WO2022239169A1 - 故障判定システム、故障判定方法、制御装置、及びプログラム - Google Patents

故障判定システム、故障判定方法、制御装置、及びプログラム Download PDF

Info

Publication number
WO2022239169A1
WO2022239169A1 PCT/JP2021/018144 JP2021018144W WO2022239169A1 WO 2022239169 A1 WO2022239169 A1 WO 2022239169A1 JP 2021018144 W JP2021018144 W JP 2021018144W WO 2022239169 A1 WO2022239169 A1 WO 2022239169A1
Authority
WO
WIPO (PCT)
Prior art keywords
alarm
ventilation
gas concentration
concentration sensor
gas
Prior art date
Application number
PCT/JP2021/018144
Other languages
English (en)
French (fr)
Inventor
安弘 松本
聡 篠崎
潤一郎 玉松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US18/558,108 priority Critical patent/US20240219054A1/en
Priority to PCT/JP2021/018144 priority patent/WO2022239169A1/ja
Priority to JP2023520668A priority patent/JPWO2022239169A1/ja
Publication of WO2022239169A1 publication Critical patent/WO2022239169A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0062General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display
    • G01N33/0063General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display using a threshold to release an alarm or displaying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/007Arrangements to check the analyser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/76Oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to a failure determination system, failure determination method, control device, and program for determining failure of a gas concentration sensor.
  • Non-Patent Document 1 gas sensors that detect the concentration of gases such as oxygen and combustible gases are known. Also known is a gas concentration sensor that includes such a gas sensor and issues an alarm when the gas concentration sensed by the gas sensor is not within a predetermined range.
  • the gas concentration sensor may issue an alarm even if the gas concentration is within a predetermined range due to failure due to deterioration or the like.
  • the deterioration of the gas sensor reduces the sensitivity, resulting in a normal detection value. It may output a lower detection value. In this case, the gas concentration sensor issues an alarm even when the oxygen concentration is greater than or equal to the predetermined value. Also, in a gas concentration sensor that has a gas sensor that detects the concentration of combustible gas and that issues an alarm when the concentration of combustible gas exceeds a predetermined value, the gas inlet to the gas sensor fails.
  • the gas concentration sensor issues an alarm even when the combustible gas concentration is below a predetermined value.
  • An object of the present disclosure which has been made in view of such circumstances, is to provide a failure determination system, a failure determination method, a control device, and a program capable of remotely determining whether or not a gas concentration sensor has failed. be.
  • the failure determination system outputs a ventilation equipment and a detection value corresponding to the concentration of gas in a space in which the ventilation equipment is provided, and issues an alarm based on the detection value. and a gas concentration sensor for transmitting alarm notification information related to the notification of the alarm; and a control device, wherein the control device includes a communication unit for receiving the alarm notification information, a ventilation control unit that controls the ventilation equipment to perform ventilation operation based on the above, and after the ventilation completion time has elapsed from the start of the control, the gas concentration sensor fails based on the alarm information and a determination unit that determines whether or not there is.
  • a failure determination method includes the steps of outputting a detection value corresponding to the concentration of gas in a space provided with ventilation equipment, and issuing an alarm based on the detection value. a step of controlling the ventilation equipment to perform a ventilation operation based on the alarm information, and after a ventilation completion time has elapsed from the start of the control, the gas is discharged based on the alarm information and determining whether the concentration sensor has failed.
  • the control device outputs a detection value corresponding to the concentration of gas in a space provided with ventilation equipment, and issues an alarm based on the detection value.
  • a communication unit that receives alarm notification information regarding the notification of the alarm transmitted from the sensor; a ventilation control unit that controls the ventilation equipment to start ventilation operation based on the alarm notification information; a determination unit that determines whether or not the gas concentration sensor is out of order based on the alarm information after the ventilation completion time has elapsed from the control.
  • a program according to the present disclosure causes a computer to function as the above control device.
  • failure determination system failure determination method, control device, and program according to the present disclosure, it is possible to remotely determine whether the gas concentration sensor has failed.
  • FIG. 1 is a schematic diagram of a failure determination system according to a first embodiment of the present disclosure
  • FIG. 2 is a diagram for explaining changes in detected values due to a failure of the gas concentration sensor shown in FIG. 1;
  • FIG. 2 is a sequence diagram showing an example of operations in the failure determination system shown in FIG. 1;
  • FIG. FIG. 4 is a flow chart detailing an exemplary execution of the sensing operation shown in FIG. 3;
  • FIG. FIG. 4 is a flowchart showing in detail an example of determination of a failure shown in FIG. 3;
  • FIG. FIG. 5 is a schematic diagram of a failure determination system according to a second embodiment of the present disclosure; It is a hardware block diagram of a control device.
  • FIG. 1 is a schematic diagram of a failure determination system 100 according to this embodiment.
  • a failure determination system 100 includes a gas concentration sensor 1, a ventilation facility 2, and a control device 3.
  • the control device 3 communicates with each of the gas concentration sensor 1 and the ventilation equipment 2 via a communication network.
  • the gas concentration sensor 1 includes a gas sensor 11 .
  • a gas concentration sensor 1 is installed in a space SP in which ventilation equipment 2 is provided.
  • the space SP can be any space defined by a structure, for example an underground tunnel.
  • the gas concentration sensor 1 outputs a detection value corresponding to the gas concentration in the space SP provided with ventilation equipment, and issues an alarm based on the detection value. Specifically, the gas concentration sensor 1 does not issue an alarm when the detected value is within the predetermined range, and issues an alarm when the detected value is outside the predetermined range.
  • the gas whose concentration is detected by the gas concentration sensor 1 can be oxygen.
  • the predetermined range is greater than or equal to the first predetermined value. Therefore, the gas concentration sensor 1 does not issue an alarm when the detected value is greater than or equal to the first predetermined value, and issues an alarm when the detected value is less than the first predetermined value.
  • the resident in the space SP where the gas concentration sensor 1 is arranged can recognize that the concentration of oxygen in the space SP is lower than the normal concentration of oxygen, and when leaving the space SP, the oxygen can be detected. It is possible to take countermeasures such as using a device for inhalation.
  • the gas whose concentration is detected by the gas concentration sensor 1 can be a combustible gas.
  • the predetermined range is less than the second predetermined value. Therefore, the gas concentration sensor 1 issues an alarm when the detected value is equal to or greater than the second predetermined value, and does not issue an alarm when the detected value is less than the second predetermined value.
  • the resident in the space SP where the gas concentration sensor 1 is arranged can recognize that the concentration of combustible gas in the space SP is higher than the normal concentration of combustible gas, and exit the space SP. It is possible to take measures such as refraining from using firearms.
  • the alarm can be, for example, a sound.
  • the sound may be a warning sound or a voice indicating that the detected value is outside the predetermined range.
  • the alarm may be, for example, an image displayed on a display device such as liquid crystal or organic EL.
  • the image may indicate that the detected value is out of a predetermined range, or information for prompting the user to leave the space SP in which the gas concentration sensor 1 is arranged. may be indicated.
  • the gas concentration sensor 1 transmits to the control device 3 alarm notification information regarding the alarm notification by the gas concentration sensor 1 .
  • the alarm-issued information can be alarm-issued information indicating that an alarm is being issued.
  • the gas concentration sensor 1 transmits alarm-in-progress information each time it detects that the gas concentration is not within the predetermined range.
  • the alarm notification information can be alarm start information and alarm stop information. In such a configuration, the gas concentration sensor 1 transmits alarm start information when the alarm is started, and transmits alarm notification stop information when the alarm is stopped.
  • the relationship between the gas concentration and the detected value by the gas concentration sensor 1 will be described.
  • the example shown in FIG. 2 is the relationship between the gas concentration and the detected value by the gas concentration sensor 1 when the gas is oxygen.
  • the higher the gas concentration the higher the detected value.
  • the detected value for the oxygen concentration by the gas concentration sensor 1 in the failure state is the same as the value for the oxygen concentration detected by the gas concentration sensor 1 in the normal state as indicated by the solid line. lower than the value. Therefore, for example, when it is necessary to alert the occupants of the space SP when the concentration of oxygen drops below C10, the gas concentration sensor 1 detects the detected value is less than a first predetermined value V1.
  • the gas concentration sensor 1 when the gas concentration sensor 1 is in a fault condition, the detection value sensed by the gas concentration sensor 1 when the concentration of oxygen is less than C11 , which is higher than C10, is the first It becomes less than the predetermined value V1. Therefore, the gas concentration sensor 1 issues an alarm when the oxygen concentration is less than the predetermined value C11. As a result, the resident of the space SP may be unnecessarily alerted even when the oxygen concentration is safe with the predetermined value C10 or higher.
  • the detected value for the combustible gas concentration by the gas concentration sensor 1 in the fault state is the combustible gas concentration by the gas concentration sensor 1 in the normal state. higher than the detection value for Therefore, for example, when it is necessary to alert the occupants of the space SP when the concentration of combustible gas reaches C20 or more, the gas concentration sensor 1 detects It is configured to issue an alarm when the detected value is equal to or greater than the second predetermined value V2.
  • the detection value sensed by the gas concentration sensor 1 at C21 or higher, where the concentration of combustible gas is lower than C20 is the second predetermined value. Value V 2 or more. Therefore, the gas concentration sensor 1 issues an alarm when the concentration of combustible gas is C21 or higher. As a result, the resident of the space SP may be unnecessarily alerted even if the concentration of the combustible gas is less than the predetermined value C20 and is safe.
  • the ventilation equipment 2 is arranged in the space SP.
  • the ventilation equipment 2 may be attached to a member such as a wall or a ceiling that separates the space SP from the outside.
  • the ventilation equipment 2 includes an inflow side ventilation equipment 21 and an outflow side ventilation equipment 22 .
  • the inflow-side ventilation equipment 21 is a ventilation equipment for inflowing gas from the outside, and is, for example, a ventilation fan.
  • the outflow-side ventilation facility 22 is a ventilation facility for causing the gas in the space SP to flow out to the outside, and may be a ventilation fan or a ventilation port.
  • the control device 3 includes a communication section 31 , a ventilation control section 32 , a determination section 33 and an output section 34 .
  • the communication unit 31 is configured by a communication interface for communicating with other equipment such as an external device. Standards such as Ethernet (registered trademark), FDDI (Fiber Distributed Data Interface), and Wi-Fi (registered trademark) may be used for the communication interface.
  • the ventilation control unit 32 and the determination unit 33 constitute a control unit (controller).
  • the control unit may be configured by dedicated hardware such as ASIC (Application Specific Integrated Circuit) or FPGA (Field-Programmable Gate Array), may be configured by a processor, or may be configured by including both. good too.
  • the output unit 34 may be configured by a communication interface, an audio output interface, or a display interface.
  • the audio output interface can be a speaker or the like.
  • a display interface is an interface for displaying information on a display device configured by a liquid crystal panel, organic EL, or the like.
  • the communication unit 31 receives alarm notification information. As described above, in the configuration in which the alarm information is the alarm in progress information, the communication unit 31 receives the alarm in progress information transmitted while the gas concentration sensor 1 is issuing the alarm. . Further, in a configuration in which the alarm issuing information is alarm start information and alarm stop information, the communication unit 31 receives the alarm start information transmitted when the gas concentration sensor 1 starts issuing an alarm, It receives the alarm stop information transmitted when the concentration sensor 1 stops issuing the alarm.
  • the ventilation control unit 32 controls the ventilation equipment 2 to perform the ventilation operation based on the alarm information received by the communication unit 31 .
  • the ventilation control unit 32 controls the ventilation equipment 2 to perform the ventilation operation.
  • the ventilation control unit 32 controls the ventilation equipment 2 to perform the ventilation operation when the alarm issuing information is the alarm issuing information.
  • the ventilation control unit 32 when the alarm notification information received by the communication unit 31 is the alarm notification start information and the alarm stop information is not received after receiving the alarm notification start information, , to control the ventilation installation 2 to perform the ventilation operation.
  • the ventilation control unit 32 controls the ventilation equipment 2 not to perform the ventilation operation.
  • the ventilation control unit 32 controls the ventilation equipment 2 so as not to perform the ventilation operation when the information during alarm issuance is not received.
  • the alarm notification information received by the communication unit 31 is alarm notification stop information and the alarm start information is not received after receiving the alarm notification information
  • the ventilation control unit 32 The ventilation equipment 2 is controlled so as not to perform the ventilation operation.
  • the ventilation control unit 32 rotates the ventilation fan, which is the inflow-side ventilation facility 21, in controlling the ventilation facility 2 to perform the ventilation operation. Further, in a configuration in which the outflow side ventilation equipment 22 is a ventilation fan, the ventilation control unit 32 may rotate the outflow side ventilation equipment 22 in the control to cause the ventilation equipment 2 to perform the ventilation operation. In addition, in a configuration in which the outflow side ventilation equipment 22 is a ventilation port, the ventilation control unit 32 may open the outflow side ventilation equipment 22 in the control for causing the ventilation equipment 2 to perform the ventilation operation. Note that an arrow from the ventilation control unit 32 to the outflow side ventilation equipment 22 is omitted in FIG.
  • the determination unit 33 determines whether the gas concentration sensor 1 is out of order based on the alarm information after the ventilation completion time t1 has elapsed from the start of the control for causing the ventilation equipment 2 to perform the ventilation operation. do.
  • the ventilation completion time t1 is the time required for exchanging the gas whose concentration is detected by the gas concentration sensor 1 with the external gas. As shown in the following equation (1), the ventilation completion time t1 is the volume of the gas from the inflow-side ventilation equipment 21 to the gas sensor 11 of the gas concentration sensor 1 in the space SP, which has flowed in from the external environment per unit time. is a value divided by the air volume Q (m/s).
  • the volume from the inflow-side ventilation equipment 21 to the gas sensor 11 of the gas concentration sensor 1 is the space SP, which is orthogonal to the line segment from the inflow-side ventilation equipment 21 to the gas sensor 11 of the gas concentration sensor 1, as shown in FIG. is a value obtained by integrating the cross-sectional area A(l) of by the distance l from the inflow side ventilation equipment 21.
  • L in equation (1) is the distance from the inflow side ventilation equipment 21 to the gas sensor 11 of the gas concentration sensor 1 .
  • the ventilation completion time t1 is expressed by the following formula (2).
  • the determination unit 33 determines that the gas concentration sensor 1 is out of order when it determines that the alarm continues to be issued after the ventilation completion time t1 has passed. Further, when determining that the alarm has not been issued continuously after the ventilation completion time t1 has passed, the determination unit 33 determines that the gas concentration sensor 1 is not out of order.
  • the determination unit 33 determines whether or not the communication unit 31 continues to receive the alarm-in-progress information after the ventilation completion time t1 has elapsed since the ventilation equipment 2 started controlling to perform the ventilation operation. judge. The determination unit 33 determines that the gas concentration sensor 1 is out of order when the communication unit 31 continues to receive the alarm-issued information. The determination unit 33 determines that the gas concentration sensor 1 is not out of order when the communication unit 31 has not received the alarm-issued information.
  • the determination unit 33 determines whether the communication unit 31 has received the alarm stop information after the ventilation completion time t1 has elapsed after the ventilation equipment 2 starts controlling the ventilation operation. judge. If the communication unit 31 has not received the alarm stop information by the time the ventilation completion time t1 has elapsed since the start of control so that the ventilation equipment 2 performs the ventilation operation, the determination unit 33 determines that the gas concentration sensor 1 is determined to be faulty. If the communication unit 31 has received the alarm stop information after the ventilation completion time t1 has elapsed after the start of control for the ventilation equipment 2 to perform the ventilation operation, the determination unit 33 determines that the gas concentration sensor 1 is not out of order.
  • the output unit 34 outputs the result determined by the determination unit 33. Specifically, the output unit 34 can display the result determined by the determination unit 33 . The output unit 34 may output audio indicating the result determined by the determination unit 33 . The output unit 34 may transmit the result determined by the determination unit 33 to another device via the communication network.
  • FIG. 3 is a sequence diagram showing an example of operations in the failure determination system 100 according to the first embodiment.
  • the operation of the failure determination system 100 described with reference to FIG. 3 corresponds to the failure determination method of the failure determination system 100 according to the first embodiment.
  • the gas concentration sensor 1 performs a sensing operation.
  • step S11 the gas concentration sensor 1 outputs a detection value corresponding to the gas concentration in the space SP where the ventilation equipment 2 is installed.
  • the gas concentration sensor 1 issues an alarm based on the detected value.
  • step S12 the gas concentration sensor 1 determines whether the detected value is within a predetermined range.
  • step S12 When it is determined in step S12 that the detected value is within the predetermined range, the gas concentration sensor 1 returns to step S11 and repeats the operation. When it is determined in step S12 that the detected value is outside the predetermined range, gas concentration sensor 1 issues an alarm in step S13.
  • step S2 the gas concentration sensor 1 transmits alarm notification information to the control device 3.
  • step S1-k (k is an integer from 1 to N)
  • step S2-k Information is transmitted (step S2-k) is repeated.
  • the communication unit 31 of the control device 3 receives the alarm notification information.
  • step S4 the ventilation control unit 32 of the control device 3 controls the ventilation equipment 2 to perform the ventilation operation based on the alarm information.
  • step S5 the ventilation equipment 2 executes the ventilation operation.
  • step S6 the determination unit 33 of the control device 3 determines whether or not the gas concentration sensor 1 is out of order based on the alarm information after the ventilation completion time t1 has elapsed from the start of control.
  • step S61 the determination unit 33 determines whether or not the ventilation completion time t1 has elapsed since the control for causing the ventilation equipment 2 to perform the ventilation operation.
  • step S61 When it is determined in step S61 that the ventilation completion time t1 has not elapsed since the start of the control for causing the ventilation equipment 2 to perform the ventilation operation, the determination unit 33 executes the processing of step S61 again. Further, when it is determined in step S61 that the ventilation completion time t1 has elapsed since the start of the control for causing the ventilation equipment 2 to perform the ventilation operation, in step S62, the determination unit 33 determines that an alarm has been issued. Determine whether it continues.
  • step S63 the determination unit 33 determines that the gas concentration sensor 1 is not out of order.
  • step S64 the determination unit 33 determines that the gas concentration sensor 1 is out of order.
  • step S7 the output unit 34 outputs a determination result indicating whether the gas concentration sensor 1 is out of order.
  • the failure determination system 100 receives alarm information and controls the ventilation equipment 2 based on the alarm information. After the ventilation completion time t1 has elapsed from the start of the control for causing the ventilation equipment 2 to perform the ventilation operation, the failure determination system 100 determines whether the gas concentration sensor 1 has failed based on the alarm information. determine whether Therefore, the failure determination system 100 can remotely determine whether the gas concentration sensor 1 has failed.
  • FIG. 6 is a schematic diagram of a failure determination system 101 according to the second embodiment.
  • functional units that are the same as those in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • a failure determination system 101 includes a gas concentration sensor 1, a ventilation facility 2-1, and a controller 3-1.
  • the controller 3-1 communicates with the gas concentration sensor 1 and the ventilation equipment 2-1 via a communication network.
  • the ventilation equipment 2-1 is arranged in the space SP, like the ventilation equipment 2 of the first embodiment.
  • the ventilation equipment 2-1 includes an inflow side ventilation equipment 21, an outflow side ventilation equipment 22, and a pipe 23.
  • the pipe 23 is arranged in the space SP and allows the gas flowing from the outside of the space SP to pass through toward the gas concentration sensor 1 .
  • the pipe 23 extends from the inflow side ventilation equipment 21 to the gas concentration sensor 1, as shown in FIG.
  • the cross-sectional area As(l) of the pipe 23 is smaller than the cross-sectional area A(l) of the space SP at an arbitrary distance l in the direction from the inflow side ventilation equipment 21 toward the gas concentration sensor 1 .
  • the cross-sectional area As(l) of the pipe 23 is a constant value As independent of the distance l.
  • the control device 3-1 includes a communication section 31, a ventilation control section 32, a determination section 33-1, and an output section .
  • the determination unit 33-1 constitutes a control unit (controller), like the determination unit 33 of the first embodiment.
  • the determination unit 33-1 determines whether the gas concentration sensor 1 is out of order based on the alarm information after the ventilation completion time t2 has elapsed since the start of control so that the ventilation equipment 2 operates. judge.
  • the ventilation completion time t2 is the time required for exchanging the gas whose concentration is detected by the gas concentration sensor 1 with the external gas.
  • the ventilation completion time t2 is represented by the following formula (3).
  • L in equation (3) is the distance from the inflow-side ventilation equipment 21 to the gas sensor 11 of the gas concentration sensor 1 , and As is the cross-sectional area of the pipe 23 .
  • Qs is the air volume (m/s) of the gas that has flowed into the pipe 23 from the external environment per unit time.
  • formula (3) indicates the ventilation completion time t2 in an example where the cross-sectional area of the pipe 23 is constant. If the cross-sectional area As of the pipe 23 is not constant and is As(l) that depends on the distance l, the ventilation completion time t2 is calculated by adjusting the cross-sectional area As(l) of the pipe 23 at the distance l from the inflow side ventilation equipment 21. A value obtained by dividing the integrated value by the air volume Qs (m/s) can be obtained.
  • the shape and arrangement of the pipe 23 are not limited to the example shown in FIG. It can be configured to be located at a point.
  • the pipe 23 may be arranged such that one end of the pipe 23 is located near the ventilation equipment 2 and the other end is located at an intermediate point between the ventilation equipment 2 and the gas concentration sensor 1 .
  • the determination unit 33-1 determines that the gas concentration sensor 1 is out of order when it determines that the alarm continues to be issued after the ventilation completion time t2 has passed. Further, when determining that the alarm has not been issued continuously after the ventilation completion time t2 has elapsed, the determination unit 33-1 determines that the gas concentration sensor 1 is not out of order.
  • the details of the determination method by the determination unit 33-1 are the same as the details of the determination method by the determination unit 33, except for the ventilation completion time t2.
  • the operation of the failure determination system 101 according to the second embodiment is the same as the operation of the failure determination system 100 according to the first embodiment, except that the ventilation completion time t2 is used instead of the ventilation completion time t1. .
  • the failure determination system 101 includes a pipe disposed in the space SP through which the gas flowing from the outside of the space SP passes toward the gas concentration sensor 1. 23. Therefore, the gas that has flowed in from the outside of the space SP can efficiently reach the gas concentration sensor 1, so that the gas that has been detected by the gas concentration sensor 1 can efficiently reach the space SP. is replaced with gas that flows in from the outside of the Therefore, the failure determination system 101 can determine whether or not the gas concentration sensor 1 has failed in a shorter period of time than the failure determination system 100 of the first embodiment.
  • FIG. 7 is a block diagram showing a schematic configuration of the computer 102 functioning as the control devices 3 and 3-1.
  • the computer 102 may be a general-purpose computer, a dedicated computer, a workstation, a PC (Personal Computer), an electronic notepad, or the like.
  • Program instructions may be program code, code segments, etc. for performing the required tasks.
  • the computer 102 includes a processor 110, a ROM (Read Only Memory) 120, a RAM (Random Access Memory) 130, a storage 140, an input section 150, an output section 160, and a communication interface ( I/F) 170.
  • the processor 110 is specifically a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), DSP (Digital Signal Processor), SoC (System on a Chip), etc. may be configured by a plurality of processors of
  • the processor 110 controls each component and executes various arithmetic processes. That is, processor 110 reads a program from ROM 120 or storage 140 and executes the program using RAM 130 as a work area. The processor 110 executes control of each configuration and various arithmetic processes according to programs stored in the ROM 120 or the storage 140 . In this embodiment, the ROM 120 or storage 140 stores a program according to the present disclosure.
  • the program may be stored in a storage medium readable by the computer 102. Programs can be installed in the computer 102 using such a storage medium.
  • the storage medium storing the program may be a non-transitory storage medium.
  • the non-temporary storage medium is not particularly limited, but may be, for example, a CD-ROM, a DVD-ROM, a USB (Universal Serial Bus) memory, or the like.
  • this program may be downloaded from an external device via a network.
  • the ROM 120 stores various programs and various data.
  • RAM 130 temporarily stores programs or data as a work area.
  • the storage 140 is configured by a HDD (Hard Disk Drive) or SSD (Solid State Drive) and stores various programs including an operating system and various data.
  • the input unit 150 includes one or more input interfaces that receive user's input operations and acquire information based on the user's operations.
  • the input unit 150 is a pointing device, keyboard, mouse, etc., but is not limited to these.
  • the output unit 160 includes one or more output interfaces that output information.
  • the output unit 160 is a display that outputs information as video or a speaker that outputs information as audio, but is not limited to these.
  • the output unit 160 also functions as the input unit 150 in the case of a touch panel type display.
  • the communication interface 170 is an interface for communicating with external devices.
  • the controller comprising: receiving the alarm notification information; controlling the ventilation equipment to perform a ventilation operation based on the alarm information; A failure determination system that determines whether or not the gas concentration sensor has failed based on the alarm information after the ventilation completion time has elapsed from the start of the control.
  • the control device determines that the gas concentration sensor has failed when determining that the alarm continues after the ventilation completion time has elapsed, and the ventilation completion time has elapsed. 2.
  • the failure determination system according to claim 1, wherein when it is determined that the alarm has not been issued continuously after the above-mentioned operation, it is determined that the gas concentration sensor is not out of order. (Appendix 3) 4.
  • (Appendix 4) a step of outputting a detected value corresponding to the concentration of gas in a space provided with ventilation equipment; issuing an alarm based on the detected value; a step of controlling the ventilation equipment to perform a ventilation operation based on alarm issuance information regarding the issuance of the alarm; and determining whether or not the gas concentration sensor has failed based on the alarm information after the ventilation completion time has elapsed from the start of the control.
  • (Appendix 5) Alarm notification information regarding the activation of the alarm, transmitted from a gas concentration sensor that outputs a detection value corresponding to the concentration of gas in the space provided with the ventilation equipment and issues an alarm based on the detection value.
  • a communication unit that receives the and a control unit, The control unit controlling the ventilation equipment to start ventilation operation based on the alarm information;
  • a control device that determines whether or not the gas concentration sensor is out of order based on the alarm information after the ventilation completion time has elapsed from the control.
  • Appendix 6 A non-temporary storage medium storing a program executable by a computer, the non-temporary storage medium storing the program causing the computer to function as the control device according to item 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Emergency Alarm Devices (AREA)
  • Ventilation (AREA)

Abstract

本開示に係る故障判定システム(100)は、換気設備(2)と、ガスの濃度に応じた検出値を出力し、検出値に基づいてアラームを発報し、アラーム発報情報を送信するガス濃度感知器(1)と、制御装置(3)とを備え、制御装置(3)は、アラーム発報情報を受信する通信部(31)と、アラーム発報情報に基づいて換気設備(2)が換気動作を実行するよう制御する換気制御部(32)と、制御の開始から換気完了時間(t)が経過した後に、アラーム発報情報に基づいてガス濃度感知器(1)が故障しているか否かを判定する判定部(33)と、を含む。

Description

故障判定システム、故障判定方法、制御装置、及びプログラム
 本開示は、ガス濃度感知器の故障を判定するための故障判定システム、故障判定方法、制御装置、及びプログラムに関する。
 従来、酸素、可燃性ガス等のガスの濃度を感知するガスセンサが知られている(非特許文献1)。また、このようなガスセンサを備え、該ガスセンサによって感知されたガスの濃度が所定範囲内でない場合にアラームを発報するガス濃度感知器も知られている。
上田剛、「各種ガスセンサの原理と構造と特長 (特集 ガスセンサの進歩と新たな応用)」、化学工学(Chemical engineering of Japan)、81(8)、410-413、2017
 しかしながら、ガス濃度感知器は、劣化等に伴う故障によってガスの濃度が所定範囲内であってもアラームを発することがある。
 例えば、酸素の濃度を感知するガスセンサを備え、酸素の濃度が所定値未満である場合にアラームを発報するガス濃度感知器において、該ガスセンサの劣化により、感度が低下して、正常な検出値より低い検出値を出力することがある。この場合、ガス濃度感知器は、酸素の濃度が所定値以上である場合にもアラームを発報する。また、可燃性ガスの濃度を感知するガスセンサを備え、可燃性ガスの濃度が所定値以上である場合にアラームを発報するガス濃度感知器において、該ガスセンサへのガスの取込口が故障することにより、取込口が正常である場合に比べて多量のガスを検出して、正常な検出値より高い検出値を出力することがある。この場合、ガス濃度感知器は、可燃性ガスの濃度が所定値未満である場合にもアラームを発報する。
 したがって、ガス濃度感知器が正常であってガスの濃度が所定範囲内でないためにアラームが発報されたのか、ガス濃度感知器が故障していることによってアラームが発報されたのかを遠隔において判定することは困難であった。
 かかる事情に鑑みてなされた本開示の目的は、ガス濃度感知器が故障しているか否かを遠隔において判定することができる故障判定システム、故障判定方法、制御装置、及びプログラムを提供することにある。
 上記課題を解決するため、本開示に係る故障判定システムは、換気設備と、前記換気設備が設けられた空間のガスの濃度に応じた検出値を出力し、前記検出値に基づいてアラームを発報し、前記アラームの発報に関するアラーム発報情報を送信するガス濃度感知器と、制御装置とを備え、前記制御装置は、前記アラーム発報情報を受信する通信部と、前記アラーム発報情報に基づいて前記換気設備が換気動作を実行するよう制御する換気制御部と、前記制御の開始から換気完了時間が経過した後に、前記アラーム発報情報に基づいて前記ガス濃度感知器が故障しているか否かを判定する判定部と、を含む。
 また、上記課題を解決するため、本開示に係る故障判定方法は、換気設備が設けられた空間のガスの濃度に応じた検出値を出力するステップと、前記検出値に基づいてアラームを発報するステップと、前記アラーム発報情報に基づいて前記換気設備が換気動作を実行するよう制御するステップと、前記制御の開始から換気完了時間が経過した後に、前記アラーム発報情報に基づいて前記ガス濃度感知器が故障しているか否かを判定するステップと、を含む。
 また、上記課題を解決するため、本開示に係る制御装置は、換気設備が設けられた空間のガスの濃度に応じた検出値を出力し、前記検出値に基づいてアラームを発報するガス濃度感知器から送信された、前記アラームの発報に関するアラーム発報情報を受信する通信部と、前記アラーム発報情報に基づいて前記換気設備が換気動作を開始するよう制御する換気制御部と、前記制御から換気完了時間が経過した後に、前記アラーム発報情報に基づいて前記ガス濃度感知器が故障しているか否かを判定する判定部と、を備える。
 また、上記課題を解決するため、本開示に係るプログラムは、コンピュータを、上述の制御装置として機能させる。
 本開示に係る故障判定システム、故障判定方法、制御装置、及びプログラムによれば、遠隔において、ガス濃度感知器が故障しているか否かを判定することができる。
本開示の第1の実施形態に係る故障判定システムの概略図である。 図1に示すガス濃度感知器の故障に伴う検出値の変化を説明するための図である。 図1に示す故障判定システムにおける動作の一例を示すシーケンス図である。 図3に示す感知動作の実行の一例を詳細に説明するためのフローチャートである。 図3に示す故障の判定の一例を詳細に示すフローチャートである。 本開示の第2の実施形態に係る故障判定システムの概略図である。 制御装置のハードウェアブロック図である。
 <<第1の実施形態>>
 図1を参照して第1の実施形態の全体構成について説明する。図1は、本実施形態に係る故障判定システム100の概略図である。
 図1に示されるように、第1の実施形態に係る故障判定システム100は、ガス濃度感知器1と、換気設備2と、制御装置3とを備える。制御装置3は、ガス濃度感知器1及び換気設備2それぞれと、通信ネットワークを介して互いに通信する。
 <ガス濃度感知器の構成>
 ガス濃度感知器1は、ガスセンサ11を含んで構成される。ガス濃度感知器1は、換気設備2が設けられた空間SPに配設される。空間SPは構造物によって画定される任意の空間とすることができ、例えば、地下トンネルとすることができる。ガス濃度感知器1は、換気設備が設けられた空間SPのガスの濃度に応じた検出値を出力し、検出値に基づいてアラームを発報する。具体的には、ガス濃度感知器1は、検出値が所定範囲内である場合にアラームを発報せず、所定範囲外である場合にアラームを発報する。
 一例では、ガス濃度感知器1が濃度を検出するガスは、酸素とすることができる。このような構成において、上記の所定範囲は、第1所定値以上である。このため、ガス濃度感知器1は、検出値が第1所定値以上である場合にアラームを発報せず、検出値が第1所定値未満である場合にアラームを発報する。これにより、ガス濃度感知器1が配設された空間SPの滞在者は、空間SPにおける酸素の濃度が通常における酸素の濃度より低いことを認識することができ、空間SPから退出する、酸素を吸入するための装置を用いる等の対応を取ることが可能となる。
 他の例では、ガス濃度感知器1が濃度を検出するガスは、可燃性ガスとすることができる。このような構成において、上記の所定範囲は、第2所定値未満である。このため、ガス濃度感知器1は、検出値が第2所定値以上である場合に、アラームを発報し、検出値が第2所定値未満である場合に、アラームを発報しない。これにより、ガス濃度感知器1が配設された空間SPの滞在者は、空間SPにおける可燃性ガスの濃度が通常における可燃性ガスの濃度より高いことを認識することができ、空間SPから退出する、火器の使用を控える等の対応を取ることが可能となる。
 アラームは、例えば、音とすることができる。アラームが音である構成において、該音は、警報音であってもよいし、検出値が所定範囲外であることを示す音声であってもよい。アラームは、例えば、液晶、有機EL等の表示装置に表示させる画像であってもよい。アラームが画像である構成において、該画像は、検出値が所定範囲外であることを示してもよいし、ガス濃度感知器1が配設されている空間SPから退出することを促すための情報を示してもよい。
 また、ガス濃度感知器1は、該ガス濃度感知器1によるアラームの発報に関するアラーム発報情報を制御装置3送信する。
 一例では、アラーム発報情報は、アラームを発報していることを示すアラーム発報中情報とすることができる。このような構成において、ガス濃度感知器1は、ガスの濃度が所定範囲内でないことを検出するたびにアラーム発報中情報を送信する。他の例では、アラーム発報情報は、アラーム開始情報及びアラーム停止情報とすることができる。このような構成において、ガス濃度感知器1は、アラームの発報を開始したときにアラーム開始情報を送信し、アラームの発報を停止したときに、アラーム発報停止情報を送信する。
 ここで、図2を参照して、ガスの濃度とガス濃度感知器1による検出値との関係について説明する。図2に示す例は、ガスが酸素である場合における、ガスの濃度とガス濃度感知器1による検出値との関係である。図2に示すように、検出値は、ガス濃度が高くなるほど高くなる。また、図2において破線で示すように、故障状態におけるガス濃度感知器1による、酸素の濃度に対する検出値は、実線で示すような、正常状態におけるガス濃度感知器1による、酸素の濃度に対する検出値より低い。したがって、例えば、酸素の濃度がC10未満となったときに空間SPの滞在者に注意を喚起する必要がある場合、ガス濃度感知器1は、該ガス濃度感知器1によって検出された検出値が第1の所定値V未満の場合にアラームを発報するように構成される。
 このような構成において、ガス濃度感知器1が故障状態にある場合、酸素の濃度がC10より高いC11未満であるときに、ガス濃度感知器1によって感知される検出値は、第1の所定値V未満となる。このため、ガス濃度感知器1は、酸素の濃度が所定値C11未満のときにアラームを発報する。これにより、空間SPの滞在者は、酸素の濃度が所定値C10以上の安全な場合であっても、不要に注意が喚起されることがある。
 同様にして、ガスが可燃性ガスである場合においては、故障状態におけるガス濃度感知器1による、可燃性ガスの濃度に対する検出値は、正常状態におけるガス濃度感知器1による、可燃性ガスの濃度に対する検出値より高い。したがって、例えば、可燃性ガスの濃度がC20以上となったときに空間SPの滞在者に注意を喚起する必要がある場合、ガス濃度感知器1は、該ガス濃度感知器1によって検出された検出値が第2の所定値V以上の場合にアラームを発報するように構成される。
 このような構成において、ガス濃度感知器1が故障状態にある場合、可燃性ガスの濃度がC20より低いC21以上において、ガス濃度感知器1によって感知される検出値は、第2の所定値V以上となる。このため、ガス濃度感知器1は、可燃性ガスの濃度がC21以上のときにアラームを発報する。これにより、空間SPの滞在者は、可燃性ガスの濃度が所定値C20未満の安全な場合であっても、不要に注意が喚起されることがある。
 以降において、ガス濃度感知器1が故障しているか否かを判定するために用いられる換気設備2及び制御装置3について詳細に説明する。
 <換気設備の構成>
 換気設備2は、空間SPに配設されている。例えば、換気設備2は、空間SPを外部と区画する壁、天井等の部材に取り付けられていてもよい。換気設備2は、流入側換気設備21と、流出側換気設備22とを備える。
 流入側換気設備21は、外部からガスを流入させるための換気設備であり、例えば、換気ファンである。
 流出側換気設備22は、空間SP内のガスを外部に流出させるための換気設備であり、換気ファンであってもよいし、換気口であってもよい。
 <制御装置の構成>
 制御装置3は、通信部31と、換気制御部32と、判定部33と、出力部34とを備える。通信部31は、外部の装置などの他の機器と通信するための通信インターフェースによって構成される。通信インターフェースには、例えば、イーサネット(登録商標)、FDDI(Fiber Distributed Data Interface)、Wi-Fi(登録商標)等の規格が用いられてもよい。換気制御部32及び判定部33は、制御部(コントローラ)を構成する。制御部は、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等の専用のハードウェアによって構成されてもよいし、プロセッサによって構成されてもよいし、双方を含んで構成されてもよい。出力部34は、通信インターフェースによって構成されてもよいし、音声出力インターフェースによって構成されてもよいし、表示インターフェースによって構成されてもよい。音声出力インターフェースは、スピーカ等とすることができる。表示インターフェースは、液晶パネル、有機EL等によって構成される表示装置に情報を表示するためのインターフェースである。
 通信部31は、アラーム発報情報を受信する。上述したように、アラーム発報情報がアラーム発報中情報である構成において、通信部31は、ガス濃度感知器1がアラームを発報しているときに送信したアラーム発報中情報を受信する。また、アラーム発報情報が、アラーム開始情報及びアラーム停止情報である構成において、通信部31は、ガス濃度感知器1がアラームの発報を開始したときに送信したアラーム開始情報を受信し、ガス濃度感知器1がアラームの発報を停止したときに送信したアラーム停止情報を受信する。
 換気制御部32は、通信部31によって受信されたアラーム発報情報に基づいて、換気設備2が換気動作を実行するよう制御する。
 具体的には、換気制御部32は、アラーム発報情報が、ガス濃度感知器1によってアラームが発報されていることを示している場合、換気設備2が換気動作を実行するよう制御する。例えば、換気制御部32は、アラーム発報情報がアラーム発報中情報である場合に、換気設備2が換気動作を実行するように制御する。また、例えば、換気制御部32は、通信部31によって受信されたアラーム発報情報がアラーム発報開始情報であって、該アラーム発報開始情報の受信後にアラーム停止情報が受信されていない場合に、換気設備2が換気動作を実行するように制御する。
 また、換気制御部32は、アラーム発報情報が、ガス濃度感知器1によってアラームが発報されていないことを示している場合、換気設備2が換気動作を実行しないように制御する。例えば、換気制御部32は、アラーム発報中情報が受信されていない場合に、換気設備2が換気動作を実行しないように制御する。また、例えば、換気制御部32は、通信部31によって受信されたアラーム発報情報がアラーム発報停止情報であって、該アラーム発報情報の受信後にアラーム開始情報が受信されていない場合に、換気設備2が換気動作を実行しないように制御する。
 さらに具体的には、換気制御部32は、換気設備2に換気動作を実行させる制御において、流入側換気設備21である換気ファンを旋回させる。また、流出側換気設備22が換気ファンである構成では、換気制御部32は、換気設備2に換気動作を実行させる制御において、流出側換気設備22を旋回させてもよい。また、流出側換気設備22が換気口である構成では、換気制御部32は、換気設備2に換気動作を実行させる制御において、流出側換気設備22を開口させてもよい。なお、図1においては、換気制御部32から流出側換気設備22への矢印は省略されている。
 判定部33は、換気設備2に換気動作を実行させるための制御の開始から換気完了時間t1が経過した後に、アラーム発報情報に基づいてガス濃度感知器1が故障しているか否かを判定する。換気完了時間t1は、ガス濃度感知器1が濃度を検出するガスを外部のガスと交換するのに要する時間である。換気完了時間t1は、以下の式(1)に示すように、空間SPにおける、流入側換気設備21からガス濃度感知器1のガスセンサ11までの体積を、外部環境から単位時間あたりに流入したガスの風量Q(m/s)で除した値である。流入側換気設備21からガス濃度感知器1のガスセンサ11までの体積は、図1に示すような、流入側換気設備21からガス濃度感知器1のガスセンサ11までの線分に直交する、空間SPの断面積A(l)を流入側換気設備21からの距離lで積分した値である。なお、式(1)のLは、流入側換気設備21からガス濃度感知器1のガスセンサ11までの距離である。
Figure JPOXMLDOC01-appb-M000001
 空間SPの断面積A(l)が、距離lによらない一定の値Aである場合、換気完了時間t1は、以下の式(2)によって表される。
Figure JPOXMLDOC01-appb-M000002
 そして、判定部33は、換気完了時間t1が経過した後に、アラームの発報が継続していると判定した場合に、ガス濃度感知器1が故障していると判定する。また、判定部33は、換気完了時間t1が経過した後に、アラームの発報が継続していないと判定した場合に、ガス濃度感知器1が故障していないと判定する。
 一例では、判定部33は、換気設備2が換気動作を実行するよう制御を開始してから換気完了時間t1の経過後に、通信部31が引き続きアラーム発報中情報を受信しているか否かを判定する。判定部33は、通信部31が引き続きアラーム発報中情報を受信している場合、ガス濃度感知器1が故障していると判定する。判定部33は、通信部31がアラーム発報中情報を受信していない場合、ガス濃度感知器1が故障していないと判定する。
 他の例では、判定部33は、換気設備2が換気動作を実行するよう制御を開始してから換気完了時間t1の経過後までに、通信部31がアラーム停止情報を受信したか否かを判定する。判定部33は、換気設備2が換気動作を実行するよう制御を開始してから換気完了時間t1の経過後までに、通信部31がアラーム停止情報を受信していなかった場合、ガス濃度感知器1が故障していると判定する。判定部33は、換気設備2が換気動作を実行するよう制御を開始してから換気完了時間t1の経過後までに、通信部31がアラーム停止情報を受信していた場合、ガス濃度感知器1が故障していないと判定する。
 出力部34は、判定部33によって判定された結果を出力する。具体的には、出力部34は、判定部33によって判定された結果を表示することができる。出力部34は、判定部33によって判定された結果を示す音声を出力してもよい。出力部34は、判定部33によって判定された結果を、通信ネットワークを介して他の装置に送信してもよい。
 <故障判定システムの動作>
 ここで、第1の実施形態に係る故障判定システム100の動作について、図3を参照して説明する。図3は、第1の実施形態に係る故障判定システム100における動作の一例を示すシーケンス図である。図3を参照して説明する故障判定システム100における動作は第1の実施形態に係る故障判定システム100の故障判定方法に相当する。
 ステップS1において、ガス濃度感知器1が、感知動作を実行する。
 ここで、図4を参照して、ガス濃度感知器1が実行する感知動作について詳細に説明する。
 ステップS11において、ガス濃度感知器1が、換気設備2が設けられた空間SPのガスの濃度に応じた検出値を出力する。
 ステップS12及びS13において、ガス濃度感知器1が、検出値に基づいてアラームを発報する。
 具体的には、まず、ステップS12において、ガス濃度感知器1が、検出値が所定範囲内であるか否かを判定する。
 ステップS12で検出値が所定範囲内であると判定されると、ガス濃度感知器1が、ステップS11に戻って動作を繰り返す。ステップS12で検出値が所定範囲外であると判定されると、ステップS13において、ガス濃度感知器1が、アラームを発報する。
 図3に戻って、ステップS2において、ガス濃度感知器1が、アラーム発報情報を制御装置3に送信する。
 以降において、ガス濃度感知器1は、所定のタイミングにて、感知動作を実行し(ステップS1-k(kは1からNの整数))、感知動作においてアラームが発報されると、アラーム発報情報を送信する(ステップS2-k)を繰り返す。
 ステップS3において、制御装置3の通信部31が、アラーム発報情報を受信する。
 ステップS4において、制御装置3の換気制御部32が、アラーム発報情報に基づいて換気設備2が換気動作を実行するよう制御する。
 ステップS5において、換気設備2が、換気動作を実行する。
 ステップS6において、制御装置3の判定部33が、制御の開始から換気完了時間t1が経過した後に、アラーム発報情報に基づいてガス濃度感知器1が故障しているか否かを判定する。
 ここで、図5のフローチャートを参照して、制御装置3の判定部33が実行する故障の判定について詳細に説明する、
 ステップS61において、判定部33が、換気設備2に換気動作を実行させるための制御から換気完了時間t1が経過したか否かを判定する。
 ステップS61で、換気設備2に換気動作を実行させるための制御が開始されてから換気完了時間t1が経過していないと判定されると、判定部33が、再びステップS61の処理を実行する。また、ステップS61で、換気設備2に換気動作を実行させるための制御が開始されてから換気完了時間t1が経過したと判定されると、ステップ62において、判定部33が、アラームの発報が継続しているか否かを判定する。
 ステップS62で、アラームの発報が継続していないと判定されると、ステップS63において、判定部33が、ガス濃度感知器1が故障していないと判定する。
 ステップS62で、アラームの発報が継続していると判定されると、ステップS64において、判定部33が、ガス濃度感知器1が故障していると判定する。
 図3に戻って、ステップS7において、出力部34が、ガス濃度感知器1が故障しているか否かを示す判定結果を出力する。
 上述したように、第1の実施形態によれば、故障判定システム100は、アラーム発報情報を受信し、アラーム発報情報に基づいて換気設備2を制御する。そして、故障判定システム100は、換気設備2に換気動作を実行させるための制御の開始から換気完了時間t1が経過した後に、アラーム発報情報に基づいてガス濃度感知器1が故障しているか否かを判定する。そのため、故障判定システム100は、遠隔において、ガス濃度感知器1が故障しているか否かを判定することができる。
 <<第2の実施形態>>
 図6を参照して第2の実施形態の全体構成について説明する。図6は、第2の実施形態に係る故障判定システム101の概略図である。第2の実施形態における、第1の実施形態と同一の機能部については同じ符号を付し、説明を省略する。
 図6に示されるように、第2の実施形態に係る故障判定システム101は、ガス濃度感知器1と、換気設備2-1と、制御装置3-1とを備える。制御装置3-1は、ガス濃度感知器1及び換気設備2-1それぞれと、通信ネットワークを介して互いに通信する。
 <換気設備の構成>
 換気設備2-1は、第1の実施形態の換気設備2と同様に、空間SPに配設されている。換気設備2-1は、流入側換気設備21と、流出側換気設備22と、パイプ23とを備える。
 パイプ23は、空間SP内に配設された、空間SPの外部から流入されたガスをガス濃度感知器1に向けて通過させる。一例では、図6に示すように、パイプ23は、流入側換気設備21から、ガス濃度感知器1にまで延在している。このような例において、パイプ23の断面積As(l)は、流入側換気設備21からガス濃度感知器1に向かう方向における任意の距離lにおいて、空間SPの断面積A(l)より小さい。図6に示す例では、パイプ23の断面積As(l)は、距離lによらない一定の値Asである。
 <制御装置の構成>
 制御装置3-1は、通信部31と、換気制御部32と、判定部33-1と、出力部34とを備える。判定部33-1は、第1の実施形態の判定部33と同様に、制御部(コントローラ)を構成する。
 判定部33-1は、換気設備2が動作を実行するよう制御を開始してから換気完了時間t2が経過した後に、アラーム発報情報に基づいてガス濃度感知器1が故障しているか否かを判定する。換気完了時間t2は、ガス濃度感知器1が濃度を検出するガスを外部のガスと交換するのに要する時間である。換気完了時間t2は、以下の式(3)によって表される。式(3)のLは、流入側換気設備21からガス濃度感知器1が有するガスセンサ11までの距離であり、Asは、パイプ23の断面積である。Qsは、外部環境から単位時間あたりにパイプ23に流入したガスの風量(m/s)である。
Figure JPOXMLDOC01-appb-M000003
 なお、式(3)は、パイプ23の断面積が一定である例における換気完了時間t2を示している。パイプ23の断面積Asが一定でなく、距離lに依存するAs(l)である場合、換気完了時間t2は、パイプ23の断面積As(l)を流入側換気設備21からの距離lで積分した値を風量Qs(m/s)で除した値とすることができる。
 また、パイプ23の形状及び配置は、図6に示す例に限られず、該パイプ23の一端が換気設備2に位置し、他端が換気設備2とガス濃度感知器1との間の任意の地点に位置するような態様とすることができる。例えば、パイプ23は、該パイプ23の一端が換気設備2の近傍に位置し、他端が換気設備2とガス濃度感知器1との間の中間地点に位置するように配置されてもよい。
 そして、判定部33-1は、換気完了時間t2が経過した後に、アラームの発報が継続していると判定した場合に、ガス濃度感知器1が故障していると判定する。また、判定部33-1は、換気完了時間t2が経過した後に、アラームの発報が継続していないと判定した場合に、ガス濃度感知器1が故障していないと判定する。判定部33-1による判定方法の詳細は、換気完了時間t2を除いて、判定部33による判定方法の詳細と同様である。
 <故障判定システムの動作>
 第2の実施形態に係る故障判定システム101の動作は、換気完了時間t1に代えて換気完了時間t2を用いることを除いて、第1の実施形態に係る故障判定システム100の動作と同じである。
 上述したように、第2の実施形態によれば、故障判定システム101は、空間SP内に配設された、空間SPの外部から流入されたガスをガス濃度感知器1に向けて通過させるパイプ23を備える。このため、空間SPの外部から流入されたガスは、効率的にガス濃度感知器1まで到達することができ、これにより、ガス濃度感知器1が検出していたガスは、効率的に空間SPの外部から流入されたガスに交換される。したがって、故障判定システム101は、ガス濃度感知器1が故障しているか否かを、第1の実施形態の故障判定ステム100に比べて短時間で判定することができる。
 <プログラム>
 上述した制御装置3及び3-1はコンピュータ102によって実現することができる。また、制御装置3及び3-1それぞれとして機能させるためのプログラムが提供されてもよい。また、該プログラムは、記憶媒体に記憶されてもよいし、ネットワークを通して提供されてもよい。図7は、制御装置3及び3-1としてそれぞれ機能するコンピュータ102の概略構成を示すブロック図である。ここで、コンピュータ102は、汎用コンピュータ、専用コンピュータ、ワークステーション、PC(Personal Computer)、電子ノートパッドなどであってもよい。プログラム命令は、必要なタスクを実行するためのプログラムコード、コードセグメントなどであってもよい。
 図7に示すように、コンピュータ102は、プロセッサ110と、ROM(Read Only Memory)120と、RAM(Random Access Memory)130と、ストレージ140と、入力部150と、出力部160と、通信インターフェース(I/F)170とを備える。各構成は、バス180を介して相互に通信可能に接続されている。プロセッサ110は、具体的にはCPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)、SoC(System on a Chip)などであり、同種又は異種の複数のプロセッサにより構成されてもよい。
 プロセッサ110は、各構成の制御、及び各種の演算処理を実行する。すなわち、プロセッサ110は、ROM120又はストレージ140からプログラムを読み出し、RAM130を作業領域としてプログラムを実行する。プロセッサ110は、ROM120又はストレージ140に記憶されているプログラムに従って、上記各構成の制御及び各種の演算処理を実行する。本実施形態では、ROM120又はストレージ140に、本開示に係るプログラムが格納されている。
 プログラムは、コンピュータ102が読み取り可能な記憶媒体に記憶されていてもよい。このような記憶媒体を用いれば、プログラムをコンピュータ102にインストールすることが可能である。ここで、プログラムが記憶された記憶媒体は、非一時的(non-transitory)記憶媒体であってもよい。非一時的記憶媒体は、特に限定されるものではないが、例えば、CD-ROM、DVD-ROM、USB(Universal Serial Bus)メモリなどであってもよい。また、このプログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。
 ROM120は、各種プログラム及び各種データを格納する。RAM130は、作業領域として一時的にプログラム又はデータを記憶する。ストレージ140は、HDD(Hard Disk Drive)又はSSD(Solid State Drive)により構成され、オペレーティングシステムを含む各種プログラム及び各種データを格納する。
 入力部150は、ユーザの入力操作を受け付けて、ユーザの操作に基づく情報を取得する1つ以上の入力インターフェースを含む。例えば、入力部150は、ポインティングデバイス、キーボード、マウスなどであるが、これらに限定されない。
 出力部160は、情報を出力する1つ以上の出力インターフェースを含む。例えば、出力部160は、情報を映像で出力するディスプレイ、又は情報を音声で出力するスピーカであるが、これらに限定されない。なお、出力部160は、タッチパネル方式のディスプレイである場合には、入力部150としても機能する。
 通信インターフェース170は、外部の装置と通信するためのインターフェースである。
 以上の実施形態に関し、更に以下の付記を開示する。
 (付記項1)
 換気設備と、
 前記換気設備が設けられた空間のガスの濃度に応じた検出値を出力し、前記検出値に基づいてアラームを発報し、前記アラームの発報に関するアラーム発報情報を送信するガス濃度感知器と、
 制御装置とを備え、前記制御装置は、
  前記アラーム発報情報を受信し、
  前記アラーム発報情報に基づいて前記換気設備が換気動作を実行するよう制御し、
  前記制御の開始から換気完了時間が経過した後に、前記アラーム発報情報に基づいて前記ガス濃度感知器が故障しているか否かを判定する故障判定システム。
 (付記項2)
 前記制御装置は、前記換気完了時間が経過した後に、前記アラームの発報が継続していると判定した場合に、前記ガス濃度感知器が故障していると判定し、前記換気完了時間が経過した後に、前記アラームの発報が継続していないと判定した場合に、前記ガス濃度感知器が故障していないと判定する、付記項1に記載の故障判定システム。
 (付記項3)
 前記空間内に配設された、前記空間の外部から流入された前記ガスを前記ガス濃度感知器に向けて通過させるパイプをさらに備える、付記項1から3のいずれか一項に記載の故障判定システム。
 (付記項4)
 換気設備が設けられた空間のガスの濃度に応じた検出値を出力するステップと、
 前記検出値に基づいてアラームを発報するステップと、
 前記アラームの発報に関するアラーム発報情報に基づいて前記換気設備が換気動作を実行するよう制御するステップと、
 前記制御の開始から換気完了時間が経過した後に、前記アラーム発報情報に基づいてガス濃度感知器が故障しているか否かを判定するステップと、を含む故障判定方法。
 (付記項5)
 換気設備が設けられた空間のガスの濃度に応じた検出値を出力し、前記検出値に基づいてアラームを発報するガス濃度感知器から送信された、前記アラームの発報に関するアラーム発報情報を受信する通信部と、
 制御部とを備え、
 前記制御部は、
  前記アラーム発報情報に基づいて前記換気設備が換気動作を開始するよう制御し、
  前記制御から換気完了時間が経過した後に、前記アラーム発報情報に基づいて前記ガス濃度感知器が故障しているか否かを判定する制御装置。
 (付記項6)
 コンピュータによって実行可能なプログラムを記憶した非一時的記憶媒体であって、前記コンピュータを付記項5に記載の制御装置として機能させる、プログラムを記憶した非一時的記憶媒体。
 本明細書に記載された全ての文献、特許出願および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書中に参照により取り込まれる。
 上述の実施形態は代表的な例として説明したが、本開示の趣旨及び範囲内で、多くの変更及び置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、請求の範囲から逸脱することなく、種々の変形又は変更が可能である。例えば、実施形態の構成図に記載の複数の構成ブロックを1つに組み合わせたり、あるいは1つの構成ブロックを分割したりすることが可能である。
1       ガス濃度感知器
11      ガスセンサ
2、2-1   換気設備
3、3-1   制御装置
21      流入側換気設備
22      流出側換気設備
23      パイプ
31      通信部
32      換気制御部
33、33-1 判定部
34      出力部
100、101 混雑情報処理システム
102     コンピュータ
110     プロセッサ
120     ROM
130     RAM      
140     ストレージ
150     入力部
160     出力部
170     通信インターフェース
180     バス
 

Claims (6)

  1.  換気設備と、
     前記換気設備が設けられた空間のガスの濃度に応じた検出値を出力し、前記検出値に基づいてアラームを発報し、前記アラームの発報に関するアラーム発報情報を送信するガス濃度感知器と、
     制御装置とを備え、前記制御装置は、
      前記アラーム発報情報を受信する通信部と、
      前記アラーム発報情報に基づいて前記換気設備が換気動作を実行するよう制御する換気制御部と、
      前記制御の開始から換気完了時間が経過した後に、前記アラーム発報情報に基づいて前記ガス濃度感知器が故障しているか否かを判定する判定部と、を含む故障判定システム。
  2.  前記判定部は、前記換気完了時間が経過した後に、前記アラームの発報が継続していると判定した場合に、前記ガス濃度感知器が故障していると判定し、前記換気完了時間が経過した後に、前記アラームの発報が継続していないと判定した場合に、前記ガス濃度感知器が故障していないと判定する、請求項1に記載の故障判定システム。
  3.  前記空間内に配設された、前記空間の外部から流入された前記ガスを前記ガス濃度感知器に向けて通過させるパイプをさらに備える、請求項1又は2に記載の故障判定システム。
  4.  換気設備が設けられた空間のガスの濃度に応じた検出値を出力するステップと、
     前記検出値に基づいてアラームを発報するステップと、
     前記アラームの発報に関するアラーム発報情報に基づいて前記換気設備が換気動作を実行するよう制御するステップと、
     前記制御の開始から換気完了時間が経過した後に、前記アラーム発報情報に基づいてガス濃度感知器が故障しているか否かを判定するステップと、を含む故障判定方法。
  5.  換気設備が設けられた空間のガスの濃度に応じた検出値を出力し、前記検出値に基づいてアラームを発報するガス濃度感知器から送信された、前記アラームの発報に関するアラーム発報情報を受信する通信部と、
     前記アラーム発報情報に基づいて前記換気設備が換気動作を開始するよう制御する換気制御部と、
     前記制御から換気完了時間が経過した後に、前記アラーム発報情報に基づいて前記ガス濃度感知器が故障しているか否かを判定する判定部と、を備える制御装置。
  6.  コンピュータを、請求項5に記載の制御装置として機能させるためのプログラム。
     
PCT/JP2021/018144 2021-05-13 2021-05-13 故障判定システム、故障判定方法、制御装置、及びプログラム WO2022239169A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/558,108 US20240219054A1 (en) 2021-05-13 2021-05-13 Failure determination system, failure determination method, control device, and program
PCT/JP2021/018144 WO2022239169A1 (ja) 2021-05-13 2021-05-13 故障判定システム、故障判定方法、制御装置、及びプログラム
JP2023520668A JPWO2022239169A1 (ja) 2021-05-13 2021-05-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018144 WO2022239169A1 (ja) 2021-05-13 2021-05-13 故障判定システム、故障判定方法、制御装置、及びプログラム

Publications (1)

Publication Number Publication Date
WO2022239169A1 true WO2022239169A1 (ja) 2022-11-17

Family

ID=84028062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018144 WO2022239169A1 (ja) 2021-05-13 2021-05-13 故障判定システム、故障判定方法、制御装置、及びプログラム

Country Status (3)

Country Link
US (1) US20240219054A1 (ja)
JP (1) JPWO2022239169A1 (ja)
WO (1) WO2022239169A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286300A (ja) * 1985-10-14 1987-04-20 株式会社東芝 トンネル換気制御装置
JPH11242788A (ja) * 1998-02-25 1999-09-07 Aiphone Co Ltd セキュリティシステム
JP2004339871A (ja) * 2003-05-19 2004-12-02 Toshiba Corp トンネル換気制御装置
KR100624713B1 (ko) * 2005-09-14 2006-09-15 삼성전자주식회사 환기장치 및 그 제어방법
CN202003488U (zh) * 2011-02-16 2011-10-05 黄晓华 燃气泄漏警报和通风装置
JP2013224550A (ja) * 2012-04-23 2013-10-31 Sohatsu System Kenkyusho:Kk 対面通行トンネルのジェットファンによるトンネル換気制御システム
CN208888992U (zh) * 2018-09-25 2019-05-21 深圳市前海安第斯科技有限公司 一种基于无线云端的气体检测报警装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286300A (ja) * 1985-10-14 1987-04-20 株式会社東芝 トンネル換気制御装置
JPH11242788A (ja) * 1998-02-25 1999-09-07 Aiphone Co Ltd セキュリティシステム
JP2004339871A (ja) * 2003-05-19 2004-12-02 Toshiba Corp トンネル換気制御装置
KR100624713B1 (ko) * 2005-09-14 2006-09-15 삼성전자주식회사 환기장치 및 그 제어방법
CN202003488U (zh) * 2011-02-16 2011-10-05 黄晓华 燃气泄漏警报和通风装置
JP2013224550A (ja) * 2012-04-23 2013-10-31 Sohatsu System Kenkyusho:Kk 対面通行トンネルのジェットファンによるトンネル換気制御システム
CN208888992U (zh) * 2018-09-25 2019-05-21 深圳市前海安第斯科技有限公司 一种基于无线云端的气体检测报警装置

Also Published As

Publication number Publication date
US20240219054A1 (en) 2024-07-04
JPWO2022239169A1 (ja) 2022-11-17

Similar Documents

Publication Publication Date Title
JP5176813B2 (ja) 冷却ファンの故障診断システム、故障診断装置、故障診断方法、故障診断プログラムおよび冷却装置
RU2015141956A (ru) Системы и способы обнаружения отказов при определении пространственного положения на основе воздушных сигналов и настроек управления воздушным судном
DE60307920D1 (de) System für die Überwachung eines bewohnten Raums
CN110844726B (zh) 使用振动确定电梯轿厢位点
JP2007140587A (ja) 侵入監視方法、プログラム及びシステム
KR101832337B1 (ko) 건축물의 지진감지 알림 시스템
JP2010009369A (ja) フィールド機器
WO2022239169A1 (ja) 故障判定システム、故障判定方法、制御装置、及びプログラム
JP2014234255A (ja) エレベーターの監視装置
US11052918B2 (en) System and method for controlling operation of an autonomous vehicle
KR20160095480A (ko) 층간소음경보 시스템
JP2009150729A (ja) 感震システム
KR20180061091A (ko) 센서를 이용한 건축물의 지진감지 알림 시스템
CN1998033B (zh) 利用电化学电池的气体监控器和操作方法
KR20190071307A (ko) 레이더를 이용한 수면 무호흡 모니터링 시스템 및 방법
JP2014199585A (ja) 天井異常検知システム、天井異常検知装置、天井異常検知方法、及び天井異常検知プログラム
JP5939886B2 (ja) 地震動の収束判定システム
US20190384289A1 (en) System and method for controlling operation of an autonomous vehicle
JP5125137B2 (ja) 換気装置
JP5213225B2 (ja) 流量計測装置、流量計測システム、及び流量計測方法
KR20180061092A (ko) 건축공정에서 시공되는 지진감지 알림 시스템
JP7081666B2 (ja) 火災検知システムおよび火災検知方法
JP2011039676A (ja) 監視装置及び警報通知方法
JP2011070553A (ja) ガス警報装置
JP2008105761A (ja) エレベータの閉じ込め検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941903

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023520668

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18558108

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941903

Country of ref document: EP

Kind code of ref document: A1