WO2022239211A1 - 冷媒貯留容器及び該冷媒貯留容器を備えた冷凍サイクル装置 - Google Patents

冷媒貯留容器及び該冷媒貯留容器を備えた冷凍サイクル装置 Download PDF

Info

Publication number
WO2022239211A1
WO2022239211A1 PCT/JP2021/018304 JP2021018304W WO2022239211A1 WO 2022239211 A1 WO2022239211 A1 WO 2022239211A1 JP 2021018304 W JP2021018304 W JP 2021018304W WO 2022239211 A1 WO2022239211 A1 WO 2022239211A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
container body
storage container
liquid
gas
Prior art date
Application number
PCT/JP2021/018304
Other languages
English (en)
French (fr)
Inventor
真哉 東井上
亮 築山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180097762.6A priority Critical patent/CN117242310A/zh
Priority to US18/549,603 priority patent/US20240328689A1/en
Priority to PCT/JP2021/018304 priority patent/WO2022239211A1/ja
Priority to EP21941943.9A priority patent/EP4339536A4/en
Priority to JP2023520703A priority patent/JP7433522B2/ja
Publication of WO2022239211A1 publication Critical patent/WO2022239211A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/03Suction accumulators with deflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor

Definitions

  • the present disclosure relates to a refrigerant storage container that separates a gas-liquid two-phase refrigerant into a gas refrigerant and a liquid refrigerant and stores the liquid refrigerant inside the container, and a refrigeration cycle device that includes the refrigerant storage container.
  • Patent Literature 1 discloses a gas-liquid separator that is arranged in a refrigeration cycle and separates a refrigerant into a gas phase refrigerant and a liquid phase refrigerant.
  • the inside of this gas-liquid separator is partitioned by a first plate and a second plate.
  • the first plate defines a lower part of the gas-liquid separator to form a liquid-phase refrigerant retention chamber in which the liquid-phase refrigerant stays.
  • the second plate defines an upper portion in the gas-liquid separator to form a gas-phase refrigerant collecting chamber in which the gas-phase refrigerant gathers.
  • a coolant inlet chamber into which coolant flows is formed between the first plate and the second plate.
  • a liquid-phase refrigerant outflow pipe for causing the liquid-phase refrigerant to flow out of the gas-liquid separator is connected to the liquid-phase refrigerant retention chamber.
  • a gas-phase refrigerant outflow pipe for causing the gas-phase refrigerant to flow out of the gas-liquid separator is connected to the gas-phase refrigerant collecting chamber.
  • a refrigerant inflow pipe into which the refrigerant flows is connected to the refrigerant inflow chamber.
  • a liquid-phase refrigerant outflow pipe is connected to a liquid-phase refrigerant retention chamber in addition to a gas-phase refrigerant outflow pipe that causes the gas-phase refrigerant to flow out of the gas-liquid separator. Therefore, the liquid-phase refrigerant can be discharged to the outside through the liquid-phase refrigerant outflow pipe without being stored. That is, in this gas-liquid separator, the liquid amount of the liquid-phase refrigerant accumulated in the liquid-phase refrigerant retention chamber is small, so there is little possibility that the liquid-phase refrigerant undulates at the gas-liquid interface and droplets scatter.
  • a refrigerant storage container equipped with an outflow pipe for flowing gas refrigerant and liquid refrigerant out of the container from the upper space inside the container
  • the liquid refrigerant separated from the gas refrigerant is stored in the lower space inside the container.
  • the liquid refrigerant stored to some extent is discharged to the compressor through an outflow pipe shared with the gas refrigerant.
  • the stored liquid refrigerant undulates and scatters.
  • the compressor may flow into the compressor together with If the liquid refrigerant flows excessively and flows into the compressor together with the gas refrigerant, the refrigerating machine oil inside the shell of the compressor will be diluted, and there is a risk that the sliding parts of the compressor will seize.
  • the present disclosure has been made to solve the above-described problems, and reduces excessive outflow of the stored liquid refrigerant while efficiently storing the liquid refrigerant separated from the gas refrigerant in the lower space of the container.
  • it is possible to avoid the dilution of refrigerating machine oil due to the liquid refrigerant flowing into the compressor together with the gas refrigerant, and to ensure the reliability of the compressor. intended to provide
  • a refrigerant storage container is a refrigerant storage container that separates a gas-liquid two-phase refrigerant into a gas refrigerant and a liquid refrigerant and stores the liquid refrigerant in a lower space inside the container, and is a container that forms an outer shell.
  • a main body an inflow pipe connected to the container body for allowing the gas-liquid two-phase refrigerant to flow into the upper space in the container main body, and a gas refrigerant and gas refrigerant from the upper space in the container main body, connected to the container main body.
  • the prevention plate is formed with a plurality of through-holes that allow the upper space and the lower space to communicate with each other and allow liquid refrigerant to flow into the lower space, and the through-holes are formed along the inner wall surface of the container body. They are arranged in a ring.
  • a refrigeration cycle apparatus includes the refrigerant storage container and a compressor connected to the refrigerant storage container via an outflow pipe.
  • the liquid refrigerant separated from the gas refrigerant in the upper space of the container body is efficiently stored in the lower space through a plurality of through holes arranged annularly along the inner wall surface of the container body. be able to.
  • the undulation prevention plate can prevent the rippling. reaches the outflow pipe and flows into the compressor together with the gas refrigerant. That is, since excessive outflow of the stored liquid refrigerant can be reduced, it is possible to avoid dilution of the refrigerating machine oil due to the inflow of the liquid refrigerant into the compressor, thereby ensuring the reliability of the compressor.
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle device having a refrigerant storage container according to Embodiment 1.
  • FIG. 1 is a front view showing a refrigerant storage container according to Embodiment 1;
  • FIG. 1 is a top view showing a refrigerant storage container according to Embodiment 1;
  • FIG. 1 is a longitudinal sectional view showing a refrigerant storage container according to Embodiment 1;
  • FIG. FIG. 5 is a cross-sectional view taken along the line AA shown in FIG. 4;
  • FIG. 10 is a cross-sectional view showing a main part of a refrigerant storage container according to Embodiment 2;
  • FIG. 11 is a vertical cross-sectional view showing a refrigerant storage container according to Embodiment 3;
  • FIG. 11 is a vertical cross-sectional view showing a refrigerant storage container according to Embodiment 4;
  • FIG. 11 is a top view showing a refrigerant storage container according to Embodiment 4;
  • FIG. 11 is a vertical cross-sectional view showing a refrigerant storage container according to Embodiment 5;
  • FIG. 11 is a cross-sectional view taken along the line BB shown in FIG. 10;
  • FIG. 11 is a cross-sectional view taken along the line BB shown in FIG. 10;
  • FIG. 11 is an explanatory view schematically showing a state in which a liquid refrigerant flowing from an inflow pipe flows into a lower space via a through-hole in the refrigerant storage container according to Embodiment 5;
  • FIG. 11 is a vertical cross-sectional view showing a modification of the refrigerant storage container according to Embodiment 5;
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle device 100 having a refrigerant storage container 101 according to Embodiment 1.
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle device 100 having a refrigerant storage container 101 according to Embodiment 1.
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle device 100 having a refrigerant storage container 101 according to Embodiment 1.
  • a refrigeration cycle apparatus 100 includes a compressor 10, a flow path switching device 11, an outdoor heat exchanger 12, an expansion mechanism 13, an indoor heat exchanger 14, and a refrigerant storage container. 101 are sequentially connected by a refrigerant pipe 15 and have a refrigerant circuit 200 through which the refrigerant circulates.
  • the compressor 10 compresses the sucked refrigerant and discharges it in a state of high temperature and high pressure.
  • Compressor 10 is, for example, an inverter compressor. Refrigerant discharged from the compressor 10 flows into the outdoor heat exchanger 12 or the indoor heat exchanger 14 .
  • the channel switching device 11 is, for example, a four-way valve and has a function of switching the coolant channel.
  • the flow switching device 11 connects the refrigerant discharge side of the compressor 10 and the gas side of the outdoor heat exchanger 12, and connects the refrigerant suction side of the compressor 10 and the gas side of the indoor heat exchanger 14. Switch the refrigerant flow path so as to connect the
  • the flow switching device 11 connects the refrigerant discharge side of the compressor 10 and the gas side of the indoor heat exchanger 14, and connects the refrigerant suction side of the compressor 10 and the outdoor heat exchanger 12. Switch the refrigerant flow path so as to connect the gas side.
  • the channel switching device 11 may be configured by combining two-way valves or three-way valves.
  • the outdoor heat exchanger 12 functions as a condenser during cooling operation, and performs heat exchange between the refrigerant discharged from the compressor 10 and air. Also, the outdoor heat exchanger 12 functions as an evaporator during heating operation, and performs heat exchange between the refrigerant flowing out from the expansion mechanism 13 and the air.
  • the outdoor heat exchanger 12 draws in outdoor air with a blower and discharges the air heat-exchanged with the refrigerant to the outside.
  • the expansion mechanism 13 decompresses and expands the refrigerant flowing through the refrigerant circuit, and is composed of, for example, an electronic expansion valve whose opening is variably controlled.
  • the indoor heat exchanger 14 functions as an evaporator during cooling operation, and performs heat exchange between the refrigerant flowing out from the expansion mechanism 13 and the air. Also, the indoor heat exchanger 14 functions as a condenser during heating operation, and performs heat exchange between the refrigerant discharged from the compressor 10 and air. The indoor heat exchanger 14 sucks indoor air with a blower and supplies the air heat-exchanged with the refrigerant indoors.
  • the refrigerant storage container 101 is installed upstream of the suction port of the compressor 10, as shown in FIG.
  • the refrigerant storage container 101 separates the gas-liquid two-phase refrigerant flowing out of the evaporator into gas refrigerant and liquid refrigerant, and stores the liquid refrigerant in the lower space inside the container.
  • the refrigerant sucked into the compressor 10 is ideally a superheated gas.
  • the refrigeration cycle device 100 depends on the refrigerant distribution in the circuit, and gas refrigerant may be sucked into the compressor 10 while containing liquid refrigerant.
  • the refrigerant storage container 101 stores the liquid refrigerant separated from the gas refrigerant on the upstream side of the suction port of the compressor 10. is to be established.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the flow switching device 11, flows to the outdoor heat exchanger 12, exchanges heat with air, and is condensed and liquefied.
  • the condensed and liquefied refrigerant is decompressed by the expansion mechanism 13 to become a low-pressure gas-liquid two-phase refrigerant, flows to the indoor heat exchanger 14, exchanges heat with air, and is gasified.
  • the gasified refrigerant passes through the flow switching device 11 and is sucked into the compressor 10 via the refrigerant storage container 101 .
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the flow switching device 11, flows to the indoor heat exchanger 14, exchanges heat with the air, and is condensed and liquefied.
  • the condensed and liquefied refrigerant is decompressed by the expansion mechanism 13 to become a low-pressure gas-liquid two-phase refrigerant, flows to the outdoor heat exchanger 12, exchanges heat with air, and is gasified.
  • the gasified refrigerant passes through the flow switching device 11 and is sucked into the compressor 10 via the refrigerant storage container 101 .
  • FIG. 2 is a front view showing the refrigerant storage container 101 according to Embodiment 1.
  • FIG. 3 is a top view showing the refrigerant storage container 101 according to Embodiment 1.
  • FIG. 4 is a longitudinal sectional view showing refrigerant storage container 101 according to Embodiment 1.
  • FIG. 5 is a cross-sectional view taken along the line AA shown in FIG. 4.
  • FIG. 5 is a cross-sectional view taken along the line AA shown in FIG. 4.
  • the refrigerant storage container 101 includes a container body 1, an inflow pipe 2, an outflow pipe 3, and a waviness prevention plate 4, as shown in FIGS.
  • the container main body 1 forms the outer shell of the refrigerant storage container 101 .
  • the gas-liquid two-phase refrigerant flowing out of the evaporator flows into the container main body 1 through the inflow pipe 2 .
  • the gas-liquid two-phase refrigerant contains refrigerating machine oil.
  • the inflow pipe 2 is connected to the upper surface of the container body 1 and is provided to allow the gas-liquid two-phase refrigerant flowing out of the evaporator to flow into the upper space 1a in the container body 1.
  • the outflow pipe 3 is connected to the upper surface of the container body 1, and is used to flow out the gas refrigerant and the liquid refrigerant from the upper space 1a in the container body 1 to the outside of the container body 1. is provided in Of the gas-liquid two-phase refrigerant, the gas refrigerant separated from the liquid refrigerant flows out from the upper space 1 a in the container body 1 and is sucked into the compressor 10 .
  • the anti-wavy plate 4 is provided inside the container body 1, partitions the interior of the container body 1 into an upper space 1a and a lower space 1b, and separates the liquid refrigerant separated from the gas refrigerant into the lower space. 1b. Further, the waviness prevention plate 4 prevents the liquid refrigerant 6 stored in the lower space 1b from waving at the gas-liquid interface, thereby preventing the scattered droplets from flowing into the upper space 1a and entering the outflow pipe 3. It is.
  • the anti-wavy plate 4 is formed with a plurality of through holes 5 that allow the upper space 1a and the lower space 1b to communicate with each other and allow the liquid refrigerant to flow into the lower space 1b.
  • the through holes 5 are annularly arranged along the inner wall surface of the container body 1 .
  • eight through holes 5 of the same shape and size are formed at regular intervals.
  • the through hole 5 is, for example, circular.
  • the number of through-holes 5 is not limited to eight as shown.
  • the through hole 5 is not limited to the illustrated circular shape, and may be of other shapes such as an elliptical or rectangular shape, or may be of a shape in which the outer edge of the anti-wavy plate 4 is cut out in an arc shape.
  • the anti-wavy plate 4 can prevent the liquid refrigerant 6 stored in the lower space 1b from scattering at the central portion of the lower surface surrounded by the through holes 5 .
  • the gas-liquid two-phase refrigerant flows into the upper space 1 a inside the container body 1 through the inflow pipe 2 .
  • the gas-liquid two-phase refrigerant that has flowed into the upper space 1a is separated into a gas refrigerant and a liquid refrigerant.
  • a gaseous refrigerant with a low density stays in the upper space 1 a inside the container body 1 , flows out of the container body 1 through the outflow pipe 3 , and is sucked into the compressor 10 .
  • the high-density liquid refrigerant flows into the lower space 1b in the container body 1 via the plurality of through holes 5 formed in the waviness prevention plate 4 due to the influence of gravity, and is stored therein.
  • the liquid refrigerant 6 flowing into the lower space 1b is discharged to the compressor 10 from the outflow pipe 3 via the through hole 5 when it accumulates to some extent.
  • the refrigerant storage container 101 is connected to the container main body 1 forming the outer shell and the container main body 1, and the gas-liquid two-phase refrigerant is supplied to the upper space 1a in the container main body 1.
  • an inflow pipe 2 for inflow an outflow pipe 3 connected to the container body 1 for flowing out the gas refrigerant and the liquid refrigerant from the upper space 1a in the container body 1 to the outside of the container body 1; and a waviness prevention plate 4 that divides the interior of the container body 1 into an upper space 1a and a lower space 1b.
  • the corrugation prevention plate 4 is formed with a plurality of through-holes 5 that allow the upper space 1a and the lower space 1b to communicate with each other and allow the liquid refrigerant to flow into the lower space 1b.
  • the through holes 5 are annularly arranged along the inner wall surface of the container body 1 .
  • the liquid refrigerant separated from the gas refrigerant in the upper space 1a passes through the plurality of through holes 5 annularly arranged along the inner wall surface of the container body 1, and flows into the lower space 1b. can be stored well. Further, even if the liquid refrigerant 6 stored in the lower space 1b of the container body 1 undulates at the gas-liquid interface and the droplets scatter, the rippling prevention plate 4 can prevent the scattering at the center portion of the lower surface. Therefore, it is possible to prevent the rippled droplets of the liquid refrigerant 6 from reaching the outflow pipe 3 and flowing into the compressor 10 together with the gas refrigerant. That is, since the excessive outflow of the stored liquid refrigerant 6 can be reduced, the dilution of the refrigerating machine oil due to the liquid refrigerant flowing into the compressor 10 can be avoided, and the reliability of the compressor 10 can be ensured.
  • FIG. 6 is a cross-sectional view showing a main part of refrigerant storage container 102 according to Embodiment 2. As shown in FIG. The same reference numerals are given to the same components as those in the first embodiment, and the description thereof will be omitted as appropriate.
  • the refrigerant storage container 102 according to Embodiment 2 also includes a container body 1, an inflow pipe 2, an outflow pipe 3, and a waviness prevention plate 4, as shown in FIGS.
  • the anti-wavy plate 4 is formed with eight through holes (5a, 5b, 5c) that allow the upper space 1a and the lower space 1b to communicate with each other and allow the liquid refrigerant to flow into the lower space 1b. It is Eight through-holes (5a, 5b, 5c) are annularly arranged along the inner wall surface of the container body 1. As shown in FIG.
  • the through holes (5a, 5b, 5c) near the inflow pipe 2 are connected to the through hole 5c near the outflow pipe 3. It is characterized in that it is formed with a pore diameter that is relatively large.
  • three types of through holes (5a, 5b, 5c) having different hole diameters are formed.
  • the one through hole 5a closest to the inflow pipe 2 has the largest hole diameter.
  • the two through holes 5b adjacent to the through hole 5a have medium diameters.
  • the other six through-holes 5c near the outflow pipe 3 have the smallest hole diameters.
  • the through hole 5a with the largest hole diameter has a hole area larger than that of the through hole 5b with an intermediate hole diameter, for example, by about 20%.
  • the through-hole 5b having a medium diameter has a hole area larger than that of the through-hole 5c having the smallest diameter, for example, by about 20%.
  • the through holes (5a, 5b) near the inflow pipe 2 are configured to have a larger hole diameter than the through hole 5c near the outflow pipe 3, so that the gas-liquid two-phase refrigerant flowing from the inflow pipe 2 is The liquid refrigerant can be quickly sent into the lower space 1b of the container body 1 through the through holes (5a, 5b).
  • the sizes of the through holes (5a, 5b, 5c) are not limited to the above ratios, and may be other ratios.
  • the through holes (5a, 5b, 5c) of the refrigerant storage container 102 are not limited to the illustrated configuration.
  • the hole diameters of the through holes (5a, 5b, 5c) are not limited to the three types shown in the figure, and may be two or more types.
  • a through hole 5a having the largest diameter and a through hole 5b having an intermediate diameter shown in FIG. 6 may be connected to form an elongated hole.
  • the plurality of through holes may all have different hole diameters, and may be configured such that the hole diameters gradually increase as they approach the inflow pipe 2 .
  • the total area of the through-holes in the right half where the inflow pipe 2 is arranged is larger than the total area of the through-holes in the left half where the outflow pipe 3 is arranged with respect to the center of the anti-wavy plate 4.
  • the through-holes (5a, 5b) near the inflow pipe 2 among the plurality of through-holes (5a, 5b, 5c) have a larger hole diameter than the through-hole 5c near the outflow pipe 3, what kind of configuration is possible? It's okay.
  • the through holes (5a, 5b, 5c) close to the inflow pipe 2 are connected to the outflow pipe 3. It is formed with a hole diameter larger than that of the nearby through hole 5c. Therefore, the gas-liquid two-phase liquid refrigerant flowing from the inflow pipe 2 can be quickly sent into the lower space 1b of the container body 1 via the through holes 5a having a large hole diameter. Further, by making the through-hole 5c near the outflow pipe 3 small in diameter, the area of the central portion surrounded by the through-holes (5a, 5b, 5c) of the corrugation prevention plate 4 can be secured.
  • FIG. 7 is a longitudinal sectional view showing the refrigerant storage container 103 according to Embodiment 3. As shown in FIG. The same reference numerals are given to the same components as those in the first embodiment, and the description thereof will be omitted as appropriate.
  • the refrigerant storage container 103 also includes a waviness prevention plate 4 provided inside the container body 1 and dividing the interior of the container body 1 into an upper space 1a and a lower space 1b.
  • the corrugation prevention plate 4 is formed with a plurality of through-holes 5 that allow the upper space 1a and the lower space 1b to communicate with each other and allow the liquid refrigerant to flow into the lower space 1b.
  • the plurality of through-holes 5 are annularly arranged along the inner wall surface of the container body 1, as shown in FIG. 5, for example.
  • the plurality of through-holes 5 may be configured such that the through-holes (5a, 5b) near the inflow pipe 2 are formed with a larger hole diameter than the through-hole 5c near the outflow pipe 3.
  • the central position does not have to be strictly the center of the upper surface of the anti-wavy plate 4, and includes a position slightly displaced from the central position.
  • the gas-liquid two-phase refrigerant that has flowed in from the inflow pipe 2 vigorously collides with the center position of the upper surface of the waviness prevention plate 4 .
  • the gas-liquid two-phase refrigerant that has collided with the upper surface of the waviness prevention plate 4 is separated into gas refrigerant and liquid refrigerant by radially scattering droplets of the liquid refrigerant.
  • the liquid refrigerant flows through the plurality of through holes 5 into the lower space 1b of the container body 1 and is stored.
  • the gas refrigerant stays in the upper space 1 a inside the container body 1 , flows out of the container body 1 through the outflow pipe 3 , and is sucked into the compressor 10 .
  • the inflow pipe 2 is directed toward the container main body 1 with the discharge port directed to a position avoiding the through hole 5 on the upper surface of the waviness prevention plate 4. It is connected. Therefore, the refrigerant storage container 103 can cause the gas-liquid two-phase refrigerant flowing from the inflow pipe 2 to vigorously collide with the upper surface of the waviness prevention plate 4, so that the collision causes separation of the gas refrigerant and the liquid refrigerant.
  • the liquid refrigerant can be efficiently stored in the lower space 1b of the container body 1 via the through holes 5 of the waviness prevention plate 4 .
  • FIG. 8 is a vertical cross-sectional view showing a refrigerant storage container 104 according to Embodiment 4.
  • FIG. 9 is a top view showing refrigerant storage container 104 according to the fourth embodiment.
  • the same reference numerals are given to the same components as those in the first embodiment, and the description thereof will be omitted as appropriate.
  • the refrigerant storage container 104 also includes a waviness prevention plate 4 provided inside the container body 1 and dividing the inside of the container body 1 into an upper space 1a and a lower space 1b.
  • the corrugation prevention plate 4 is formed with a plurality of through-holes 5 that allow the upper space 1a and the lower space 1b to communicate with each other and allow the liquid refrigerant to flow into the lower space 1b.
  • the plurality of through-holes 5 are annularly arranged along the inner wall surface of the container body 1, as shown in FIG. As shown in FIG. 6, the plurality of through-holes 5 may be configured such that the through-holes (5a, 5b) near the inflow pipe 2 are formed with a larger hole diameter than the through-hole 5c near the outflow pipe 3.
  • the inflow pipe 2 is connected to the container body 1 with the discharge port facing the circumferential direction of the inner wall surface of the container body 1.
  • the outflow tube 3 is connected to the upper surface of the container body 1 .
  • the gas-liquid two-phase refrigerant flowing from the inflow pipe 2 swirls along the inner wall surface of the container body 1 along the circumferential direction.
  • the liquid refrigerant with high density and large gravity is separated from the gas refrigerant by swirling.
  • the separated liquid refrigerant drops while circling the inner wall surface of the container body 1 along the circumferential direction, and finally reaches the upper surface of the anti-wavy plate 4 .
  • the liquid refrigerant that has reached the upper surface of the anti-wavy plate 4 flows through the plurality of through holes 5 into the lower space 1b of the container body 1 and is stored therein.
  • the gas refrigerant stays in the upper space 1 a inside the container body 1 , flows out of the container body 1 through the outflow pipe 3 , and is sucked into the compressor 10 .
  • the inflow pipe 2 is connected to the container main body 1 with the discharge port facing the circumferential direction of the inner wall surface of the container main body 1 . Therefore, in the refrigerant storage container 104, the gas-liquid two-phase refrigerant flowing from the inflow pipe 2 can be swirled along the inner wall surface of the container body 1 along the circumferential direction. can be promoted, and the liquid refrigerant can be efficiently stored in the lower space 1b of the container body 1 via the through holes 5 of the waviness prevention plate 4 .
  • FIG. 10 is a longitudinal sectional view showing a refrigerant storage container according to Embodiment 5.
  • FIG. 11 is a cross-sectional view taken along line BB shown in FIG.
  • FIG. 12 is an explanatory view schematically showing how the liquid refrigerant flowing from the inflow pipe flows into the lower space via the through hole in the refrigerant storage container according to Embodiment 5.
  • FIG. The same reference numerals are given to the same components as those in the first embodiment, and the description thereof will be omitted as appropriate.
  • the refrigerant storage container 105 is also provided inside the container body 1, and has a waviness preventing structure that divides the inside of the container body 1 into an upper space 1a and a lower space 1b.
  • a plate 4 is provided.
  • the corrugation prevention plate 4 is formed with a plurality of through-holes 5 that allow the upper space 1a and the lower space 1b to communicate with each other and allow the liquid refrigerant to flow into the lower space 1b.
  • a plurality of through-holes 5 are annularly arranged along the inner wall surface of the container body 1 .
  • the plurality of through holes have the same shape and size, and are formed at equal intervals along the inner wall surface. As shown in FIG.
  • the plurality of through-holes 5 may be configured such that the through-holes (5a, 5b) near the inflow pipe 2 are formed with a larger hole diameter than the through-hole 5c near the outflow pipe 3.
  • the through hole 5 is not limited to the illustrated circular shape, and may be, for example, a shape in which the outer edge portion of the anti-wavy plate 4 is cut out in an arc shape.
  • the anti-wavy plate 4 in Embodiment 5 has a water guiding portion 4a that is inclined toward the lower space 1b and guides the liquid refrigerant to the through hole 5. As shown in FIG. The through hole 5 is formed at the tip of the liquid refrigerant introduced by the water guide portion 4a.
  • the anti-wavy plate 4 shown in FIG. 10 has a conical shape in which the central portion rises toward the upper surface of the container body 1 .
  • the water guide portion 4a is a conical inclined surface that inclines toward the through hole 5 from the raised central portion.
  • the refrigerant storage container 105 As shown in FIG. 12, after the gas-liquid two-phase refrigerant that has flowed into the container body 1 from the inflow pipe 2 collides with the upper surface of the waviness prevention plate 4, The liquid refrigerant separated from the gas refrigerant is guided to the through-holes 5 along the water conducting portion 4a under the influence of gravity, flows through the plurality of through-holes 5, and is stored in the lower space 1b of the container body 1. be. On the other hand, the gas refrigerant stays in the upper space 1 a inside the container body 1 , flows out of the container body 1 through the outflow pipe 3 , and is sucked into the compressor 10 .
  • FIG. 13 is a longitudinal sectional view showing a modification of the refrigerant storage container according to Embodiment 5.
  • FIG. The anti-wavy plate 4 shown in FIG. 13 has a water guiding portion 4a inclined in one direction toward the lower space 1b.
  • the water guide portion 4a is inclined toward the lower space 1b on the side where the inflow pipe 2 is provided.
  • the through hole 5 is annularly formed along the inner wall surface of the container body 1 .
  • refrigerant storage container 105 according to Embodiment 5 is not limited to the configuration shown in FIGS.
  • Refrigerant storage container 105 according to Embodiment 5 has a configuration in which waviness prevention plate 4 has water guide portion 4a inclined toward lower space 1b, and through hole 5 is formed at the end of water guide portion 4a. If so, other forms may be used.
  • the anti-wavy plate 4 of the refrigerant storage container 105 has the water guide portion 4a that is inclined toward the lower space 1b and guides the liquid refrigerant to the through hole 5.
  • the waviness prevention plate 4 has a shape that rises toward the upper surface of the container body 1, and an inclined surface that slopes from the raised portion toward the inner wall surface of the container body 1 serves as the water guide portion 4a. Therefore, in the refrigerant storage container 105, the liquid refrigerant separated from the gas refrigerant can be guided to the through hole 5 by the water guide portion 4a, so that the liquid refrigerant can be efficiently stored in the lower space 1b of the container body 1. can.
  • the refrigerant storage containers (101 to 105) and the refrigeration cycle device 100 have been described above based on the embodiments, they are not limited to the configurations of the embodiments described above.
  • the refrigerant storage containers (101-105) are not limited to the illustrated configuration and may include other components.
  • the refrigeration cycle apparatus 100 is not limited to the illustrated configuration, and may include other components.
  • the refrigerant storage containers (101 to 105) and the refrigeration cycle device 100 include a range of design changes and application variations that are normally made by those skilled in the art without departing from the technical idea thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)

Abstract

冷媒貯留容器は、外殻を形成する容器本体と、容器本体に接続され、気液二相冷媒を容器本体内の上部空間に流入させる流入管と、容器本体に接続され、容器本体内の上部空間からガス冷媒及び液冷媒を容器本体の外部へ流出させる流出管と、容器本体の内部に設けられ、容器本体の内部を上部空間と下部空間とに仕切る波打ち防止板と、を備えている。波打ち防止板には、上部空間と下部空間とを連通させ、該下部空間に液冷媒を流入させる複数の貫通孔が形成されている。貫通孔は、容器本体の内壁面に沿って環状に配置されている。

Description

冷媒貯留容器及び該冷媒貯留容器を備えた冷凍サイクル装置
 本開示は、気液二相冷媒をガス冷媒と液冷媒とに分離させ、液冷媒を容器の内部に貯留する冷媒貯留容器、及び該冷媒貯留容器を備えた冷凍サイクル装置に関するものである。
 従来、気液二相冷媒をガス冷媒と液冷媒とに分離させ、液冷媒を容器の内部に貯留する冷媒貯留容器が種々開示されており、実用に供されている。例えば特許文献1では、冷凍サイクル内に配置され、冷媒を気相冷媒と液相冷媒とに分離する気液分離器が開示されている。この気液分離器は、内部が第1プレートと第2プレートとによって区画されている。第1プレートは、気液分離器内の下部を区画して液相冷媒が滞留する液相冷媒滞留室を形成する。第2プレートは、気液分離器内の上部を区画して、気相冷媒が集合する気相冷媒集合室を形成する。第1プレートと第2プレートとの間には、冷媒が流入される冷媒流入室が形成されている。液相冷媒滞留室には、液相冷媒を気液分離器外へ流出させる液相冷媒流出管が接続されている。気相冷媒集合室には、気相冷媒を気液分離器外へ流出させる気相冷媒流出管が接続されている。冷媒流入室には、冷媒を流入させる冷媒流入管が接続されている。
特開2015-172469号公報
 特許文献1に開示された気液分離器は、気相冷媒を気液分離器外へ流出させる気相冷媒流出管とは別に、液相冷媒滞留室に液相冷媒流出管が接続されているので、液相冷媒を貯留させることなく、液相冷媒流出管を通じて外部へ流出させることができる。つまり、この気液分離器では、液相冷媒滞留室に溜まる液相冷媒の液量が少ないので、液相冷媒が気液界面で波打ちして液滴が飛散するおそれが少ない。
 一方、容器内の上部空間からガス冷媒及び液冷媒を容器の外部へ流出させる流出管を備えた冷媒貯留容器では、ガス冷媒から分離した液冷媒が、容器内部の下部空間に貯留される。ある程度まで貯留された液冷媒は、ガス冷媒と共通の流出管を通じて圧縮機に流出される。このような冷媒貯留容器では、ガス冷媒を流出管から流出させて圧縮機に吸入させる際に、貯留された液冷媒が波打って飛散し、飛散した液滴が流出管に到達してガス冷媒と共に圧縮機に流入するおそれがある。液冷媒が過度に流出してガス冷媒と共に圧縮機に流入すると、圧縮機のシェル内部の冷凍機油が希釈し、圧縮機の摺動部に焼き付きが発生するおそれがある。
 本開示は、上記のような課題を解決するためになされたものであり、容器の下部空間にガス冷媒から分離させた液冷媒を効率良く貯留させつつ、貯留した液冷媒の過度な流出を軽減して、ガス冷媒と共に圧縮機に液冷媒が流入することによる冷凍機油の希釈を回避でき、圧縮機の信頼性を確保することができる、冷媒貯留容器及び該冷媒貯留容器を備えた冷凍サイクル装置を提供することを目的とする。
 本開示に係る冷媒貯留容器は、気液二相冷媒をガス冷媒と液冷媒とに分離し、該液冷媒を容器内部の下部空間に貯留する冷媒貯留容器であって、外殻を形成する容器本体と、前記容器本体に接続され、前記気液二相冷媒を前記容器本体内の上部空間に流入させる流入管と、前記容器本体に接続され、前記容器本体内の前記上部空間からガス冷媒及び液冷媒を前記容器本体の外部へ流出させる流出管と、前記容器本体の内部に設けられ、前記容器本体の内部を前記上部空間と前記下部空間とに仕切る波打ち防止板と、を備え、前記波打ち防止板には、前記上部空間と前記下部空間とを連通させ、該下部空間に液冷媒を流入させる複数の貫通孔が形成されており、前記貫通孔は、前記容器本体の内壁面に沿って環状に配置されているものである。
 本開示に係る冷凍サイクル装置は、上記冷媒貯留容器と、前記冷媒貯留容器に流出管を介して接続された圧縮機と、を備えたものである。
 本開示によれば、容器本体の上部空間でガス冷媒から分離した液冷媒を、容器本体の内壁面に沿って環状に配置された複数の貫通孔を経由させて、下部空間に効率良く貯留させることができる。また、容器本体の下部空間に貯留された液冷媒が、気液界面で波打ちして液滴が飛散しても、波打ち防止板で当該飛散を防ぐことができるので、波打ちした液冷媒の液滴が流出管に到達し、ガス冷媒と共に圧縮機の内部に流入する事態を抑制することができる。つまり、貯留した液冷媒の過度な流出を軽減できるので、圧縮機に液冷媒が流入することによる冷凍機油の希釈を回避でき、圧縮機の信頼性を確保することができる。
実施の形態1に係る冷媒貯留容器を備えた冷凍サイクル装置の冷媒回路図である。 実施の形態1に係る冷媒貯留容器を示した正面図である。 実施の形態1に係る冷媒貯留容器を示した上面図である。 実施の形態1に係る冷媒貯留容器を示した縦断面図である。 図4に示したA-A線矢視断面図である。 実施の形態2に係る冷媒貯留容器の要部を示した断面図である。 実施の形態3に係る冷媒貯留容器を示した縦断面図である。 実施の形態4に係る冷媒貯留容器を示した縦断面図である。 実施の形態4に係る冷媒貯留容器を示した上面図である。 実施の形態5に係る冷媒貯留容器を示した縦断面図である。 図10に示したB-B線矢視断面図である。 実施の形態5に係る冷媒貯留容器であって流入管から流入した液冷媒が貫通孔を経由して下部空間に流入する様子を模式的に示した説明図である。 実施の形態5に係る冷媒貯留容器の変形例を示した縦断面図である。
 以下、図面を参照して、本開示の実施の形態について説明する。なお、各図中、同一又は相当する部分には、同一符号を付して、その説明を適宜省略又は簡略化する。また、各図に記載の構成について、その形状、大きさ、及び配置等は、適宜変更することができる。
実施の形態1.
 先ず、図1に基づいて、実施の形態1に係る冷媒貯留容器101を備えた冷凍サイクル装置100について説明する。図1は、実施の形態1に係る冷媒貯留容器101を備えた冷凍サイクル装置100の冷媒回路図である。
 図1に示すように、本実施の形態1に係る冷凍サイクル装置100は、圧縮機10、流路切替装置11、室外熱交換器12、膨張機構13、室内熱交換器14、及び冷媒貯留容器101が冷媒配管15により順次接続され、冷媒が循環する冷媒回路200を有している。
 圧縮機10は、吸入した冷媒を圧縮し、高温高圧の状態にして吐出するものである。圧縮機10は、例えば、インバータ圧縮機である。圧縮機10から吐出された冷媒は、室外熱交換器12又は室内熱交換器14に流入される。
 流路切替装置11は、一例として四方弁であり、冷媒の流路を切り換える機能を有するものである。流路切替装置11は、冷房運転時において、圧縮機10の冷媒吐出側と室外熱交換器12のガス側とを接続する共に、圧縮機10の冷媒吸入側と室内熱交換器14のガス側とを接続するように冷媒流路を切り換える。一方、流路切替装置11は、暖房運転時において、圧縮機10の冷媒吐出側と室内熱交換器14のガス側とを接続すると共に、圧縮機10の冷媒吸入側と室外熱交換器12のガス側とを接続するように冷媒流路を切り換える。なお、流路切替装置11は、二方弁又は三方弁を組み合わせて構成してもよい。
 室外熱交換器12は、冷房運転時に凝縮器として機能し、圧縮機10から吐出された冷媒と空気との間で熱交換を行う。また、室外熱交換器12は、暖房運転時には蒸発器として機能し、膨張機構13から流出した冷媒と空気との間で熱交換を行う。室外熱交換器12は、送風機によって室外空気を吸い込み、冷媒との間で熱交換した空気を外部に排出する。
 膨張機構13は、冷媒回路内を流れる冷媒を減圧して膨張させるものであり、一例として開度が可変に制御される電子膨張弁で構成される。
 室内熱交換器14は、冷房運転時に蒸発器として機能し、膨張機構13から流出した冷媒と空気との間で熱交換を行う。また、室内熱交換器14は、暖房運転時に凝縮器として機能し、圧縮機10から吐出された冷媒と空気との間で熱交換を行う。室内熱交換器14は、送風機によって室内空気を吸い込み、冷媒との間で熱交換した空気を室内に供給する。
 冷媒貯留容器101は、図1に示すように、圧縮機10の吸入口の上流側に設置される。冷媒貯留容器101は、蒸発器から流出した気液二相冷媒をガス冷媒と液冷媒とに分離し、液冷媒を容器内部の下部空間に貯留するものである。冷凍サイクル装置100において、圧縮機10への吸入冷媒は、過熱ガスが理想である。しかし、冷凍サイクル装置100は、回路内の冷媒分布に依存しており、液冷媒を含んだ状態で、ガス冷媒が圧縮機10へ吸入される場合がある。圧縮機10に液冷媒が吸入されると、圧縮機10のシェル内部の冷凍機油が希釈し、圧縮機10の摺動部に焼き付きが発生するおそれがある。そこで、冷凍サイクル装置100では、圧縮機10の摺動部の焼き付きの発生を回避するために、圧縮機10の吸入口の上流側にガス冷媒から分離させた液冷媒を貯留する冷媒貯留容器101を設けることとしている。
 ここで、冷凍サイクル装置100の冷房運転時の動作を説明する。圧縮機10から吐出された高温高圧のガス冷媒は、流路切替装置11を通過して室外熱交換器12へと流れて空気と熱交換して凝縮液化する。凝縮液化した冷媒は、膨張機構13で減圧され低圧の気液二相冷媒となり、室内熱交換器14へと流れて空気と熱交換してガス化する。ガス化した冷媒は、流路切替装置11を通過し、冷媒貯留容器101を介して圧縮機10に吸入される。
 次に、冷凍サイクル装置100の暖房運転時の動作を説明する。圧縮機10から吐出された高温高圧のガス冷媒は、流路切替装置11を通過して室内熱交換器14へと流れて空気と熱交換して凝縮液化する。凝縮液化した冷媒は膨張機構13で減圧され低圧の気液二相冷媒となり、室外熱交換器12へと流れて空気と熱交換してガス化する。ガス化した冷媒は流路切替装置11を通過し、冷媒貯留容器101を介して圧縮機10に吸入される。
 次に、本実施の形態1に係る冷媒貯留容器101を、図2~図5に基づいて説明する。図2は、実施の形態1に係る冷媒貯留容器101を示した正面図である。図3は、実施の形態1に係る冷媒貯留容器101を示した上面図である。図4は、実施の形態1に係る冷媒貯留容器101を示した縦断面図である。図5は、図4に示したA-A線矢視断面図である。
 本実施の形態1に係る冷媒貯留容器101は、図2~図5に示すように、容器本体1と、流入管2と、流出管3と、波打ち防止板4と、を備えている。容器本体1は、冷媒貯留容器101の外郭を形成するものである。容器本体1の内部には、蒸発器から流出した気液二相冷媒が流入管2を通じて流入される。気液二相冷媒には、冷凍機油が含まれている。
 流入管2は、図2~図4に示すように、容器本体1の上面に接続され、蒸発器から流出した気液二相冷媒を容器本体1内の上部空間1aに流入させるために設けられている。また、流出管3は、図2~図4に示すように、容器本体1の上面に接続され、容器本体1内の上部空間1aからガス冷媒及び液冷媒を容器本体1の外部へ流出させるために設けられている。気液二相冷媒のうち、液冷媒から分離したガス冷媒は、容器本体1内の上部空間1aから外部へ流出されて圧縮機10に吸入される。
 波打ち防止板4は、図4に示すように、容器本体1の内部に設けられ、容器本体1の内部を上部空間1aと下部空間1bとに仕切ると共に、ガス冷媒から分離した液冷媒を下部空間1bに流入させるものである。また、波打ち防止板4は、下部空間1bに貯留された液冷媒6が気液界面で波打ち、それにより飛散した液滴が、上部空間1aに流入して流出管3に侵入する事態を抑制するものである。
 波打ち防止板4には、図4及び図5に示すように、上部空間1aと下部空間1bとを連通させ、該下部空間1bに液冷媒を流入させる複数の貫通孔5が形成されている。貫通孔5は、容器本体1の内壁面に沿って環状に配置されている。本実施の形態1では、図5に示すように、同形同大から成る8個の貫通孔5が等間隔で形成されている。貫通孔5は、一例として、円形状である。なお、貫通孔5の個数は、図示した8個に限定されない。また、貫通孔5は、図示した円形状に限定されず、例えば楕円状又は矩形状等、他の形状でもよいし、波打ち防止板4の外縁を円弧状に切り欠いた形状等でもよい。波打ち防止板4は、貫通孔5に囲まれた下面の中央部分で、下部空間1bに貯留された液冷媒6の飛散を防ぐことができる。
 冷媒貯留容器101では、流入管2を通じて気液二相冷媒が容器本体1内の上部空間1aに流入する。上部空間1aに流入した気液二相冷媒は、ガス冷媒と液冷媒とに分離される。密度の小さいガス冷媒は、容器本体1内の上部空間1aで滞留し、流出管3から容器本体1の外部へ流出され、圧縮機10に吸入される。一方、密度の大きい液冷媒は、重力の影響により、波打ち防止板4に形成された複数の貫通孔5を経由して容器本体1内の下部空間1bへ流入して貯留される。なお、下部空間1bに流入した液冷媒6は、ある程度溜まると、貫通孔5を経由して流出管3から圧縮機10へ排出される。
 以上のように、本実施の形態1に係る冷媒貯留容器101は、外殻を形成する容器本体1と、容器本体1に接続され、気液二相冷媒を容器本体1内の上部空間1aに流入させる流入管2と、容器本体1に接続され、容器本体1内の上部空間1aからガス冷媒及び液冷媒を容器本体1の外部へ流出させる流出管3と、容器本体1の内部に設けられ、容器本体1の内部を上部空間1aと下部空間1bとに仕切る波打ち防止板4と、を備えている。波打ち防止板4には、上部空間1aと下部空間1bとを連通させ、該下部空間1bに液冷媒を流入させる複数の貫通孔5が形成されている。貫通孔5は、容器本体1の内壁面に沿って環状に配置されている。
 よって、冷媒貯留容器101は、上部空間1aでガス冷媒から分離した液冷媒を、容器本体1の内壁面に沿って環状に配置された複数の貫通孔5を経由させて、下部空間1bに効率良く貯留することができる。また、容器本体1の下部空間1bに貯留された液冷媒6が、気液界面で波打ちして液滴が飛散しても、波打ち防止板4の下面の中央部で当該飛散を防ぐことができるので、波打ちした液冷媒6の液滴が流出管3に到達し、ガス冷媒と共に圧縮機10の内部に流入する事態を抑制することができる。つまり、貯留した液冷媒6の過度な流出を軽減できるので、圧縮機10に液冷媒が流入することによる冷凍機油の希釈を回避でき、圧縮機10の信頼性を確保することができる。
実施の形態2.
 次に、本実施の形態2に係る冷媒貯留容器102を図1~図4を参照しつつ、図6に基づいて説明する。図6は、実施の形態2に係る冷媒貯留容器102の要部を示した断面図である。なお、実施の形態1と同一の構成要素については、同一の符号を付して、その説明を適宜省略する。
 本実施の形態2に係る冷媒貯留容器102も、図2~図4に示すように、容器本体1と、流入管2と、流出管3と、波打ち防止板4と、を備えている。図6に示すように、波打ち防止板4には、上部空間1aと下部空間1bとを連通させ、該下部空間1bに液冷媒を流入させる8個の貫通孔(5a、5b、5c)が形成されている。8個の貫通孔(5a、5b、5c)は、容器本体1の内壁面に沿って環状に配置されている。
 本実施の形態2に係る冷媒貯留容器102は、複数の貫通孔(5a、5b、5c)のうち、流入管2に近い貫通孔(5a、5b)が、流出管3に近い貫通孔5cに比べて大きい孔径で形成されていることを特徴としている。図示例の場合、孔径の異なる3種類の貫通孔(5a、5b、5c)が形成されている。流入管2に最も近い1つの貫通孔5aは、孔径が最も大きい。貫通孔5aに隣り合う2つの貫通孔5bは、中くらいの孔径とされている。流出管3に近いその他の6個の貫通孔5cは、孔径が最も小さい。最も孔径の大きい貫通孔5aは、中くらいの孔径である貫通孔5bと比べて、孔の面積が例えば20%程度大きい。また、中くらいの孔径である貫通孔5bは、最も孔径の小さい貫通孔5cと比べて、孔の面積が例えば20%程度大きい。このように、流入管2に近い貫通孔(5a、5b)を、流出管3に近い貫通孔5cに比べて孔径が大きい構成とすることで、流入管2から流入した気液二相冷媒の液冷媒を、貫通孔(5a、5b)から容器本体1の下部空間1bへ素早く送り込むことができる。
 なお、貫通孔(5a、5b、5c)の大きさは、上記比率に限定されず、他の比率でもよい。また、冷媒貯留容器102の貫通孔(5a、5b、5c)は、図示した構成に限定されない。貫通孔(5a、5b、5c)の孔径は、図示した3種類に限定されず、2種類以上であればよい。例えば、図6に示した、最も孔径の大きい貫通孔5aと、中くらいの孔径である貫通孔5bとを繋げて長孔としてもよい。また、複数の貫通孔は、すべて異なる孔径とし、流入管2に近づくにつれて徐々に孔径を大きくした構成でもよい。また、波打ち防止板4の中心部を境に、流入管2が配置された右側半分の貫通孔の総面積が、流出管3を配置した左側半分の貫通孔の総面積よりも大きくなるように構成してもよい。要するに、複数の貫通孔(5a、5b、5c)のうち、流入管2に近い貫通孔(5a、5b)が、流出管3に近い貫通孔5cに比べて孔径が大きければ、どのような形態でもよい。
 以上のように、本実施の形態2に係る冷媒貯留容器102では、複数の貫通孔(5a、5b、5c)のうち、流入管2に近い貫通孔(5a、5b)が、流出管3に近い貫通孔5cに比べて大きい孔径で形成されている。よって、流入管2から流入した気液二相冷媒の液冷媒を、大きい孔径からなる貫通孔5aを経由して容器本体1の下部空間1bへ素早く送り込むことができる。また、流出管3に近い貫通孔5cを小さい孔径とすることで、波打ち防止板4の貫通孔(5a、5b、5c)で囲まれた中央部分の面積を確保することができる。よって、下部空間1bに貯留された液冷媒6が気液界面で波打ちして液滴が飛散しても、波打ち防止板4の下面の中央部分で当該飛散を防ぐことができるので、波打ちした液冷媒6の液滴が流出管3に到達し、ガス冷媒と共に圧縮機10の内部に流入する事態を抑制することができる。
実施の形態3.
 次に、本実施の形態3に係る冷媒貯留容器103を図7に基づいて説明する。図7は、実施の形態3に係る冷媒貯留容器103を示した縦断面図である。なお、実施の形態1と同一の構成要素については、同一の符号を付して、その説明を適宜省略する。
 本実施の形態3に係る冷媒貯留容器103も、図7に示すように、容器本体1の内部に設けられ、容器本体1の内部を上部空間1aと下部空間1bとに仕切る波打ち防止板4を備えている。波打ち防止板4には、上部空間1aと下部空間1bとを連通させ、該下部空間1bに液冷媒を流入させる複数の貫通孔5が形成されている。複数の貫通孔5は、例えば図5に示すように、容器本体1の内壁面に沿って環状に配置されている。なお、複数の貫通孔5は、図6に示すように、流入管2に近い貫通孔(5a、5b)を、流出管3に近い貫通孔5cに比べて大きい孔径で形成した構成でもよい。
 本実施の形態3に係る冷媒貯留容器103は、図7に示すように、流入管2が、波打ち防止板4の上面のうち、貫通孔5を避けた中央位置に排出口を向けて、容器本体1に接続されている。なお、中央位置とは、厳密に波打ち防止板4の上面の中央である必要はなく、中央位置から若干ずれた位置も含むものとする。
 流入管2から流入した気液二相冷媒は、波打ち防止板4の上面の中央位置に勢いよく衝突する。波打ち防止板4の上面に衝突した気液二相冷媒は、液冷媒の液滴が放射状に飛散することで、ガス冷媒と液冷媒とが分離される。液冷媒は、液滴が複数の貫通孔5を経由して容器本体1の下部空間1bに流れて貯留される。一方、ガス冷媒は、容器本体1内の上部空間1aで滞留し、流出管3から容器本体1の外部へ流出され、圧縮機10に吸入される。
 以上のように、本実施の形態3に係る冷媒貯留容器103では、流入管2が、波打ち防止板4の上面のうち、貫通孔5を避けた位置に排出口を向けて、容器本体1に接続されている。よって、冷媒貯留容器103は、流入管2から流入した気液二相冷媒を、波打ち防止板4の上面に勢いよく衝突させることができるので、当該衝突により、ガス冷媒と液冷媒との分離を促進させることができ、液冷媒を波打ち防止板4の貫通孔5を経由して、効率良く容器本体1の下部空間1bに貯留することができる。
実施の形態4.
 次に、本実施の形態4に係る冷媒貯留容器104を図8及び図9に基づいて説明する。図8は、実施の形態4に係る冷媒貯留容器104を示した縦断面図である。図9は、実施の形態4に係る冷媒貯留容器104を示した上面図である。なお、実施の形態1と同一の構成要素については、同一の符号を付して、その説明を適宜省略する。
 本実施の形態4に係る冷媒貯留容器104も、図8に示すように、容器本体1の内部に設けられ、容器本体1の内部を上部空間1aと下部空間1bとに仕切る波打ち防止板4を備えている。波打ち防止板4には、上部空間1aと下部空間1bとを連通させ、該下部空間1bに液冷媒を流入させる複数の貫通孔5が形成されている。複数の貫通孔5は、図5に示すように、容器本体1の内壁面に沿って環状に配置されている。なお、複数の貫通孔5は、図6に示すように、流入管2に近い貫通孔(5a、5b)を、流出管3に近い貫通孔5cに比べて大きい孔径で形成した構成でもよい。
 本実施の形態4に係る冷媒貯留容器104では、図8及び図9に示すように、流入管2が容器本体1の内壁面の周方向に排出口を向けて、容器本体1に接続されている。流出管3は、容器本体1に上面に接続されている。
 流入管2から流入した気液二相冷媒は、容器本体1の内壁面を周方向に沿って旋回する。気液二相冷媒は、密度が大きく重力が大きい液冷媒が旋回によってガス冷媒から分離される。分離された液冷媒は、容器本体1の内壁面を周方向に沿って旋回しながら落下し、最終的に波打ち防止板4の上面に到達する。波打ち防止板4の上面に到達した液冷媒は、複数の貫通孔5を経由して、容器本体1の下部空間1bに流れて貯留される。一方、ガス冷媒は、容器本体1内の上部空間1aで滞留し、流出管3から容器本体1の外部へ流出され、圧縮機10に吸入される。
 以上のように、本実施の形態4に係る冷媒貯留容器104では、流入管2が、容器本体1の内壁面の周方向に排出口を向けて、容器本体1に接続されている。よって、冷媒貯留容器104は、流入管2から流入した気液二相冷媒を、容器本体1の内壁面を周方向に沿って旋回させることができるので、当該旋回により、ガス冷媒と液冷媒との分離を促進させることができ、液冷媒を波打ち防止板4の貫通孔5を経由して、効率良く容器本体1の下部空間1bに貯留することができる。
実施の形態5.
 次に、本実施の形態5に係る冷媒貯留容器105を図10~図13に基づいて説明する。図10は、実施の形態5に係る冷媒貯留容器を示した縦断面図である。図11は、図10に示したB-B線矢視断面図である。図12は、実施の形態5に係る冷媒貯留容器であって流入管から流入した液冷媒が貫通孔を経由して下部空間に流入する様子を模式的に示した説明図である。なお、実施の形態1と同一の構成要素については、同一の符号を付して、その説明を適宜省略する。
 本実施の形態5に係る冷媒貯留容器105も、図10及び図11に示すように、容器本体1の内部に設けられ、容器本体1の内部を上部空間1aと下部空間1bとに仕切る波打ち防止板4を備えている。波打ち防止板4には、上部空間1aと下部空間1bとを連通させ、該下部空間1bに液冷媒を流入させる複数の貫通孔5が形成されている。複数の貫通孔5は、容器本体1の内壁面に沿って環状に配置されている。複数の貫通孔は、同形同大とされ、内壁面に沿って等間隔に形成されている。なお、複数の貫通孔5は、図6に示すように、流入管2に近い貫通孔(5a、5b)を、流出管3に近い貫通孔5cに比べて大きい孔径で形成した構成でもよい。また、貫通孔5は、図示した円形状に限定されず、例えば波打ち防止板4の外縁部を円弧状に切り欠いた形状等でもよい。
 本実施の形態5における波打ち防止板4は、下部空間1bに向かって傾斜し、液冷媒を貫通孔5に誘導する導水部4aを有している。貫通孔5は、導水部4aによって液冷媒が導水された先に形成されている。図10に示す波打ち防止板4は、中央部分が容器本体1の上面に向かって盛り上がった円錐形状とされている。導水部4aは、盛り上がった中央部分から貫通孔5に向かって傾斜する円錐の傾斜面である。
 本実施の形態5に係る冷媒貯留容器105では、図12に示すように、流入管2から容器本体1の内部に流入した気液二相冷媒が、波打ち防止板4の上面に衝突した後、ガス冷媒から分離された液冷媒が、重力の影響により、導水部4aに沿って貫通孔5へと誘導され、複数の貫通孔5を経由して容器本体1の下部空間1bに流れて貯留される。一方、ガス冷媒は、容器本体1内の上部空間1aで滞留し、流出管3から容器本体1の外部へ流出され、圧縮機10に吸入される。
 図13は、実施の形態5に係る冷媒貯留容器の変形例を示した縦断面図である。図13に示した波打ち防止板4は、下部空間1bに向かって一方向に傾斜させた導水部4aを有する構成である。導水部4aは、流入管2を設けた側が下部空間1bに向かって傾斜している。貫通孔5は、容器本体1の内壁面に沿って環状に形成されている。
 なお、本実施の形態5に係る冷媒貯留容器105は、図10~図13に示した構成に限定されない。本実施の形態5に係る冷媒貯留容器105は、波打ち防止板4が下部空間1bに向かって傾斜する導水部4aを有し、貫通孔5が導水部4aによって導水された先に形成された構成であれば、他の形態でもよい。
 以上のように、本実施の形態5に係る冷媒貯留容器105の波打ち防止板4は、下部空間1bに向かって傾斜し、液冷媒を貫通孔5に誘導する導水部4aを有している。例えば、波打ち防止板4は、容器本体1の上面に向かって盛り上がった形状とされ、盛り上がった部分から容器本体1の内壁面に向かって傾斜する傾斜面が導水部4aとされている。よって、冷媒貯留容器105は、ガス冷媒から分離した液冷媒を導水部4aによって貫通孔5へと誘導することができるので、該液冷媒を効率良く容器本体1の下部空間1bに貯留することができる。
 以上、冷媒貯留容器(101~105)及び冷凍サイクル装置100を実施の形態に基づいて説明したが、上述した実施の形態の構成に限定されるものではない。例えば冷媒貯留容器(101~105)は、図示した構成に限定されるものではなく、他の構成要素を含んでもよい。また、冷凍サイクル装置100は、図示した構成に限定されるものではなく、他の構成要素を含んでもよい。要するに、冷媒貯留容器(101~105)及び冷凍サイクル装置100は、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更及び応用のバリエーションの範囲を含むものである。
 1 容器本体、1a 上部空間、1b 下部空間、2 流入管、3 流出管、4 波打ち防止板、4a 導水部、5、5a、5b、5c 貫通孔、6 液冷媒、10 圧縮機、11 流路切替装置、12 室外熱交換器、13 膨張機構、14 室内熱交換器、15 冷媒配管、100 冷凍サイクル装置、101、102、103、104、105 冷媒貯留容器、200 冷媒回路。

Claims (8)

  1.  気液二相冷媒をガス冷媒と液冷媒とに分離し、該液冷媒を容器内部の下部空間に貯留する冷媒貯留容器であって、
     外殻を形成する容器本体と、
     前記容器本体に接続され、前記気液二相冷媒を前記容器本体内の上部空間に流入させる流入管と、
     前記容器本体に接続され、前記容器本体内の前記上部空間からガス冷媒及び液冷媒を前記容器本体の外部へ流出させる流出管と、
     前記容器本体の内部に設けられ、前記容器本体の内部を前記上部空間と前記下部空間とに仕切る波打ち防止板と、を備え、
     前記波打ち防止板には、前記上部空間と前記下部空間とを連通させ、該下部空間に液冷媒を流入させる複数の貫通孔が形成されており、
     前記貫通孔は、前記容器本体の内壁面に沿って環状に配置されている、冷媒貯留容器。
  2.  複数の前記貫通孔のうち、前記流入管に近い貫通孔は、前記流出管に近い貫通孔に比べて大きい孔径で形成されている、請求項1に記載の冷媒貯留容器。
  3.  前記流入管は、前記波打ち防止板の上面のうち、前記貫通孔を避けた位置に排出口を向けて、前記容器本体に接続されている、請求項1又は2に記載の冷媒貯留容器。
  4.  前記貫通孔を避けた位置とは、前記波打ち防止板の上面の中央位置である、請求項3に記載の冷媒貯留容器。
  5.  前記流入管は、前記容器本体の内壁面の周方向に排出口を向けて、前記容器本体に接続されている、請求項1又は2に記載の冷媒貯留容器。
  6.  前記波打ち防止板は、前記下部空間に向かって傾斜し、液冷媒を前記貫通孔に誘導する導水部を有している、請求項1~5のいずれか一項に記載の冷媒貯留容器。
  7.  前記波打ち防止板は、前記容器本体の上面に向かって盛り上がった形状とされ、
     盛り上がった部分から前記容器本体の内壁面に向かって傾斜する傾斜面が前記導水部とされている、請求項6に記載の冷媒貯留容器。
  8.  請求項1~7のいずれか一項に記載の冷媒貯留容器と、
     前記冷媒貯留容器に流出管を介して接続された圧縮機と、を備えた、冷凍サイクル装置。
PCT/JP2021/018304 2021-05-14 2021-05-14 冷媒貯留容器及び該冷媒貯留容器を備えた冷凍サイクル装置 WO2022239211A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180097762.6A CN117242310A (zh) 2021-05-14 2021-05-14 制冷剂储存容器和具有该制冷剂储存容器的制冷循环装置
US18/549,603 US20240328689A1 (en) 2021-05-14 2021-05-14 Refrigerant reservoir container and refrigeration cycle apparatus provided with the refrigerant reservoir container
PCT/JP2021/018304 WO2022239211A1 (ja) 2021-05-14 2021-05-14 冷媒貯留容器及び該冷媒貯留容器を備えた冷凍サイクル装置
EP21941943.9A EP4339536A4 (en) 2021-05-14 2021-05-14 REFRIGERANT STORAGE CONTAINER, AND REFRIGERATING CYCLE DEVICE PROVIDED WITH SAID REFRIGERANT STORAGE CONTAINER
JP2023520703A JP7433522B2 (ja) 2021-05-14 2021-05-14 冷媒貯留容器及び該冷媒貯留容器を備えた冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018304 WO2022239211A1 (ja) 2021-05-14 2021-05-14 冷媒貯留容器及び該冷媒貯留容器を備えた冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2022239211A1 true WO2022239211A1 (ja) 2022-11-17

Family

ID=84028989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018304 WO2022239211A1 (ja) 2021-05-14 2021-05-14 冷媒貯留容器及び該冷媒貯留容器を備えた冷凍サイクル装置

Country Status (5)

Country Link
US (1) US20240328689A1 (ja)
EP (1) EP4339536A4 (ja)
JP (1) JP7433522B2 (ja)
CN (1) CN117242310A (ja)
WO (1) WO2022239211A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289539A (ja) * 1999-05-24 2001-10-19 Denso Corp アキュムレータ
JP2008151374A (ja) * 2006-12-15 2008-07-03 Sanden Corp 蒸気圧縮式冷凍サイクル
JP2008249242A (ja) * 2007-03-30 2008-10-16 Showa Denko Kk 冷凍サイクル用アキュムレータ
WO2012026496A1 (ja) * 2010-08-25 2012-03-01 三菱電機株式会社 アキュムレータを付設する冷媒圧縮機及び蒸気圧縮式冷凍サイクル装置
JP2015172469A (ja) 2014-03-12 2015-10-01 カルソニックカンセイ株式会社 気液分離器
JP2017125466A (ja) * 2016-01-15 2017-07-20 ダイキン工業株式会社 アキュムレータおよびそれを備える圧縮機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109751798A (zh) * 2017-11-02 2019-05-14 开利公司 气液分离器
US20220154988A1 (en) * 2019-03-22 2022-05-19 Nec Corporation Liquid separator, cooling system, and gas-liquid separation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289539A (ja) * 1999-05-24 2001-10-19 Denso Corp アキュムレータ
JP2008151374A (ja) * 2006-12-15 2008-07-03 Sanden Corp 蒸気圧縮式冷凍サイクル
JP2008249242A (ja) * 2007-03-30 2008-10-16 Showa Denko Kk 冷凍サイクル用アキュムレータ
WO2012026496A1 (ja) * 2010-08-25 2012-03-01 三菱電機株式会社 アキュムレータを付設する冷媒圧縮機及び蒸気圧縮式冷凍サイクル装置
JP2015172469A (ja) 2014-03-12 2015-10-01 カルソニックカンセイ株式会社 気液分離器
JP2017125466A (ja) * 2016-01-15 2017-07-20 ダイキン工業株式会社 アキュムレータおよびそれを備える圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4339536A4

Also Published As

Publication number Publication date
CN117242310A (zh) 2023-12-15
JPWO2022239211A1 (ja) 2022-11-17
US20240328689A1 (en) 2024-10-03
JP7433522B2 (ja) 2024-02-19
EP4339536A1 (en) 2024-03-20
EP4339536A4 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
US7131292B2 (en) Gas-liquid separator
KR100516577B1 (ko) 오일분리기 및 그것을 구비한 실외기
US11015850B2 (en) Oil separator
US10222104B2 (en) Distributor and turbo refrigerating machine and evaporator having the same
JP2008032269A (ja) アキュムレータ
EP4411286A1 (en) Economizer and refrigerating system comprising same
CN110542251A (zh) 一种改良的气液分离器
JP6621132B2 (ja) 遠心分離式オイルセパレータ及びこれを用いた冷凍サイクル装置
US20180038618A1 (en) Lubricant separator
CN104949406A (zh) 一种气液分离器
WO2022239211A1 (ja) 冷媒貯留容器及び該冷媒貯留容器を備えた冷凍サイクル装置
WO2021229649A1 (ja) アキュムレータおよび冷凍サイクル装置
WO2017085813A1 (ja) 空気調和装置
JP2022173565A (ja) アキュムレータ及び冷凍サイクル
JP6296322B2 (ja) オイルセパレータ
EP4425074A1 (en) Refrigerant storage container, and refrigeration cycle device provided with said refrigerant storage container
WO2023017594A1 (ja) 冷媒貯留容器及び該冷媒貯留容器を備えた冷凍サイクル装置
WO2023007620A1 (ja) 冷媒貯留容器及びこの冷媒貯留容器を備えた冷凍サイクル装置
WO2023166705A1 (ja) 冷媒貯留容器及び該冷媒貯留容器を備えた冷凍サイクル装置
JP6827554B2 (ja) 油分離器およびそれを備えた空気調和機
CN211041492U (zh) 一种气液分离闪发器及其空调器系统
JP2014196855A (ja) 油分離器および冷凍サイクル装置の室外ユニット
WO2023238234A1 (ja) 熱交換器
JP7235451B2 (ja) アキュムレータ
CN215724326U (zh) 油液分离装置、压缩机制冷回路以及冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023520703

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18549603

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180097762.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021941943

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021941943

Country of ref document: EP

Effective date: 20231214