔23与阀孔21连通,且导向孔22与阀孔21同轴。阀孔21包括圆柱部分211和圆锥部分212,圆柱部分211形成阀口。阀体2上形成阀口的圆柱部分211的下端具有第一安装孔24。侧向孔23也可以称为阀室,侧向孔23的侧端可具有第二安装孔25。
继续参见图1,阀芯3位于导向孔22内,且可沿导向孔22的轴向移动以穿过侧向孔23抵接或远离圆锥部分212,从而可以控制圆柱部分211形成的阀口的开闭。
执行部4可包括壳体41和设置在壳体41外的定子42,壳体41与阀体2形成封闭的腔室(图中未示出),在该腔室中布置有转子,转子用于驱动阀芯3沿着导向孔22轴向移动。该执行部是本领域常见的,因此省略了其详细描述。当执行部4带动阀芯3抵接圆锥部分212时,圆柱部分211形成的阀口为闭阀状态以阻断流体在阀孔21与侧向孔23之间流动;当执行部4带动阀芯3远离圆锥部分212时,圆柱部分211形成的阀口为开阀状态以允许流体在阀孔21与侧向孔23之间流动,并且阀芯3的开度可以控制流体的流量。
此外,在一些实施例中,如图1所示,第一安装孔24内设置有第一接头管5,第二安装孔25内设置有第二接头管6。当第二接头管6作为入口管,第一接头管5作为出口管时,流体的流动方向为第一流动方向。当第一接头管5作为入口管,第二接头管6作为出口管时,流体的流动方向为第二流动方向。
如图2-4清楚地示出,阀体2的侧向孔23内具有与阀孔21连接的连接部分231,连接部分231具有围绕阀孔21的轴线镗制而成的镗孔表面232。
本申请实施例通过在阀体2上设置侧向孔23以及位于侧向孔23内的镗孔表面232使得阀芯3从闭阀状态切换为开阀状态时,流体的流速能够被均匀化,从而使得流量控制阀的阀芯3具有尽可能小的侧向力,以延长流量控制阀的使用寿命。在上述第二流动方向的 情况下,这种流速的均匀化使得阀芯3具有最小侧向力的效果最为突出。
如图2-4所示,阀孔21可以包括圆柱部分211以及圆锥部分212,圆柱部分211形成阀口,圆锥部分212从圆柱部分211起朝远离阀孔21轴线的方向延伸至连接部分231,阀芯3的落座面位于圆锥部分212上。通过设置阀孔21的圆锥部分212可以在阀芯3打开时线性地调节流体的流量。
本申请实施例对于圆锥部分212的结构不做具体限定。作为一种实现方式,圆锥部分212可以具有单一圆锥角度,这种圆锥部分212结构简单,加工比较方便。作为另一种实现方式,如图2-4所示,圆锥部分212可以包括由从圆柱部分211起依次相连且直径逐渐扩大的第一圆锥部213、第二圆锥部214和第三圆锥部215其中第一圆锥部213形成阀芯3的落座面。第二圆锥部214和第三圆锥部215可以控制阀芯3在不同的开度时提供不同的流量。例如,第二圆锥部214与阀孔21轴线所成的夹角可以小于第三圆锥部215与阀孔21轴线所成的夹角。另外,第三圆锥部215的与第二圆锥部214相反一端的直径可设置为与镗孔表面232的直径相同。通过这样的设置既能保证流量控制阀1能随阀芯3的开度不同而提供不同的流通面积,还能使得流体的流速尽量被均匀化从而进一步减小阀芯3受到的流体侧向力。
本申请实施例对侧向孔23的延伸方向和具体尺寸不做具体限定。作为一种实现方式,如图2-3所示,侧向孔23的轴线与阀孔21的轴线垂直且侧向孔23为盲孔。盲孔的半径与圆柱部分211的半径之比为1.4~2。优选地,盲孔的半径与圆柱部分211的半径之比为1.4~1.7。通常机加工后的盲孔包括柱状部233和锥状部234,柱状部233与锥状部234的连接之处可称为孔底235(也可以称为柱状部233的底部)。孔底235至阀孔21的轴线的距离与圆柱部分211的半径之比为1.4-2.5。优选地,孔底235至阀孔21的轴线的距离与圆柱部分211的半径之比为1.8-2.0。通过将侧向孔23进行上述设置可以使得流体从侧向孔流通时其流速被进一步均匀化,因此可以减小阀芯3所受到的流体侧向力。特别地,在本申请实施例中,盲孔的半径与圆柱部分211的半径之比为1.54。侧向孔23的孔底235至阀孔21的轴线的距离与圆柱部分211的半径之比为1.9。
本申请实施例对镗孔表面232的孔径不做具体的限定。例如,镗孔表面232对应的镗孔半径与圆柱部分211的半径之比为1.3~2。优选地,镗孔表面232对应的镗孔半径与圆柱部分211的半径之比为1.35~1.45。镗孔表面232的孔径的设置配合上述阀孔21及侧向孔23的设置能够使得流量控制阀的流体在第二流动方向时其流速被最优地实现均匀化,从而避免阀芯3受到的流体的侧向力的影响。
如前所述,阀芯3位于导向孔22内,且可沿导向孔22的轴向移动。其中,如图1所 示,阀芯3上具有封闭部31,阀芯3可通过封闭部31与圆锥部分212抵接从而对圆柱部分211形成的阀口进行关闭。阀芯3与导向孔22之间还设有密封圈7,阀芯3通可过密封圈7滑动的套设在导向孔22中,且密封圈7将执行部4的壳体与阀体21形成的封闭腔分割成两部分,密封圈7上方的腔室为背压腔。阀芯3的侧壁上可具有环绕阀孔21的轴线设置的环形扩流槽32,其位于密封圈7与阀芯的封闭部31之间。环形扩流槽32的设置可以使得阀芯在流体流通时能够尽可能的减小阀芯对于流体的阻挡,因此使得流体具有更进一步均匀化的流速。
本申请对于环形槽的深度不做具体的限定。例如,阀芯3在环形扩流槽32处的半径与圆柱部分211的半径之比为0.65~0.9。通过这样的设置可以使阀芯既能具有一定强度还能进一步使得流体的流速更加均匀化。
本申请对于密封圈7的结构不做具体的限定,例如密封圈7可以是O型密封圈,还可以是U型密封圈或者Y型密封圈,或带特氟龙材料的密封圈。密封圈7的安装槽可以设置在阀芯3上也可以设置在阀体2中。
如图1所示,阀芯3上还设有均压通路33。均压通路33可以连通背压腔以及圆柱部分211形成的阀口使得背压腔具有与阀口相同的压力。本申请实施例对均压通路33的结构不做具体限定,只要均压通路可以实现背压腔与阀口的连通即可。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种流量控制阀,其特征在于,包括:
    阀体,具有相互连通的阀孔、导向孔和侧向孔;
    阀芯,位于所述导向孔内,且可沿所述导向孔的轴向移动,以控制所述阀孔开闭,从而允许或阻断流体在所述阀孔与所述侧向孔之间流动;
    所述侧向孔内具有与所述阀孔连接的连接部分,所述连接部分具有围绕所述阀孔的轴线镗制而成的镗孔表面。
  2. 根据权利要求1所述的流量控制阀,其特征在于:所述阀孔包括圆柱部分以及圆锥部分,所述圆锥部分从所述圆柱部分起朝远离所述阀孔轴线的方向延伸至所述连接部分。
  3. 根据权利要求2所述的流量控制阀,其特征在于:所述阀芯的落座面位于所述圆锥部分。
  4. 根据权利要求2所述的流量控制阀,其特征在于:所述圆锥部分包括从所述圆柱部分起依次相连且直径逐渐扩大的第一圆锥部、第二圆锥部和第三圆锥部,其中所述第一圆锥部形成所述阀芯的落座面;
    所述第二圆锥部与所述阀孔轴线所成的夹角小于所述第三圆锥部与所述阀孔轴线所成的夹角,以随所述阀芯的开度不同而提供不同的流通面积;
    所述第三圆锥部的与第二圆锥部相反一端的直径与所述镗孔表面的直径相同。
  5. 根据权利要求2所述的流量控制阀,其特征在于:所述侧向孔为盲孔,所述盲孔的半径与所述圆柱部分的半径之比为1.4~2。
  6. 根据权利要求5所述的流量控制阀,其特征在于:所述盲孔的半径与所述圆柱部分的半径之比为1.4~1.7。
  7. 根据权利要求5所述的流量控制阀,其特征在于:所述盲孔包括柱状部,所述柱状部的底部至所述阀孔的轴线的距离与所述圆柱部分的半径之比为1.4-2.5。
  8. 根据权利要求7所述的流量控制阀,其特征在于:所述柱状部的底部至所述阀孔的轴线的距离与所述圆柱部分的半径之比为1.8-2.0。
  9. 根据权利要求2所述的流量控制阀,其特征在于:所述镗孔表面对应的镗孔半径与所述圆柱部分的半径之比为1.3~2。
  10. 根据权利要求9所述的流量控制阀,其特征在于:所述镗孔表面对应的镗孔半径与所述圆柱部分的半径之比为1.35~1.45。
  11. 根据权利要求2所述的流量控制阀,其特征在于:所述阀芯的侧壁上具有环绕所述阀孔轴线设置的环形扩流槽。
  12. 根据权利要求11所述的流量控制阀,其特征在于:所述阀芯在所述环形扩流槽处的半径与所述圆柱部分的半径之比为0.65~0.9。
  13. 根据权利要求1-12中任一项所述的流量控制阀,其特征在于:所述阀孔的轴线与所述侧向孔的轴线垂直。
PCT/CN2022/091748 2021-05-17 2022-05-09 流量控制阀 WO2022242494A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3219139A CA3219139A1 (en) 2021-05-17 2022-05-09 Flow control valve
KR1020237039165A KR20240009409A (ko) 2021-05-17 2022-05-09 흐름 제어 밸브
EP22803816.2A EP4343180A1 (en) 2021-05-17 2022-05-09 Flow control valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110537390.6 2021-05-17
CN202110537390.6A CN115370753A (zh) 2021-05-17 2021-05-17 流量控制阀

Publications (1)

Publication Number Publication Date
WO2022242494A1 true WO2022242494A1 (zh) 2022-11-24

Family

ID=84059897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091748 WO2022242494A1 (zh) 2021-05-17 2022-05-09 流量控制阀

Country Status (5)

Country Link
EP (1) EP4343180A1 (zh)
KR (1) KR20240009409A (zh)
CN (1) CN115370753A (zh)
CA (1) CA3219139A1 (zh)
WO (1) WO2022242494A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695577A (en) * 1969-11-27 1972-10-03 Danfoss As Valve, particularly a thermostatic expansion valve for refrigerating equipment
CN2898477Y (zh) * 2006-05-19 2007-05-09 宋永强 尿素高压角型调节阀
CN102853128A (zh) * 2011-06-27 2013-01-02 浙江三花股份有限公司 一种流量调节阀
CN109139941A (zh) * 2017-06-15 2019-01-04 株式会社鹭宫制作所 流量控制阀以及冷冻循环系统
CN208431397U (zh) * 2018-06-28 2019-01-25 西迪技术股份有限公司 一种流量调节阀及具有该流量调节阀的液压设备
CN111609146A (zh) * 2019-02-26 2020-09-01 北京航天石化技术装备工程有限公司 一种充压先导式高温高压迷宫阀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695577A (en) * 1969-11-27 1972-10-03 Danfoss As Valve, particularly a thermostatic expansion valve for refrigerating equipment
CN2898477Y (zh) * 2006-05-19 2007-05-09 宋永强 尿素高压角型调节阀
CN102853128A (zh) * 2011-06-27 2013-01-02 浙江三花股份有限公司 一种流量调节阀
CN109139941A (zh) * 2017-06-15 2019-01-04 株式会社鹭宫制作所 流量控制阀以及冷冻循环系统
CN208431397U (zh) * 2018-06-28 2019-01-25 西迪技术股份有限公司 一种流量调节阀及具有该流量调节阀的液压设备
CN111609146A (zh) * 2019-02-26 2020-09-01 北京航天石化技术装备工程有限公司 一种充压先导式高温高压迷宫阀

Also Published As

Publication number Publication date
KR20240009409A (ko) 2024-01-22
CN115370753A (zh) 2022-11-22
EP4343180A1 (en) 2024-03-27
CA3219139A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
CN106884996B (zh) 电子膨胀阀及其阀芯
JPH10148267A (ja) 翼形挿入物を有する低騒音のボール弁組立体
JP2005528569A (ja) 制御弁
EP2226536A1 (en) A control ball valve
US3715098A (en) Adjustable fluid restrictor method and apparatus
JPWO2007046379A1 (ja) ケージ弁
CN106678421B (zh) 一种流量控制精度的电子膨胀阀
CN216742910U (zh) 电子膨胀阀
WO2022242494A1 (zh) 流量控制阀
US5819775A (en) Low flow rate valve
JP2017516010A (ja) エジェクタ配置
CN107676519B (zh) 一种轴流式水控调节阀
CN217927149U (zh) 流量控制阀
GB2596689A (en) Milling and whipstock assembly with flow diversion component
WO2019169650A1 (zh) 多路阀
US4504040A (en) Multiple stage valve
WO2022242495A1 (zh) 流量控制阀
CN217583188U (zh) 流量控制阀
CN220378999U (zh) 电子膨胀阀
US7921877B2 (en) Spool valve and method
CN220268072U (zh) 一种插装先导式减压稳流阀
US11112032B2 (en) Tapered anti-cavitation cage
CN217898882U (zh) 电子膨胀阀
JPH10160002A (ja) スプール型油圧制御弁
JPH10337632A (ja) 切削液・切削気体の供給装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803816

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18561020

Country of ref document: US

Ref document number: 3219139

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022803816

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022803816

Country of ref document: EP

Effective date: 20231218