WO2022237847A1 - 激光雷达集成装置及具有其的车辆 - Google Patents

激光雷达集成装置及具有其的车辆 Download PDF

Info

Publication number
WO2022237847A1
WO2022237847A1 PCT/CN2022/092297 CN2022092297W WO2022237847A1 WO 2022237847 A1 WO2022237847 A1 WO 2022237847A1 CN 2022092297 W CN2022092297 W CN 2022092297W WO 2022237847 A1 WO2022237847 A1 WO 2022237847A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
opening
vehicle
cover plate
fender
Prior art date
Application number
PCT/CN2022/092297
Other languages
English (en)
French (fr)
Inventor
龙宪阁
张仲宇
廖晓波
刘少彦
栾承业
袁铮
季海波
王香云
熊振风
竺玉成
王砚红
魏群雄
马杰
王鹏伍
张红杏
和仕超
唐慧芳
丁卫祥
田伟
李鸿双
李博
朱永青
Original Assignee
武汉路特斯汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202121029038.3U external-priority patent/CN216052167U/zh
Priority claimed from CN202111177107.XA external-priority patent/CN113917489A/zh
Priority claimed from CN202111175708.7A external-priority patent/CN113682238B/zh
Priority claimed from CN202111177109.9A external-priority patent/CN113917438A/zh
Priority claimed from CN202111175705.3A external-priority patent/CN113917404A/zh
Priority claimed from CN202111175698.7A external-priority patent/CN113917468A/zh
Priority claimed from CN202122481286.8U external-priority patent/CN215706204U/zh
Priority claimed from CN202111192613.6A external-priority patent/CN113928230B/zh
Application filed by 武汉路特斯汽车有限公司 filed Critical 武汉路特斯汽车有限公司
Publication of WO2022237847A1 publication Critical patent/WO2022237847A1/zh
Priority to US18/388,842 priority Critical patent/US20240077575A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/027Constructional details of housings, e.g. form, type, material or ruggedness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/865Combination of radar systems with lidar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93274Sensor installation details on the side of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93275Sensor installation details in the bumper area

Definitions

  • the invention relates to the technical field of vehicles, in particular to a laser radar integration device and a vehicle with the same.
  • Lidar is an important sensor for high-level intelligent driving and automatic driving. Using Lidar can make up for the shortcomings of cameras and millimeter-wave radars: compared with cameras, it can build a more realistic 3D environment and does not depend on ambient light. Wave radar has higher resolution and more accurate object recognition capabilities.
  • lidar is limited by the volume of the laser and the area of the laser emitting (receiving) mirror. Compared with the camera and millimeter-wave radar, the overall size is larger. It is difficult to arrange on the whole vehicle, and it is easily restricted by the layout and shape.
  • the horizontal field of view of lidar (the field of view for perceiving point cloud information) is generally around 120 degrees.
  • the existing technology usually requires 4-5 laser radars for field of view stitching.
  • the corner lidar is generally installed at the corner or side of the car body or at the lower position on both sides of the front and rear bumpers. It is responsible for sensing the side view.
  • the front and rear lidar vision it can obtain a 360-degree horizontal lidar vision.
  • the present invention is proposed to provide a lidar integrated device and a vehicle having the same to overcome the above problems or at least partly solve the above problems.
  • An object of the present invention is to provide a bracket to solve the problem that the device for fixing the lidar to the vehicle body in the prior art is relatively simple from the outside, and has a great influence on the shape, which cannot reflect the technological sense of the automatic driving scene, and It will cause lidar heat dissipation problems;
  • the technical problem to be solved in the present invention also includes solving the problem that the horizontal field of view of the laser radar is generally about 120 degrees, and the layout scheme of 4-5 laser radars will cause a waste of the field of view, and the price of the laser radar is expensive, and the single cost is usually More than RMB 5,000, this arrangement is not conducive to the cost of the whole vehicle;
  • the technical problem to be solved by the present invention also includes placing the front and rear bumpers near the lower corners, and these positions are collision-prone areas. Combined with the high cost of the laser radar, this arrangement is not conducive to the economical maintenance of the vehicle;
  • the technical problem to be solved in the present invention also includes that the lidar adopts a fixed solution, and the lens is exposed outside, while the lidar lens is mostly made of PC or glass material, which is less hard than sand and gravel, and has a high risk of being scratched during use.
  • An object of the present invention in one embodiment is to provide a vehicle including the above-mentioned lidar integration device.
  • a laser radar integration device at least including a cover plate, a fixed bracket, a lifting structure, a pop-up structure, a laser radar, and a controller
  • the cover plate is located on the fender of the vehicle body, and is connected to the The size of the opening on the fender matches, and the fixed bracket, lifting structure, pop-up structure, laser radar, and controller are all located inside the fender, and the lifting structure is arranged on the fixing bracket and is connected to the The cover plate is connected and can drive the cover plate to move up and down under the control of the controller. Under the control of the controller, it moves outward relative to the fixed bracket to push the lidar out of the fender.
  • the fixing bracket includes a first fixing plate and a connecting plate, the first fixing plate is located on both sides of the connecting plate, and the first fixing plate is connected to the front body on the inner side of the fender.
  • the stringers are secured by bolts.
  • the lifting structure at least includes a first motor, a transmission shaft, a first gear, a screw rod, a lifting rod, a slide rail, a fixing block, and a second fixing plate, and the slide rail starts from the fixed bracket.
  • the lower direction is inclined inwardly, the bottom end is fixed with the connecting plate, and the top end is provided with a fixed block;
  • the top of the rod is fixed with a first gear, and the elevating rod is connected with the cover plate;
  • the first motor and the controller are fixed on the second fixed plate, and the first motor is connected with a transmission shaft.
  • the drive shaft meshes with the first gear.
  • the fixing block is threadedly connected with the screw rod
  • the lifting rod includes a first lifting rod and a second lifting rod
  • the first lifting rod is sleeved on the lower end of the screw rod and connected with it.
  • Threaded connection one end of the second elevating rod is connected with the first elevating rod, and the other end is fixedly connected with the bottom end on one side of the cover plate.
  • a cleaning structure is further included, and the cleaning structure is arranged on the pop-up structure together with the lidar.
  • the cleaning structure at least includes a fixed frame, a solenoid valve, a nozzle, a connection part, and a water inlet.
  • One end of the solenoid valve is connected to the connection part, and the other end is connected to the water inlet.
  • the pipeline connected to the water port is connected to the waterway of the whole vehicle; the nozzle is connected to the connecting part and has a telescopic function.
  • the pop-up structure at least includes a second motor, a reducer, a second gear, a moving plate, a moving rod, and a sealing strip
  • the output shaft of the second motor is connected to the reducer
  • the reducer The device is connected with the second gear
  • the moving plate is placed on the connecting plate of the fixed bracket, and has a set angle with the outer edge of the connecting plate
  • the laser radar and cleaning structure are installed on the On the moving plate
  • the sealing strip is installed on the front side of the moving plate.
  • a small hole is also provided on the moving plate, and the moving rod includes a first moving rod and a second moving rod, and the second moving rod and the first moving rod are at a set angle connected, a protruding post is provided under one end of the first moving rod, and the protruding post is engaged with the small hole;
  • the second gear meshes are also provided on the moving plate, and the moving rod includes a first moving rod and a second moving rod, and the second moving rod and the first moving rod are at a set angle connected, a protruding post is provided under one end of the first moving rod, and the protruding post is engaged with the small hole;
  • the second gear meshes is also provided on the moving plate, and the moving rod includes a first moving rod and a second moving rod, and the second moving rod and the first moving rod are at a set angle connected, a protruding post is provided under one end of the first moving rod, and the protruding post is engaged with the small hole;
  • the second gear meshes is
  • a mirror is fixed on one side of the lidar, and a second wiring harness is provided on the other side, and the second wiring harness is connected to an automatic driving domain controller or an advanced assisted driving domain controller.
  • the present invention also provides a vehicle, including the laser radar integration device described in any one of the above manners.
  • the laser radar integration device adopts a hidden scheme, and will be retracted into the vehicle body in the standby state of the laser radar, so as to avoid affecting the appearance and shape, and reduce the risk of being scratched by sand and gravel; when the automatic driving function is activated, the laser radar will turn out To the working position, increasing the sense of technology; integrating a hidden cleaning structure, always keeping the lidar mirror clean during the automatic driving process, greatly reducing the frequency of manual cleaning and improving user experience; reducing the number of corner lidars from 4-5 to 2, there is a cost advantage; arranged at the front fender position, the collision risk is reduced compared with the position of the front and rear bumpers.
  • a radar integrated system which is arranged at the fender of the vehicle, and the fender is provided with a first opening, including: a cover plate;
  • a cover plate driving mechanism connected to the cover plate, for controlling the movement to drive the cover plate to open or close the first opening
  • a radar device located adjacent to said first opening
  • a radar driving mechanism connected to the radar device and configured to move in a controlled manner to drive the radar device to extend or retract the fender from the first opening;
  • control device connected to the cover drive mechanism, the radar drive mechanism and the radar device, the control device being configured to control the cover drive mechanism upon receiving an instruction to turn on the radar device Drive the cover plate to open the first opening, and control the radar drive mechanism to drive the radar device to turn over and protrude from the first opening to extend the fender, and after receiving an instruction to close the radar device , control the cover plate drive mechanism to drive the cover plate to close the first opening, and control the radar drive mechanism to drive the radar device to turn over and retract from the first opening to the fender Inside.
  • a preset angle is formed between the vertical line of the plane where the motion track of the radar device is located and the vertical line of the plane where the motion track of the cover plate is located, and the preset angle is 90 ⁇ 15°.
  • control device is configured to control the cover driving mechanism to drive the cover to open the first opening for a first preset time, and then control the radar driving mechanism to drive the radar device to turn over Extend the fender from the first opening, control the cover driving mechanism to drive the cover to close the first opening for a second preset time, and then control the radar driving mechanism to drive the radar
  • the turning motion of the device retracts from the first opening to the fender.
  • it also includes a cleaning device, which is arranged inside the fender and is located on a side of the radar device away from the fender, and is used to be activated in a controlled manner to clean the radar device .
  • the cleaning device includes:
  • a water storage box for storing cleaning fluid required for cleaning the radar device
  • a pipeline one end of which communicates with the water storage box and is located in the cleaning liquid, and a water pump is arranged on the pipeline;
  • a nozzle which is connected to the other end of the pipeline, and a solenoid valve is arranged at the nozzle, and the water pump and the solenoid valve are controlled and activated to spray the cleaning liquid in the water storage box on the radar device .
  • control device is also connected to both the water pump and the solenoid valve, and the control device is configured to control the solenoid valve and the water pump after receiving an instruction to clean the radar device. is turned on, so that the cleaning liquid is sprayed from the nozzle, and the water pump and the electromagnetic valve are controlled to be closed after a third preset time.
  • a flow sensor is further provided at the nozzle, and the flow sensor is connected to the control device for detecting the flow rate of the liquid flowing through the nozzle;
  • the integrated radar system also includes an alarm device connected to the control device;
  • control device is configured to control the alarm device to give an alarm when the flow sensor detects that the flow rate of the liquid flowing through the nozzle is less than a preset flow rate.
  • it further includes a casing provided with a second opening, the casing is arranged on the inner side of the fender, and the second opening is arranged correspondingly to the first opening;
  • the cover plate, the cover plate drive mechanism, the radar device, the radar drive mechanism, the control device and the cleaning device are all arranged in the housing.
  • it further includes a fixed frame, the cover plate driving mechanism and the radar driving mechanism are arranged at the fixed frame, and the fixed frame is arranged inside the housing.
  • the present invention also provides a vehicle, including the radar integrated system described in any one of the above manners.
  • the integrated radar system of the present invention may include a cover plate, a drive mechanism for the cover plate, a radar device, a radar drive mechanism and a control device.
  • the control device controls the cover plate driving mechanism to drive the cover plate to open and close the first opening, and the control device also controls the radar drive mechanism to drive the radar to extend and retract the fender, and also drives the radar device to turn over, so that the radar integrated system of the present invention
  • the detection angle is adjustable, and the fenders are extended when in use, and the fenders are retracted when not in use, and the cover is used to protect the radar device to prevent the radar device from being affected by external friction or contamination by external pollutants. Lifetime of the radar installation.
  • the present invention avoids the problem of interference between the cover plate and the radar device during movement, making the radar integrated system more intelligent while ensuring functions.
  • the present invention also provides a radar integrated system with reversible opening and closing of the cover, which is arranged at the fender of the vehicle, and the fender is provided with a first opening, including:
  • the fixed frame is fixedly connected with the fender, and the fixed frame is provided with a chute;
  • a cover plate for controlling opening and closing of the first opening
  • the cover plate drive mechanism includes a drive motor and a motion mechanism. One end of the motion mechanism is connected to the drive motor and driven by the drive motor, and the other end is connected to the cover plate.
  • the motion mechanism is connected to the drive motor Driven by the drive, the cover plate is driven to move along the chute, and at the same time, the cover plate is driven to rotate to open and close the first opening;
  • the radar assembly is configured to extend out of the fender from the first opening in a controlled manner when the first opening is opened.
  • the motion mechanism includes:
  • a crank one end of which is fixedly connected to the output shaft of the drive motor, so as to follow the rotation of the output shaft;
  • a first connecting rod one end of which is rotatably connected to an end of the crank that is far away from the output shaft, and the other end is connected to the cover plate, and the rotating shaft of the first connecting rod is parallel to the rotating shaft of the crank;
  • the side of the first connecting rod is provided with a cam, and the cam is clamped at the chute, and when the crank follows the rotation of the output shaft, the cam moves along the chute, so that The cover plate runs along a track parallel to the chute.
  • the number of the chute is two, and the two chute mirrors are oppositely arranged, and the first connecting rod is located between the two chute;
  • cams which are arranged on two opposite sides of the first connecting rod facing the two sliding slots, and each cam is arranged correspondingly to one of the sliding slots.
  • the moving mechanism further includes a second connecting rod, one end of the second connecting rod is rotatably connected to the fixed frame, and the other end is rotatably connected to the cover plate;
  • the second axis line of the second connecting rod is parallel to the first axis line of the first connecting rod, so that the cover plate can move along the chute under the drive of the driving motor.
  • the cover plate rotates under the action of the second connecting rod; wherein, the second axis line is the axis line of the rotating shaft at the rotatable connection between the second connecting rod and the cover plate , the first axis line is the axis line of the rotating shaft rotatably connected to the first connecting rod and the cover plate.
  • it further includes a hinge rod, which is fixedly connected with the cover plate and extends along a direction parallel to the axis of the second connecting rod, one end of the second connecting rod is connected to the One end of the hinge rod is rotatably connected, so that the cover plate and the hinge rod jointly rotate relative to the second connecting rod;
  • the hinge rod is located on one side of the cover, so that when the cover closes the first opening, the hinge rod is located inside the fender.
  • the number of the second connecting rods is two, the two second connecting rods are parallel to each other, and are respectively located at the two ends of the hinge rod, and the two second connecting rods are connected to the
  • the hinge rod forms a U-shaped structure.
  • the radar assembly includes:
  • the radar driving mechanism is connected with the radar device, and is used for controlled movement, so as to drive the radar device to protrude from the first opening or retract Said fenders.
  • it further includes a casing provided with a second opening, the casing is arranged on the inner side of the fender, the second opening is set correspondingly to the first opening; the fixing frame is located at inside the housing.
  • it further includes a cleaning device, which is arranged in the housing and located on a side of the radar device away from the fender, and is used to be activated in a controlled manner to clean the radar device.
  • a cleaning device which is arranged in the housing and located on a side of the radar device away from the fender, and is used to be activated in a controlled manner to clean the radar device.
  • the present invention also provides a vehicle, including the above-mentioned integrated radar system with a reversible cover.
  • the drive mechanism of the cover drives the cover to close the first opening , does not affect the normal use of the radar components.
  • the cover plate driving mechanism drives the cover plate to close the first opening, so as to prevent the radar component from being directly exposed outside for a long time and being polluted by external dust or sewage and affecting its use.
  • the cover plate also prevents the outside from rubbing against the radar components, avoiding damage to the radar components and prolonging the service life of the radar components.
  • the cover drive mechanism of the present invention only includes a cover drive motor and a kinematic mechanism, and the kinematic mechanism only includes a crank and a first connecting rod.
  • the cover drive mechanism has a simple structure, a single driving force, and a simple movement process, and can reach the Opening and closing the first opening serves the purpose of protecting the radar component.
  • the present invention also provides a radar integrated system with reversible movement of the radar, which is arranged at the fender of the vehicle, and the fender is provided with a first opening, including:
  • a radar device located adjacent to said first opening
  • the radar drive mechanism includes a drive motor and a double linkage mechanism, one end of the double linkage mechanism is rotatably connected to the radar device, and the other end is rotatably connected to the fender, and the drive motor is controlled When driving the double-link mechanism to move, the double-link mechanism drives the radar device to flip relative to the fender so as to extend or retract the fender from the first opening.
  • the double linkage mechanism includes:
  • the first rotating shaft is rotatably connected to the fender, and the first rotating shaft is connected to the driving motor to rotate driven by the driving motor;
  • a first swing arm one end of which is fixedly connected to the first rotating shaft so as to rotate around the axis of the first rotating shaft when the first rotating shaft rotates, and the other end of which is rotatably connected to the radar device;
  • the second rotating shaft is rotatably connected to the fender and arranged parallel to the first rotating shaft;
  • a second swing arm one end of which is rotatably connected to the radar device, and the other end is fixedly connected to the second rotating shaft;
  • the radar device when the first rotating shaft is driven by the driving motor to rotate, the radar device is driven to flip and move under the joint action of the first swing arm, the second swing arm and the second rotating shaft. .
  • the number of the first swing arms is two, the two first swing arms are arranged in parallel, and the two first swing arms are respectively rotatable with the upper and lower sides of the radar device. connect.
  • the number of the second swing arms is two, the two second swing arms are arranged in parallel, and the two second swing arms are respectively rotatable with the upper and lower sides of the radar device. connect.
  • the length of the second swing arm is not equal to the length of the first swing arm, or the distance between the first rotating shaft and the second rotating shaft is not equal to the target distance, the The target distance is the distance between the hinge point of the first swing arm and the radar mechanism and the hinge point of the second swing arm and the radar mechanism.
  • the length of the first swing arm is greater than the length of the second swing arm, and the distance between the first rotation axis and the second rotation axis is smaller than the target distance.
  • a housing provided with a second opening, the housing is fixedly disposed on the inner side of the fender, the second opening is disposed correspondingly to the first opening;
  • a fixed frame is arranged in the housing, and both the first rotating shaft and the second rotating shaft are rotatably connected to the fixed frame.
  • a cover driving mechanism located in the housing, the cover driving mechanism is connected with the cover, and is used to move in a controlled manner to drive the cover to open or close the first opening.
  • it further includes a cleaning device, which is arranged in the housing and located on a side of the radar device away from the fender, and is used to be activated in a controlled manner to clean the radar device.
  • a cleaning device which is arranged in the housing and located on a side of the radar device away from the fender, and is used to be activated in a controlled manner to clean the radar device.
  • the present invention also provides a vehicle, including the above-mentioned radar integration system with reversible movement of the radar.
  • the radar integrated system of the radar reversible movement of the present invention may include a radar device and a radar drive mechanism, and the radar drive mechanism may include a radar drive motor and a double-link mechanism, and the radar drive motor is used to drive the double-link mechanism to move, and the double-link mechanism Then the radar device is driven to move, so that the radar device can rotate relative to the fender and extend or retract the fender from the first opening.
  • the invention utilizes the radar driving motor to drive the radar device to move and rotate, and when the radar device is located at the first opening, the radar driving motor can be used to drive the radar device to rotate so as to increase the detection angle of the radar device.
  • the radar drive motor can also allow the radar device to extend out of the fender from the first opening when needed, and retract into the fender from the first opening when not needed, thereby avoiding that the radar device is always exposed on the wing. Dust on the outside of the sub-board affects the use and sensitivity.
  • the radar driving mechanism of the present invention includes a double-link mechanism, which only includes a first rotating shaft, a first swing arm, a second rotating shaft and a second swing arm, and has a simple structure and a clear movement process.
  • the double-link mechanism is connected with the radar device, and the double-link mechanism can drive the radar device to move under the drive of the radar drive motor, so that the movement and rotation of the radar device can be carried out at the same time, ensuring that the detection angle of the radar device meets the requirements, and at the same time The built-in purpose of the radar device has also been reached.
  • the present invention provides a flip-type radar integration box, which is arranged at a preset opening of the target body and includes:
  • a tray connected to the target vehicle body and located below the predetermined opening
  • the protective shell is matched with the preset opening, and the side of the protective shell facing the interior of the vehicle is fixedly connected with the radar;
  • the rotating mechanism is installed at the fixing seat, and is used to drive the radar and the protective shell to rotate relative to the fixing seat in a controlled manner, so as to expose the radar outside the vehicle or hide the radar in the inside the car.
  • the flip-type radar integrated box also includes an outer sealing assembly, which includes an outer sealing bracket and an outer sealing strip, and the outer sealing bracket is sealingly connected with the target vehicle body for installing the outer sealing strip.
  • the outer sealing strip is located between the protective shell and the target vehicle body, and is used to seal the gap between the protective shell and the sealing bracket.
  • the outer seal bracket includes an annular body and each connecting leg connected to the body, the body is sealed and connected to the target vehicle body, and is fixedly connected to the outer sealing strip, the outer One end of the sealing strip abuts against the protective shell, and the bottom end of each connecting leg is connected with the tray.
  • the body includes a flat plate portion arranged parallel to the target vehicle, and the flat plate portion is bonded to the target vehicle body.
  • the body further includes a vertical clamping portion for clamping the outer sealing strip, the vertical clamping portion is connected to the side of the flat plate close to the protective shell and is connected to the outer sealing strip.
  • the flat part is vertical
  • the target vehicle body is formed with a bent part pointing to the flat part at the preset opening, the flat part abuts against the bent part, and the vertical part is located at the Between the bent part and the protective shell.
  • the flip-up radar integration box further includes:
  • a flexible waterproof membrane is arranged between the bottom of the main body and the outer side of the protective shell to form a sealed space between the main body and the protective shell.
  • the protective shell is also provided with a water pipe, the water pipe communicates with the sealed space and is located at the lowest position of the sealed space, and the water pipe communicates with the drain pipe of the vehicle through a hose .
  • the target vehicle body is the roof of the vehicle, and the tray is connected to the roof beam assembly of the vehicle through fasteners.
  • the present invention also provides a vehicle, including the reversible radar integration box described in any one of the above.
  • the invention provides a reversible radar integrated box, which includes a protective shell for fixing the radar, both the protective shell and the radar can be turned over with respect to the fixed mounting and fixing seat, and the protective shell and the pre-installation of the vehicle body
  • the opening is set to match, so it can form an integrated state with the appearance of the body when it is closed, so as to improve the aesthetics and aerodynamic performance of the vehicle, and it is not easy to fall dust.
  • it can control the radar and the protective shell when it needs to be used.
  • the outer side of the vehicle body so as to facilitate the adjustment of the angle of the radar.
  • the reversible radar integrated box of the present invention also includes an outer sealing assembly, and the outer sealing assembly includes an outer sealing bracket and an outer sealing strip.
  • the outer sealing bracket is sealingly connected with the target vehicle body, and is used for installing the outer sealing strip.
  • the outer sealing strip is located between the protective shell and the target body, and is used to seal the gap between the protective shell and the sealing bracket.
  • the setting of the outer sealing strip can play a sealing role when the radar integration box is in a closed state.
  • the staggered structure formed by the bending portion of the target vehicle body and the vertical clamping portion of the outer sealing bracket cooperates with the ring-shaped adhesive tape between the outer sealing bracket and the target vehicle body, which can further play a sealing role.
  • the setting of the water pipe and the hose can ensure that the water in the waterproof membrane can be discharged through the drainage system of the vehicle, preventing water storage in the waterproof membrane. Since the water pipe is fixed on the protective shell, it will move with the protective shell. By setting the hose to connect the water pipe with the drain pipe of the vehicle, it can adapt to the operating conditions of the water pipe.
  • the present invention also provides a cleaning device for radar, comprising:
  • a housing the housing is provided with a liquid passage, and one end of the liquid passage is connected to the water supply device;
  • Nozzles are arranged at one end of the liquid channel away from the water supply device, and at least part of the nozzles are located inside the housing, and the nozzles are used to spray water on the mirror surface of the radar;
  • the electromagnetic valve is arranged on the liquid channel, and is used to turn on or off the liquid channel under control, so that the cleaning device is in a water spray state or in a closed state.
  • the water pump is connected with the liquid channel, and is used for cooperating to open when the electromagnetic valve is opened, so as to drive the liquid flow in the liquid channel and make the liquid spray out from the nozzle.
  • the nozzle is configured to be retractable so as to be located inside the casing when the cleaning device is in a closed state; at least part of the nozzle is extended when the cleaning device is in a water spraying state the casing.
  • the nozzle is provided with a slide block, and the casing is provided with a chute cooperating with the slide block, so that when the water pressure in the liquid channel reaches a preset water pressure, the The slider slides along the chute, so that the nozzle protrudes from the housing.
  • a side of the nozzle away from the liquid channel is provided with a plurality of water spray holes, so that the liquid flowing out of the liquid channel is sprayed from the plurality of water spray holes.
  • a control unit is fixedly connected with the housing and connected with the electromagnetic valve, and is used to control the opening or closing of the electromagnetic valve.
  • the detection unit is connected with the control unit and is used to detect whether there is dirt on the outer surface of the radar.
  • the nozzle has a square cross section.
  • the present invention also provides a radar system for a vehicle, the radar system is equipped with a radar and the cleaning device.
  • the number of the cleaning devices is two, and the two cleaning devices are respectively arranged on both sides of the radar.
  • the present invention also provides a vehicle equipped with the above-mentioned radar system.
  • the cleaning device used for radar in the present invention includes a housing, a nozzle, a solenoid valve and a water pump, wherein a liquid channel is arranged in the housing, and one end of the liquid channel is connected with a water supply device.
  • the nozzle is arranged at the end of the liquid channel away from the water supply device, and at least part of the nozzle is located inside the casing, and the nozzle is used for spraying water on the mirror surface of the radar.
  • the electromagnetic valve is arranged on the liquid passage, and is used for conducting or disconnecting the liquid passage under control, so that the cleaning device is in the state of spraying water or in the state of closing.
  • the water pump is connected with the liquid channel, and is used for cooperating to open when the solenoid valve is opened, so as to drive the liquid flow in the liquid channel and make the liquid spray out from the nozzle. Therefore, when the radar needs to be cleaned, the present invention only needs to open the electromagnetic valve and the water pump at the same time, which can realize the automatic cleaning of the radar, does not need to stop for manual cleaning, and can ensure the continuity of automatic driving.
  • a side of the nozzle of the present invention away from the liquid passage is provided with a plurality of water spray holes, so that the liquid flowing out of the liquid passage is sprayed from the plurality of water spray holes.
  • the invention is equivalent to splitting a water spray hole with a large cross-sectional area into a plurality of water spray holes with a small cross-sectional area, thereby reducing the cross-sectional area, thereby increasing the water spray pressure and further improving the cleaning performance.
  • the present invention also provides a vehicle-mounted radar system, including:
  • Radar components including radars
  • a drive mechanism connected to the radar assembly, is used to controlly drive the radar assembly to rotate or lift relative to the vehicle body, so as to expose the transmitting end of the radar outside the vehicle or hide the radar assembly inside the vehicle; as well as
  • the cleaning unit is used to protrude and spray cleaning liquid to the mirror surface of the launching end when the launching end is exposed outside the vehicle under control.
  • the radar assembly further includes a radar box, and the radar box is provided with a first opening and a second opening on one side of the transmitting end of the radar, and the first opening is used to expose the At the launch end, the second opening is used to provide a telescopic channel for the cleaning unit.
  • the cleaning unit includes:
  • washing jug for storing cleaning solution
  • a washing pump connected to the washing pot through a first water pipe, and used to pump out the cleaning liquid in the washing pot;
  • the retractable cleaning actuator is arranged inside the radar box and includes a nozzle connected to the washing pump through a second water pipe, the nozzle is used to spray cleaning liquid to the mirror surface, and the second water pipe is provided with a solenoid valve, used to control the on-off of the second water pipe;
  • the cover plate is connected with the nozzle and matched with the second opening, and is used to close the second opening when the cleaning actuator is retracted into the radar box.
  • a first sealing strip is provided on the periphery of the cover plate for sealing the cover plate and the second opening.
  • the vehicle-mounted radar system further includes an analog-to-digital converter, a central electronic module and an integrated box controller connected to the analog-to-digital converter, the analog-to-digital converter is also connected to the radar,
  • the radar is used to send an analog signal to the analog-to-digital converter when it detects that the mirror surface is dirty, and the analog-to-digital converter processes the analog signal into a digital signal and sends it to the central electronic module and the An integrated box controller
  • the central electronic module is used to generate a first control signal according to the digital signal and send it to the washing pump to control the operation of the washing pump
  • the integrated box controller is used to generate a first control signal based on the digital signal
  • the second control signal is sent to the solenoid valve to control the solenoid valve to open.
  • the integrated box controller is also connected to the driving mechanism for controlling the action of the driving mechanism, and the analog-to-digital converter is also connected to the vehicle's entertainment information host through an in-vehicle gateway, so that When the infotainment host receives a signal to enable the smart driving function, the integrated box controller controls the driving mechanism to drive the radar assembly to expose the radar transmitter outside the vehicle.
  • a sealing structure which includes:
  • the mounting bracket is fixedly connected with the body
  • the second sealing strip is connected with the mounting bracket and is located between the radar box and the third opening of the vehicle body.
  • the radar box matches the shape of the third opening and moves to the vehicle through the third opening. outside.
  • the sealing structure further includes:
  • a soft sealing film is arranged around the radar box, and the two ends of the sealing film are respectively connected to the side wall of the radar box and the lower side of the mounting bracket;
  • the water drain runs through the sealing film, and the side away from the radar box communicates with the drain pipe of the vehicle.
  • a fixed bottom plate the bottom of which is fixedly connected with the vehicle body, and a plurality of upwardly protruding connecting arms are arranged at its edge, and the connecting arms are connected with the bottom of the mounting bracket;
  • the fixing seat is arranged at the fixing bottom plate, and is used for placing the cleaning unit and the driving source of the driving mechanism.
  • the present invention also provides a vehicle, including the vehicle-mounted radar system described above.
  • the vehicle-mounted radar system of the present invention can realize the flipping or lifting of the radar component relative to the vehicle body, thereby controlling the radar to protrude out of the vehicle for detection work, and can also be hidden in the vehicle to avoid dust accumulation.
  • the vehicle-mounted radar system also includes a cleaning unit, which can clean the mirror surface of the radar to further ensure the cleanliness of the radar so as to ensure the accuracy of intelligent driving.
  • the cleaning unit of the present invention includes a cover plate matching the second opening, that is, the second opening capable of self-closing the radar box is provided through the structure of the cleaning unit itself, without additionally setting an opening and closing door, so the structure is simple and the cost is low. lower.
  • the present invention realizes the automatic control of the working process of the cleaning unit through the communication among the radar, the analog-to-digital converter, the central electronic module and the integrated box controller. And the entertainment information host of the vehicle is communicated with the vehicle radar system to realize the automatic control of the movement of the radar components.
  • the present invention can realize all-round sealing protection of the vehicle radar system by setting the first sealing strip, the second sealing strip and the sealing film.
  • the present invention also provides a concealable vehicle-mounted radar installation assembly, which is arranged at the installation opening of the vehicle body, and the vehicle-mounted radar installation assembly includes:
  • a fixing assembly connected to the vehicle body and configured as a recess
  • the radar casing is arranged in the recess and is pivotably connected to the fixing assembly.
  • the inside of the radar casing is provided with an accommodating space for placing the radar, and the side wall is provided with a housing for exposing the radar.
  • the window of the radar casing is used to form a closed state in which the radar casing is hidden in the recess when rotating relative to the fixed assembly, and the window of the radar casing is completely exposed to the the opening state of the recess;
  • the sealing assembly includes a flexible sealing film, the sealing film is arranged around the radar enclosure, and one side of the sealing film is directly or indirectly sealingly connected to the target vehicle body, and the other side is sealingly connected to the outside of the radar enclosure, so as to A sealed water storage space is formed between the target vehicle body and the radar enclosure, the target vehicle body is the vehicle body part on the peripheral side of the installation opening, and the sealing film is in the closed position of the radar enclosure.
  • the lowest part in the state is also provided with a drainpipe communicating with the vehicle for discharging the liquid in the water storage space.
  • the sealing assembly also includes:
  • the sealing strip is arranged around the radar enclosure and is arranged between the target vehicle body and the radar enclosure.
  • the sealing assembly also includes:
  • One side of the sealing bracket is connected with the target vehicle body, and the other side is used to fix the sealing film.
  • the sealing bracket is bonded to the bottom of the target vehicle body by double-sided adhesive.
  • the outer wall of the radar casing is provided with an annular flange protruding away from itself, and the two ends of the sealing film are respectively connected with the sealing bracket and the annular flange.
  • the height of the outer wall on one side of the radar enclosure provided with the window is greater than the height of the opposite side, and the annular flange is disposed on the bottom of the outer wall of the radar enclosure.
  • the radar enclosure is formed with a drainage pipe through which the water storage space communicates with the drainage pipe, and the sealing film is provided with a channel for passing through the drainage pipe.
  • the fixing assembly includes:
  • a plurality of connecting brackets, the two ends of each connecting bracket are respectively connected with the target vehicle body and the periphery of the fixed base plate.
  • the fixed bottom plate includes:
  • a plurality of connecting feet located at the periphery of the flat plate portion, each of the connecting feet protrudes toward the target vehicle body and is connected with the connecting bracket.
  • the present invention also provides a vehicle, including the above-mentioned concealable vehicle-mounted radar installation assembly.
  • the invention provides a concealable radar installation assembly.
  • the radar casing can be turned out of the car with the radar to expose the transmitting end from the window of the radar casing.
  • the radar is not needed Restore the radar enclosure to the position inside the vehicle to ensure the aesthetic appearance of the vehicle.
  • the radar installation assembly is also provided with a sealing assembly that moves with the radar casing, which can adapt to the reversible radar casing and achieve a real-time waterproof sealing effect.
  • the sealing film of the sealing assembly communicates with the drainpipe of the vehicle, and the connected position is the lowest point of the sealing film when the radar enclosure is in the closed state, it can discharge accumulated water in the closed state to prevent the sealing film from being soaked in water for a long time .
  • the sealing assembly also includes a sealing strip, which is arranged around the radar enclosure and is arranged between the target vehicle body and the radar enclosure. Due to the setting of the sealing strip, the gap between the radar casing and the target body is closed when the radar casing is closed, and it plays a waterproof role when the radar is not in use, preventing rainwater or other liquids from entering the assembly.
  • Fig. 1A is a schematic diagram of the installation position of the laser radar integration device of the present invention on the vehicle body;
  • FIG. 1B is a schematic diagram of the overall structure of the lidar integrated device of the present invention.
  • Fig. 1C is a structural schematic diagram of the lifting structure in the present invention.
  • Figure 1D is a schematic diagram of the cleaning structure in the present invention.
  • Fig. 1E is a schematic structural view of the fixing frame of the present invention.
  • Fig. 1F is a schematic diagram of a pop-up structure in the present invention.
  • Fig. 1G is a top view of the laser radar in the open state of the present invention.
  • Fig. 2A is a schematic structural diagram of a radar integrated system arranged at a fender according to an embodiment of the present invention
  • Fig. 2B is a schematic structural view of the first opening where the cover plate is opened and the radar device protrudes from the fender according to an embodiment of the present invention
  • FIG. 2C is a schematic exploded view of a radar integrated system according to an embodiment of the present invention.
  • Fig. 2D is a schematic structural diagram of the connection of the cover plate and the drive mechanism of the cover plate according to an embodiment of the present invention
  • Fig. 2E is a schematic partial structural view of the connection of the cover plate and the drive mechanism of the cover plate according to an embodiment of the present invention
  • FIG. 2F is a schematic structural diagram of the connection of the radar device and the radar driving mechanism according to an embodiment of the present invention.
  • FIG. 2G is a schematic structural diagram of a radar device and a dual connection mechanism connection according to an embodiment of the present invention.
  • Fig. 2H is a schematic structural diagram of the connection between the control device and the controlled device according to an embodiment of the present invention.
  • Fig. 3A is a schematic structural diagram of a radar integrated system with reversible opening and closing of the cover panel arranged at the fender according to an embodiment of the present invention
  • Fig. 3B is a schematic exploded view of a radar integrated system with reversible opening and closing of the cover according to an embodiment of the present invention
  • Fig. 3C is a schematic structural diagram of the connection of the cover plate and the drive mechanism of the cover plate according to an embodiment of the present invention
  • Fig. 3D is a schematic partial structural view of the connection of the cover plate and the drive mechanism of the cover plate according to an embodiment of the present invention
  • Fig. 3E is a schematic structural view of the first opening where the cover plate is opened and the radar device extends out of the fender from the first opening according to an embodiment of the present invention
  • FIG. 3F is a schematic structural diagram of the connection of the radar device and the radar driving mechanism according to an embodiment of the present invention.
  • FIG. 3G is a schematic structural diagram of a radar device and a dual connection mechanism connection according to an embodiment of the present invention.
  • Fig. 4A is a schematic structural view of the first opening where the cover is opened and the radar device protrudes from the fender according to an embodiment of the present invention
  • Fig. 4B is a schematic exploded view of a radar integrated system with a reversible movement of the radar according to an embodiment of the present invention
  • Fig. 4C is a schematic structural diagram of the connection of the radar device and the radar driving mechanism according to an embodiment of the present invention.
  • FIG. 4D is a schematic structural diagram of a radar device and a dual connection mechanism connection according to an embodiment of the present invention.
  • Fig. 4E is a schematic structural diagram of a radar integrated system with a reversible movement of the radar arranged at the fender according to an embodiment of the present invention
  • Fig. 4F is a schematic structural diagram of the connection of the cover plate and the drive mechanism of the cover plate according to an embodiment of the present invention.
  • FIG. 4G is a schematic structural diagram of the connection between the control device and the controlled device according to an embodiment of the present invention.
  • Fig. 5A is a structural schematic diagram of a flip-up radar integration box installed in a vehicle according to an embodiment of the present invention
  • Fig. 5B is a partial cross-sectional view of a flip-up radar integration box installed in a vehicle according to an embodiment of the present invention
  • Fig. 5C is an exploded schematic diagram of a flip-type radar integration box according to an embodiment of the present invention.
  • Fig. 5D is a schematic structural diagram of a flip-up radar integration box according to an embodiment of the present invention.
  • Fig. 6A is a schematic structural diagram of a cleaning device for radar according to an embodiment of the present invention.
  • Figure 6B is a schematic exploded view of the cleaning device shown in Figure 6A;
  • FIG. 7A is a schematic structural diagram of a vehicle-mounted radar system installed on a vehicle according to an embodiment of the present invention.
  • Fig. 7B is a schematic structural diagram of a cleaning unit of a vehicle-mounted radar system according to an embodiment of the present invention.
  • FIG. 7C is a connection block diagram of a vehicle radar system according to an embodiment of the present invention.
  • FIG. 7D is a schematic cross-sectional view of the vehicle-mounted radar system installed on the vehicle according to an embodiment of the present invention.
  • FIG. 7E is an exploded schematic diagram of a vehicle radar system according to an embodiment of the present invention.
  • Fig. 8A is a top view of the concealable vehicle-mounted radar installation assembly installed in a vehicle according to an embodiment of the present invention
  • Figure 8B is a cross-sectional view of Figure 8A along the line A-A;
  • Fig. 8C is a cross-sectional view of Fig. 8A along the section line B-B;
  • Fig. 8D is a structural schematic diagram of the radar enclosure of the concealable vehicle-mounted radar installation assembly according to an embodiment of the present invention.
  • Fig. 8E is a schematic structural view of the fixed base plate of the concealable vehicle-mounted radar installation assembly according to an embodiment of the present invention.
  • the laser radar integrated device at least includes a cover plate Q10, a fixed bracket Q20, a lifting structure Q30, a cleaning structure Q40, a pop-up structure Q50, and a laser radar Q60
  • controller Q70, cover plate Q10 is located on the body fender Q80, and matches the size of the opening on the fender Q80
  • controller Q70 is located inside the fender Q80
  • the lifting structure Q30 is set on the fixed bracket Q20 and connected to the cover Q10, and can drive the cover Q10 to move up and down under the control of the controller Q70
  • the laser radar Q60 is set on the pop-up structure Q50
  • the pop-up structure Q50 is set on the fixed bracket Q20, and can move outward relative to the fixed bracket Q20 under the control of the controller Q70
  • the fixing bracket Q20 includes a first fixing plate Q21 and a connecting plate Q22.
  • the first fixing plate Q21 is located on both sides of the connecting plate Q22. Fastened by bolts.
  • the lifting structure Q30 at least includes a first motor Q31, a transmission shaft Q32, a first gear Q33, a screw rod Q34, a lifting rod Q35, a slide rail Q36, a fixed block Q37, a first Two fixed plate Q38.
  • the slide rail Q36 extends obliquely from the bottom to the top of the fixed bracket Q20, its bottom end is fixed to the connecting plate Q22, and the top end is provided with a fixed block Q37;
  • the screw rod Q34 passes through the fixed block Q37 and is arranged parallel to the slide rail Q36 , the fixed block Q37 is threadedly connected with the screw rod Q34, the lower end of the screw rod Q34 is provided with a lifting rod Q35, the top is fixed with a first gear Q33, and the lifting rod Q35 includes a first lifting rod Q351, a second lifting rod Q352, a first lifting rod Q351 is sleeved on the lower end of screw rod Q34 and is threadedly connected with it.
  • One end of the second elevating rod Q352 is connected to the first elevating rod Q351 at a set angle, and the other end is fixedly connected to the bottom end on one side of the cover plate Q10;
  • the first motor Q31 and the controller Q70 are fixed on the plate Q38, the motor 31 is connected with the transmission shaft Q32, the transmission shaft Q32 meshes with the first gear Q33, when the first motor Q31 rotates forward, the transmission shaft Q32 is driven to rotate, and the transmission shaft Q32 Drive the first gear Q33 to rotate, the first gear Q33 drives the screw rod Q34 to rotate, the first lifting rod Q351 moves upward relative to the screw rod Q34, drives the second lifting rod Q352 and the cover plate Q10 to move upward, and the cover plate Q10 opens,
  • the laser radar Q60 and the cleaning structure Q40 are driven by the pop-up structure Q50 to eject the outside of the fender Q80.
  • the lifting structure Q30 is not limited to the lifting structure Q30 described in this embodiment, and any device with a lifting function can replace the lifting structure Q30 described in this embodiment.
  • any device with a lifting function can replace the lifting structure Q30 described in this embodiment.
  • the specific structure will not be repeated in the present invention.
  • the cleaning structure Q40 at least includes a fixed frame Q41, a solenoid valve Q42, a nozzle Q43, a connecting portion Q44, and a water inlet Q45, and the laser radar Q60 is arranged on the fixed frame Q41.
  • Both sides of the fixed frame Q41 are respectively provided with a combined structure Q411 of a solenoid valve Q42, a nozzle Q43, a connecting part Q44, and a water inlet Q45.
  • one end of the electromagnetic valve Q42 is connected to the connection part Q44, and the other end is connected to the water inlet Q45 to control the opening and closing of the water inlet Q45, and the pipeline connected to the water inlet Q45 is connected to the waterway of the vehicle.
  • the nozzle Q43 is connected to the connection part Q44, and the nozzle Q43 has a telescopic function. When not in use, the nozzle Q43 is retracted into the inside of the connection part Q44, and is extended out of the connection part Q44 by the effect of water pressure when in use.
  • the nozzle Q43 can either be a telescopic structure that can extend or retract into the connection part Q44, or it can be a fixed structure that is directly fixed on the connection part Q44 and does not move relative to the connection part Q44. Among them, the nozzle Q43 is telescopic.
  • the pop-up structure Q50 at least includes a second motor Q51, a reducer Q52, a second gear Q53, a moving plate Q54, a moving rod Q55, and a sealing strip Q56.
  • the second motor Q51 is fixed inside the fender Q80, its output shaft is connected to the reducer Q52, the reducer Q52 is connected to the second gear Q53, the moving plate Q54 is placed on the connecting plate Q22 of the fixed bracket Q20, and It can swing inside and outside relative to the fixed bracket Q20.
  • the movable plate Q54 rotates out relative to the fixed bracket Q20, the movable plate Q54 forms a set angle with the outer edge bracket of the connecting plate Q22. In this embodiment, it is at an angle of Q30 degrees.
  • the radar Q60 and the cleaning structure Q40 are installed on the mobile plate Q54, and the mobile Q54 is also provided with a small hole Q541.
  • the mobile bar Q55 includes a first mobile bar Q551 and a second mobile bar Q552, and the first mobile bar Q551 passes through the first mobile bar Q551 close to it.
  • a slot hole on the fixing plate Q21 and can swing relative to the first fixing plate Q21.
  • the second moving rod Q552 is arc-shaped, and the outer section is provided with teeth, which mesh with the second gear Q53.
  • the second moving rod Q552 is connected to the first moving rod Q551 at a set angle
  • the sealing strip Q56 can be installed on the front side of the moving plate Q54, or can be fixed around the inner opening of the fender Q80.
  • the sealing strip Q56 is installed on the front side of the moving plate Q54, when the second motor Q51 rotates forward, driven by the second motor Q51 and the reducer Q52, the second gear Q53 rotates, driving the second moving rod Q552 to rotate, and then Drive the first moving rod Q551 to rotate, and the moving plate Q54 connected to the first moving rod Q551, the laser radar Q60 and the cleaning structure Q40 rotate out and pop up to the outside of the fender Q80.
  • the sealing strip Q56 and the inside of the fender Q80 The openings of the fenders are glued around, and the sealing strip Q56 has a waterproof effect, which can prevent sewage from splashing into the inside of the fender Q80 when the cleaning structure Q40 is working. It is retracted to the inside of the fender Q80.
  • pop-up structure Q50 is not limited to the pop-up structure Q50 described in this embodiment, and any device with a pop-up function can replace the pop-up structure Q50 described in this embodiment.
  • any device with a pop-up function can replace the pop-up structure Q50 described in this embodiment.
  • the pop-up structure in the prior art The specific structure will not be repeated in the present invention.
  • a mirror Q61 is fixed on the working side of the laser radar Q60, and a second wire harness is connected to the other side, and the second wire harness is connected to the automatic driving or advanced assisted driving domain controller.
  • the second wiring harness can transmit the signal to the automatic driving or advanced assisted driving domain controller, and the automatic driving or advanced assisted driving domain controller sends a cleaning signal to the solenoid valve Q42 , the solenoid valve Q42 is opened, and the nozzle Q43 sprays water against the mirror surface Q61 for cleaning.
  • the nozzle Q43 is extended, and the dotted line is the water spray range, that is, the water sprayed from the nozzles Q43 on both sides can cover the entire mirror surface Q61.
  • the laser radar integration device provided by the present invention is installed on the fenders Q80 on both sides of the front of the vehicle body, the working angle is 30 degrees from the forward direction of the vehicle body, and can sense 120 degrees of horizontal field of view.
  • the working principle of the laser radar integration device is as follows: when the user has a driving demand, the automatic driving or advanced assisted driving domain controller sends a signal to start the corner laser radar integration device, and the controller Q70 inside the integration device first drives the first The motor Q31 rotates forward, and the lifting structure Q30 starts to work. Under the rotation of the transmission shaft Q32, the first gear Q33, and the screw rod Q34, the first lifting rod Q351 and the second lifting rod Q352 drive the cover plate Q10 to rise, and the hidden opening is opened. Then the controller Q70 drives the second motor Q51 to rotate forward, and the pop-up structure Q50 starts to work.
  • the lidar Q60 and the cleaning structure Q40 are ejected from the outside of the fender Q80 and form a 30-degree angle with the forward direction of the body, and the lidar Q60 starts to work; when the lidar Q60 detects that the mirror surface Q61 is affected by dirt, it will send a dirty signal
  • the automatic driving or advanced assisted driving domain controller sends a cleaning signal to the controller Q70 inside the integrated device, and the automatic driving or advanced assisted driving domain controller drives the cleaning water pump to pressurize the waterway
  • the controller Q70 inside the integrated device drives the cleaning structure Q40 to start working, the solenoid valve Q42 is opened, and the nozzle Q43 sprays water to clean the mirror surface Q61 of the laser radar Q60.
  • the solenoid valve Q42 is closed; when the driving function exits
  • the controller Q70 inside the integration device drives the first motor Q31 and the second motor Q51 to reverse, and the angle lidar integration device is closed and hidden to the wing.
  • the controller Q70 inside the integration device drives the first motor Q31 and the second motor Q51 to reverse, and the angle lidar integration device is closed and hidden to the wing.
  • the sub-board Q80 Inside the sub-board Q80.
  • the laser radar integration device has the following advantages: the hidden scheme is adopted, and the laser radar will be retracted into the vehicle body in the standby state, so as to avoid affecting the appearance and shape, and reduce the risk of being scratched by sand and stones ;
  • the lidar is turned out to the working position to increase the sense of technology;
  • the integrated hidden cleaning structure keeps the lidar mirror clean during the automatic driving process, which greatly reduces the frequency of manual cleaning and improves user experience;
  • the number of radars is reduced from 4-5 to 2, which has a cost advantage; it is arranged at the front fender, and the risk of collision is reduced compared with the position of the front and rear bumpers.
  • the present invention also provides a vehicle, which includes the laser radar integration device described above.
  • vehicle which includes the laser radar integration device described above.
  • the present invention also provides a radar integrated system
  • Fig. 2A is a schematic structural diagram of the radar integrated system arranged at the fender according to an embodiment of the present invention
  • Fig. 2B is a schematic diagram according to an embodiment of the present invention
  • this embodiment provides an integrated radar system M100, which is arranged at the fender M200 of the vehicle.
  • the fender M200 of the vehicle in this embodiment includes multiple fenders M200.
  • fenders M200 of the vehicle which are respectively located above the four tires.
  • Each fender M200 is provided with a first opening M201 , and the first opening M201 is located above the wheel arch 300 .
  • a radar integrated system M100 can be arranged at each first opening M201.
  • a radar integrated system M100 is taken as an example for illustration.
  • Fig. 2C is a schematic exploded diagram of a radar integrated system according to an embodiment of the present invention; as a specific embodiment of the present invention, the radar integrated system M100 of this embodiment may include a cover plate M10, a cover plate driving mechanism M20, a radar device M30, radar driving mechanism M40 and control device M70.
  • the cover plate driving mechanism M20 is connected with the cover plate M10, and is used for controlled movement to drive the cover plate M10 to open or close the first opening M201.
  • the radar device M30 is located near the first opening M201.
  • the radar driving mechanism M40 is connected with the radar device M30 for controlled movement to drive the radar device M30 to extend out from the first opening M201 or retract the fender M200.
  • the control device M70 is connected to the cover drive mechanism M20, the radar drive mechanism M40 and the radar device M30, and the control device M70 is configured to control the cover drive mechanism M20 to drive the cover M10 to open the first Opening M201, and controlling the radar driving mechanism M40 to drive the radar device M30 to extend out of the fender M200 from the first opening M201, and when receiving the command to close the radar device M30, control the driving mechanism of the cover plate M10 to drive the cover plate M10 to close the first opening M201, and control the radar driving mechanism M40 to drive the radar device M30 to retract from the first opening M201 into the fender M200.
  • the integrated radar system M100 of this embodiment may include a cover plate M10, a cover plate driving mechanism M20, a radar device M30, a radar driving mechanism M40 and a control device M70.
  • the control device M70 controls the cover plate driving mechanism M20 to drive the cover plate M10 to open and close the first opening M201, and the control device M70 also controls the radar drive mechanism M40 to drive the radar to extend and retract the fender M200, and also drives the radar device M30 to turn over , so that the detection angle of the integrated radar system M100 of this embodiment can be adjusted, and the fender M200 is extended when in use, and the fender M200 is retracted when not in use, and the radar device M30 is protected by the cover plate M10 to prevent the radar device M30 from Affected by external rubbing or contamination by external pollutants, the service life of the radar device M30 is extended.
  • both the cover plate M10 and the radar device M30 need to move from the position of the first opening M201 to the inside of the fender M200, in order to avoid movement interference, the moving direction of the cover plate M10 and the radar moving direction The direction should not be set at an angle or on a plane as much as possible.
  • both the cover plate M10 and the radar device M30 perform translational and flipping motions, but their motion trajectories are almost formed on one plane.
  • a preset angle is formed between the vertical line of the plane where the radar device M30 motion track is located and the vertical line of the plane where the cover plate M10 motion track is located, and the preset angle is 90 ⁇ 15°.
  • the preset angle may be exactly 90 degrees, or any angle between 75° and 105°. In this embodiment, the preset angle is 90° for specific description.
  • the movement trajectories of the cover plate M10 in this embodiment are all on the vertical plane, and when the cover plate M10 moves from the first angle to the inside of the fender M200, it specifically moves toward the inside of the fender M200. moves upward, and also flips while translational.
  • the movement trajectory of the radar device M30 is in the horizontal plane.
  • it moves to the left or right inside the fender M200, and at the same time counterclockwise or flip clockwise.
  • control device M70 of this embodiment is configured to control the cover plate driving mechanism M20 to drive the cover plate M10 to open the first opening M201 for a first preset time and then control the radar drive mechanism M40 to drive the radar device M30
  • the overturning motion extends out of the fender M200 from the first opening M201, and the cover plate driving mechanism M20 is controlled to drive the cover plate M10 to close the first opening M201 for a second preset time, and then the radar driving mechanism M40 is controlled to drive the radar device M30.
  • the opening M201 is retracted to the fender M200.
  • the first preset time may be 0-5s.
  • the cover M10 opens the first opening M201 and the radar device M30 moves toward the first opening M201 simultaneously.
  • the first preset time is not 0s, the cover M10 opens the first opening M201 first, and the radar device M30 moves to the first opening M201 after the first preset time.
  • the second preset time in this embodiment can also be 0-5s.
  • the cover plate M10 closes the first opening M201 and the radar device M30 moves from the first opening M201 to the wing Simultaneously within board M200.
  • the radar device M30 When the second preset time is not 0s, the radar device M30 first moves from the first opening M201 into the fender M200, and the cover M10 moves to close the first opening M201 after the second preset time.
  • Such design is also to avoid interference between the radar device M30 and the cover plate M10 during movement.
  • the cover plate drive mechanism M20 and the radar drive mechanism M40 through the structural design of the cover plate drive mechanism M20 and the radar drive mechanism M40 and the control of the movement time of the two drive mechanisms by the control device M70, the problem of interference between the cover plate M10 and the radar device M30 in motion is avoided, so that the radar is integrated System M100 is more intelligent while ensuring functions.
  • Fig. 2D is a schematic structural diagram of the connection of the cover and the cover driving mechanism according to an embodiment of the present invention
  • Fig. 2E is a schematic partial structural diagram of the connection of the cover and the cover driving mechanism according to an embodiment of the present invention.
  • the integrated radar system M100 in this embodiment may include a fixed frame M50 , a cover M10 and a cover driving mechanism M20 .
  • the fixed frame M50 is fixedly connected with the fender M200, and the fixed frame M50 is provided with a chute M51.
  • the cover drive mechanism M20 may include a cover drive motor M21 and a motion mechanism M22, one end of the motion mechanism M22 is connected to the cover drive motor M21, and the other end is connected to the cover M10.
  • the cover plate drive motor M21 is controlled by the control device M70 to move, and the motion mechanism M22 is connected with the cover plate drive motor M21.
  • the motion mechanism M22 is driven to move, and the motion mechanism M22 drives the cover plate M10. sports.
  • the movement mechanism M22 is restricted by the chute M51, and drives the cover plate M10 to move along the chute M51, and at the same time drives the cover plate M10 to rotate to open and close the first opening M201.
  • the cover M10 and the cover driving mechanism M20 can open or close the first opening M201′.
  • the motion mechanism M22 of this embodiment may include a crank M221 and a first connecting rod M222.
  • One end of the crank M221 is fixedly connected with the output shaft M211 of the cover drive motor M21 so as to follow the rotation of the output shaft M211.
  • the control device M70 controls the movement of the cover driving motor M21
  • the output shaft M211 of the cover driving motor M21 rotates, and the crank M221 connected to the output shaft M211 also rotates correspondingly.
  • One end of the first connecting rod M222 is rotatably connected to an end of the crank M221 away from the output shaft M211, and the other end is connected to the cover plate M10.
  • the crank M221 rotates, the first connecting rod M222 is also driven, and the first connecting rod M222 is connected with the cover M10, so the cover M10 is also driven to move.
  • the rotation axis of the first connecting rod M222 is parallel to the rotation axis of the crank M221.
  • a cam is provided on the side of the first connecting rod M222, and the cam is clamped at the chute M51.
  • the output shaft M211 of the cover driving motor M21 is directly connected to one end of the crank M221, and the crank M221 rotates following the output shaft M211 of the cover driving motor M21.
  • One end of the first connecting rod M222 is rotatably connected to the other end of the crank M221, and the other end of the first connecting rod M222 is connected to the cover M10. Therefore, when the output shaft M211 of the cover drive motor M21 rotates, the cover M10 will It moves under the drive of the crank M221 and the first connecting rod M222.
  • the first connecting rod M222 is connected to the middle position of the cover plate M10 and is rotatably connected.
  • the cover plate M10 Since the first connecting rod M222 is provided with a cam, and the cam is restricted by the chute M51, the cover plate M10 will also move along a track parallel to the chute M51.
  • the chute M51 can just extend from the first opening M201 to the inside of the fender M200, the cover M10 will be driven by the crank M221 and the first connecting rod M222 to continuously move between the first opening M201 and the fender.
  • the inside of the M200 reciprocates.
  • the cover drive mechanism M20 of this embodiment only includes a cover drive motor M21 and a kinematic mechanism M22, and the kinematic mechanism M22 only includes a crank and a first connecting rod.
  • the cover drive mechanism M20 has a simple structure, a single driving force, and Simple, the purpose of the cover M10 opening and closing the first opening M201 can be achieved.
  • the number of sliding slots M51 in this embodiment is two, and the two sliding slots M51 are arranged as mirror images, and the first connecting rod M222 is located between the two sliding slots M51.
  • the cams are arranged on the left and right sides of the first connecting rod M222, and the sliding groove M51 is also located on the left and right sides of the first connecting rod M222.
  • the cam snaps into the chute M51.
  • the first connecting rod M222 moves, it receives the action of the sliding slot M51, and the position where the cam is provided on the first connecting rod M222 can only move along the sliding slot M51.
  • the design of the two slide grooves M51 and the two cams is more conducive to the stability of the movement of the cover plate M10 and avoids tilting or jamming during the movement.
  • the fender M200 is not a straight structure, but also has a bent structure.
  • the fender M200 is bent inward at the position above the first opening M201, and when the cover M10 is driven to move along the chute M51, since the cover M10 has a certain size, it is easy to integrate with other peripheral parts. Components appear to interfere with friction, etc. Therefore, if the cover M10 moves upward, the cover M10 needs to be rotated inward to an angle parallel to the plane of the fender M200 , which is more conducive to saving space.
  • the motion mechanism M22 of this embodiment may further include a second connecting rod M223, one end of the second connecting rod M223 is rotatably connected to the fixed frame M50, and the other end is rotatably connected to the cover plate M10.
  • the function of the second connecting rod M223 is mainly to drive the cover M10 to rotate during the movement of the cover M10 along the chute M51.
  • the second axis of the second connecting rod M223 is parallel to the first axis of the first connecting rod M222, so that when the cover M10 moves along the chute M51 driven by the cover drive motor M21, The cover plate M10 rotates under the action of the second connecting rod M223.
  • the second axis line is the axis line of the rotating shaft at the rotatable connection between the second connecting rod M223 and the cover plate M10
  • the first axis line is the axis of the rotating shaft at the rotatable connection between the first connecting rod M222 and the cover plate M10. heart line.
  • the cover M10 in this embodiment is driven by the second connecting rod M223, the cover M10 cannot move if the first axis coincides with the second axis. Therefore, the first axis in this embodiment The center line must be set parallel to the second axis center line.
  • the radar integrated system M100 is only connected to a second connecting rod M223 at the cover plate M10. The plate M10 is turned over while moving along a track parallel to the chute M51, so as to facilitate the opening and closing of the first opening M201 by the cover plate M10.
  • the integrated radar system M100 of this embodiment may also include a hinge rod M224, which is fixedly connected to the cover plate M10 and extends along a direction parallel to the axis of the second connecting rod M223.
  • One end of the second connecting rod M223 is rotatably connected to one end of the hinge rod M224, so that the cover M10 and the hinge rod M224 jointly rotate relative to the second connecting rod M223.
  • the hinge rod M224 is located inside the cover plate M10, so that when the cover plate M10 closes the first opening M201, the hinge rod M224 is located inside the fender M200, and the entire cover plate M10 covers the first opening M201, which is both beautiful and allows The cover plate M10 is in a sealed state with the first opening M201.
  • the number of the second connecting rods M223 can be two, the two second connecting rods M223 are parallel to each other, and are respectively located at the two ends of the hinge rod M224, the two second connecting rods M223 and the hinge rod M224 form a U-shaped structure.
  • the hinge rod M224 is arranged laterally on the inner side of the cover plate M10, and the two second connecting rods M223 are respectively rotatably connected to the left and right ends of the hinge rod M224, and the first connecting rod M222 is connected to the cover plate M10.
  • the inner middle position is rotatably connected, and the plane where the first connecting rod M222 is located is parallel to the plane where the second connecting rod M223 is located.
  • the radar device M30 in this embodiment is located near the first opening M201.
  • the radar driving mechanism M40 may include a radar driving motor M41 and a double link mechanism.
  • the radar drive motor M41 is connected to the control device M70, and the control device M70 controls the operation of the drive motor after receiving an instruction.
  • One end of the double-link mechanism is rotatably connected to the radar device M30, and the other end is rotatably connected to the fender M200.
  • the double-link mechanism drives the radar device M30 to face each other.
  • the fender M200 rotates to extend or retract the fender M200 from the first opening M201.
  • FIG. 2F is a schematic structural diagram of the connection of the radar device and the radar driving mechanism according to an embodiment of the present invention.
  • FIG. 2G is a schematic structural diagram of a radar device and a dual connection mechanism connection according to an embodiment of the present invention.
  • the radar integrated system M100 may include a radar device M30 and a radar driving mechanism M40, and the radar driving mechanism M40 may include a radar driving motor M41 and a double-link mechanism M42.
  • the motor M41 drives the double link mechanism M42 to move, and the double link mechanism M42 drives the radar device M30 to move, so that the radar device M30 can rotate relative to the fender M200 and extend or retract the fender M200 from the first opening M201 Therefore, the radar device M30 can protrude from the fender M200 when in use, and rotate the angle, so as to ensure that the measurement angle of the radar device M30 is not limited.
  • the double linkage mechanism M42 of this embodiment may include a first rotating shaft M421, a first swing arm M422, a second rotating shaft M423 and a second swing arm M424.
  • the first rotating shaft M421 is rotatably connected to the fender M200
  • the first rotating shaft M421 is connected to the radar driving motor M41 to rotate driven by the radar driving motor M41.
  • One end of the first swing arm M422 is fixedly connected to the first rotating shaft M421 so as to rotate around the axis of the first rotating shaft M421 when the first rotating shaft M421 rotates, and the other end thereof is rotatably connected to the radar device M30.
  • the second rotating shaft M423 is rotatably connected to the fender M200, and is arranged parallel to the first rotating shaft M421.
  • One end of the second swing arm M424 is rotatably connected to the radar device M30, and the other end is fixedly connected to the second rotating shaft M423.
  • the double link mechanism M42 only includes the first rotating shaft M421, the first swing arm M422, the second rotating shaft M423 and the second swing arm M424, which has a simple structure and a clear movement process.
  • the double-linkage mechanism M42 is connected with the radar device M30, and the double-linkage mechanism M42 can drive the radar device M30 to move under the drive of the radar drive motor M41, so that the movement and rotation of the radar device M30 can be carried out simultaneously, ensuring that the radar device M30 The detection angle meets the requirements, and also achieves the built-in purpose of the radar device M30.
  • the number of the first swing arms M422 in this embodiment is two, and the two first swing arms M422 are arranged in parallel. Side swivel connection.
  • the two first swing arms M422 are fixedly connected to the first rotating shaft M421 and arranged up and down. When the first rotating shaft M421 rotates, the two first swing arms M422 move simultaneously, thereby pushing the radar device M30 to move.
  • the design of the two first swing arms M422 can make the torque transmission larger and more stable, and make the movement of the radar more stable.
  • the number of the second swing arms M424 in this embodiment is two, and the two second swing arms M424 are arranged in parallel. Side swivel connection.
  • the number of the second swing arm M424 is designed to be two, which can also make the connection between the radar device M30 and the second rotating shaft M423 stronger.
  • the two second swing arms M424 are respectively located on the sides of the two first swing arms M422, and when the first swing arms M422 move under the driving device, the first swing arms M422 drive the radar The device M30 moves, and the radar device M30 then drives the second swing arm M424 to move, and the second swing arm M424 rotates relative to the second rotating shaft M423, thereby realizing the turning movement of the radar device M30.
  • the length of the second swing arm M424 in this embodiment is not equal to the length of the first swing arm M422, or the distance between the first rotation axis M421 and the second rotation axis M423 is not equal to the target distance , the target distance is the distance between the hinge point of the first swing arm M422 and the radar mechanism and the hinge point of the second swing arm M424 and the radar mechanism.
  • the double hinge mechanism in this embodiment ultimately needs to realize the turning motion of the radar device M30, when the length of the first swing arm M422 is equal to the length of the second swing arm M424, the first rotating shaft M421 The distance from the second rotating shaft M423 cannot be equal to the target distance. Or when the distance between the first rotation axis M421 and the second rotation axis M423 is equal to the target distance, the length of the first swing arm M422 and the length of the second swing arm M424 cannot be equal.
  • the radar device M30 can only move in translation but cannot rotate.
  • the movement trajectory of the radar device M30 is not only related to the length of the swing arm and the distance from the end of the swing arm, but also related to the relative positions of the radar device M30, the rotating shaft and the first opening M201.
  • the radar device M30 is located on the left side of the first rotating shaft M421.
  • the radar device M30 When the first rotating shaft M421 rotates counterclockwise, the radar device M30 as a whole moves out of the fender M200, and if the first rotating shaft M421 clockwise When turning, the radar device M30 as a whole moves into the fender M200.
  • the radar device M30 is located on the right side of the first rotating shaft M421, when the first rotating shaft M421 rotates counterclockwise, the radar device M30 as a whole moves into the fender M200, and if the first rotating shaft M421 rotates clockwise, the radar device M30 The device M30 moves out of the fender M200 as a whole.
  • the length of the first swing arm M422 in this embodiment is greater than the length of the second swing arm M424, and the distance between the first rotation axis M421 and the second rotation axis M423 is smaller than the target distance.
  • the radar device M30 moves from the inside of the fender M200 to the outside , and at the same time the radar device M30 will rotate counterclockwise from top to bottom.
  • Fig. 2H is a schematic structural diagram of the connection between the control device and the controlled device according to an embodiment of the present invention.
  • the radar integrated system M100 of this embodiment may also include a cleaning device M80, which is arranged inside the fender M200 and located on the side of the radar device M30 away from the fender M200, for Controlled activation to clean radar installation M30.
  • the radar device M30 since the radar device M30 is retracted to the inside of the fender M200, it will also rotate to the inside of the fender M200. If the radar device M30 is dirty by dust or sewage during use, the cleaning device M80 can be used to clean the radar device M30, so as to ensure that the radar device M30 can better detect the surrounding environment of the vehicle and avoid misjudgment. appear.
  • the cleaning device M80 of this embodiment may include a water storage box M81, a pipeline M82 and a nozzle M83.
  • the water storage box M81 is used for storing the cleaning liquid required for cleaning the radar device M30.
  • One end of the pipeline M82 communicates with the water storage box M81 and is located in the cleaning liquid, and a water pump M821 is also arranged at the pipeline M82.
  • the nozzle M83 is connected to the other end of the pipeline M82, and a solenoid valve M831 is arranged at the nozzle M83.
  • the water pump M821 and the solenoid valve M831 are activated in a controlled manner to spray the cleaning liquid in the water storage box M81 on the radar device M30.
  • control device M70 is also connected to the water pump M821 and the solenoid valve M831, and the control device M70 is configured to control the opening of the solenoid valve M831 and the water pump M821 after receiving an instruction to clean the radar device M30, so that the cleaning liquid is discharged from the nozzle M83 is sprayed out, and the water pump M821 and the solenoid valve M831 are controlled to be closed after the third preset time.
  • control device M70 when the control device M70 receives an instruction to clean the radar device M30, before controlling the solenoid valve M831 and the water pump M821 to open, it can also first control the radar drive mechanism M40 to drive the radar device M30 to rotate to face the cleaning. The location of the device. Then control and open the water pump M821 and the solenoid valve M831 to clean the radar device M30. And after the radar device M30 is cleaned, the radar device M30 is controlled to rotate to the original position.
  • a flow sensor M832 is provided at the nozzle M83 of this embodiment, and the flow sensor M832 is connected with the control device M70 for detecting the flow of the liquid flowing through the nozzle M83.
  • the radar integration system M100 also includes an alarm device M90 connected to the control device M70.
  • the control device M70 is configured to control the alarm device M90 to give an alarm when the flow sensor M832 monitors that the flow rate of the liquid flowing through the nozzle M83 is less than a preset flow rate.
  • the alarm device M90 gives an alarm and prompts personnel to add cleaning liquid.
  • the integrated radar system M100 of this embodiment may further include a housing M60.
  • the housing M60 is provided with a second opening M61
  • the housing M60 is fixedly disposed inside the fender M200
  • the second opening M61 is disposed correspondingly to the first opening M201.
  • the fixed frame M50 is disposed in the casing M60, and the first rotating shaft M421 and the second rotating shaft M423 are both rotatably connected to the fixed frame M50.
  • the fixed frame M50 is arranged in the casing M60, and the casing M60 is fixedly arranged at the fender M200, when the first rotating shaft M421 and the second rotating shaft M423 are rotatably connected to the fixed frame M50, It is equivalent to that the first rotating shaft M421 and the second rotating shaft M423 are rotatably connected to the fender M200 through the fixed frame M50 and the housing M60.
  • the housing M60 is arranged at the position where the first opening M201 and the second opening M61 cooperate with each other and are sealed, so that when the cover plate M10 is at the first opening M201, no dust or sewage from the outside can enter the housing M60, nor can it It is impossible to contaminate any parts in the housing M60, avoiding the influence on the parts in the housing M60, and prolonging the service life.
  • an inner plate matching with the second opening M61 can be provided on the inner side of the cover plate M10, the inner plate and the cover plate M10 can move simultaneously, and both are driven by the cover plate driving mechanism M20.
  • the cover plate driving mechanism M20 drives the cover plate M10 to close the first opening M201, the inner plate also just closes the second opening M61, so as to provide double protection and prevent external pollutants from entering the inside of the housing M60.
  • the cover plate M10 and the cover plate drive mechanism M20 are first set to the open state through the equipment, and then the worker raises the radar device M30 from bottom to top by lifting the tooling.
  • the installation position is temporarily fixed to the shotgun of the body through the pre-hanging structure, and then the worker connects the wiring harness of the front cabin to the wiring harness of the radar device, and then fastens the radar device M30 to the shotgun of the body through an adaptive nut, and powers on the device. Close the cover plate M10, and finally the worker adjusts the adaptive nut to adjust the gap surface difference between the cover plate M10 and the fender M200.
  • this embodiment also provides a vehicle, which may include the radar integration system M100 described above.
  • FIG. 3A is a schematic structural view of a radar integrated system with a reversible opening and closing of the cover according to an embodiment of the present invention arranged at the fender;
  • FIG. 3B is a cover according to an embodiment of the present invention Schematic exploded view of the reversible opening and closing radar integrated system.
  • this embodiment provides a radar integrated system N100 with reversible opening and closing of the cover.
  • the integrated system N100 is provided at the fender N200 of the vehicle.
  • the fender N200 of the vehicle in this embodiment includes multiple fenders N200.
  • fenders N200 of the vehicle which are respectively located above the four tires.
  • Each fender N200 is provided with a first opening N201, and the first opening N201 is located above the wheel arch.
  • Each first opening N201 can be provided with a radar integrated system N100 with a reversible opening and closing cover.
  • the following is an example of a radar integrated system N100 with a reversible opening and closing cover.
  • the integrated radar system N100 with reversible opening and closing of the cover in this embodiment may include a fixed frame N10, a cover N20, a cover driving mechanism N30 and a radar assembly N40.
  • the fixed frame N10 is fixedly connected with the fender N200, and the fixed frame N10 is provided with a chute N11.
  • the cover driving mechanism N30 is located in the fixed frame N10, and the cover driving mechanism N30 is connected with the cover N20 for controlled movement to drive the cover N20 to open or close the first opening N201.
  • the radar assembly N40 is configured to protrude out of the fender N200 from the first opening N201 in a controlled manner when the first opening N201 is opened.
  • the cover N20 and the cover drive mechanism N30 can open and close the first opening N201, so that when the radar assembly N40 is in the first opening N201 Only when it is opened will it be detected by the radar and it will protrude outside the fender N200. Therefore, through the design of the cover plate N20 and the cover plate drive mechanism N30 in this embodiment, when the radar component N40 needs to extend out of the fender N200 from the first opening N201 , the cover driving mechanism N30 drives the cover N20 to close the first opening N201, without affecting the normal use of the radar component N40.
  • the cover plate driving mechanism N30 drives the cover plate N20 to close the first opening N201, so as to prevent the radar assembly N40 from being directly exposed outside for a long time and being exposed to external dust or sewage.
  • the cover plate N20 also prevents the outside from touching the radar component, avoiding damage to the radar component N40, and prolonging the service life of the radar component N40.
  • the motion mechanism N32 of this embodiment may include a crank N321 and a first connecting rod N322.
  • One end of the crank N321 is fixedly connected with the output shaft N311 of the cover drive motor N31 to follow the rotation of the output shaft N311.
  • One end of the first connecting rod N322 is rotatably connected to the end of the crank N321 away from the output shaft N311, and the other end is connected to the cover plate N20.
  • the rotating shaft of the first connecting rod N322 is parallel to the rotating shaft of the crank N321.
  • the side of the first connecting rod N322 is provided with a cam, and the cam is clamped at the chute N11.
  • the output shaft N311 of the cover driving motor N31 is directly connected to one end of the crank N321, and the crank N321 rotates following the output shaft N311 of the cover driving motor N31.
  • One end of the first connecting rod N322 is rotatably connected to the other end of the crank N321, and the other end of the first connecting rod N322 is connected to the cover N20. Therefore, when the output shaft N311 of the cover driving motor N31 rotates, the cover N20 will It moves under the drive of the crank N321 and the first connecting rod N322. Since the first connecting rod N322 is provided with a cam, and the cam is restricted by the chute N11, the cover plate N20 will also move along a track parallel to the chute N11.
  • the cover drive mechanism N30 of this embodiment only includes a cover drive motor N31 and a kinematic mechanism N32, and the kinematic mechanism N32 only includes a crank N321 and a first connecting rod N322.
  • the cover drive mechanism N30 has a simple structure and a single driving force. The movement process is simple, and the purpose of opening and closing the first opening N201 of the cover plate N20 can be achieved.
  • the number of sliding slots N11 in this embodiment is two, and the two sliding slots N11 are arranged as mirror images, and the first connecting rod N322 is located between the two sliding slots N11.
  • the cams are arranged on the left and right sides of the first connecting rod N322, and the chute N11 is also located on the left and right sides of the first connecting rod N322.
  • the cam snaps into the chute N11.
  • the first connecting rod N322 moves, it receives the action of the sliding slot N11, and the position where the cam is provided on the first connecting rod N322 can only move along the sliding slot N11.
  • the design of the two chute N11 and the two cams in this embodiment is more conducive to the stability of the movement of the cover plate N20 and avoids tilting or jamming during the movement.
  • the fender N200 is not a straight structure, but also has a bent structure.
  • the cover plate N20 is driven to move along the chute N11, because the cover plate N20 has a certain size, it is easy to cause interference and friction with other surrounding components. Therefore, in actual use, the cover N20 needs to rotate during the translational movement, so as to facilitate the opening and closing of the first opening N201 by the cover N20.
  • the motion mechanism N32 of this embodiment may further include a second link N323, one end of the second link N323 is rotatably connected to the fixed frame, and the other end is rotatably connected to the cover plate N20.
  • the second axis line of the second connecting rod N323 is parallel to the first axis line of the first connecting rod N322, so that when the cover plate N20 moves along the chute N11 driven by the cover drive motor N31, The cover plate N20 rotates under the action of the second connecting rod N323; wherein, the second axis line is the axis line of the rotating shaft at the rotatable connection between the second connecting rod N323 and the cover plate N20, and the first axis line is the first axis line.
  • the cover plate N20 in this embodiment is driven by the second connecting rod N323, the cover plate N20 cannot move if the first axis coincides with the second axis. Therefore, the first axis in this embodiment The center line must be set parallel to the second axis center line.
  • only one second connecting rod N323 is connected to the cover plate N20. Under the joint action of the first connecting rod N322 and the second connecting rod N323, the cover plate is While the N20 moves along a track parallel to the chute N11, it also overturns, so that the cover plate N20 opens and closes the first opening N201 conveniently.
  • the radar integrated system N100 with reversible opening and closing of the cover plate of this embodiment may also include a hinge rod N324, which is fixedly connected with the cover plate N20, and along the rotation axis of the second connecting rod N323 Extending in a direction parallel to the axis, one end of the second connecting rod N323 is rotatably connected to one end of the hinge rod N324, so that the cover plate N20 and the hinge rod N324 jointly rotate relative to the second connecting rod N323.
  • the hinge rod N324 is located on one side of the cover N20, so that when the cover N20 closes the first opening N201, the hinge rod N324 is located inside the fender N200.
  • the number of the second connecting rods N323 can be two, the two second connecting rods N323 are parallel to each other, and are respectively located at the two ends of the hinge rod N324, the two second connecting rods N323 and the hinge rod N324 form a U-shaped structure.
  • the hinge rod N324 is arranged laterally on the inner side of the cover plate N20, and the two second connecting rods N323 are respectively rotatably connected to the left and right ends of the hinge rod N324, and the first connecting rod N322 is connected to the cover plate N20.
  • the inner middle position is rotatably connected, and the plane where the first connecting rod N322 is located is parallel to the plane where the second connecting rod N323 is located.
  • Fig. 3E is a schematic structural view of the first opening of the cover plate according to an embodiment of the present invention, and the radar device protrudes from the fender through the first opening;
  • Fig. 3F is a schematic diagram of the radar device and the radar driver according to an embodiment of the present invention Schematic structural diagram of mechanism connection;
  • FIG. 3G is a schematic structural diagram of a radar device and a dual-connection mechanism connection according to an embodiment of the present invention.
  • the radar component N40 of the integrated radar system N100 with a reversible cover in this embodiment may include a radar device N41 and a radar driving mechanism N42. Wherein, the radar device N41 is located near the first opening N201.
  • the radar driving mechanism N42 may include a radar driving motor N43 and a double linkage mechanism. One end of the double linkage mechanism is rotatably connected to the radar device N41, and the other end is rotatably connected to the fender N200. When the double link mechanism moves, the double link mechanism drives the radar device N41 to rotate relative to the fender N200 to extend or retract the fender N200 from the first opening N201.
  • the radar integrated system N100 with a reversible opening and closing cover may include a radar device N41 and a radar driving mechanism N42, and the radar driving mechanism N42 may include a radar driving motor N43 and a double-linkage mechanism N44, and the radar driving motor N43
  • the double link mechanism N44 is driven to move, and the double link mechanism N44 drives the radar device N41 to move, so that the radar device N41 can rotate relative to the fender N200 to extend or retract the fender N200 from the first opening N201.
  • the double linkage mechanism N44 of this embodiment may include a first rotating shaft N441, a first swing arm N442, a second rotating shaft N443 and a second swing arm N444.
  • the first rotating shaft N441 is rotatably connected to the fender N200
  • the first rotating shaft N441 is connected to the radar driving motor N43 to rotate under the drive of the radar driving motor N43.
  • One end of the first swing arm N442 is fixedly connected to the first rotating shaft N441 so as to rotate around the axis of the first rotating shaft N441 when the first rotating shaft N441 rotates, and the other end is rotatably connected to the radar device N41.
  • the second rotating shaft N443 is rotatably connected to the fender N200, and is arranged parallel to the first rotating shaft N441.
  • One end of the second swing arm N444 is rotatably connected to the radar device N41, and the other end is fixedly connected to the second rotating shaft N443.
  • the double link mechanism N44 only includes the first rotating shaft N441, the first swing arm N442, the second rotating shaft N443 and the second swing arm N444, which has a simple structure and a clear movement process.
  • the double-link mechanism N44 is connected with the radar device N41, and the double-link mechanism N44 can drive the radar device N41 to move under the drive of the radar drive motor N43, so that the movement and rotation of the radar device N41 can be carried out simultaneously, ensuring that the radar device N41 The detection angle meets the requirements, and also achieves the built-in purpose of the radar device N41.
  • the number of the first swing arms N442 in this embodiment is two, and the two first swing arms N442 are arranged in parallel. Side swivel connection.
  • the two first swing arms N442 are fixedly connected to the first rotating shaft N441 and arranged up and down. When the first rotating shaft N441 rotates, the two first swing arms N442 move simultaneously, thereby pushing the radar device N41 to move.
  • the number of the second swing arms N444 in this embodiment is two, and the two second swing arms N444 are arranged in parallel, and the two second swing arms N444 are respectively connected to the upper and lower sides of the radar device N41. Side swivel connection.
  • the two second swing arms N444 are respectively located on the sides of the two first swing arms N442, and when the first swing arms N442 move under the driving device, the first swing arms N442 drive the radar The device N41 moves, and the radar device N41 then drives the second swing arm N444 to move, and the second swing arm N444 rotates relative to the second rotating shaft N443, thereby realizing the overturning movement of the radar device N41.
  • the length of the second swing arm N444 in this embodiment is not equal to the length of the first swing arm N442, or the distance between the first rotation axis N441 and the second rotation axis N443 is not equal to the target distance , the target distance is the distance between the hinge point of the first swing arm N442 and the radar mechanism and the hinge point of the second swing arm N444 and the radar mechanism.
  • the double hinge mechanism in this embodiment finally needs to realize the turning motion of the radar device N41, when the length of the first swing arm N442 is equal to the length of the second swing arm N444, the distance between the first rotation axis N441 and the second rotation axis N443 The distance between and the target distance cannot be equal. Or when the distance between the first rotation axis N441 and the second rotation axis N443 is equal to the target distance, the length of the first swing arm N442 and the length of the second swing arm N444 cannot be equal.
  • the radar device N41 can only translate but cannot rotate.
  • the movement trajectory of the radar device N41 is not only related to the length of the swing arm and the distance from the end of the swing arm, but also related to the relative positions of the radar device N41, the rotating shaft and the first opening N201.
  • the radar device N41 is located on the left side of the first rotating shaft N441.
  • the radar device N41 rotates counterclockwise, the radar device N41 as a whole moves out of the fender N200, and if the first rotating shaft N441 clockwise When turning, the radar device N41 moves inwardly of the fender N200 as a whole.
  • the radar device N41 is located on the right side of the first rotating shaft N441, then when the first rotating shaft N441 rotates counterclockwise, the radar device N41 as a whole moves into the fender N200, and if the first rotating shaft N441 rotates clockwise, the radar device N41 The device N41 moves out of the fender N200 as a whole.
  • the length of the first swing arm N442 in this embodiment is greater than the length of the second swing arm N444, and the distance between the first rotation axis N441 and the second rotation axis N443 is smaller than the target distance.
  • the radar device N41 moves from the inside of the fender N200 to the outside , and at the same time the radar device N41 will rotate counterclockwise from top to bottom.
  • the integrated radar system N100 with a reversible cover of this embodiment may further include a housing N50.
  • the housing N50 is provided with a second opening N51
  • the housing N50 is fixedly disposed inside the fender N200
  • the second opening N51 is disposed corresponding to the first opening N201.
  • the fixed frame N10 is disposed in the housing N50, and the first rotating shaft N441 and the second rotating shaft N443 are both rotatably connected to the fixed frame N10.
  • the fixed frame N10 is arranged in the casing N50, and the casing N50 is fixedly arranged at the fender N200, when the first rotating shaft N441 and the second rotating shaft N443 are rotatably connected to the fixed frame N10, It is equivalent to that the first rotating shaft N441 and the second rotating shaft N443 are rotatably connected to the fender N200 through the fixed frame N10 and the housing N50.
  • the housing N50 is arranged at the position where the first opening N201 and the second opening N51 cooperate and seal each other, so that when the cover plate N20 is at the first opening N201, no dust or sewage from the outside can enter the housing N50, nor can it It is impossible to contaminate any parts in the housing N50, avoiding influence on the parts in the housing N50, and prolonging the service life.
  • the radar integrated system with reversible opening and closing of the cover plate N100 radar integrated system with reversible opening and closing of the cover plate of this embodiment may also include a cleaning device (not shown in the figure), which is arranged on Inside the housing N50, and located on the side of the radar device N41 away from the fender N200, for controlled activation to clean the radar device N41.
  • a cleaning device not shown in the figure
  • the radar device N41 since the radar device N41 is retracted to the inside of the fender N200, it will also rotate to the inside of the fender N200. If the radar device N41 is dirty by dust or sewage during use, the cleaning device can be used to clean the radar device N41, so as to ensure that the radar device N41 can better detect the surrounding environment of the vehicle and avoid misjudgment. Appear.
  • the cleaning device of this embodiment may include a water storage box, a pipeline and a nozzle.
  • the water storage box is used for storing the cleaning liquid required for cleaning the radar device N41.
  • One end of the pipeline communicates with the water storage box and is located in the cleaning liquid, and a water pump is also arranged at the pipeline.
  • the nozzle is connected with the other end of the pipeline, and a solenoid valve is arranged at the nozzle.
  • the water pump and the solenoid valve are activated in a controlled manner to spray the cleaning liquid in the water storage box on the radar device N41.
  • the nozzle faces the radar device N41.
  • the radar device N41 can be further rotated to face the position of the nozzle, so as to ensure that the liquid sprayed from the nozzle can reach the radar device N41 smoothly.
  • the cover plate N20 and the cover plate driving mechanism N30 are first set to the open state through the equipment, and then the worker lifts the tooling to lift the radar device N41 Lift it to the installation position from bottom to top and temporarily fix it to the shotgun of the body through the pre-hanging structure, then the worker connects the harness of the front cabin with the harness of the radar device N41, and then fastens the radar device N41 to the body through an adaptive nut On the shotgun, power on the equipment to close the cover N20, and finally the worker adjusts the self-adaptive nut to adjust the gap between the cover N20 and the fender N200.
  • this embodiment also provides a vehicle, which may include a radar integrated system N100 whose upper cover can be turned over and closed.
  • FIG. 4A is a schematic structural view of the first opening with the cover plate opened and the radar device protruding from the fender according to an embodiment of the present invention.
  • this embodiment provides a radar integrated system P100 with reversible movement of the radar, which is installed on the vehicle Fenders at P200.
  • the fender P200 of the vehicle in this embodiment includes multiple fenders P200. Specifically, in a general car, there are four fenders P200 of the vehicle, which are respectively located above the four tires. Each fender P200 is provided with a first opening P201, and the opening is located above the wheel arch P300.
  • a radar integrated system P100 with reversible movement of the radar can be arranged at each first opening P201.
  • a radar integrated system P100 with reversible movement of the radar is taken as an example for illustration.
  • Fig. 4B is a schematic exploded diagram of a radar integrated system with reversible movement of the radar according to an embodiment of the present invention
  • Fig. 4C is a schematic structural diagram of the connection of the radar device and the radar drive mechanism according to an embodiment of the present invention
  • Fig. 4D is A schematic structural diagram of a radar device and a dual connection mechanism connection according to an embodiment of the present invention.
  • the radar integrated system P100 with a reversible movement of the radar may include a radar device P10 and a radar driving mechanism P20 . Wherein, the radar device P10 is located near the first opening P201.
  • the radar drive mechanism P20 may include a radar drive motor P21 and a double linkage mechanism P22. One end of the double linkage mechanism P22 is rotatably connected to the radar device P10, and the other end is rotatably connected to the fender P200.
  • the radar drive motor P21 is controlled When the ground drives the double-link mechanism P22 to move, the double-link mechanism P22 drives the radar device P10 to flip relative to the fender P200 to extend or retract the fender P200 from the first opening P201.
  • the radar integrated system P100 with reversible radar movement may include a radar device P10 and a radar drive mechanism P20, and the radar drive mechanism P20 may include a radar drive motor P21 and a double linkage mechanism P22, and the radar drive motor P21 is used to drive the two The link mechanism P22 moves, and the double link mechanism P22 drives the radar device P10 to move, so that the radar device P10 can rotate relative to the fender P200 to extend or retract from the first opening P201 to the fender P200. Therefore, in this embodiment, the radar drive motor P21 is used to drive the radar device P10 to move and rotate.
  • the radar drive motor P21 can be used to drive the radar device P10 to rotate so as to increase the detection angle of the radar device P10.
  • the radar drive motor P21 can also allow the radar device P10 to extend out of the fender P200 from the first opening P201 when needed, and retract into the fender P200 from the first opening P201 when not needed, thereby avoiding radar The problem that the device P10 has been exposed outside the fender P200 and is affected by dust and sensitivity.
  • the double linkage mechanism P22 of this embodiment may include a first rotating shaft P221, a first swing arm P222, a second rotating shaft P223 and a second swing arm P224.
  • the first rotating shaft P221 is rotatably connected to the fender P200, and the first rotating shaft P221 is connected to the radar driving motor P21 to rotate driven by the radar driving motor P21.
  • One end of the first swing arm P222 is fixedly connected to the first rotating shaft P221 so as to rotate around the axis of the first rotating shaft P221 when the first rotating shaft P221 rotates, and the other end thereof is rotatably connected to the radar device P10 .
  • the second rotating shaft P223 is rotatably connected to the fender P200, and is arranged parallel to the first rotating shaft P221.
  • One end of the second swing arm P224 is rotatably connected to the radar device P10, and the other end is fixedly connected to the second rotating shaft P223.
  • the double link mechanism P22 only includes the first rotating shaft P221 , the first swing arm P222 , the second rotating shaft P223 and the second swing arm P224 , which has a simple structure and a clear movement process.
  • the double-link mechanism P22 is connected with the radar device P10, and the double-link mechanism P22 can drive the radar device P10 to move under the drive of the radar drive motor P21, so that the movement and rotation of the radar device P10 can be carried out simultaneously, ensuring that the radar device P10 The detection angle meets the requirements, and also achieves the purpose of the built-in radar device P10.
  • the number of the first swing arms P222 in this embodiment is two, and the two first swing arms P222 are arranged in parallel. Side swivel connection.
  • the two first swing arms P222 are fixedly connected to the first rotating shaft P221 and arranged up and down. When the first rotating shaft P221 rotates, the two first swing arms P222 move simultaneously, thereby pushing the radar device P10 to move.
  • the number of the second swing arms P224 in this embodiment is two, and the two second swing arms P224 are arranged in parallel, and the two second swing arms P224 are respectively connected to the upper and lower sides of the radar device P10. Side swivel connection.
  • the two second swing arms P224 are respectively located on the sides of the two first swing arms P222, and when the first swing arms P222 move under the driving device, the first swing arms P222 drive the radar The device P10 moves, and the radar device P10 then drives the second swing arm P224 to move, and the second swing arm P224 rotates relative to the second rotating shaft P223, thereby realizing the turning movement of the radar device P10.
  • the length of the second swing arm P224 in this embodiment is not equal to the length of the first swing arm P222, or the distance between the first rotation axis P221 and the second rotation axis P223 is not equal to the target distance , the target distance is the distance between the hinge point of the first swing arm P222 and the radar mechanism and the hinge point of the second swing arm P224 and the radar mechanism.
  • the double hinge mechanism in this embodiment finally needs to realize the turning motion of the radar device P10, when the length of the first swing arm P222 and the length of the second swing arm P224 are equal, the distance between the first rotation axis P221 and the second rotation axis P223 The distance between and the target distance cannot be equal. Or, when the distance between the first rotation axis P221 and the second rotation axis P223 is equal to the target distance, the length of the first swing arm P222 and the length of the second swing arm P224 cannot be equal.
  • the radar device P10 can only move in translation but cannot rotate.
  • the trajectory of the radar device P10 is not only related to the length of the swing arm and the distance from the end of the swing arm, but also related to the relative positions of the radar device P10, the rotating shaft and the first opening P201.
  • the radar device P10 is located on the left side of the first rotating shaft P221.
  • the radar device P10 moves outward from the fender P200 as a whole. If the first rotating shaft P221 clockwise When turning, the radar device P10 as a whole moves into the fender P200.
  • the radar device P10 is located on the right side of the first rotating shaft P221, when the first rotating shaft P221 rotates counterclockwise, the radar device P10 as a whole moves into the fender P200, and if the first rotating shaft P221 rotates clockwise, the radar device P10 The whole device P10 moves outward of the fender P200.
  • the length of the first swing arm P222 in this embodiment is greater than the length of the second swing arm P224, and the distance between the first rotation axis P221 and the second rotation axis P223 is smaller than the target distance.
  • the radar device P10 moves from inside to outside of the fender P200 , and at the same time the radar device P10 will rotate counterclockwise from top to bottom.
  • the radar integrated system P100 with reversible movement of the radar in this embodiment may further include a casing P30 and a fixed frame P40.
  • the housing P30 is provided with a second opening P31
  • the housing P30 is fixedly disposed inside the fender P200
  • the second opening P31 is disposed corresponding to the first opening P201.
  • the fixed frame P40 is disposed in the casing P30, and the first rotating shaft P221 and the second rotating shaft P223 are both rotatably connected to the fixed frame P40.
  • the fixed frame P40 is arranged in the casing P30, and the casing P30 is fixedly arranged at the fender P200, when the first rotating shaft P221 and the second rotating shaft P223 are rotatably connected to the fixed frame P40, It is equivalent to that the first rotating shaft P221 and the second rotating shaft P223 are rotatably connected to the fender P200 through the fixed frame P40 and the housing P30.
  • Fig. 4E is a schematic structural diagram of a radar integrated system with a reversible movement of the radar according to an embodiment of the present invention arranged at the fender;
  • Fig. 4F is a schematic diagram of the connection of the cover plate and the drive mechanism of the cover plate according to an embodiment of the present invention sex structure diagram.
  • the radar integrated system P100 with a reversible movement of the radar in this embodiment may further include a cover plate P60 and a cover plate driving mechanism P50 .
  • the cover plate driving mechanism P50 is located in the housing P30, and the cover plate driving mechanism P50 is connected with the cover plate P60 for controlled movement to drive the cover plate P60 to open or close the first opening P201.
  • a sliding slot P41 is provided at the fixing frame P40 .
  • the cover drive mechanism P50 includes a cover drive motor P51 and a motion mechanism P52. One end of the motion mechanism P52 is connected to the cover drive motor P51 and driven by the cover drive motor P51, and the other end is connected to the cover P60. Driven by the plate driving motor P51, the cover plate P60 is driven to move along the chute P41, and at the same time, the cover plate P60 is driven to rotate to open and close the first opening P201.
  • the cover plate drive mechanism P50 drives The cover plate P60 closes the first opening P201, and when the radar device P10 retracts from the first opening P201 into the fender P200, the cover plate driving mechanism P50 drives the cover plate P60 to close the first opening P201, which will neither hinder the radar device
  • the normal use and detection of the P10 will not allow the radar device P10 to be polluted by dust or sewage entering the inside of the fender P200 from the first opening P201 when not in use.
  • the motion mechanism P52 of this embodiment may include a crank P521 and a first connecting rod P522.
  • One end of the crank P521 is fixedly connected with the output shaft P511 of the cover driving motor P51 so as to follow the rotation of the output shaft P511.
  • One end of the first connecting rod P522 is rotatably connected to the end of the crank P521 away from the output shaft P511, and the other end is connected to the cover plate P60.
  • the rotating shaft of the first connecting rod P522 is parallel to the rotating shaft of the crank P521.
  • the side of the first connecting rod P522 is provided with a cam, and the cam is clamped at the chute P41.
  • the output shaft P511 of the cover drive motor P51 is directly connected to one end of the crank P521, and the crank P521 rotates following the output shaft P511.
  • one end of the first connecting rod P522 is rotatably connected to the other end of the crank P521, and the other end of the first connecting rod P522 is connected to the cover plate P60, so when the output shaft P511 of the cover drive motor P51 rotates, the crank P521 And the movement under the drive of the first connecting rod P522. Since the first connecting rod P522 is provided with a cam, and the cam is restricted by the chute P41, the cover plate P60 will also move along a track parallel to the chute P41.
  • the cover P60 When the chute P41 can just extend from the first opening P201 to the inside of the fender P200, the cover P60 will be driven by the crank P521 and the first connecting rod P522 to continuously move between the first opening P201 and the fender.
  • the inside of the P200 reciprocates.
  • the number of sliding slots P41 in this embodiment is two, the two sliding slots P41 are arranged as mirror images, and the first connecting rod P522 is located between the two sliding slots P41.
  • the design of the two chute P41 and the two cams in this embodiment is more conducive to the stability of the movement of the cover plate P60 and avoids the situation of tilting or jamming during the movement.
  • the motion mechanism P52 of this embodiment may further include a second link P523, one end of the second link P523 is rotatably connected to the fixed frame P40, and the other end is rotatably connected to the cover plate P60.
  • the second axis of the second connecting rod P523 is parallel to the first axis of the first connecting rod P522, so that when the cover P60 moves along the chute P41 driven by the cover drive motor P51, The cover plate P60 rotates under the action of the second connecting rod P523; wherein, the second axis line is the axis line of the rotating shaft at the rotatable connection between the second connecting rod P523 and the cover plate P60, and the first axis line is the first axis line.
  • the cover plate P60 in this embodiment is driven by the second connecting rod P523 to turn over, if the first axis line coincides with the second axis line, the cover plate P60 cannot move. Therefore, the first axis in this embodiment The center line must be set parallel to the second axis center line.
  • the cover P60 moves along a trajectory parallel to the chute P41 and at the same time turns over. It is convenient for the cover plate P60 to open and close the first opening P201.
  • the radar integrated system P100 of the present embodiment can also include a hinge rod P524, which is fixedly connected to the cover plate P60 and parallel to the axis of the second connecting rod P523.
  • One end of the second connecting rod P523 is rotatably connected to one end of the hinge rod P524, so that the cover P60 and the hinge rod P524 jointly rotate relative to the second connecting rod P523.
  • the hinge rod P524 is located on one side of the cover P60, so that when the cover P60 closes the first opening P201, the hinge rod P524 is located inside the fender P200.
  • the number of the second connecting rods P523 is two, the two second connecting rods P523 are parallel to each other, and are respectively located at the two ends of the hinge rod P524, and the two second connecting rods P523 and the hinge rod P524 form a U font structure.
  • the hinge rod P524 is arranged laterally on the inner side of the cover plate P60, and the two second connecting rods P523 are respectively rotatably connected to the left and right ends of the hinge rod P524, and the first connecting rod P522 is connected to the cover plate P60.
  • the inner middle position is rotatably connected, and the plane where the first connecting rod P522 is located is parallel to the plane where the second connecting rod P523 is located.
  • Fig. 4G is a schematic structural diagram of the connection between the control device and the controlled device according to an embodiment of the present invention.
  • the radar integrated system P100 with radar reversible movement in this embodiment may also include a cleaning device P70, which is arranged in the casing P30 and is located far away from the radar device P10.
  • a cleaning device P70 which is arranged in the casing P30 and is located far away from the radar device P10.
  • One side of the fender P200 for controlled activation to wash the radar unit P10.
  • the radar device P10 since the radar device P10 is retracted to the inside of the fender P200, it will also rotate to the inside of the fender P200. If the radar device P10 is dirty by dust or sewage during use, the cleaning device P70 can be used to clean the radar device P10, so as to ensure that the radar device P10 can better detect the surrounding environment of the vehicle and avoid misjudgment, etc. appear.
  • the cleaning device P70 of this embodiment may include a water storage box P71, a pipeline P72 and a nozzle (not shown in the figure).
  • the water storage box P71 is used for storing the cleaning liquid required for cleaning the radar device P10.
  • One end of the pipeline P72 communicates with the water storage box P71 and is located in the cleaning liquid.
  • the nozzle is connected to the other end of the pipeline P72.
  • the nozzle is provided with a water pump P721 and a solenoid valve P731. The water pump P721 and the solenoid valve P731 are controlled and activated to spray the cleaning liquid in the water storage box P71 on the radar device P10.
  • the nozzle is facing the radar device P10.
  • the radar device P10 can be further rotated to face the position of the nozzle, so as to ensure that the liquid sprayed from the nozzle can reach the radar device P10 smoothly.
  • this embodiment may further include a control device P80, which receives commands and controls the movement of the radar driving mechanism P20, the cover driving mechanism P50 and the cleaning device P70.
  • this embodiment also provides a vehicle, which may include the radar integration system P100 above which the radar can be flipped and moved.
  • FIG. 5A is a schematic structural diagram of a flip-type radar integration box E100 installed in a vehicle according to an embodiment of the present invention.
  • FIG. 5B is a partial cross-sectional view of the reversible radar integration box E100 installed in a vehicle according to an embodiment of the present invention.
  • this embodiment provides a flip-type radar integration box E100 arranged at the preset opening E210 (see FIG. 5A ) of the target body E200, where the target body E200 It can be the body of the vehicle, such as the roof cover and the fender, where the radar E300 needs to be installed.
  • the radar E300 here can be a laser radar. As shown in FIG.
  • the flip-type radar integration box E100 includes a tray E10 , a protective case E20 , a mounting base (not shown) and a rotating mechanism (not shown).
  • the tray E10 is connected to the target vehicle body E200 and is located under the preset opening E210.
  • the tray E10 may be located directly under the preset opening E210, and is installed on the vehicle body through fasteners to fix itself.
  • the tray E10 is connected to the roof beam assembly of the vehicle through fasteners (such as bolts).
  • the protective case E20 matches the preset opening E210, that is, the size of the circumference of the protective case E20 matches the size of the preset opening E210, so that the protective case E20 can form a relatively tight matching state with the preset opening E210, that is, The closed state of the flip-up radar integration box E100.
  • the side of the protective shell E20 facing the interior of the car is fixedly connected with the radar E300, and the protective shell E20 is located on the top of the radar E300 to shield and protect the radar E300.
  • the mounting seat is fixed on the tray E10 and forms a pivotable connection with the protective shell E20 or the radar E300. Since the protective shell E20 and the radar E300 are fixed, only one of the protective shell E20 and the radar E300 is formed with the mounting seat.
  • the rotating mechanism is installed at the fixed seat, and is used to controlly drive the radar E300 and the protective shell E20 to rotate relative to the fixed seat, so as to expose the radar E300 outside the car (that is, open state) or hide the radar E300 in the car (that is, Disabled).
  • the rotating mechanism can be any one of the driving mechanisms in the prior art to realize the pivoting between the two parts, for example, hydraulic jacking is used on one side, and the motor is used to drive the rotating shaft between the protective shell E20 and the fixing seat
  • the rotation, etc. are not limited here.
  • the turning mechanism may be connected with a controller of the vehicle, or a controller provided separately from the radar integration box 100 , and is used to control opening and closing according to user instructions.
  • the radar E300 and the protective case E20 can be directly lifted out of the vehicle through the preset opening E210 through the lifting mechanism.
  • This embodiment provides a reversible radar integrated box 100
  • the radar integrated box 100 includes a protective shell E20 for fixing the radar E300
  • the protective shell E20 and the radar E300 can be turned over with respect to the fixed mounting base
  • the protective shell E20 is matched with the preset opening E210 of the body, so it can be integrated with the appearance of the body when it is closed, so as to improve the aesthetics and aerodynamic performance of the vehicle, and it is not easy to fall dust.
  • It can also control the radar E300 and the protective shell E20 to flip out of the outside of the vehicle body, so that the radar E300 can adjust the angle easily.
  • the reversible radar integration box E100 further includes an outer sealing assembly, and the outer sealing assembly includes an outer sealing bracket E40 and an outer sealing strip E30 .
  • the outer sealing bracket E40 is sealingly connected with the target vehicle body E200, and is used for installing the outer sealing strip E30.
  • the outer sealing strip E30 is located between the protective shell E20 and the target body E200, and is used to seal the gap between the protective shell E20 and the sealing bracket.
  • the outer sealing strip E30 here can be located approximately flush with the target vehicle body E200 , which is equivalent to setting a circle of outer sealing strip E30 around the predetermined opening E210 .
  • the setting of the outer sealing strip E30 can play a sealing role when the radar integration box 100 is in a closed state.
  • FIG. 5C is an exploded schematic diagram of a flip-type radar integration box E100 according to an embodiment of the present invention, and the protective case E20 is not shown in FIG. 5C .
  • the outer seal bracket E40 includes an annular body E411 and each connecting leg E412 connected with the body E411.
  • the strip E30 is fixedly connected, one end of the outer sealing strip E30 abuts against the protective shell E20, and the bottom end of each connecting leg E412 is connected with the tray E10.
  • FIG. 5C is an exploded schematic diagram of a flip-type radar integration box E100 according to an embodiment of the present invention, and the protective case E20 is not shown in FIG. 5C .
  • the outer seal bracket E40 includes an annular body E411 and each connecting leg E412 connected with the body E411.
  • the strip E30 is fixedly connected, one end of the outer sealing strip E30 abuts against the protective shell E20, and the bottom end of each connecting leg E412 is connected with the tray E10.
  • the body E411 includes a flat plate portion E401 arranged parallel to the target vehicle, and the flat plate portion E401 is bonded to the target vehicle body E200, for example, the outer sealing bracket E40 is bonded to the target vehicle body E200 through an annular adhesive tape E50 inside.
  • the body E411 also includes a vertical clamping portion E402 for clamping the outer sealing strip E30.
  • the vertical clamping portion E402 is connected to the side of the flat plate E401 close to the protective shell E20 and is perpendicular to the flat plate E401.
  • the target body E200 is formed with a bent portion E220 pointing to the flat portion E401 at the preset opening E210, the flat portion E401 abuts against the bent portion E220, and the vertical portion is located between the bent portion E220 and the protective shell E20.
  • This staggered structure formed by the bent portion E220 of the target vehicle body E200 and the vertical engaging portion E402 of the outer sealing bracket E40, together with the above-mentioned annular tape E50, can further play a sealing role.
  • the reversible radar integration box E100 also includes a flexible waterproof membrane E60 disposed between the bottom of the body E411 and the outside of the protective case E20 to form a sealed space between the main body E411 and the protective case E20. Since the protective shell E20 is reversible, the waterproof membrane E60 connected to it is set to be flexible so as to follow the protective shell E20 better. In one embodiment, because the protective shell E20 is reversible, it cannot maintain a tight contact state with the outer sealing strip E30 in real time. A waterproof membrane E60 is set between the E40s, which can effectively prevent water from flowing into the car, thereby providing a perfect seal.
  • FIG. 5D is a schematic structural diagram of a flip-type radar integration box E100 according to an embodiment of the present invention, and the waterproof membrane E60 is not shown in FIG. 5D .
  • the protective shell E20 is also provided with a water pipe E21, and the water pipe E21 communicates with the sealed space, for example, a communication port is provided on the side of the water pipe E21, and the water pipe E21 is located The lowest position of the sealed space.
  • the water pipe E21 communicates with the drain pipe of the vehicle through the hose E70.
  • the setting of the water pipe E21 and the hose E70 can ensure that the water in the waterproof membrane E60 can be discharged through the drainage system of the vehicle to prevent water storage in the waterproof membrane E60. Since the water pipe E21 is fixed on the protective shell E20, it will move with the protective shell E20. By setting the hose E70 to connect the water pipe E21 with the drain pipe of the vehicle, the working conditions of the water pipe E21 can be adapted.
  • the present invention also provides a vehicle, including the reversible radar integration box E100 in any one of the above embodiments or a combination of embodiments.
  • the vehicle is provided with a reversible radar integration box 100
  • the radar integration box 100 includes a protective shell E20 for fixing the radar, the protective shell E20 and the radar can be turned over with respect to the fixed mounting seat, and the protective shell E20 and the The preset opening E210 of the body is matched, so it can form an integrated state with the appearance of the body when it is closed, so as to improve the aesthetics and aerodynamic performance of the vehicle, and it is not easy to fall dust.
  • it can control the radar and
  • the protective shell E20 is flipped out of the outside of the body, so that it is convenient to adjust the angle of the radar.
  • FIG. 6A is a schematic structural diagram of a cleaning device C100 for radar according to an embodiment of the present invention
  • FIG. 6B is a schematic exploded view of the cleaning device C100 shown in FIG. 6A
  • a cleaning device C100 for radar includes a housing C10, a nozzle C20, A solenoid valve C30 and a water pump (not shown in the figure), wherein a liquid channel C11 is provided in the casing C10, and one end of the liquid channel C11 is connected to a water supply device (not shown in the figure).
  • the nozzle C20 is arranged at the end of the liquid channel C11 away from the water supply device, and at least part of the nozzle C20 is located inside the casing C10, and the nozzle C20 is used to spray water on the mirror of the radar.
  • the solenoid valve C30 is disposed on the liquid channel C11, and is used to turn on or off the liquid channel C11 under control, so that the cleaning device C100 is in a water spray state or in a closed state.
  • the water pump is connected with the liquid channel C11, and is used for cooperating to open when the solenoid valve C30 is opened, so as to drive the liquid flow in the liquid channel C11 and make the liquid spray out from the nozzle C20.
  • the nozzle C20 is set telescopically so as to be located inside the housing C10 when the cleaning device C100 is in a closed state; at least part of the nozzle C20 protrudes from the housing C10 when the cleaning device C100 is in a water spraying state .
  • the nozzle C20 is set to be retractable, so that the nozzle C20 can be extended out of the housing C10 when the radar needs to be cleaned, and the nozzle C20 is located inside the housing C10 when the radar does not need to be cleaned, so as to avoid damage to the radar. Dust or rain pollution.
  • the nozzle C20 is provided with a slider, and the housing C10 is provided with a chute cooperating with the slider, so that the slider slides along the chute when the water pressure in the liquid channel C11 reaches a preset water pressure , so that the nozzle C20 protrudes from the housing C10.
  • the preset water pressure here can be set according to specific needs. That is to say, a certain thrust of the water flow is needed to push the nozzle C20 out of the casing C10; when the thrust of the water flow is less than a certain value, the nozzle C20 will shrink into the inside of the casing C10 due to the reduction of the thrust.
  • the motor C50 can also be used to drive the nozzle C20 to protrude from the housing C10 or shrink into the housing C10.
  • a baffle C60 is provided on the housing C10, and the baffle C60 is configured to be flipped open in a controlled manner when the radar needs to be cleaned, so that the nozzle C20 can protrude from the inside of the housing C10.
  • the baffle C60 is turned and closed in a controlled manner to prevent dust or rainwater from entering the inside of the casing C10.
  • a plurality of water spray holes are provided on the side of the nozzle C20 away from the liquid channel C11, so that the liquid flowing out of the liquid channel C11 is sprayed from the plurality of water spray holes.
  • This embodiment is equivalent to splitting a water spray hole with a large cross-sectional area into multiple water spray holes with a small cross-sectional area, which reduces the cross-sectional area, thereby increasing the water spray pressure and further improving the cleaning performance .
  • the nozzle C20 has a square cross-section.
  • a plurality of water spray holes may be arranged at intervals on the nozzle C20.
  • the cleaning device C100 for radar further includes a control unit C40, which is fixedly connected to the casing C10 and connected to the solenoid valve C30 for controlling the solenoid valve C30 to be turned on or off.
  • the control unit C40 is also connected to the water pump, and controls the water pump to be turned on while controlling the solenoid valve C30 to be turned on.
  • the cleaning device C100 for radar also includes a detection unit connected to the control unit C40 for detecting whether there is dirt on the outer surface of the radar.
  • the detection unit may be a camera, and when the camera captures dirt on the mirror surface of the radar, it will send a signal to the control unit C40, and the control unit C40 will control the solenoid valve C30 and the water pump to open simultaneously after receiving the signal.
  • the control unit C40 is also connected to the baffle C60. After receiving the signal, the control unit C40 controls the baffle C60 to turn over and open, and controls the baffle C60 to turn over and close when the nozzle C20 shrinks to the inside of the housing C10.
  • control unit C40 is also configured to control the baffle C60 to turn over when receiving the voice signal sent by the vehicle voice system, and control the electromagnetic valve C30 and the water pump to open to clean the mirror surface of the radar with the nozzle C20.
  • the voice signal here can be sent by the driver.
  • the present invention also provides a radar system for a vehicle, the radar system is equipped with a radar and the cleaning device C100 mentioned above.
  • the two cleaning devices C100 are respectively arranged on two sides of the radar.
  • the present invention also provides a vehicle, which is equipped with the radar system in any one of the above embodiments.
  • the radar system we will not go into details here.
  • the present invention will automatically control the cleaning device C100 to clean the radar anytime and anywhere when it detects that the mirror surface of the radar is dirty. It does not need to stop and manually clean the radar. In the process of automatic driving, it can also realize the cleaning of the radar without interrupting the automatic driving. , more convenient and intelligent.
  • FIG. 7A is a schematic structural diagram of a vehicle-mounted radar system installed on a vehicle according to an embodiment of the present invention.
  • the vehicle-mounted radar system in this embodiment includes a radar assembly D10, a drive mechanism (not shown) and a cleaning unit D20.
  • the radar component D10 includes a radar D11, which may be a lidar.
  • the driving mechanism is connected with the radar assembly D10, and is used to controlly drive the radar assembly D10 to rotate or lift relative to the vehicle body, so as to expose the transmitting end of the radar D11 outside the vehicle (that is, the state in FIG. 7A ) or hide the radar assembly D10 in the inside the car.
  • the driving mechanism here may be any mechanism capable of lifting or turning over in the prior art, such as an electric lifting platform, a hydraulic turning platform, etc., and there is no limitation here.
  • the cleaning unit D20 is used to extend out in a controlled manner when the launch end is exposed outside the vehicle, and spray cleaning liquid to the mirror surface of the launch end.
  • the action of driving mechanism and cleaning unit D20 can be controlled by specially setting an integrated box controller D50 of a vehicle-mounted radar system here.
  • the vehicle-mounted radar system of this embodiment can realize the radar component D10 turning over or lifting relative to the vehicle body, thereby controlling the radar D11 to protrude out of the vehicle for detection work, and can also be hidden in the vehicle to avoid dust accumulation.
  • the vehicle radar system also includes a cleaning unit D20, which can clean the mirror surface of the radar D11, further ensuring the cleanliness of the radar D11, so as to ensure the accuracy of intelligent driving.
  • the radar assembly D10 also includes a radar box D12, the radar box D12 is provided with a first opening D121 and a second opening D122 on one side of the transmitting end of the radar D11, the first opening D121 is used to expose the transmitting end, the second The opening D122 is used to provide a telescopic channel for the cleaning unit D20.
  • FIG. 7B is a schematic structural diagram of the cleaning unit D20 of the vehicle-mounted radar system according to an embodiment of the present invention.
  • FIG. 7C is a connection block diagram of a vehicle radar system according to an embodiment of the present invention.
  • the cleaning unit D20 includes a washing pot (not shown), a washing pump D21 (see FIG. 7C ), a retractable cleaning actuator D22 and a cover D24.
  • the washing jug is used to store cleaning liquid.
  • the washing pump D21 is connected with the washing pot through the first water pipe, and is used for pumping out the cleaning liquid in the washing pot.
  • the cleaning actuator D22 is arranged inside the radar box D12 and includes a nozzle connected to the washing pump D21 through the second water pipe.
  • the nozzle is used to spray cleaning liquid to the mirror surface.
  • the second water pipe is provided with a solenoid valve D23 for controlling the second water pipe. on and off.
  • the cover D24 is connected with the nozzle and matched with the second opening D122, and is used to close the second opening D122 when the cleaning actuator D22 is retracted into the radar box D12.
  • the cleaning actuator D22 here includes a telescopic mechanism connected to the nozzle.
  • the telescopic mechanism can be a mechanism that automatically pops up under water pressure after the solenoid valve D23 is opened, or it can be an electric telescopic mechanism, as long as the automatic telescopic mechanism of the nozzle can be realized. .
  • the cleaning unit D20 of this embodiment includes a cover plate D24 that matches the second opening D122, that is, the second opening D122 that can self-close the radar box D12 is provided through the structure of the cleaning unit D20 itself, without additionally setting an opening and closing door, so The structure is simple and the cost is low.
  • a first sealing strip is provided on the periphery of the cover D24 for sealing the cover D24 and the second opening D122 .
  • the setting of the sealing strip can ensure the airtightness of the radar box D12 when the cleaning structure is not working, preventing rainwater and dust from entering the inside of the radar box D12.
  • the vehicle radar system further includes an analog-to-digital converter D30, a central electronic module D40 connected to the analog-to-digital converter D30, and an integrated box controller D50.
  • the analog-to-digital converter D30 is also connected to the radar D11.
  • the radar D11 in this embodiment has a dirt detection function, and the radar D11 is used to send an analog signal to the analog-to-digital converter D30 when the mirror surface is detected to be dirty, and the analog-to-digital converter D30 processes the analog signal into a digital signal and then sends the To the central electronic module D40 and the integrated box controller D50, the central electronic module D40 is used to generate the first control signal according to the digital signal and send it to the washing pump D21 to control the operation of the washing pump D21, and the integrated box controller D50 is used to generate the first control signal according to the digital signal The signal generates a second control signal and sends it to the solenoid valve D23 to control the solenoid valve D23 to open.
  • the analog-to-digital converter D30 transmits to the central electronic module D40 through FlexRay, and the central electronic module D40 notifies the washing pump D21 to work after compiling the signal.
  • the controller D50 controls the solenoid valve D23 to open the waterway, and the water pressure makes the nozzle stretch out.
  • the automatic control of the working process of the cleaning unit D20 is realized through the communication among the radar D11, the analog-to-digital converter D30, the central electronic module D40 and the integrated box controller D50.
  • this process is generally carried out when the radar D11 is in an exposed working state during the intelligent driving process.
  • the integrated box controller D50 is also connected to the drive mechanism, that is, connected to the drive source D93 of the drive mechanism, for controlling the action of the drive mechanism, and the analog-to-digital converter D30 It is also connected to the entertainment information host D70 of the vehicle through the in-vehicle gateway D60, so that when the entertainment information host D70 receives a signal to start the intelligent driving function, the integrated box controller D50 controls the driving mechanism to drive the radar component D10 to move the radar D11. The transmitter is exposed outside the vehicle.
  • the entertainment information host D70 can realize the opening of the intelligent driving function through the touch operation of the touch screen or the way of voice interaction.
  • the automatic control of the movement of the radar component D10 is realized by connecting the entertainment information host D70 of the vehicle with the vehicle radar system.
  • FIG. 7D is a schematic cross-sectional view of a vehicle radar system installed on a vehicle according to an embodiment of the present invention.
  • the vehicle radar system further includes a sealing structure, and the sealing structure includes a mounting bracket D81 and a second sealing strip D82 .
  • the mounting bracket D81 is fixedly connected to the vehicle body, for example, bonded to the vehicle body D200 through double-sided adhesive D85.
  • the second sealing strip D82 is connected to the mounting bracket D81 and is located between the radar box D12 and the third opening of the vehicle body D200.
  • the radar box D12 matches the shape of the third opening and moves out of the vehicle through the third opening.
  • the second sealing strip D82 is arranged around the radar box D12, thereby achieving a comprehensive sealing effect.
  • the second sealing strip D82 by setting the second sealing strip D82, it can play a sealing role when the radar component D10 is not working, preventing rainwater outside the vehicle from entering the interior of the vehicle radar system.
  • FIG. 7E is an exploded schematic diagram of a vehicle radar system according to an embodiment of the present invention, and the sealing film D83 is not shown in FIG. 7E .
  • the sealing structure further includes a soft sealing film D83 and a drain D84 (see FIG. 7E ).
  • the sealing film D83 is arranged around the radar box D12, and the two ends of the sealing film D83 are respectively connected to the side wall of the radar box D12 and the underside of the mounting bracket D81, so that when the radar assembly D10 moves relative to the vehicle body to the working state, the third opening is closed. When it is partially opened, the sealing film D83 can further prevent rainwater from entering the vehicle body.
  • the drain port D84 runs through the sealing film D83, and its side away from the radar box D12 communicates with the drain pipe of the vehicle.
  • the setting of drain port D84 can discharge the liquid falling in the sealing film D83, to keep dry and clean.
  • the pipeline structure D123 is provided with a communication port to communicate with the space in the sealing film D83.
  • the vehicle radar system also includes a fixed bottom and a fixed seat D92 .
  • the bottom of the fixed bottom plate D91 is fixedly connected with the vehicle body, and its edge is provided with a plurality of connecting arms D911 protruding upwards (see also FIG. 7E ), and the connecting arms D911 are connected with the bottom of the mounting bracket D81.
  • the fixing seat D92 is arranged at the fixing base D91, and is used for placing the cleaning unit D20 and the driving source D93 of the driving mechanism, such as a motor.
  • the two sides of the fixing seat D92 are provided with arc-shaped recesses D921 that match the cleaning actuator D22, for placing the cleaning actuator D22, and the middle part of the fixing seat D92 is formed for
  • the recess D922 for placing the radar D11, and the rear part of the fixing seat D92 is provided with a rotating shaft D923 which is pivotably connected with the radar D11, so that the fixing seat D92 of this embodiment becomes a mounting seat with comprehensive functions.
  • the present invention also provides a vehicle, including the vehicle-mounted radar system in any one of the above embodiments or a combination of embodiments.
  • the on-board radar system of the vehicle can realize the flipping or lifting of the radar component D10 relative to the vehicle body, so as to control the radar to protrude out of the vehicle for detection work, and can also be hidden in the vehicle to avoid dust accumulation.
  • the vehicle-mounted radar system also includes a cleaning unit D20, which can clean the mirror surface of the radar to further ensure the cleanliness of the radar so as to ensure the accuracy of intelligent driving.
  • FIG. 8A is a top view of the concealable vehicle-mounted radar installation assembly F100 according to one embodiment of the present invention when it is installed on a vehicle.
  • FIG. 8B is a cross-sectional view of FIG. 8A along line A-A.
  • FIG. 8C is a cross-sectional view of FIG. 8A along line B-B.
  • FIG. 8D is a schematic structural diagram of the radar enclosure F20 of the concealable vehicle-mounted radar installation assembly F100 according to an embodiment of the present invention.
  • the concealable vehicle-mounted radar installation assembly F100 of the present invention is arranged at the installation opening F201 of the vehicle body F200, where the vehicle body F200 may be the roof of the vehicle.
  • the vehicle-mounted radar installation assembly F100 includes a fixing component F10 , a radar enclosure F20 and a sealing component F30 .
  • the fastening component F10 is connected to the body F200 and is formed as a recess.
  • the radar enclosure F20 is disposed in the recess and is pivotally connected to the fixing component F10.
  • the rotation of the radar enclosure F20 can be realized by using driving sources such as motors and hydraulic components, and the driving source can be connected with the control unit of the vehicle to realize the automatic control of the radar turning.
  • the interior of the radar enclosure F20 is provided with an accommodating space for placing the radar, for example, forming a concave portion with an opening facing the interior of the vehicle, and the concave portion is the aforesaid accommodating space.
  • a window F21 (see FIG. 8D ) for exposing the radar is provided on the side wall of the radar enclosure F20 , so that the signal of the transmitter of the radar can be sent directly through the window F21 .
  • the radar casing F20 is used to form a closed state in which the radar casing F20 is hidden in the concave portion (see FIG. 8B ) and an open state in which the window F21 of the radar casing F20 is completely exposed to the concave portion (not shown) when rotating relative to the fixed assembly F10. out).
  • the sealing assembly F30 includes a flexible sealing film F31, the sealing film F31 is arranged around the radar enclosure F20, and one side of the sealing film F31 is directly or indirectly sealingly connected with the target vehicle body F200, and the other side is sealingly connected with the outside of the radar enclosure F20, so as to A sealed water storage space is formed between the target vehicle body and the radar enclosure F20, and the target vehicle body is the part of the vehicle body F200 on the peripheral side of the installation opening F201.
  • the sealing film F31 is also provided at the lowest point when the radar enclosure F20 is in the closed state to communicate with the drain pipe of the vehicle for draining the liquid in the water storage space.
  • sealing film F31 Since one end of the sealing film F31 is fixed to the radar casing F20, and the radar casing F20 will rotate relative to the fixed component F10, that is, relative to the vehicle body F200, the sealing film F31 will also rotate accordingly, so here the sealing film F31 The lowest point is relative to the closed state of the radar cladding F20, as long as it can be ensured that the lowest point of the sealing film F31 is connected with the drain pipe of the vehicle in the closed state, the liquid accumulation in the above-mentioned water storage space can be prevented.
  • This embodiment provides a concealable radar installation assembly.
  • the radar casing F20 can be turned out of the car with the radar to expose the transmitting end from the window F21 of the radar casing F20.
  • restore the radar enclosure F20 to the position inside the vehicle to ensure the aesthetic appearance of the vehicle.
  • the radar installation assembly is also provided with a sealing assembly F30 that moves with the radar enclosure F20, which can adapt to the reversible radar enclosure F20 and realize a real-time waterproof sealing effect.
  • the sealing film F31 of the sealing assembly F30 communicates with the drain pipe of the vehicle, and the communicating position is the lowest point of the sealing film F31 when the radar enclosure F20 is in the closed state, it can discharge accumulated water in the closed state to prevent The sealing film F31 is immersed in water for a long time.
  • the sealing assembly F30 further includes a sealing strip F32 disposed around the radar enclosure F20 and disposed between the target vehicle body and the radar enclosure F20 . Due to the setting of the sealing strip F32, the gap between the radar enclosure F20 and the target vehicle body is closed when the radar enclosure F20 is in the closed state, and it plays a waterproof role when the radar is not in use, preventing rainwater or other liquids from entering the assembly.
  • the sealing assembly F30 further includes a sealing bracket F33 , one side of which is connected to the target vehicle body, and the other side is used to fix the sealing film F31 .
  • the sealing bracket F33 is bonded to the bottom of the target vehicle body through a double-sided adhesive F40.
  • the installation of the sealing strip F32 can be realized through the setting of the sealing bracket F33, without the need to process a special installation part on the body F200 to install the sealing strip F32, and the way of double-sided adhesive bonding, on the one hand, has a certain waterproof effect, It also simplifies the installation process.
  • the outer wall of the radar enclosure F20 is provided with an annular flange F22 protruding away from itself, and the two ends of the sealing film F31 are respectively connected with the sealing bracket F33 and the annular flange F22 (see Figure 8B or Figure 8D). 8C).
  • the height of the outer wall on one side of the radar enclosure F20 provided with the window F21 is greater than that on the opposite side, and the ring-shaped flange F22 is disposed on the bottom of the outer wall of the radar enclosure F20 .
  • the bottom of the radar envelope F20 is formed as a slope.
  • the radar enclosure F20 is formed with a drainage pipe F23 connecting the water storage space and the drainage pipe, and the sealing film F31 is provided with a channel for passing through the drainage pipe F23 .
  • the two ends of the drainage pipe F23 can communicate with the two drainage pipes through two flexible pipes, so as to adapt to the position change of the drainage pipe F23 when the radar enclosure F20 rotates.
  • the fixing assembly F10 includes a fixing bottom plate F11 and a plurality of connecting brackets F12 . Two ends of each connecting bracket F12 are respectively connected with the target vehicle body and the periphery of the fixed base plate F11.
  • the connection bracket F12 and the target vehicle body can be connected by welding, bonding or fasteners, and the connection bracket F12 and the fixed base plate F11 are detachably connected.
  • FIG. 8E is a schematic structural view of the fixed base plate F11 of the concealable vehicle-mounted radar installation assembly F100 according to an embodiment of the present invention.
  • the fixed bottom plate F11 includes a flat plate portion F111 and a plurality of connecting feet F112 located at the periphery of the flat plate portion F111 .
  • Each connecting foot F112 protrudes toward the target vehicle body and is connected with the connecting bracket F12.
  • the connecting foot F112 and the connecting bracket F12 partially overlap and are connected by bolts.
  • the connecting bracket F12 is first fixed on the target vehicle body, the fixed base plate F11 and the connecting bracket F12 can be connected by fasteners, which is convenient for assembly.
  • the present invention also provides a vehicle, including the concealable vehicle-mounted radar installation assembly F100 in any one of the above embodiments or a combination of embodiments.
  • the vehicle is equipped with a hidden radar installation assembly.
  • the radar enclosure F20 can be turned out of the vehicle with the radar to expose the transmitter from the window F21 of the radar enclosure F20.
  • the radar is not needed At this time, restore the radar enclosure F20 to the position inside the vehicle to ensure the aesthetic appearance of the vehicle.
  • the radar installation assembly is also provided with a sealing assembly F30 that moves with the radar enclosure F20, which can adapt to the reversible radar enclosure F20 and realize a real-time waterproof sealing effect.
  • the sealing film F31 of the sealing assembly F30 communicates with the drain pipe of the vehicle, and the communicating position is the lowest point of the sealing film F31 when the radar enclosure F20 is in the closed state, it can discharge accumulated water in the closed state to prevent The sealing film F31 is immersed in water for a long time.
  • the naming and/or numbering of the structure may be different in different embodiments, but it can actually represent the same structural feature, and the details should be combined with the corresponding drawings and descriptions of the corresponding embodiments to understand.
  • the above-mentioned embodiments have described a variety of implementations of radar boxes, a variety of cleaning devices or cleaning structures or cleaning mechanisms with cleaning functions, and a variety of lifting structures or lifting devices or lifting mechanisms that can lift the radar.
  • a variety of sealing structures or sealing devices or sealing mechanisms, etc. It can be understood that it is not limited to the ones listed above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种激光雷达集成装置,至少包括盖板(Q10,M10,N20,P60)、固定支架(Q20)、升降结构(Q30)、弹出结构(Q50)、激光雷达(Q60)、控制器(Q70,D50),盖板(Q10,M10,N20,P60)位于车身翼子板(Q80,M200,N200,P200)上,并与翼子板(Q80,M200,N200,P200)上的开口大小吻合,固定支架(Q20)、升降结构(Q30)、弹出结构(Q50)、激光雷达(Q60)、控制器(Q70,D50)均位于翼子板(Q80,M200,N200,P200)的内部,升降结构(Q30)设于固定支架(Q20)上且与盖板(Q10,M10,N20,P60)连接,激光雷达(Q60)设于弹出结构(Q50)上,弹出结构(Q50)设于固定支架(Q20)上。还公开了具有激光雷达集成装置的车辆。该激光雷达集成装置,将角激光雷达的数量由4-5个降为2个,存在成本优势;布置在前翼子板位置,碰撞风险相比布置在前后保险杆位置有所降低。

Description

激光雷达集成装置及具有其的车辆 技术领域
本发明涉及车辆技术领域,特别是涉及一种激光雷达集成装置及具有其的车辆。
背景技术
激光雷达是实现高级别智能驾驶及自动驾驶的重要传感器,使用激光雷达可以弥补摄像头和毫米波雷达的缺陷:比起摄像头可以构建更真实的3D环境,且不依赖于环境光线,而比起毫米波雷达又有更高分辨率和更准确的物体识别能力。
目前,激光雷达受激光器体积和激光发射(接收)镜面面积限制,整体尺寸与摄像头和毫米波雷达相比较大,在整车上布置困难,易受到布置和造型的限制。
激光雷达的水平视场角(感知点云信息的视野范围)一般在120度左右,为了感知360度水平视野,现有技术通常需要4-5个激光雷达进行视野拼接。角激光雷达顾名思义,一般安装在车身角落或侧边或前后保险杆两侧靠下位置,负责感知侧向视野,作为前后向激光雷达视野的补充,实现获取360度的激光雷达水平视野。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的激光雷达集成装置及具有其的车辆。
本发明的一个目的在于提供一种支架,解决现有技术中的将激光雷达固定在车身的装置从外观看较为简单,且对造型有较大影响,无法体现自动驾驶使用场景的科技感,且会带来激光雷达散热问题;
本发明的要解决的技术问题还包括解决激光雷达水平视场角一般在120度左右,4-5个激光雷达的布置方案会造成视场角的浪费,而激光雷达售价昂贵,单个成本通常大于5000人民币,这种布置方式不利于整车成本;
本发明的要解决的技术问题还包括布置在前后保险杆边角靠下位置,而这些位置是碰撞多发区域,结合激光雷达成本高的特点,这种布置方式不利于整车维修经济性;
本发明的要解决的技术问题还包括激光雷达采用固定式方案,镜头裸漏在外,而激光雷达镜头多采用PC或玻璃材质,硬度小于砂石,在使用过程中被划伤风险较高。
本发明的在一个实施例中目的是要提供一种包含上述激光雷达集成装置的车辆。
在一实施例中,提供了一种激光雷达集成装置,至少包括盖板、固定支架、升降结构、弹出结构、激光雷达、控制器,所述盖板位于车身翼子板上,并与所述翼子板上的开口大小吻合,所述固定支架、升降结构、弹出结构、激光雷达、控制器均位于所述翼子板的内部,所述升降结构设于所述固定支架上且与所述盖板连接,并能够在所述控制器的控制下驱动所述盖板上下运动,所述激光雷达设于所述弹出结构上,所述弹出结构设于所述固定支架上,且能够在所述控制器的控制下相对所述固定支架向外运动,将所述激光雷达推出所述翼子板的内部。
在一种方式中,所述固定支架包括第一固定板、连接板,所述第一固定板位于所述连接板的两侧,所述第一固定板与所述翼子板内侧的前车身纵梁通过螺栓固定。
在一种方式中,所述升降结构至少包括第一电机、传动轴、第一齿轮、丝杆、升降杆、滑轨、固定块、第二固定板,所述滑轨自所述固定支架的下方向上方向内倾斜,其底端与所述连接板固定,顶端设有固定块;所述丝杆穿过所述固定块与所述滑轨平行设置,其下端设有升降杆,所述丝杆的顶部固定有第一齿轮,所述升降杆与所述盖板连接;所述第二固定板上固定有第一电机和所述控制器,所述第一电机连接有传动轴,所述传动轴与所述第一齿轮啮合。
在一种方式中,所述固定块与所述丝杆螺纹连接,所述升降杆包括第一升降杆、第二升降杆,所述第一升降杆套设在所述丝杆的下端且与其螺纹连接,所述第二升降杆的一端与所述第一升降杆连接,另一端与所述盖板一侧的底端固定连接。
在一种方式中,还包括清洗结构,所述清洗结构与所述激光雷达一起设于所述弹出结构上。
在一种方式中,所述清洗结构至少包括固定架、电磁阀、喷嘴、连接部、进水口,所述电磁阀一端和所述连接部连接,另一端和所述进水口连接,所述进水口连接的管路与整车水路连接;所述喷嘴和所述连接部连接,且具有伸缩功能。
在一种方式中,所述弹出结构至少包括第二电机、减速器、第二齿轮、移动板、移动杆、密封条,所述第二电机的输出轴和所述减速器连接,所述减速器与所述第二齿轮连接,所述移动板放置在所述固定支架的连接板上,且与所述连接板的外边缘呈设定的角度,所述激光雷达和清洗结构安装在所述移动板上,所述密封条安装在所述移动板的前侧。
在一种方式中,所述移动板上还设有一小孔,所述移动杆包括第一移动杆和第二移动杆,所述第二移动杆与所述第一移动杆呈设定的角度连接,所述第一移动杆一端的下方还设有凸柱,所述凸柱与所述小孔卡接,所述第二移动杆为弧形,外侧一段设有齿,所述齿与所述第二齿轮啮合。
在一种方式中,所述激光雷达的一侧固定有镜面,另一侧设有第二线束,所述第二线束与自动驾驶域控制器或高级辅助驾驶域控制器连接。
在一种方式中,本发明还提供一种车辆,包括如上面任一方式所述的一种激光雷达集成装置。
本发明提供的激光雷达集成装置,采用隐藏式方案,在激光雷达待机状态会收回到车身内,避免对外观造型产生影响,且降低被砂石划伤风险;自动驾驶功能激活时激光雷达转出至工作位置,增加科技感;集成隐藏式清洗结构,在自动驾驶过程中始终保持激光雷达镜面清洁,极大降低人为清理频次,提高用户体验;将角激光雷达的数量由4-5个降为2个,存在成本优势;布置在前翼子板位置,碰撞风险相比前后保险杆位置有所降低。
在一种方式中,还提供一种雷达集成系统,设置在车辆的翼子板处,所述翼子板处设置有第一开口,包括:盖板;
盖板驱动机构,与所述盖板连接,用于受控地运动以带动所述盖板开启或关闭所述第一开口;
雷达装置,位于所述第一开口附近;
雷达驱动机构,与所述雷达装置连接,用于受控地运动,以带动所述雷达装置从所述第一开口处伸出或缩回所述翼子板;和
控制装置,其与所述盖板驱动机构、所述雷达驱动机构和所述雷达装置均连接,所述控制装置配置成在接收到开启所述雷达装置的指令时,控制所述盖板驱动机构带动所述盖板开启所述第一开口,并控制所述雷达驱动机构带动所述雷达装置翻转运动从所述第一开口伸出所述翼子板,在接收到关闭所述雷达装置的指令时,控制所述盖板驱动机构带动所述盖板关闭所述第一开口,并控制所述雷达驱动机构带动所述雷达装置翻转运动从所述第一开口处缩回至所述翼子板内。
在一种方式中,所述雷达装置运动轨迹所在平面的垂直线与所述盖板运动轨迹所在平面的垂直线之间呈预设角度,所述预设角度为90±15°。
在一种方式中,所述控制装置配置成,控制所述盖板驱动机构带动所述盖板开启所述第一开口第一预设时间后再控制所述雷达驱动机构带动所述雷达装置翻转运动从所述第一开口伸出所述翼子板,控制所述盖板驱动机构带动所述盖板关闭所述第一开口第二预设时间后再控制所述雷达驱动机构带动所述雷达装置翻转运动从所述第一开口处缩回至所述翼子板。
在一种方式中,还包括清洗装置,其设置在所述翼子板内侧,并且位于所述雷达装置的远离所述翼子板的一侧,用于受控地启动以清洗所述雷达装置。
在一种方式中,所述清洗装置包括:
储水盒,用于存储清洁所述雷达装置所需的清洁液;
管道,其一端与储水盒连通并位于所述清洁液内,所述管道上设有水泵;和
喷嘴,其与所述管道的另一端连接,所述喷嘴处设置电磁阀,所述水泵和所述电磁阀受控地启动以将所述储水盒内的清洁液喷洒在所述雷达装置处。
在一种方式中,所述控制装置还与所述水泵和所述电磁阀均连接,所述控制装置配置成在接收到需要清洁所述雷达装置的指令后控制所述电磁阀和所述水泵开启,从而使得清洁液从所述喷嘴处喷出,并在第三预设时间后控制所述水泵和所述电磁阀关闭。
在一种方式中,所述喷嘴处还设置流量传感器,所述流量传感器与所述控制装置连接,用于检测流经所述喷嘴的液体的流量;
所述雷达集成系统还包括警报装置,所述警报装置与所述控制装置连接;
其中,所述控制装置配置成在所述流量传感器监测到流经所述喷嘴的所述液体的流量小于预设流量时,控制所述警报装置进行报警。
在一种方式中,还包括设置有第二开口的壳体,所述壳体设置在所述翼子板的内侧,所述第二开口与所述第一开口对应设置;
所述盖板、所述盖板驱动机构、所述雷达装置、雷达驱动机构、所述控制装置和清洗装置均设置在所述壳体内。
在一种方式中,还包括固定框架,所述盖板驱动机构和所述雷达驱动机构设置在所述固定框架处,所述固定框架则设置在所述壳体内部。
在一种方式中,本发明还提供一种车辆,包括上面任一方式所述的雷达集成系统。
本发明的雷达集成系统可以包括盖板、盖板驱动机构、雷达装置、雷达驱动机构和控制装置。控制装置控制盖板驱动机构驱动盖板开启和关闭第一开口,并且控制装置还控制雷达驱动机构驱动雷达伸出和缩回翼子板,同时还带动雷达装置翻转,使得本发明 的雷达集成系统探测角度可调,并且在使用时伸出翼子板,不使用时缩回翼子板,利用盖板保护雷达装置,避免雷达装置受外界擦碰或被外界的污染物污染而影响使用,延长雷达装置的使用寿命。
本发明通过盖板驱动机构和雷达驱动机构的结构设计以及对该驱动机构运动时间的控制,避免了盖板与雷达装置在运动中出现干涉问题,使得该雷达集成系统保证功能的同时更加智能。
在一种方式中,本发明还提供一种盖板可翻转开合的雷达集成系统,设置在车辆的翼子板处,所述翼子板处设置有第一开口,包括:
固定框架,与所述翼子板固连,所述固定框架上设置有滑槽;
盖板,用于受控地开启和关闭所述第一开口;
盖板驱动机构,包括驱动电机和运动机构,所述运动机构一端与所述驱动电机连接,并受所述驱动电机的驱动,另一端连接所述盖板,所述运动机构在所述驱动电机的驱动下,带动所述盖板沿着所述滑槽运动,同时带动所述盖板转动,以开启和关闭所述第一开口;
雷达组件,配置成受控地在所述第一开口开启时从所述第一开口伸出所述翼子板外。
在一种方式中,所述运动机构包括:
曲柄,其一端与所述驱动电机的输出轴固连,以跟随所述输出轴转动;
第一连杆,其一端与所述曲柄的远离所述输出轴的一端可转动连接,另一端与所述盖板连接,所述第一连杆转动的转轴与所述曲柄转动的转轴平行;所述第一连杆的侧边设置有凸轮,所述凸轮卡接在所述滑槽处,当所述曲柄跟随所述输出轴转动时,所述凸轮沿着所述滑槽运动,以使得所述盖板沿着与所述滑槽平行的轨迹运行。
在一种方式中,所述滑槽的数量为两个,两个所述滑槽镜像相对设置,所述第一连杆位于两个所述滑槽之间;
所述凸轮的数量为两个,设置在所述第一连杆的面向两个所述滑槽的两个相对的侧面处,每一所述凸轮与其中一个所述滑槽对应设置。
在一种方式中,所述运动机构还包括第二连杆,所述第二连杆的一端与所述固定框架可转动连接,另一端与所述盖板可转动连接;
其中,所述第二连杆的第二轴心线与所述第一连杆的第一轴心线相互平行,以在所述盖板在所述驱动电机的带动下沿着所述滑槽运动时,所述盖板在所述第二连杆的作用下转动;其中,所述第二轴心线为所述第二连杆与所述盖板可转动连接处的转轴的轴心线,所述第一轴心线为所述第一连杆与所述盖板可转动连接的转轴的轴心线。
在一种方式中,还包括铰链杆,其与所述盖板固连,并沿着与所述第二连杆转轴的轴线平行的方向延伸,所述第二连杆的一个端部与所述铰链杆的一端可转动连接,以使得所述盖板与所述铰链杆共同相对所述第二连杆转动;
所述铰链杆位于所述盖板的一侧,以在所述盖板关闭所述第一开口时,所述铰链杆位于所述翼子板内部。
在一种方式中,所述第二连杆的数量为两个,两个所述第二连杆相互平行,且分别位于所述铰链杆的两端,两个所述第二连杆与所述铰链杆形成U字形结构。
在一种方式中,所述雷达组件包括:
雷达装置;和
设置在所述固定框架处的雷达驱动机构,所述雷达驱动机构与所述雷达装置连接,用于受控地运动,以带动所述雷达装置从所述第一开口处伸出或缩回所述翼子板。
在一种方式中,还包括设置有第二开口的壳体,所述壳体设置在所述翼子板的内侧,所述第二开口与所述第一开口对应设置;所述固定框架位于所述壳体内。
在一种方式中,还包括清洗装置,其设置在所述壳体内,并且位于所述雷达装置的远离所述翼子板的一侧,用于受控地启动以清洗所述雷达装置。
在一种方式中,本发明还提供一种车辆,包括上面所述的盖板可翻转开合的雷达集成系统。
本发明的盖板可翻转开合的雷达集成系统通过盖板和盖板驱动机构的设计,在雷达组件需要从第一开口伸出翼子板时,盖板驱动机构驱动盖板关闭第一开口,不影响雷达组件的正常使用。在雷达组件从第一开口缩回至翼子板内时,盖板驱动机构再驱动盖板关闭第一开口,避免雷达组件长时间直接裸露在外而受到外界灰尘或污水的污染而影响使用,同时盖板也阻挡了外界的对雷达组件的擦碰,避免雷达组件损坏,延长雷达组件的使用寿命。
本发明的盖板驱动机构仅仅包括盖板驱动电机和运动机构,而运动机构仅仅包括曲柄和第一连杆,该盖板驱动机构的结构简单,驱动力单一,运动过程简单,可以达到盖板开启和关闭第一开口进而起到保护雷达组件的目的。
在一种方式中,本发明还提供一种雷达可翻转运动的雷达集成系统,设置在车辆的翼子板处,所述翼子板处设置有第一开口,包括:
雷达装置,位于所述第一开口附近;
雷达驱动机构,包括驱动电机和双连杆机构,所述双连杆机构的一端与所述雷达装置可转动连接,另一端与所述翼子板可转动连接,在所述驱动电机受控地带动所述双连杆机构运动时,所述双连杆机构带动所述雷达装置相对所述翼子板翻转运动以从所述第一开口处伸出或缩回所述翼子板。
在一种方式中,所述双连杆机构包括:
第一转轴,与所述翼子板可转动连接,所述第一转轴与所述驱动电机连接,以在所述驱动电机的带动下转动;
第一摆臂,其一端与所述第一转轴固连,以在所述第一转轴转动时绕所述第一转轴的轴线转动,其另一端与所述雷达装置可转动连接;
第二转轴,与所述翼子板可转动连接,并与所述第一转轴平行设置;
第二摆臂,其一端与所述雷达装置可转动连接,另一端与所述第二转轴固连;
其中,当所述第一转轴在所述驱动电机的带动下转动时,在所述第一摆臂、所述第二摆臂和所述第二转轴的共同作用下带动所述雷达装置翻转移动。
在一种方式中,所述第一摆臂的数量为两个,两个所述第一摆臂平行设置,两个所述第一摆臂分别与所述雷达装置的上下两个侧面可转动连接。
在一种方式中,所述第二摆臂的数量为两个,两个所述第二摆臂平行设置,两个所述第二摆臂分别与所述雷达装置的上下两个侧面可转动连接。
在一种方式中,所述第二摆臂的长度与所述第一摆臂的长度不等,或所述第一转轴和所述第二转轴之间的距离与目标距离不等,所述目标距离为所述第一摆臂与所述雷达机构的铰接点以及所述第二摆臂与所述雷达机构的铰接点之间的距离。
在一种方式中,所述第一摆臂的长度大于所述第二摆臂的长度,所述第一转轴与所述第二转轴之间的距离小于所述目标距离。
在一种方式中,还包括:
设置有第二开口的壳体,所述壳体固定设置在所述翼子板的内侧,所述第二开口与所述第一开口对应设置;和
固定框架,设置在所述壳体内,所述第一转轴和所述第二转轴均与所述固定框架可转动连接。
在一种方式中,还包括:
盖板;
位于所述壳体内的盖板驱动机构,所述盖板驱动机构与所述盖板连接,用于受控地运动以带动所述盖板开启或关闭所述第一开口。
在一种方式中,还包括清洗装置,其设置在所述壳体内,并且位于所述雷达装置的远离所述翼子板的一侧,用于受控地启动以清洗所述雷达装置。
在一种方式中,本发明还提供一种车辆,包括上面所述的雷达可翻转运动的雷达集成系统。
本发明雷达可翻转运动的雷达集成系统可以包括雷达装置和雷达驱动机构,而雷达驱动机构可以包括雷达驱动电机和双连杆机构,利用雷达驱动电机驱动双连杆机构运动,而双连杆机构则带动雷达装置运动,从而使得雷达装置可以相对翼子板转动从第一开口处伸出或缩回翼子板。本发明利用雷达驱动电机带动雷达装置运动和转动,在雷达装置位于第一开口处时可以利用雷达驱动电机带动雷达装置转动从而增加雷达装置的探测角度。此外,雷达驱动电机还可以让雷达装置可以在需要时从第一开口伸出翼子板,而在不需要时从第一开口缩回翼子板内,从而避免了雷达装置在一直裸露在翼子板外而沾灰影响使用和灵敏度的问题。
本发明的雷达驱动机构包括双连杆机构,该双连杆机构仅仅包括第一转轴、第一摆臂、第二转轴和第二摆臂,其结构简单,运动过程清晰。此外,该双连杆机构与雷达装置连接,该双连杆机构在雷达驱动电机的带动下可带动雷达装置运动,实现雷达装置的运动和转动同时进行,保证雷达装置的探测角度达到要求,同时也达到了雷达装置内藏的目的。
在一种方式中,本发明提供了一种翻转式雷达集成盒,设置于目标车身的预设开口处且包括:
托盘,与所述目标车身相连且位于所述预设开口的下方;
防护壳,与所述预设开口相匹配,所述防护壳朝向车内的一侧与雷达固定连接;
安装固定座,固定于所述托盘处,且与所述防护壳或所述雷达形成可枢转连接;以及
转动机构,安装于所述安装固定座处,用于受控地驱动所述雷达和所述防护壳相对于所述安装固定座转动,以在车外露出所述雷达或将所述雷达隐藏于车内。
在一种方式中,翻转式雷达集成盒还包括外密封组件,其包括外密封支架和外密封条,所述外密封支架与所述目标车身密封连接,用于安装所述外密封条,所述外密封条 位于所述防护壳和所述目标车身之间,用于密封所述防护壳和所述密封支架之间的缝隙。
在一种方式中,所述外密封支架包括环形的本体以及与所述本体相连的各个连接支脚,所述本体与所述目标车身密封连接,且与所述外密封条固定连接,所述外密封条的一端与所述防护壳抵接,每一所述连接支脚的底端与所述托盘相连。
在一种方式中,所述本体包括与所述目标车辆平行布置的平板部,所述平板部粘结于所述目标车身处。
在一种方式中,所述本体还包括用于卡接所述外密封条的竖直卡接部,所述竖直卡接部连接于所述平板部靠近所述防护壳的一侧且与所述平板部垂直,所述目标车身在所述预设开口处形成有指向所述平板部的折弯部,所述平板部与所述折弯部抵接,所述竖直部位于所述折弯部和所述防护壳之间。
在一种方式中,翻转式雷达集成盒还包括:
柔性的防水膜,设置于所述本体的底部与所述防护壳的外侧之间,用于在所述本体和所述防护壳之间形成密封空间。
在一种方式中,所述防护壳还设有流水管,所述流水管与所述密封空间连通且位于所述密封空间的最低位置处,所述流水管通过软管与车辆的排水管连通。
在一种方式中,所述目标车身为车辆的顶盖,所述托盘通过紧固件连接于车辆的顶盖横梁总成处。
在一种方式中,本发明还提供了一种车辆,包括上述任一项所述的翻转式雷达集成盒。
本发明提供了一种可以翻转的雷达集成盒,该雷达集成盒包括用于固定雷达的防护壳,该防护壳和雷达都可以相对于固定的安装固定座翻转,且该防护壳与车身的预设开口相匹配,因此能够在关闭状态时形成与车身外观上一体的状态,以提高车辆的美观性和空气动力学性能,并且不易落尘,另外在需要使用时又可以控制雷达和防护壳翻出车身外侧,从而方便雷达调节角度。
进一步地,本发明翻转式雷达集成盒还包括外密封组件,外密封组件包括外密封支架和外密封条。外密封支架与目标车身密封连接,用于安装外密封条。外密封条位于防护壳和目标车身之间,用于密封防护壳和密封支架之间的缝隙。通过外密封条的设置可以在雷达集成盒处于关闭状态时起到密封的作用。
进一步地,本发明中由目标车身的折弯部和外密封支架的竖直卡接部形成的交错结构,配合外密封支架与目标车身之间的环形胶带,能够进一步起到密封的作用。
进一步地,通过在防护壳和外密封支架之间设置防水膜可以有效地阻挡水流入车内,从而起到完善的密封作用。
进一步地,流水管和软管的设置可以保证防水膜内的水可以通过车辆的排水系统排出,防止防水膜内蓄水。由于流水管是固设在防护壳上的,因此会跟防护壳运动,通过设置软管将流水管与车辆的排水管连通,可以适应流水管的运功工况。
在一种方式中,本发明还提供一种用于雷达的清洗装置,包括:
壳体,所述壳体内设有液体通道,所述液体通道的一端与供水装置连接;
喷嘴,设置在所述液体通道的远离所述供水装置的一端,且至少部分所述喷嘴位于所述壳体的内部,所述喷嘴用于对雷达的镜面进行喷水;
电磁阀,设置在所述液体通道上,用于在受控下导通或断开所述液体通道,从而使得所述清洗装置处于喷水状态或关闭状态。
水泵,与所述液体通道连接,用于在所述电磁阀开启时协同开启,以驱动所述液体通道的液体流动,并使得所述液体从所述喷嘴处喷出。
在一种方式中,所述喷嘴设置成可伸缩地,以在所述清洗装置处于关闭状态时位于所述壳体的内部;在所述清洗装置处于喷水状态时至少部分所述喷嘴伸出所述壳体。
在一种方式中,所述喷嘴上设有滑块,所述壳体上设有与所述滑块配合的滑槽,以在所述液体通道内的水压达到预设水压时使得所述滑块沿所述滑槽滑动,从而使得所述喷嘴伸出所述壳体。
在一种方式中,所述喷嘴的远离所述液体通道的一侧上设有多个喷水孔,以使得经过所述液体通道里流出的液体从所述多个喷水孔处喷出。
在一种方式中,还包括:
控制单元,与所述壳体固定连接,且与所述电磁阀连接,用于控制所述电磁阀开启或关闭。
在一种方式中,检测单元,与所述控制单元连接,用于检测雷达的外表面是否存在脏污。
在一种方式中,所述喷嘴的横截面呈方形。
在一种方式中,本发明还提供一种用于车辆的雷达系统,所述雷达系统安装有雷达和所述的清洗装置。
在一种方式中,所述清洗装置的数量为两个,两个所述清洗装置分别设置在所述雷 达的两侧。
在一种方式中,本发明还提供一种车辆,所述车辆安装有如上面所述的雷达系统。
本发明中用于雷达的清洗装置包括壳体、喷嘴、电磁阀和水泵,其中,壳体内设有液体通道,液体通道的一端与供水装置连接。喷嘴设置在液体通道的远离供水装置的一端,且至少部分喷嘴位于壳体的内部,喷嘴用于对雷达的镜面进行喷水。电磁阀设置在液体通道上,用于在受控下导通或断开液体通道,从而使得清洗装置处于喷水状态或关闭状态。水泵与液体通道连接,用于在电磁阀开启时协同开启,以驱动液体通道的液体流动,并使得液体从喷嘴处喷出。因此,本发明在需要对雷达进行清洗时只需要同时开启电磁阀和水泵即可,能够实现雷达的自动清洗,不需要停车手动清洗,可以保证自动驾驶的连续性。
本发明的喷嘴的远离液体通道的一侧上设有多个喷水孔,以使得经过液体通道里流出的液体从多个喷水孔处喷出。本发明相当于将一个横截面积较大的喷水孔拆分成多个横截面积较小的喷水孔,减小了横截面积,从而增加了喷水压强,进一步提高了清洗性能。
在一种方式中,本发明还提供一种车载雷达系统,包括:
雷达组件,包括雷达;
驱动机构,与所述雷达组件相连,用于受控地驱动所述雷达组件相对于车身转动或升降,以将所述雷达的发射端露出于车外或将所述雷达组件隐藏于车内;以及
清洗单元,用于受控地在所述发射端露出于车外时伸出并向所述发射端的镜面喷射清洗液。
在一种方式中,所述雷达组件还包括雷达盒,所述雷达盒在所述雷达的所述发射端的一侧设有第一开口和第二开口,所述第一开口用于露出所述发射端,所述第二开口用于为所述清洗单元提供伸缩通道。
在一种方式中,所述清洗单元包括:
洗涤壶,用于存放清洗液;
洗涤泵,通过第一水管与所述洗涤壶相连,用于将所述洗涤壶中的清洗液泵出;
可伸缩的清洗执行器,设置于所述雷达盒内部且包括通过第二水管与所述洗涤泵相连的喷嘴,所述喷嘴用于向所述镜面喷射清洗液,所述第二水管上设有电磁阀,用于控制所述第二水管的通断;
盖板,与所述喷嘴相连且与所述第二开口相匹配,用于在所述清洗执行器缩回至所述雷达盒内部时将所述第二开口封闭。
在一种方式中,所述盖板的周缘设有第一密封条,用于密封所述盖板与所述第二开口。
在一种方式中,所述车载雷达系统还包括模数转换器、与所述模数转换器均相连的中央电子模块和集成盒控制器,所述模数转换器还与所述雷达相连,所述雷达用于在检测到镜面有脏污时发送模拟信号至所述模数转换器,所述模数转换器将所述模拟信号处理成数字信号后发送至所述中央电子模块和所述集成盒控制器,所中央电子模块用于根据所述数字信号生成第一控制信号并发送至所述洗涤泵,以控制所述洗涤泵工作,所述集成盒控制器用于根据所述数字信号生成第二控制信号并发送至所述电磁阀,以控制所述电磁阀开启。
在一种方式中,所述集成盒控制器还与所述驱动机构相连,用于控制所述驱动机构的动作,所述模数转换器还通过车内网关与车辆的娱乐信息主机相连,以便在所述娱乐信息主机接收到开启智能驾驶功能的信号时,所述集成盒控制器控制所述驱动机构驱动所述雷达组件动作,以将所述雷达的发射端露出于车外。
在一种方式中,还包括密封结构,其包括:
安装支架,与车身固定连接;
第二密封条,与所述安装支架相连且位于所述雷达盒与车身的第三开口之间,所述雷达盒与所述第三开口的形状相匹配且通过所述第三开口运动至车外。
在一种方式中,所述密封结构还包括:
软质的密封膜,围绕所述雷达盒设置,所述密封膜的两端分别与所述雷达盒的侧壁以及所述安装支架的下侧相连;
排水口,贯穿所述密封膜,且其远离所述雷达盒的一侧与车辆的排水管连通。
在一种方式中,还包括:
固定底板,其底部与车身固定连接,其边缘处设有多个向上伸出的连接臂,所述连接臂与所述安装支架的底部相连;
固定座,设置于所述固定底板处,用于放置所述清洗单元和所述驱动机构的驱动源。
在一种方式中,本发明还提供一种车辆,包括上面所述的车载雷达系统。
本发明的车载雷达系统能够实现雷达组件相对于车身翻转或举升,从而控制雷达伸出车外进行探测工作,也可以隐藏于车内,不易落灰积尘。另外,该车载雷达系统还包 括清洗单元,能够对雷达的镜面进行清洗,进一步保证了雷达的洁净,以便保证智能驾驶的精确性。
进一步地,本发明的清洗单元包括与第二开口匹配的盖板,即通过清洗单元自身的结构设置能够自封闭雷达盒的第二开口,而不需要另外设置开闭门,因此结构简单、成本较低。
进一步地,本发明通过雷达、模数转换器、中央电子模块和集成盒控制器之间的通信实现了清洗单元工作过程的自动控制。并将车辆的娱乐信息主机与车载雷达系统进行通信连接,实现了雷达组件运动的自动控制。
进一步地,本发明通过设置第一密封条、第二密封条和密封膜能够实现车载雷达系统的全方位密封保护。
在一种方式中,本发明还提供一种可隐藏式车载雷达安装总成,设置于车身的安装开口处,所述车载雷达安装总成包括:
固定组件,与所述车身相连,且构造成凹部;
雷达包壳,设置于所述凹部内且可枢转地连接于所述固定组件处,所述雷达包壳的内部设有用于放置雷达的容置空间、侧壁处设有用于展露所述雷达的窗口,所述雷达包壳用于在相对于所述固定组件转动时形成所述雷达包壳隐藏于所述凹部内的关闭状态以及所述雷达包壳的有所述窗口完全露出于所述凹部的开启状态;
密封组件,包括柔性的密封膜,所述密封膜围绕所述雷达包壳设置,且其一侧与目标车身直接或间接地密封连接,另一侧与所述雷达包壳的外侧密封连接,以在所述目标车身和所述雷达包壳之间形成密封的蓄水空间,所述目标车身为所述安装开口的周缘侧的车身部分,所述密封膜在所述雷达包壳处于所述关闭状态时的最低处还设有与车辆的排水管连通,用于将所蓄水空间内的液体排出。
在一种方式中,所述密封组件还包括:
密封条,围绕所述雷达包壳设置,设置于所述目标车身和所述雷达包壳之间。
在一种方式中,所述密封组件还包括:
密封支架,其一侧与所述目标车身相连,另一侧用于固定所述密封膜。
在一种方式中,所述密封支架与所述目标车身的底部通过双面胶粘结。
在一种方式中,所述雷达包壳的外壁处设有沿远离其自身伸出的环形翻边,所述密封膜的两端分别与所述密封支架和所述环形翻边相连。
在一种方式中,所述雷达包壳设有所述窗口的一侧的外壁的高度大于其相对侧的高度,所述环形翻边设置于所述雷达包壳的外壁的底部。
在一种方式中,所述雷达包壳形成有所述蓄水空间和所述排水管均连通的引流管道,所述密封膜设有用于穿设所述引流管道的通道。
在一种方式中,所述固定组件包括:
固定底板;
多个连接支架,每一所述连接支架的两端分别与目标车身和所述固定底板的周缘相连。
在一种方式中,所述固定底板包括:
平板部;
多个位于所述平板部周缘处的连接支脚,每一所述连接支脚均朝向所述目标车身伸出且与所述连接支架相连。
在一种方式中,本发明还提供一种车辆,包括上面所述的可隐藏式车载雷达安装总成。
本发明提供了一种可隐藏的雷达安装总成,可以在需要使用雷达时将雷达包壳带着雷达翻出车外,以从雷达包壳的窗口处露出发射端,在不需要使用雷达时将雷达包壳恢复到车辆内部的位置,保证车辆外观的美观性。
进一步地,该雷达安装总成还设置有与雷达包壳随动的密封组件,能够适应可翻转的雷达包壳,实现实时的防水密封效果。另外,由于该密封组件的密封膜与车辆的排水管连通,且连通的位置是雷达包壳处于关闭状态时该密封膜的最低处,因此能够在关闭状态时排出积水,防止密封膜长期浸水。
进一步地,密封组件还包括密封条,围绕所述雷达包壳设置,设置于目标车身和雷达包壳之间。由于密封条的设置,使得雷达包壳处于关闭状态时封闭雷达包壳和目标车身之间的缝隙,在不使用雷达时起到防水的作用,避免雨水或其他液体进入总成内。
可以理解的是,上述各个实施方式可以相互结合,结合后的方案同样具有相应的有益效果。上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1A为本发明激光雷达集成装置在车身的安装位置示意图;
图1B为本发明激光雷达集成装置的整体结构示意图;
图1C为本发明中升降结构的结构示意图;
图1D为本发明中清洗结构的示意图;
图1E为本发明中固定架的结构示意图;
图1F为本发明中弹出结构的示意图;
图1G为本发明中激光雷达开启状态的俯视图;
图2A是根据本发明一个实施例的雷达集成系统设置在翼子板处的示意性结构图;
图2B是根据本发明一个实施例的盖板打开第一开口、雷达装置由第一开口伸出翼子板处的示意性结构图;
图2C是根据本发明一个实施例的雷达集成系统的示意性爆炸图;
图2D是根据本发明一个实施例的盖板及盖板驱动机构连接的示意性结构图;
图2E是根据本发明一个实施例的盖板及盖板驱动机构连接的示意性局部结构图;
图2F是根据本发明一个实施例的雷达装置及雷达驱动机构连接的示意性结构图;
图2G是根据本发明一个实施例的雷达装置及双连接机构连接的示意性结构图;
图2H是根据本发明一个实施例的控制装置与受控的装置连接的示意性结构图;
图3A是根据本发明一个实施例的盖板可翻转开合的雷达集成系统设置在翼子板处的示意性结构图;
图3B是根据本发明一个实施例的盖板可翻转开合的雷达集成系统的示意性爆炸图;
图3C是根据本发明一个实施例的盖板及盖板驱动机构连接的示意性结构图;
图3D是根据本发明一个实施例的盖板及盖板驱动机构连接的示意性局部结构图;
图3E是根据本发明一个实施例的盖板打开第一开口、雷达装置由第一开口伸出翼子板处的示意性结构图;
图3F是根据本发明一个实施例的雷达装置及雷达驱动机构连接的示意性结构图;
图3G是根据本发明一个实施例的雷达装置及双连接机构连接的示意性结构图;
图4A是根据本发明一个实施例的盖板打开第一开口、雷达装置由第一开口伸出翼子板处的示意性结构图;
图4B是根据本发明一个实施例的雷达可翻转运动的雷达集成系统的示意性爆炸图;
图4C是根据本发明一个实施例的雷达装置及雷达驱动机构连接的示意性结构图;
图4D是根据本发明一个实施例的雷达装置及双连接机构连接的示意性结构图;
图4E是根据本发明一个实施例的雷达可翻转运动的雷达集成系统设置在翼子板处的示意性结构图;
图4F是根据本发明一个实施例的盖板及盖板驱动机构连接的示意性结构图;
图4G是根据本发明一个实施例的控制装置与受控的装置连接的示意性结构图;
图5A是根据本发明一个实施例的翻转式雷达集成盒安装于车辆时的结构示意图;
图5B是根据本发明一个实施例的翻转式雷达集成盒安装于车辆时的局部剖视图;
图5C是根据本发明一个实施例的翻转式雷达集成盒的分解示意图;
图5D是根据本发明一个实施例的翻转式雷达集成盒的结构示意图;
图6A是根据本发明一个实施例的用于雷达的清洗装置的示意性结构图;
图6B是图6A所示清洗装置的示意性爆炸图;
图7A是根据本发明一个实施例的车载雷达系统安装于车辆上时的结构示意图;
图7B是根据本发明一个实施例的车载雷达系统的清洗单元的结构示意图;
图7C是根据本发明一个实施例的车载雷达系统的连接框图;
图7D是根据本发明一个实施例的车载雷达系统安装于车辆上时的剖面示意图;
图7E是根据本发明一个实施例的车载雷达系统的分解示意图;
图8A是根据本发明一个实施例的可隐藏式车载雷达安装总成安装于车辆时的俯视图;
图8B是图8A沿A-A剖切线的剖视图;
图8C是图8A沿B-B剖切线的剖视图;
图8D是根据本发明一个实施例的可隐藏式车载雷达安装总成的雷达包壳的结构示意图;
图8E是根据本发明一个实施例的可隐藏式车载雷达安装总成的固定底板的结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
作为本发明其中一个实施例,请参图1A和图1B,本发明提供的激光雷达集成装置,至少包括盖板Q10、固定支架Q20、升降结构Q30、清洗结构Q40、弹出结构Q50、激光雷达Q60、控制器Q70,盖板Q10位于车身翼子板Q80上,并与翼子板Q80上的开口大小吻合,固定支架Q20、升降结构Q30、清洗结构Q40、弹出结构Q50、激光雷达Q60、控制器Q70均位于翼子板Q80的内部,升降结构Q30设于固定支架Q20上且与盖板Q10连接,并能够在控制器Q70的控制下驱动盖板Q10上下运动,激光雷达Q60设于弹出结构Q50上,弹出结构Q50设于固定支架Q20上,且能够在控制器Q70的控制下相对固定支架Q20向外运动,将激光雷达Q60推出翼子板Q80的内部,清洗结构Q40与激光雷达Q60一起设于弹出结构Q50上,控制器Q70位于激光雷达Q60的上方且通过第一线束与自动驾驶或高级辅助驾驶域控制器连接。
具体地请再参图1B,固定支架Q20包括第一固定板Q21、连接板Q22,第一固定板Q21位于连接板Q22的两侧,第一固定板Q21与翼子板Q80内侧前车身纵梁通过螺栓固定。
在一个实施例中,请参图1B和图1C,升降结构Q30至少包括第一电机Q31、传动轴Q32、第一齿轮Q33、丝杆Q34、升降杆Q35、滑轨Q36、固定块Q37、第二固定板Q38。
在一个实施例中,滑轨Q36自固定支架Q20下方向上方向内倾斜延伸,其底端与连接板Q22固定,顶端设有固定块Q37;丝杆Q34穿过固定块Q37与滑轨Q36平行设置,固定块Q37与丝杆Q34螺纹连接,丝杆Q34的下端设有升降杆Q35,顶端固定有第一齿轮Q33,升降杆Q35包括第一升降杆Q351、第二升降杆Q352,第一升降杆Q351套设在丝杆Q34的下端且与其螺纹连接,第二升降杆Q352的一端与第一升降杆Q351呈设定角度连接,另一端与盖板Q10一侧的底端固定连接;第二固定板Q38上固定有第一电机Q31和控制器Q70,电机31连接有传动轴Q32,传动轴Q32与第一齿轮Q33啮合,当第一电机Q31正转时,驱动传动轴Q32转动,传动轴Q32带动第一齿轮Q33转动,第一齿轮Q33带动丝杆Q34转动,第一升降杆Q351相对于丝杆Q34进行上升运动,带动第二升降杆Q352及盖板Q10进行上升运动,盖板Q10打开,激光雷达Q60和清洗结构Q40在弹出结构Q50的驱动下弹出翼子板Q80的外部,当第一电机Q31反转时,运动过程与正转相反,盖板Q10进行下降运动,激光雷达Q60和清洗结构Q40在弹出结构Q50的驱动下收回至翼子板Q80的内部。
需要说明的是,升降结构Q30并不局限于本实施例中描述的升降结构Q30,凡是具有升降功能的装置均可以替代本实施例中所描述的升降结构Q30,关于现有技术中的升降结构的具体结构在本发明中不再赘述。
在一个实施例中,请参图1B和图1C、图1E,清洗结构Q40至少包括固定架Q41、电磁阀Q42、喷嘴Q43、连接部Q44、进水口Q45,激光雷达Q60设于固定架Q41上,固定架Q41的两侧各设有一套电磁阀Q42、喷嘴Q43、连接部Q44、进水口Q45的组合结构Q411。具体而言,电磁阀Q42一端和连接部Q44连接,另一端和进水口Q45连接,控制进水口Q45的开和关,进水口Q45连接的管路与整车水路连接。喷嘴Q43和连接部Q44连接,喷嘴Q43具有伸缩功能,在不使用的时候,缩回到连接部Q44的内部,在使用的时候通过水压的作用伸出连接部Q44。
需要说明的是,喷嘴Q43既可以是能够伸出或缩入连接部Q44的伸缩式结构也可以是直接固定在连接部Q44上且不会相对连接部Q44运动的固定式结构,在本实施例中,喷嘴Q43是伸缩式的。
在一个实施例中,请参图1B和图1F,弹出结构Q50至少包括第二电机Q51、减速器Q52、第二齿轮Q53、移动板Q54、移动杆Q55、密封条Q56。
进一步地,第二电机Q51固定于翼子板Q80的内部,其输出轴和减速器Q52连接,减速器Q52与第二齿轮Q53连接,移动板Q54放置在固定支架Q20的连接板Q22上,且能够相对固定支架Q20内外摆动,当移动板Q54相对于固定支架Q20转出时,移动板Q54与连接板Q22的外边缘支架形成设定的角度,在本实施例中,呈Q30度角,激光雷达Q60和清洗结构Q40安装在移动板Q54上,移动Q54上还设有一小孔Q541,移动杆Q55包括第一移动杆Q551和第二移动杆Q552,第一移动杆Q551穿过靠近其的第一固定板Q21上的槽孔,且能够相对第一固定板Q21摆动。第一移动杆Q551一端的下方设有凸柱Q5511,凸柱Q5511与移动板Q54上的小孔Q541卡接,第二移动杆Q552为弧形,外侧一段设有齿,与第二齿轮Q53啮合,第二移动杆Q552与第一移动杆Q551呈设定的角度连接,密封条Q56可以安装在移动板Q54的前侧,也可以固定在翼子板Q80 内部开口的四周,在本实施例中,密封条Q56安装在移动板Q54的前侧,当第二电机Q51正转时,在第二电机Q51和减速器Q52的驱动下,第二齿轮Q53转动,带动第二移动杆Q552转动,进而带动第一移动杆Q551转动,与第一移动杆Q551连接的移动板Q54、激光雷达Q60和清洗结构Q40转出,弹出至翼子板Q80外部,此时,密封条Q56与翼子板Q80内部的开孔四周贴合,密封条Q56具有防水作用,可以防止清洗结构Q40工作时,污水溅入翼子板Q80内部,当第二电机Q51转时,移动板Q54、激光雷达Q60和清洗结构Q40收回至翼子板Q80内部。
需要说明的是,弹出结构Q50并不局限于本实施例中描述的弹出结构Q50,凡是具有弹出功能的装置均可以替代本实施例中所描述的弹出结构Q50,关于现有技术中的弹出结构的具体结构在本发明中不再赘述。
在一个实施例中,请参图1D及图1G,激光雷达Q60工作的一侧固定有镜面Q61,另一侧还连接有第二线束,第二线束与自动驾驶或高级辅助驾驶域控制器连接,当激光雷达Q60检测出镜面Q61受到脏污影响的时候,第二线束可以将信号传输给自动驾驶或高级辅助驾驶域控制器,自动驾驶或高级辅助驾驶域控制器发送清洗信号给电磁阀Q42,电磁阀Q42开启,喷嘴Q43对着镜面Q61喷水,进行清洗工作。图1D中喷嘴Q43为伸出时的状态图,虚线为喷水范围,即两侧喷嘴Q43喷出的水可以覆盖到整个镜面Q61。
需要说明的是,请参图1A和图1G,本发明提供的激光雷达集成装置安装在车身前端两侧的翼子板Q80上,工作角度为与车身前向成30度夹角,可感知120度的水平视野。
本实施例提供的激光雷达集成装置的工作原理如下:当用户有驾驶需求时,自动驾驶或高级辅助驾驶域控制器发出角激光雷达集成装置开启信号,集成装置内部的控制器Q70首先驱动第一电机Q31正转,升降结构Q30开始工作,在传动轴Q32、第一齿轮Q33、丝杆Q34的转动下,第一升降杆Q351和第二升降杆Q352带动盖板Q10上升,将隐藏口打开,接着控制器Q70驱动第二电机Q51正转,弹出结构Q50开始工作,在减速器Q52、第二齿轮Q53的带动下,第二移动杆Q552发生转动,第一移动杆Q551带动移动板Q54移动,激光雷达Q60和清洗结构Q40被弹出翼子板Q80的外部,并与车身前进方向呈30度角,激光雷达Q60开始工作;当激光雷达Q60检测出镜面Q61受到脏污影响时会发出脏污信号给到自动驾驶或高级辅助驾驶域控制器,自动驾驶或高级辅助驾驶域控制器发出清洗信号给到集成装置内部的控制器Q70,自动驾驶或高级辅助驾驶域控制器驱动清洗水泵给水路加压,延时一段时间后集成装置内部的控制器Q70驱动清洗结构Q40开始工作,电磁阀Q42打开,喷嘴Q43喷水清洗激光雷达Q60的镜面Q61,清洗结束后,电磁阀Q42关闭;当驾驶功能退出时,自动驾驶或高级辅助驾驶域控制器发出顶激光雷达集成装置关闭信号,集成装置内部的控制器Q70驱动第一电机Q31和第二电机Q51反转,角激光雷达集成装置关闭,隐藏至翼子板Q80内部。
经过上面的叙述可以知道,本发明提供的激光雷达集成装置具有以下优点:采用隐藏式方案,在激光雷达待机状态会收回到车身内,避免对外观造型产生影响,且降低被砂石划伤风险;自动驾驶功能激活时激光雷达转出至工作位置,增加科技感;集成隐藏式清洗结构,在自动驾驶过程中始终保持激光雷达镜面清洁,极大降低人为清理频次,提高用户体验;将角激光雷达的数量由4-5个降为2个,存在成本优势;布置在前翼子板位置,碰撞风险相比前后保险杆位置有所降低。
本发明还提供了一种车辆,其包括上述所述的一种激光雷达集成装置,关于该车辆的其它技术特征,请参见现有技术,在此不再赘述。
在一实施例中,本发明还提供了一种雷达集成系统,图2A是根据本发明一个实施例的雷达集成系统设置在翼子板处的示意性结构图;图2B是根据本发明一个实施例的盖板打开第一开口、雷达装置由第一开口伸出翼子板处的示意性结构图。
作为本发明的雷达集成系统的另一结构的实施例,本实施例提供一种雷达集成系统M100,该雷达集成系统M100设置在车辆的翼子板M200处。在一个实施例中,本实施例的车辆的翼子板M200包括多个,具体一般的小轿车中,车辆的翼子板M200为四个,分别位于四个轮胎的上方。每一个翼子板M200处设置一个第一开口M201,该第一开口M201位于轮眉300的上方。每一个第一开口M201处均可以设置一个雷达集成系统M100。下面均以一个雷达集成系统M100为例进行说明。
图2C是根据本发明一个实施例的雷达集成系统的示意性爆炸图;作为本发明一个具体的实施例,本实施例的雷达集成系统M100可以包括盖板M10、盖板驱动机构M20、雷达装置M30、雷达驱动机构M40和控制装置M70。盖板驱动机构M20与盖板M10连接,用于受控地运动以带动盖板M10开启或关闭第一开口M201。雷达装置M30位于第一开口M201附近。雷达驱动机构M40与雷达装置M30连接,用于受控地运动,以带动雷达装置M30从第一开口M201处伸出或缩回翼子板M200。控制装置M70与盖板驱动机构M20、雷达驱动机构M40和雷达装置M30均连接,控制装置M70配置成在接收到开启雷达装置M30的指令时,控制盖板驱动机构M20带动盖板M10开启第一开口M201,并控制雷达驱动机构M40带动雷达装置M30从第一开口M201伸出翼子板M200,在接 收到关闭雷达装置M30的指令时,控制盖板M10驱动机构带动盖板M10关闭第一开口M201,并控制雷达驱动机构M40带动雷达装置M30从第一开口M201处缩回至翼子板M200内。
本实施例的雷达集成系统M100可以包括盖板M10、盖板驱动机构M20、雷达装置M30、雷达驱动机构M40和控制装置M70。控制装置M70控制盖板驱动机构M20驱动盖板M10开启和关闭第一开口M201,并且控制装置M70还控制雷达驱动机构M40驱动雷达伸出和缩回翼子板M200,同时还带动雷达装置M30翻转,使得本实施例的雷达集成系统M100探测角度可调,并且在使用时伸出翼子板M200,不使用时缩回翼子板M200,且利用盖板M10保护雷达装置M30,避免雷达装置M30受外界擦碰或被外界的污染物污染而影响使用,延长雷达装置M30的使用寿命。
作为本发明一个具体的实施例,由于盖板M10与雷达装置M30均需要从第一开口M201位置运动到翼子板M200内部,因此为了避免发生运动干涉,将盖板M10运动的方向与雷达运动方向尽可能的不要设置在一个角度或一个平面上。本实施例中,盖板M10与雷达装置M30均是平动加翻转运动,但是其运动轨迹几乎都形成在一个平面上。为避免干涉,将雷达装置M30运动轨迹所在平面的垂直线与盖板M10运动轨迹所在平面的垂直线之间呈预设角度,预设角度为90±15°。例如预设角度可以刚好为90度,也可以为75~105°之间的任一角度。本实施例中就以预设角度为90°进行具体说明。
在一个实施例中,本实施例的盖板M10的运动轨迹均处于竖直平面处,并且盖板M10从第一角度向翼子板M200内进行运动时,其具体是向翼子板M200内部上方运动,并且在平动的同时也会翻转。雷达装置M30的运动轨迹在处于水平面,同样地,其在由第一开口M201处运动至翼子板M200内的过程中,具体是向翼子板M200内部左侧或右侧运动,同时逆时针或顺时针翻转。
作为本发明一个具体的实施例,本实施例的控制装置M70配置成,控制盖板驱动机构M20带动盖板M10开启第一开口M201第一预设时间后再控制雷达驱动机构M40带动雷达装置M30翻转运动从第一开口M201伸出翼子板M200,控制盖板驱动机构M20带动盖板M10关闭第一开口M201第二预设时间后再控制雷达驱动机构M40带动雷达装置M30翻转运动从第一开口M201处缩回至翼子板M200。
本实施例中,第一预设时间可以是0~5s。其中,在第一预设时间为0s时,盖板M10开启第一开口M201和雷达装置M30向第一开口M201运动同时进行。当第一预设时间不为0s时,则盖板M10先开启第一开口M201,第一预设时间后,雷达装置M30再运动至第一开口M201处。如此设计是为了避免雷达装置M30和盖板M10在运动过程中出现干涉。同样地,本实施例的第二预设时间也可以为0~5s,当第二预设时间为0s时,盖板M10关闭第一开口M201和雷达装置M30从第一开口M201运动至翼子板M200内同时进行。当第二预设时间不为0s时,则雷达装置M30先由第一开口M201处运动至翼子板M200内,第二预设时间后盖板M10再运动至关闭第一开口M201处。如此设计同样是为了避免雷达装置M30和盖板M10在运动过程中出现干涉。
本发明通过盖板驱动机构M20和雷达驱动机构M40的结构设计以及控制装置M70对两个驱动机构运动时间的控制,避免了盖板M10与雷达装置M30在运动中出现干涉问题,使得该雷达集成系统M100保证功能的同时更加智能。
图2D是根据本发明一个实施例的盖板及盖板驱动机构连接的示意性结构图;图2E是根据本发明一个实施例的盖板及盖板驱动机构连接的的示意性局部结构图。在一个实施例中,如图2D-图2E所示,本实施例中的雷达集成系统M100可以包括固定框架M50、盖板M10和盖板驱动机构M20。固定框架M50与翼子板M200固连,固定框架M50上设置有滑槽M51。
在一实施例中,盖板驱动机构M20可以包括盖板驱动电机M21和运动机构M22,运动机构M22一端与盖板驱动电机M21连接,另一端与盖板M10连接。该盖板驱动电机M21受控制装置M70的控制而运动,而运动机构M22在与盖板驱动电机M21连接,在盖板驱动电机M21运动时驱动运动机构M22运动,运动机构M22再带动盖板M10运动。此外,运动机构M22受到滑槽M51的限制,带动盖板M10沿着滑槽M51运动,同时带动盖板M10转动,以开启和关闭第一开口M201。
在本实施例中,由于第一开口M201的存在,盖板M10和盖板驱动机构M20可以开启或关闭第一开口M201,。
作为本发明一个实施例,本实施例的运动机构M22可以包括曲柄M221、第一连杆M222。曲柄M221的一端与盖板驱动电机M21的输出轴M211固连,以跟随输出轴M211转动。在一个实施例中,控制装置M70控制盖板驱动电机M21运动时,盖板驱动电机M21的输出轴M211转动,连接在输出轴M211的曲柄M221也会相应的转动。第一连杆M222的一端与曲柄M221的远离输出轴M211的一端可转动连接,另一端与盖板M10连接。因此当曲柄M221转动时,第一连杆M222也会被带动,而第一连杆M222与盖板M10连接,因此盖板M10也会被带动的运动。本实施例中,第一连杆M222转动的转轴 与曲柄M221转动的转轴平行。第一连杆M222的侧边设置有凸轮,凸轮卡接在滑槽M51处,当曲柄M221跟随输出轴M211转动时,凸轮沿着滑槽M51运动,以使得盖板M10沿着与滑槽M51平行的轨迹运行。
本实施例中的盖板驱动电机M21的输出轴M211直接与曲柄M221的一端固连,曲柄M221跟随盖板驱动电机M21的输出轴M211转动。而第一连杆M222的一端与曲柄M221的另一端可转动连接,第一连杆M222的另一端与盖板M10连接,因此在盖板驱动电机M21的输出轴M211转动时,盖板M10会在曲柄M221和第一连杆M222的带动下运动。本实施例中,第一连杆M222与盖板M10的中间位置连接,并且是可转动连接。由于第一连杆M222处设置凸轮,而凸轮受到滑槽M51的限制,因此盖板M10也会按照与滑槽M51平行的轨迹运动。当滑槽M51刚好可以是从第一开口M201向翼子板M200内部延伸时,盖板M10就会在曲柄M221和第一连杆M222的带动下不断的在第一开口M201处和翼子板M200的内部之间做往复运动。
本实施例的盖板驱动机构M20仅仅包括盖板驱动电机M21和运动机构M22,而运动机构M22仅仅包括曲柄和第一连杆,该盖板驱动机构M20的结构简单,驱动力单一,运动过程简单,可以达到盖板M10开启和关闭第一开口M201的目的。
在一个实施例中,本实施例的滑槽M51的数量为两个,两个滑槽M51镜像相对设置,第一连杆M222位于两个滑槽M51之间。凸轮的数量为两个,设置在第一连杆M222的面向两个滑槽M51的两个相对的侧面处,每一凸轮与其中一个滑槽M51对应设置。
具体在本实施例中,凸轮设置在第一连杆M222的左右两侧,而滑槽M51也位于第一连杆M222的左右两侧。凸轮卡进滑槽M51内。在第一连杆M222运动时,收到滑槽M51的作用,第一连杆M222的设置凸轮的部位处仅能够沿着滑槽M51运动。而本实施例中两个滑槽M51和两个凸轮的设计更有利于盖板M10运动的稳定,避免在运动过程中出现倾斜或卡顿的情况。
事实上,实际的雷达集成系统M100中,翼子板M200并非直板结构,其还会存在折弯结构。例如,翼子板M200在第一开口M201的上方位置处向内折弯,在盖板M10被带动的沿着滑槽M51运动时,由于盖板M10具有一定的尺寸,因此很容易与周边其它部件出现干涉摩擦等情况。因此,因此盖板M10若向上运动时,则盖板M10需要向内旋转到与翼子板M200的平面平行的角度更利于节省空间。
作为本发明一个具体的实施例,本实施例的运动机构M22还可以包括第二连杆M223,第二连杆M223的一端与固定框架M50可转动连接,另一端与盖板M10可转动连接。本实施例中,第二连杆M223的作用主要是在盖板M10沿着滑槽M51运动的过程中带动盖板M10转动。其中,第二连杆M223的第二轴心线与第一连杆M222的第一轴心线相互平行,以在盖板M10在盖板驱动电机M21的带动下沿着滑槽M51运动时,盖板M10在第二连杆M223的作用下转动。其中,第二轴心线为第二连杆M223与盖板M10可转动连接处的转轴的轴心线,第一轴心线为第一连杆M222与盖板M10可转动连接的转轴的轴心线。
由于本实施例中盖板M10在第二连杆M223的带动下翻转,因此若第一轴心线与第二轴心线重合时,盖板M10无法运动,因此,本实施例中第一轴心线与第二轴心线必须平行设置。本实施例中,雷达集成系统M100仅仅在盖板M10处连接一个第二连杆M223,第一连杆M222和第二连杆M223的共同作用下,在盖板驱动电机M21的驱动下,盖板M10沿着与滑槽M51平行的轨迹运动的同时还会翻转,以方便盖板M10开启和关闭第一开口M201。
作为本发明一个具体的实施例,本实施例的雷达集成系统M100还可以包括铰链杆M224,其与盖板M10固连,并沿着与第二连杆M223转轴的轴线平行的方向延伸,第二连杆M223的一个端部与铰链杆M224的一端可转动连接,以使得盖板M10与铰链杆M224共同相对第二连杆M223转动。铰链杆M224位于盖板M10的内侧,以在盖板M10关闭第一开口M201时,铰链杆M224位于翼子板M200内部,并且整个盖板M10覆盖在第一开口M201处,既美观又可以让盖板M10与第一开口M201处于密封状态。
在一个实施例中,第二连杆M223的数量可以为两个,两个第二连杆M223相互平行,且分别位于铰链杆M224的两端,两个第二连杆M223与铰链杆M224形成U字形结构。
本实施例中,铰链杆M224横向设置在盖板M10的内侧,两个第二连杆M223分别可转动连接在铰链杆M224的左右两个端部,第一连杆M222则与盖板M10的内侧的中间位置可转动连接,第一连杆M222所在的平面与第二连杆M223所在的平面相互平行。通过两个连杆的设计,使得盖板M10在运动和翻转的过程中更稳定。
作为本发明一个具体的实施例,本实施例雷达装置M30位于第一开口M201附近。雷达驱动机构M40可以包括雷达驱动电机M41和双连杆机构。同样地,雷达驱动电机M41与控制装置M70连接,该控制装置M70在接收到指令后控制驱动电机运转。双连杆机构的一端与雷达装置M30可转动连接,另一端与翼子板M200可转动连接,在雷达 驱动电机M41受控地带动双连杆机构运动时,双连杆机构带动雷达装置M30相对翼子板M200转动以从第一开口M201处伸出或缩回翼子板M200。
图2F是根据本发明一个实施例的雷达装置及雷达驱动机构连接的的示意性结构图。图2G是根据本发明一个实施例的雷达装置及双连接机构连接的的示意性结构图。
本实施例中,如图2F-图2G所示,雷达集成系统M100可以包括雷达装置M30和雷达驱动机构M40,而雷达驱动机构M40可以包括雷达驱动电机M41和双连杆机构M42,利用雷达驱动电机M41驱动双连杆机构M42运动,而双连杆机构M42则带动雷达装置M30运动,从而使得雷达装置M30可以相对翼子板M200转动从第一开口M201处伸出或缩回翼子板M200,因此,该雷达装置M30可以在使用时伸出翼子板M200,并且转动角度,从而保证雷达装置M30测量角度不受限。
作为本发明一个具体的实施例,本实施例的双连杆机构M42可以包括第一转轴M421、第一摆臂M422、第二转轴M423和第二摆臂M424。其中,第一转轴M421与翼子板M200可转动连接,第一转轴M421与雷达驱动电机M41连接,以在雷达驱动电机M41的带动下转动。第一摆臂M422的一端与第一转轴M421固连,以在第一转轴M421转动时绕第一转轴M421的轴线转动,其另一端与雷达装置M30可转动连接。第二转轴M423与翼子板M200可转动连接,并与第一转轴M421平行设置。第二摆臂M424的一端与雷达装置M30可转动连接,另一端与第二转轴M423固连。其中,当第一转轴M421在雷达驱动电机M41的带动下转动时,在第一摆臂M422、第二摆臂M424和第二转轴M423的共同作用下带动雷达装置M30翻转移动。
本实施例中,双连杆机构M42仅仅包括第一转轴M421、第一摆臂M422、第二转轴M423和第二摆臂M424,其结构简单,运动过程清晰。此外,该双连杆机构M42与雷达装置M30连接,该双连杆机构M42在雷达驱动电机M41的带动下可带动雷达装置M30运动,实现雷达装置M30的运动和转动同时进行,保证雷达装置M30的探测角度达到要求,同时也达到了雷达装置M30内藏的目的。
作为本发明一个具体的实施例,本实施例的第一摆臂M422的数量为两个,两个第一摆臂M422平行设置,两个第一摆臂M422分别与雷达装置M30的上下两个侧面可转动连接。
在一个实施例中,两个第一摆臂M422均与第一转轴M421固连,且上下设置。在第一转轴M421转动时,两个第一摆臂M422同时运动,从而推动雷达装置M30运动。两个第一摆臂M422的设计,可以让扭矩传递更大更稳,让雷达的运动也更稳定。
作为本发明一个具体的实施例,本实施例的第二摆臂M424的数量为两个,两个第二摆臂M424平行设置,两个第二摆臂M424分别与雷达装置M30的上下两个侧面可转动连接。第二摆臂M424数量设计为两个同样也可以让雷达装置M30与第二转轴M423的连接更牢。
在一个实施例中,该两个第二摆臂M424分别位于两个第一摆臂M422的侧边,并在第一摆臂M422在驱动装置的驱动下运动时,第一摆臂M422带动雷达装置M30运动,雷达装置M30再驱动第二摆臂M424运动,第二摆臂M424相对第二转轴M423转动,从而实现了雷达装置M30的翻转移动。
作为本发明一个具体的实施例,本实施例的第二摆臂M424的长度与第一摆臂M422的长度不等,或第一转轴M421和第二转轴M423之间的距离与目标距离不等,目标距离为第一摆臂M422与雷达机构的铰接点以及第二摆臂M424与雷达机构的铰接点之间的距离。
在一个实施例中,由于本实施例中的双铰链机构最终需要实现的是雷达装置M30的翻转运动,因此第一摆臂M422的长度和第二摆臂M424的长度相等时,第一转轴M421和第二转轴M423之间的距离与目标距离不能相等。或者在第一转轴M421和第二转轴M423之间的距离与目标距离相等时,第一摆臂M422的长度和第二摆臂M424的长度不能相等。若第一摆臂M422的长度和第二摆臂M424的长度相等,且第一转轴M421和第二转轴M423之间的距离与目标距离相等,则雷达装置M30只能平动而不能转动。
此外,雷达装置M30的运动轨迹不仅与摆臂的长短和摆臂端部距离有关,还与雷达装置M30、转轴和第一开口M201的相对位置有关。例如,本实施例中,雷达装置M30位于第一转轴M421的左侧,在第一转轴M421的逆时针转动时,雷达装置M30整体向翼子板M200外运动,而若第一转轴M421顺时针转动时,则雷达装置M30整体向翼子板M200内运动。而若雷达装置M30位于第一转轴M421的右侧,则在第一转轴M421逆时针转动是,雷达装置M30整体向翼子板M200内运动,而若第一转轴M421顺时针转动时,则雷达装置M30整体向翼子板M200外运动。
在另一个实施例中,本实施例的第一摆臂M422的长度大于第二摆臂M424的长度,第一转轴M421与第二转轴M423之间的距离小于目标距离。
本实施例中,由于第一摆臂M422的长度大于第二摆臂M424的长度,因此在第一摆臂M422从上至下看逆时针转动时,雷达装置M30由翼子板M200内向外运动,同时 雷达装置M30还会从上至下看逆时针转动。
图2H是根据本发明一个实施例的控制装置与受控的装置连接的示意性结构图。作为本发明一个具体的实施例,本实施例的雷达集成系统M100还可以包括清洗装置M80,其设置在翼子板M200内侧,并且位于雷达装置M30的远离翼子板M200的一侧,用于受控地启动以清洗雷达装置M30。
本实施例中,由于雷达装置M30在缩回至翼子板M200内部时,其也会转动至翼子板M200内侧处。若在使用过程中,雷达装置M30被灰尘或污水等东西弄脏时,可以利用清洗装置M80对雷达装置M30进行清洗,从而保证雷达装置M30可以更好的探测车辆周围环境,避免误判等情况的出现。
作为本发明一个具体的实施例,本实施例的清洗装置M80可以包括储水盒M81、管道M82和喷嘴M83。其中,储水盒M81用于存储清洁雷达装置M30所需的清洁液。管道M82一端与储水盒M81连通并位于清洁液内,管道M82处还设置有水泵M821。喷嘴M83与管道M82的另一端连接,喷嘴M83处设置电磁阀M831。其中,水泵M821和电磁阀M831受控地启动以将储水盒M81内的清洁液喷洒在雷达装置M30处。
本实施例中,控制装置M70还与水泵M821和电磁阀M831均连接,控制装置M70配置成在接收到需要清洁雷达装置M30的指令后控制电磁阀M831和水泵M821开启,从而使得清洁液从喷嘴M83处喷出,并在第三预设时间后控制水泵M821和电磁阀M831关闭。
当然作为一个优选地实施例,当控制装置M70接收到需要清洁雷达装置M30的指令后,在控制电磁阀M831和水泵M821开启前,还可以先控制雷达驱动机构M40驱动雷达装置M30旋转至面向清洁装置的位置。然后再控制开启水泵M821和电磁阀M831,为雷达装置M30进行清洗。并且在雷达装置M30清洗完毕后,再控制雷达装置M30转动至原始位置。
作为本发明一个具体的实施例,本实施例的喷嘴M83处还设置流量传感器M832,流量传感器M832与控制装置M70连接,用于检测流经喷嘴M83的液体的流量。雷达集成系统M100还包括警报装置M90,警报装置M90与控制装置M70连接。其中,控制装置M70配置成在流量传感器M832监测到流经喷嘴M83的液体的流量小于预设流量时,控制警报装置M90进行报警。
当喷嘴M83处的液体流量较小时,也说明了储水和内的液体不够,此时警报装置M90进行报警,提示人员进行添加清洁液。
作为本发明一个具体的实施例,本实施例的雷达集成系统M100还可以包括壳体M60。其中,壳体M60设置有第二开口M61,壳体M60固定设置在翼子板M200的内侧,第二开口M61与第一开口M201对应设置。固定框架M50设置在壳体M60内,第一转轴M421和第二转轴M423均与固定框架M50可转动连接。
本实施例中,由于固定框架M50设置在壳体M60内,而壳体M60则固定设置在翼子板M200处,因此当第一转轴M421和第二转轴M423相对固定框架M50可转动连接时,相当于第一转轴M421和第二转轴M423通过固定框架M50和壳体M60与翼子板M200可转动连接。
本实施例中的壳体M60除了第二开口M61以外,当壳体M60与固定框架M50结合在一起使,其它部位均为密封的结构。壳体M60设置在第一开口M201和第二开口M61相互配合且密封的位置处,使得当盖板M10在第一开口M201处时,外界的灰尘或污水都无法进入到壳体M60内,也就无法污染位于壳体M60内的任何部件,避免对壳体M60内的部件产生影响,延长使用寿命。
此外,本实施例中在盖板M10的内侧还可以设置一与第二开口M61配合的内板,该内板与盖板M10可以同时运动,并均受盖板驱动机构M20的驱动。在盖板驱动机构M20驱动盖板M10关闭第一开口M201的同时,内板也刚好关闭住第二开口M61,从而双层保护,放置外界污染物进入到壳体M60内侧。
本实施例中的雷达集成系统M100在总装安装时,先通过设备将盖板M10及盖板驱动机构M20设置成开启状态,然后工人通过上抬工装,将雷达装置M30自下而上抬高到安装位置并通过预挂结构暂时固定到车身shotgun上,然后工人将前舱线束与雷达装置的线束连接,然后通过自适应螺母将雷达装置M30适配紧固到车身shotgun上,通过设备上电,将盖板M10关闭,最后工人调节自适应螺母,调节盖板M10与翼子板M200的间隙面差。
作为本发明一个具体的实施例,本实施例还提供一种车辆,该车辆可以包括上面所述的雷达集成系统M100。
在一实施例中,图3A是根据本发明一个实施例的盖板可翻转开合的雷达集成系统设置在翼子板处的示意性结构图;图3B是根据本发明一个实施例的盖板可翻转开合的雷达集成系统的示意性爆炸图。
作为本发明的又一种雷达集成系统的实施例,如图3A和图3B所示,本实施例提供 一种盖板可翻转开合的雷达集成系统N100,该盖板可翻转开合的雷达集成系统N100设置在车辆的翼子板N200处。在一个实施例中,本实施例的车辆的翼子板N200包括多个,具体一般的小轿车中,车辆的翼子板N200为四个,分别位于四个轮胎的上方。每一个翼子板N200处设置一个第一开口N201,该第一开口N201位于轮眉的上方。每一个第一开口N201处均可以设置一个盖板可翻转开合的雷达集成系统N100。下面均以一个盖板可翻转开合的雷达集成系统N100为例进行说明。
在一个实施例中,本实施例中的盖板可翻转开合的雷达集成系统N100可以包括固定框架N10、盖板N20、盖板驱动机构N30和雷达组件N40。固定框架N10与翼子板N200固连,固定框架N10上设置有滑槽N11。盖板驱动机构N30位于固定框架N10内,盖板驱动机构N30与盖板N20连接,用于受控地运动以带动盖板N20开启或关闭第一开口N201。
图3C是根据本发明一个实施例的盖板及盖板驱动机构连接的示意性结构图;图3D是根据本发明一个实施例的盖板及盖板驱动机构连接的示意性局部结构图。在一个实施例中,如图3C和图3D所示,本实施例中盖板驱动机构N30可以包括盖板驱动电机N31和运动机构N32,运动机构N32一端与盖板驱动电机N31连接,并受盖板驱动电机N31的驱动,另一端连接盖板N20,运动机构N32在盖板驱动电机N31的驱动下,带动盖板N20沿着滑槽N11运动,同时带动盖板N20转动,以开启和关闭第一开口N201。雷达组件N40配置成受控地在第一开口N201开启时从第一开口N201伸出翼子板N200外。
在一个实施例中,本实施例中,由于第一开口N201的存在,盖板N20和盖板驱动机构N30可以将该第一开口N201开启和关闭,从而使当雷达组件N40在第一开口N201开启时才会被雷达才会伸出翼子板N200外侧,因此本实施例通过盖板N20和盖板驱动机构N30的设计,在雷达组件N40需要从第一开口N201伸出翼子板N200时,盖板驱动机构N30驱动盖板N20关闭第一开口N201,不影响雷达组件N40的正常使用。在雷达组件N40从第一开口N201缩回至翼子板N200内时,盖板驱动机构N30再驱动盖板N20关闭第一开口N201,避免雷达组件N40长时间直接裸露在外而受到外界灰尘或污水的污染而影响使用,同时盖板N20也阻挡了外界的对雷达组件的擦碰,避免雷达组件N40损坏,延长雷达组件N40的使用寿命。
作为本发明一个具体的实施例,本实施例的运动机构N32可以包括曲柄N321和第一连杆N322。曲柄N321的一端与盖板驱动电机N31的输出轴N311固连,以跟随输出轴N311转动。第一连杆N322的一端与曲柄N321的远离输出轴N311的一端可转动连接,另一端与盖板N20连接,第一连杆N322转动的转轴与曲柄N321转动的转轴平行。第一连杆N322的侧边设置有凸轮,凸轮卡接在滑槽N11处,当曲柄N321跟随输出轴N311转动时,凸轮沿着滑槽N11运动,以使得盖板N20沿着与滑槽N11平行的轨迹运行。
本实施例中的盖板驱动电机N31的输出轴N311直接与曲柄N321的一端固连,曲柄N321跟随盖板驱动电机N31的输出轴N311转动。而第一连杆N322的一端与曲柄N321的另一端可转动连接,第一连杆N322的另一端与盖板N20连接,因此在盖板驱动电机N31的输出轴N311转动时,盖板N20会在曲柄N321和第一连杆N322的带动下运动。由于第一连杆N322处设置凸轮,而凸轮受到滑槽N11的限制,因此盖板N20也会按照与滑槽N11平行的轨迹运动。当滑槽N11刚好可以是从第一开口N201向翼子板N200内部延伸时,盖板N20就会在曲柄N321和第一连杆N322的带动下不断的在第一开口N201处和翼子板N200的内部之间做往复运动。
本实施例的盖板驱动机构N30仅仅包括盖板驱动电机N31和运动机构N32,而运动机构N32仅仅包括曲柄N321和第一连杆N322,该盖板驱动机构N30的结构简单,驱动力单一,运动过程简单,可以达到盖板N20开启和关闭第一开口N201的目的。
在一个实施例中,本实施例的滑槽N11的数量为两个,两个滑槽N11镜像相对设置,第一连杆N322位于两个滑槽N11之间。凸轮的数量为两个,设置在第一连杆N322的面向两个滑槽N11的两个相对的侧面处,每一凸轮与其中一个滑槽N11对应设置。
具体在本实施例中,凸轮设置在第一连杆N322的左右两侧,而滑槽N11也位于第一连杆N322的左右两侧。凸轮卡进滑槽N11内。在第一连杆N322运动时,收到滑槽N11的作用,第一连杆N322的设置凸轮的部位处仅能够沿着滑槽N11运动。而本实施例中两个滑槽N11和两个凸轮的设计更有利于盖板N20运动的稳定,避免在运动过程中出现倾斜或卡顿的情况。
事实上,实际的盖板可翻转开合的雷达集成系统N100中,翼子板N200并非直板结构,其还会存在折弯结构。在盖板N20被带动的沿着滑槽N11运动时,由于盖板N20具有一定的尺寸,因此很容易与周边其它部件出现干涉摩擦等情况。因此,实际使用时,盖板N20在平动时还会需要转动,以更利于盖板N20开启和关闭第一开口N201。
作为本发明一个具体的实施例,本实施例的运动机构N32还可以包括第二连杆N323,第二连杆N323的一端与固定框架可转动连接,另一端与盖板N20可转动连接。其中, 第二连杆N323的第二轴心线与第一连杆N322的第一轴心线相互平行,以在盖板N20在盖板驱动电机N31的带动下沿着滑槽N11运动时,盖板N20在第二连杆N323的作用下转动;其中,第二轴心线为第二连杆N323与盖板N20可转动连接处的转轴的轴心线,第一轴心线为第一连杆N322与盖板N20可转动连接的转轴的轴心线。
由于本实施例中盖板N20在第二连杆N323的带动下翻转,因此若第一轴心线与第二轴心线重合时,盖板N20无法运动,因此,本实施例中第一轴心线与第二轴心线必须平行设置。本实施例中,本实施例仅仅在盖板N20处连接一个第二连杆N323,第一连杆N322和第二连杆N323的共同作用下,在盖板驱动电机N31的驱动下,盖板N20沿着与滑槽N11平行的轨迹运动的同时还会翻转,以方便盖板N20开启和关闭第一开口N201。作为本发明一个具体的实施例,本实施例的盖板可翻转开合的雷达集成系统N100还可以包括铰链杆N324,其与盖板N20固连,并沿着与第二连杆N323转轴的轴线平行的方向延伸,第二连杆N323的一个端部与铰链杆N324的一端可转动连接,以使得盖板N20与铰链杆N324共同相对第二连杆N323转动。铰链杆N324位于盖板N20的一侧,以在盖板N20关闭第一开口N201时,铰链杆N324位于翼子板N200内部。
在一个实施例中,第二连杆N323的数量可以为两个,两个第二连杆N323相互平行,且分别位于铰链杆N324的两端,两个第二连杆N323与铰链杆N324形成U字形结构。
本实施例中,铰链杆N324横向设置在盖板N20的内侧,两个第二连杆N323分别可转动连接在铰链杆N324的左右两个端部,第一连杆N322则与盖板N20的内侧的中间位置可转动连接,第一连杆N322所在的平面与第二连杆N323所在的平面相互平行。通过两个连杆的设计,使得盖板N20在运动和翻转的过程中更稳定。
图3E是根据本发明一个实施例的盖板打开第一开口、雷达装置由第一开口伸出翼子板处的示意性结构图;图3F是根据本发明一个实施例的雷达装置及雷达驱动机构连接的示意性结构图;图3G是根据本发明一个实施例的雷达装置及双连接机构连接的示意性结构图。作为本发明一个具体的实施例,如图3F和图3G所示,本实施例中盖板可翻转开合的雷达集成系统N100的雷达组件N40可以包括雷达装置N41和雷达驱动机构N42。其中,雷达装置N41位于第一开口N201附近。雷达驱动机构N42可以包括雷达驱动电机N43和双连杆机构,双连杆机构的一端与雷达装置N41可转动连接,另一端与翼子板N200可转动连接,在雷达驱动电机N43受控地带动双连杆机构运动时,双连杆机构带动雷达装置N41相对翼子板N200转动以从第一开口N201处伸出或缩回翼子板N200。
本实施例中,盖板可翻转开合的雷达集成系统N100可以包括雷达装置N41和雷达驱动机构N42,而雷达驱动机构N42可以包括雷达驱动电机N43和双连杆机构N44,利用雷达驱动电机N43驱动双连杆机构N44运动,而双连杆机构N44则带动雷达装置N41运动,从而使得雷达装置N41可以相对翼子板N200转动从第一开口N201处伸出或缩回翼子板N200。
作为本发明一个具体的实施例,本实施例的双连杆机构N44可以包括第一转轴N441、第一摆臂N442、第二转轴N443和第二摆臂N444。其中,第一转轴N441与翼子板N200可转动连接,第一转轴N441与雷达驱动电机N43连接,以在雷达驱动电机N43的带动下转动。第一摆臂N442的一端与第一转轴N441固连,以在第一转轴N441转动时绕第一转轴N441的轴线转动,其另一端与雷达装置N41可转动连接。第二转轴N443与翼子板N200可转动连接,并与第一转轴N441平行设置。第二摆臂N444的一端与雷达装置N41可转动连接,另一端与第二转轴N443固连。其中,当第一转轴N441在雷达驱动电机N43的带动下转动时,在第一摆臂N442、第二摆臂N444和第二转轴N443的共同作用下带动雷达装置N41翻转移动。
本实施例中,双连杆机构N44仅仅包括第一转轴N441、第一摆臂N442、第二转轴N443和第二摆臂N444,其结构简单,运动过程清晰。此外,该双连杆机构N44与雷达装置N41连接,该双连杆机构N44在雷达驱动电机N43的带动下可带动雷达装置N41运动,实现雷达装置N41的运动和转动同时进行,保证雷达装置N41的探测角度达到要求,同时也达到了雷达装置N41内藏的目的。
作为本发明一个具体的实施例,本实施例的第一摆臂N442的数量为两个,两个第一摆臂N442平行设置,两个第一摆臂N442分别与雷达装置N41的上下两个侧面可转动连接。
在一个实施例中,两个第一摆臂N442均与第一转轴N441固连,且上下设置。在第一转轴N441转动时,两个第一摆臂N442同时运动,从而推动雷达装置N41运动。
作为本发明一个具体的实施例,本实施例的第二摆臂N444的数量为两个,两个第二摆臂N444平行设置,两个第二摆臂N444分别与雷达装置N41的上下两个侧面可转动连接。
在一个实施例中,该两个第二摆臂N444分别位于两个第一摆臂N442的侧边,并在第一摆臂N442在驱动装置的驱动下运动时,第一摆臂N442带动雷达装置N41运动,雷达装置N41再驱动第二摆臂N444运动,第二摆臂N444相对第二转轴N443转动,从而 实现了雷达装置N41的翻转移动。
作为本发明一个具体的实施例,本实施例的第二摆臂N444的长度与第一摆臂N442的长度不等,或第一转轴N441和第二转轴N443之间的距离与目标距离不等,目标距离为第一摆臂N442与雷达机构的铰接点以及第二摆臂N444与雷达机构的铰接点之间的距离。
由于本实施例中的双铰链机构最终需要实现的是雷达装置N41的翻转运动,因此第一摆臂N442的长度和第二摆臂N444的长度相等时,第一转轴N441和第二转轴N443之间的距离与目标距离不能相等。或者在第一转轴N441和第二转轴N443之间的距离与目标距离相等时,第一摆臂N442的长度和第二摆臂N444的长度不能相等。若第一摆臂N442的长度和第二摆臂N444的长度相等,且第一转轴N441和第二转轴N443之间的距离与目标距离相等,则雷达装置N41只能平动而不能转动。
此外,雷达装置N41的运动轨迹不仅与摆臂的长短和摆臂端部距离有关,还与雷达装置N41、转轴和第一开口N201的相对位置有关。例如,本实施例中,雷达装置N41位于第一转轴N441的左侧,在第一转轴N441的逆时针转动时,雷达装置N41整体向翼子板N200外运动,而若第一转轴N441顺时针转动时,则雷达装置N41整体向翼子板N200内运动。而若雷达装置N41位于第一转轴N441的右侧,则在第一转轴N441逆时针转动时,雷达装置N41整体向翼子板N200内运动,而若第一转轴N441顺时针转动时,则雷达装置N41整体向翼子板N200外运动。
在一个实施例中,本实施例的第一摆臂N442的长度大于第二摆臂N444的长度,第一转轴N441与第二转轴N443之间的距离小于目标距离。
本实施例中,由于第一摆臂N442的长度大于第二摆臂N444的长度,因此在第一摆臂N442从上至下看逆时针转动时,雷达装置N41由翼子板N200内向外运动,同时雷达装置N41还会从上至下看逆时针转动。
作为本发明一个具体的实施例,本实施例的盖板可翻转开合的雷达集成系统N100还可以包括壳体N50。其中,壳体N50设置有第二开口N51,壳体N50固定设置在翼子板N200的内侧,第二开口N51与第一开口N201对应设置。固定框架N10设置在壳体N50内,第一转轴N441和第二转轴N443均与固定框架N10可转动连接。
本实施例中,由于固定框架N10设置在壳体N50内,而壳体N50则固定设置在翼子板N200处,因此当第一转轴N441和第二转轴N443相对固定框架N10可转动连接时,相当于第一转轴N441和第二转轴N443通过固定框架N10和壳体N50与翼子板N200可转动连接。
本实施例中的壳体N50除了第二开口N51以外,当壳体N50与固定框架N10结合在一起使,其它部位均为密封的结构。壳体N50设置在第一开口N201和第二开口N51相互配合且密封的位置处,使得当盖板N20在第一开口N201处时,外界的灰尘或污水都无法进入到壳体N50内,也就无法污染位于壳体N50内的任何部件,避免对壳体N50内的部件产生影响,延长使用寿命。
作为本发明一个具体的实施例,本实施例的盖板可翻转开合的雷达集成系统N100盖板可翻转开合的雷达集成系统还可以包括清洗装置(图中未示出),其设置在壳体N50内,并且位于雷达装置N41的远离翼子板N200的一侧,用于受控地启动以清洗雷达装置N41。
本实施例中,由于雷达装置N41在缩回至翼子板N200内部时,其也会转动至翼子板N200内侧处。若在使用过程中,雷达装置N41被灰尘或污水等东西弄脏时,可以利用清洗装置对雷达装置N41进行清洗,从而保证雷达装置N41可以更好的探测车辆周围环境,避免误判等情况的出现。
作为本发明一个具体的实施例,本实施例的清洗装置可以包括储水盒、管道和喷嘴。其中,储水盒用于存储清洁雷达装置N41所需的清洁液。管道一端与储水盒连通并位于清洁液内,管道处还设置有水泵。喷嘴与管道的另一端连接,喷嘴处设置电磁阀。其中,水泵和电磁阀受控地启动以将储水盒内的清洁液喷洒在雷达装置N41处。
本实施例中,喷嘴对着雷达装置N41,在需要对雷达装置N41进行清洗时,雷达装置N41可以进一步转动至面向喷嘴所在位置,从而保证喷嘴喷洒出来的液体可以顺利的到达雷达装置N41处。
本实施例中的盖板可翻转开合的雷达集成系统N100在总装安装时,先通过设备将盖板N20及盖板驱动机构N30设置成开启状态,然后工人通过上抬工装,将雷达装置N41自下而上抬高到安装位置并通过预挂结构暂时固定到车身shotgun上,然后工人将前舱线束与雷达装置N41的线束连接,然后通过自适应螺母将雷达装置N41适配紧固到车身shotgun上,通过设备上电,将盖板N20关闭,最后工人调节自适应螺母,调节盖板N20与翼子板N200的间隙面差。
作为本发明一个实施例,本实施例还提供一种车辆,该车辆可以包括上面的盖板可翻转开合的雷达集成系统N100。
在一实施例中,图4A是根据本发明一个实施例的盖板打开第一开口、雷达装置由第一开口伸出翼子板处的示意性结构图。
作为本发明的又一种雷达集成系统的实施例,如图4A所示,本实施例提供一种雷达可翻转运动的雷达集成系统P100,该雷达可翻转运动的雷达集成系统P100设置在车辆的翼子板P200处。在一个实施例中,本实施例的车辆的翼子板P200包括多个,具体一般的小轿车中,车辆的翼子板P200为四个,分别位于四个轮胎的上方。每一个翼子板P200处设置一个第一开口P201,该开口位于轮眉P300的上方。每一个第一开口P201处均可以设置一个雷达可翻转运动的雷达集成系统P100。下面均以一个雷达可翻转运动的雷达集成系统P100为例进行说明。
图4B是根据本发明一个实施例的雷达可翻转运动的雷达集成系统的示意性爆炸图;图4C是根据本发明一个实施例的雷达装置及雷达驱动机构连接的示意性结构图;图4D是根据本发明一个实施例的雷达装置及双连接机构连接的示意性结构图。在一个实施例中,本实施例中,如图4B-图4D所示,雷达可翻转运动的雷达集成系统P100可以包括雷达装置P10和雷达驱动机构P20。其中,雷达装置P10位于第一开口P201附近。雷达驱动机构P20可以包括雷达驱动电机P21和双连杆机构P22,双连杆机构P22的一端与雷达装置P10可转动连接,另一端与翼子板P200可转动连接,在雷达驱动电机P21受控地带动双连杆机构P22运动时,双连杆机构P22带动雷达装置P10相对翼子板P200翻转运动以从第一开口P201处伸出或缩回翼子板P200。
本实施例中,雷达可翻转运动的雷达集成系统P100可以包括雷达装置P10和雷达驱动机构P20,而雷达驱动机构P20可以包括雷达驱动电机P21和双连杆机构P22,利用雷达驱动电机P21驱动双连杆机构P22运动,而双连杆机构P22则带动雷达装置P10运动,从而使得雷达装置P10可以相对翼子板P200转动从第一开口P201处伸出或缩回翼子板P200。因此本实施例利用雷达驱动电机P21带动雷达装置P10运动和转动,在雷达装置P10位于第一开口P201处时可以利用雷达驱动电机P21带动雷达装置P10转动从而增加雷达装置P10的探测角度。此外,雷达驱动电机P21还可以让雷达装置P10可以在需要时从第一开口P201伸出翼子板P200,而在不需要时从第一开口P201缩回翼子板P200内,从而避免了雷达装置P10在一直裸露在翼子板P200外而沾灰影响使用和灵敏度的问题。
作为本发明一个具体的实施例,本实施例的双连杆机构P22可以包括第一转轴P221、第一摆臂P222、第二转轴P223和第二摆臂P224。其中,第一转轴P221与翼子板P200可转动连接,第一转轴P221与雷达驱动电机P21连接,以在雷达驱动电机P21的带动下转动。第一摆臂P222的一端与第一转轴P221固连,以在第一转轴P221转动时绕第一转轴P221的轴线转动,其另一端与雷达装置P10可转动连接。第二转轴P223与翼子板P200可转动连接,并与第一转轴P221平行设置。第二摆臂P224的一端与雷达装置P10可转动连接,另一端与第二转轴P223固连。其中,当第一转轴P221在雷达驱动电机P21的带动下转动时,在第一摆臂P222、第二摆臂P224和第二转轴P223的共同作用下带动雷达装置P10翻转移动。
本实施例中,双连杆机构P22仅仅包括第一转轴P221、第一摆臂P222、第二转轴P223和第二摆臂P224,其结构简单,运动过程清晰。此外,该双连杆机构P22与雷达装置P10连接,该双连杆机构P22在雷达驱动电机P21的带动下可带动雷达装置P10运动,实现雷达装置P10的运动和转动同时进行,保证雷达装置P10的探测角度达到要求,同时也达到了雷达装置P10内藏的目的。
作为本发明一个具体的实施例,本实施例的第一摆臂P222的数量为两个,两个第一摆臂P222平行设置,两个第一摆臂P222分别与雷达装置P10的上下两个侧面可转动连接。
在一个实施例中,两个第一摆臂P222均与第一转轴P221固连,且上下设置。在第一转轴P221转动时,两个第一摆臂P222同时运动,从而推动雷达装置P10运动。
作为本发明一个具体的实施例,本实施例的第二摆臂P224的数量为两个,两个第二摆臂P224平行设置,两个第二摆臂P224分别与雷达装置P10的上下两个侧面可转动连接。
在一个实施例中,该两个第二摆臂P224分别位于两个第一摆臂P222的侧边,并在第一摆臂P222在驱动装置的驱动下运动时,第一摆臂P222带动雷达装置P10运动,雷达装置P10再驱动第二摆臂P224运动,第二摆臂P224相对第二转轴P223转动,从而实现了雷达装置P10的翻转移动。
作为本发明一个具体的实施例,本实施例的第二摆臂P224的长度与第一摆臂P222的长度不等,或第一转轴P221和第二转轴P223之间的距离与目标距离不等,目标距离为第一摆臂P222与雷达机构的铰接点以及第二摆臂P224与雷达机构的铰接点之间的距离。
由于本实施例中的双铰链机构最终需要实现的是雷达装置P10的翻转运动,因此第 一摆臂P222的长度和第二摆臂P224的长度相等时,第一转轴P221和第二转轴P223之间的距离与目标距离不能相等。或者,在第一转轴P221和第二转轴P223之间的距离与目标距离相等时,第一摆臂P222的长度和第二摆臂P224的长度不能相等。若第一摆臂P222的长度和第二摆臂P224的长度相等,且第一转轴P221和第二转轴P223之间的距离与目标距离相等,则雷达装置P10只能平动而不能转动。
此外,雷达装置P10与的运动轨迹不仅与摆臂的长短和摆臂端部距离有关,还与雷达装置P10、转轴和第一开口P201的相对位置有关。例如,本实施例中,雷达装置P10位于第一转轴P221的左侧,在第一转轴P221的逆时针转动时,雷达装置P10整体向翼子板P200外运动,而若第一转轴P221顺时针转动时,则雷达装置P10整体向翼子板P200内运动。而若雷达装置P10位于第一转轴P221的右侧,则在第一转轴P221逆时针转动是,雷达装置P10整体向翼子板P200内运动,而若第一转轴P221顺时针转动时,则雷达装置P10整体向翼子板P200外运动。
在一个实施例中,本实施例的第一摆臂P222的长度大于第二摆臂P224的长度,第一转轴P221与第二转轴P223之间的距离小于目标距离。
本实施例中,由于第一摆臂P222的长度大于第二摆臂P224的长度,因此在第一摆臂P222从上至下看逆时针转动时,雷达装置P10由翼子板P200内向外运动,同时雷达装置P10还会从上至下看逆时针转动。
作为本发明一个具体的实施例,本实施例的雷达可翻转运动的雷达集成系统P100还可以包括壳体P30和固定框架P40。其中,壳体P30设置有第二开口P31,壳体P30固定设置在翼子板P200的内侧,第二开口P31与第一开口P201对应设置。固定框架P40设置在壳体P30内,第一转轴P221和第二转轴P223均与固定框架P40可转动连接。
本实施例中,由于固定框架P40设置在壳体P30内,而壳体P30则固定设置在翼子板P200处,因此当第一转轴P221和第二转轴P223相对固定框架P40可转动连接时,相当于第一转轴P221和第二转轴P223通过固定框架P40和壳体P30与翼子板P200可转动连接。
图4E是根据本发明一个实施例的雷达可翻转运动的雷达集成系统设置在翼子板处的示意性结构图;图4F是根据本发明一个实施例的盖板及盖板驱动机构连接的示意性结构图。在一个实施例中,如图4E和图4F所示,本实施例中的雷达可翻转运动的雷达集成系统P100还可以包括盖板P60和盖板驱动机构P50。盖板驱动机构P50位于壳体P30内,盖板驱动机构P50与盖板P60连接,用于受控地运动以带动盖板P60开启或关闭第一开口P201。
在一个实施例中,如图4E和图4F所示,本实施例中,固定框架P40处设置有滑槽P41。盖板驱动机构P50包括盖板驱动电机P51和运动机构P52,运动机构P52一端与盖板驱动电机P51连接,并受盖板驱动电机P51的驱动,另一端连接盖板P60,运动机构P52在盖板驱动电机P51的驱动下,带动盖板P60沿着滑槽P41运动,同时带动盖板P60转动,以开启和关闭第一开口P201。
在一个实施例中,本实施例中,由于第一开口P201的存在,当雷达装置P10被雷达驱动机构P20带动至运动到翼子板P200内侧时,仍然会有部分的灰尘等从第一开口P201处进入到雷达装置P10处,因此本实施例通过盖板P60和盖板驱动机构P50的设计,在雷达装置P10需要从第一开口P201伸出翼子板P200时,盖板驱动机构P50驱动盖板P60关闭第一开口P201,在雷达装置P10从第一开口P201缩回至翼子板P200内时,盖板驱动机构P50再驱动盖板P60关闭第一开口P201,既不会阻碍雷达装置P10的正常使用和探测,也不会让雷达装置P10在不使用的状态下还受到从第一开口P201处进入到翼子板P200内部处的灰尘或污水的污染。
作为本发明一个具体的实施例,本实施例的运动机构P52可以包括曲柄P521和第一连杆P522。曲柄P521的一端与盖板驱动电机P51的输出轴P511固连,以跟随输出轴P511转动。第一连杆P522的一端与曲柄P521的远离输出轴P511的一端可转动连接,另一端与盖板P60连接,第一连杆P522转动的转轴与曲柄P521转动的转轴平行。第一连杆P522的侧边设置有凸轮,凸轮卡接在滑槽P41处,当曲柄P521跟随输出轴P511转动时,凸轮沿着滑槽P41运动,以使得盖板P60沿着与滑槽P41平行的轨迹运行。
本实施例中的盖板驱动电机P51的输出轴P511直接与曲柄P521的一端固连,曲柄P521跟随输出轴P511转动。而第一连杆P522的一端与曲柄P521的另一端可转动连接,第一连杆P522的另一端与盖板P60连接,因此在盖板驱动电机P51的输出轴P511转动时,该在曲柄P521和第一连杆P522的带动下运动。由于第一连杆P522处设置凸轮,而凸轮受到滑槽P41的限制,因此盖板P60也会按照与滑槽P41平行的轨迹运动。当滑槽P41刚好可以是从第一开口P201向翼子板P200内部延伸时,盖板P60就会在曲柄P521和第一连杆P522的带动下不断的在第一开口P201处和翼子板P200的内部之间做往复运动。
在一个实施例中,本实施例的滑槽P41的数量为两个,两个滑槽P41镜像相对设置, 第一连杆P522位于两个滑槽P41之间。凸轮的数量为两个,设置在第一连杆P522的面向两个滑槽P41的两个相对的侧面处,每一凸轮与其中一个滑槽P41对应设置。
本实施例中两个滑槽P41和两个凸轮的设计更有利于盖板P60运动的稳定,避免在运动过程中出现倾斜或卡顿的情况。
作为本发明一个具体的实施例,本实施例的运动机构P52还可以包括第二连杆P523,第二连杆P523的一端与固定框架P40可转动连接,另一端与盖板P60可转动连接。其中,第二连杆P523的第二轴心线与第一连杆P522的第一轴心线相互平行,以在盖板P60在盖板驱动电机P51的带动下沿着滑槽P41运动时,盖板P60在第二连杆P523的作用下转动;其中,第二轴心线为第二连杆P523与盖板P60可转动连接处的转轴的轴心线,第一轴心线为第一连杆P522与盖板P60可转动连接的转轴的轴心线。
由于本实施例中盖板P60在第二连杆P523的带动下翻转,因此若第一轴心线与第二轴心线重合时,盖板P60无法运动,因此,本实施例中第一轴心线与第二轴心线必须平行设置。
本实施例中,第一连杆P522和第二连杆P523的共同作用下,在盖板驱动电机P51的驱动下,盖板P60沿着与滑槽P41平行的轨迹运动的同时还会翻转,以方便盖板P60开启和关闭第一开口P201。
作为本发明一个具体的实施例,本实施例的雷达可翻转运动的雷达集成系统P100还可以包括铰链杆P524,其与盖板P60固连,并沿着与第二连杆P523转轴的轴线平行的方向延伸,第二连杆P523的一个端部与铰链杆P524的一端可转动连接,以使得盖板P60与铰链杆P524共同相对第二连杆P523转动。铰链杆P524位于盖板P60的一侧,以在盖板P60关闭第一开口P201时,铰链杆P524位于翼子板P200内部。
在一个实施例中,第二连杆P523的数量为两个,两个第二连杆P523相互平行,且分别位于铰链杆P524的两端,两个第二连杆P523与铰链杆P524形成U字形结构。
本实施例中,铰链杆P524横向设置在盖板P60的内侧,两个第二连杆P523分别可转动连接在铰链杆P524的左右两个端部,第一连杆P522则与盖板P60的内侧的中间位置可转动连接,第一连杆P522所在的平面与第二连杆P523所在的平面相互平行。通过两个连杆的设计,使得盖板P60在运动和翻转的过程中更稳定。
图4G是根据本发明一个实施例的控制装置与受控的装置连接的示意性结构图。作为本发明一个具体的实施例,如图4G所示,本实施例的雷达可翻转运动的雷达集成系统P100还可以包括清洗装置P70,其设置在壳体P30内,并且位于雷达装置P10的远离翼子板P200的一侧,用于受控地启动以清洗雷达装置P10。
本实施例中,由于雷达装置P10在缩回至翼子板P200内部时,其也会转动至翼子板P200内侧处。若在使用过程中,雷达装置P10被灰尘或污水等东西弄脏时,可以利用清洗装置P70对雷达装置P10进行清洗,从而保证雷达装置P10可以更好的探测车辆周围环境,避免误判等情况的出现。
作为本发明一个具体的实施例,本实施例的清洗装置P70可以包括储水盒P71、管道P72和喷嘴(图中未示出)。其中,储水盒P71用于存储清洁雷达装置P10所需的清洁液。管道P72一端与储水盒P71连通并位于清洁液内。喷嘴与管道P72的另一端连接,喷嘴处设置水泵P721和电磁阀P731,水泵P721和电磁阀P731受控地启动以将储水盒P71内的清洁液喷洒在雷达装置P10处。
本实施例中,喷嘴对着雷达装置P10,在需要对雷达装置P10进行清洗时,雷达装置P10可以进一步转动至面向喷嘴所在位置,从而保证喷嘴喷洒出来的液体可以顺利的到达雷达装置P10处。
在一个实施例中,本实施例还可以包括控制装置P80,该控制装置P80接收指令,控制雷达驱动机构P20、盖板驱动机构P50和清洗装置P70的运动。
作为本发明一个具体的实施例,本实施例还提供一种车辆,该车辆可以包括上面的雷达可翻转运动的雷达集成系统P100。
在一实施例中,图5A是根据本发明一个实施例的翻转式雷达集成盒E100安装于车辆时的结构示意图。图5B是根据本发明一个实施例的翻转式雷达集成盒E100安装于车辆时的局部剖视图。作为本发明又一个具体的雷达集成系统的实施例,本实施例提供了一种设置于目标车身E200的预设开口E210(参见图5A)处的翻转式雷达集成盒E100,这里的目标车身E200可以是车辆顶盖、翼子板等车辆上需要安装雷达E300的车身,这里的雷达E300可以是激光雷达。如图5B所示,一个实施例中,该翻转式雷达集成盒E100包括托盘E10、防护壳E20、安装固定座(未示出)和转动机构(未示出)。托盘E10与目标车身E200相连且位于预设开口E210的下方,托盘E10可以位于预设开口E210的正下方,通过紧固件安装于车身上以固定其自身。一个实施例中,当目标车身E200为车辆的顶盖时,托盘E10通过紧固件(例如螺栓)连接于车辆的顶盖横梁总成处。防护壳E20与预设开口E210相匹配,即防护壳E20的周侧的尺寸与预设开口E210的尺寸相匹配,以使得防护壳E20能够与预设开口E210形成相对紧密匹配的状态,也即翻转式雷 达集成盒E100的关闭状态。防护壳E20朝向车内的一侧与雷达E300固定连接,防护壳E20位于雷达E300的顶部可以遮挡和保护雷达E300。安装固定座固定于托盘E10处,且与防护壳E20或雷达E300形成可枢转连接,由于防护壳E20和雷达E300是固定的,因此只要防护壳E20和雷达E300中的一个与安装固定座形成可枢转连接即可。转动机构安装于安装固定座处,用于受控地驱动雷达E300和防护壳E20相对于安装固定座转动,以在车外露出雷达E300(即开启状态)或将雷达E300隐藏于车内(即关闭状态)。该转动机构可以是现有技术中实现两个部件之间的枢转的驱动机构中的任意一种,例如在一侧利用液压顶升,利用电机带动防护壳E20与安装固定座之间的转轴的转动等,在此不做限制。该转动机构可以与车辆的控制器,或者雷达集成盒100单独设置的控制器相连,用于根据用户指令来控制开启和关闭。当然在其他实施例中,可以通过升举机构直接将雷达E300和防护壳E20穿过预设开口E210托举至车外。
本实施例提供了一种可以翻转的雷达集成盒100,该雷达集成盒100包括用于固定雷达E300的防护壳E20,该防护壳E20和雷达E300都可以相对于固定的安装固定座翻转,且该防护壳E20与车身的预设开口E210相匹配,因此能够在关闭状态时形成与车身外观上一体的状态,以提高车辆的美观性和空气动力学性能,并且不易落尘,另外在需要使用时又可以控制雷达E300和防护壳E20翻出车身外侧,从而方便雷达E300调节角度。
如图5B所示,一个实施例中,翻转式雷达集成盒E100还包括外密封组件,外密封组件包括外密封支架E40和外密封条E30。外密封支架E40与目标车身E200密封连接,用于安装外密封条E30。外密封条E30位于防护壳E20和目标车身E200之间,用于密封防护壳E20和密封支架之间的缝隙。如图5B所示,这里的外密封条E30可以位于大致与目标车身E200齐平的位置,相当于围绕预设开口E210设置了一圈外密封条E30。通过外密封条E30的设置可以在雷达集成盒100处于关闭状态时起到密封的作用。
图5C是根据本发明一个实施例的翻转式雷达集成盒E100的分解示意图,图5C中未示出防护壳E20。在一个实施例中,如图5C所示,一个实施例中,外密封支架E40包括环形的本体E411以及与本体E411相连的各个连接支脚E412,本体E411与目标车身E200密封连接,且与外密封条E30固定连接,外密封条E30的一端与防护壳E20抵接,每一连接支脚E412的底端与托盘E10相连。一个实施例中,如图5B所示,本体E411包括与目标车辆平行布置的平板部E401,平板部E401粘结于目标车身E200处,例如通过环形胶带E50外密封支架E40粘结于目标车身E200内侧。
如图5B所示,本体E411还包括用于卡接外密封条E30的竖直卡接部E402,竖直卡接部E402连接于平板部E401靠近防护壳E20的一侧且与平板部E401垂直,目标车身E200在预设开口E210处形成有指向平板部E401的折弯部E220,平板部E401与折弯部E220抵接,竖直部位于折弯部E220和防护壳E20之间。这种由目标车身E200的折弯部E220和外密封支架E40的竖直卡接部E402形成的交错结构,配合上述的环形胶带E50,能够进一步起到密封的作用。
如图5B所示,翻转式雷达集成盒E100还包括柔性的防水膜E60,设置于本体E411的底部与防护壳E20的外侧之间,用于在本体E411和防护壳E20之间形成密封空间。由于防护壳E20是可以翻转的,与其相连的防水膜E60设置成柔性的可以更好地跟随防护壳E20。在一个实施例中,也是由于防护壳E20是可翻转的,因此其与外密封条E30之间不能够实时保持紧密抵接的状态,如处于开启状态时,通过在防护壳E20和外密封支架E40之间设置防水膜E60可以有效地阻挡水流入车内,从而起到完善的密封作用。
图5D是根据本发明一个实施例的翻转式雷达集成盒E100的结构示意图,图5D中没有示出防水膜E60。如图5D所示,在一个实施例中一个实施例中,防护壳E20还设有流水管E21,流水管E21与密封空间连通,例如在流水管E21的侧部设置连通口,流水管E21位于密封空间的最低位置处。流水管E21通过软管E70与车辆的排水管连通。
流水管E21和软管E70的设置可以保证防水膜E60内的水可以通过车辆的排水系统排出,防止防水膜E60内蓄水。由于流水管E21是固设在防护壳E20上的,因此会跟防护壳E20运动,通过设置软管E70将流水管E21与车辆的排水管连通,可以适应流水管E21的运功工况。
本发明还提供了一种车辆,包括上述任一实施例或实施例组合中的翻转式雷达集成盒E100。
该车辆设置了可以翻转的雷达集成盒100,该雷达集成盒100包括用于固定雷达的防护壳E20,该防护壳E20和雷达都可以相对于固定的安装固定座翻转,且该防护壳E20与车身的预设开口E210相匹配,因此能够在关闭状态时形成与车身外观上一体的状态,以提高车辆的美观性和空气动力学性能,并且不易落尘,另外在需要使用时又可以控制雷达和防护壳E20翻出车身外侧,从而方便雷达调节角度。
在一实施例中,图6A是根据本实用新型一个实施例的用于雷达的清洗装置C100的示意性结构图,图6B是图6A所示清洗装置C100的示意性爆炸图。作为本发明的一个用于雷达集成系统的清洗装置的一个具体的实施例,如图6A和图6B所示,在一个实施 例中,用于雷达的清洗装置C100包括壳体C10、喷嘴C20、电磁阀C30和水泵(图中未示出),其中,壳体C10内设有液体通道C11,液体通道C11的一端与供水装置(图中未示出)连接。喷嘴C20设置在液体通道C11的远离供水装置的一端,且至少部分喷嘴C20位于壳体C10的内部,喷嘴C20用于对雷达的镜面进行喷水。电磁阀C30设置在液体通道C11上,用于在受控下导通或断开液体通道C11,从而使得清洗装置C100处于喷水状态或关闭状态。水泵与液体通道C11连接,用于在电磁阀C30开启时协同开启,以驱动液体通道C11的液体流动,并使得液体从喷嘴C20处喷出。
本实施例在需要对雷达进行清洗时只需要同时开启电磁阀C30和水泵即可,能够实现雷达的自动清洗,不需要停车手动清洗,可以保证自动驾驶的连续性。
在一个优选的实施例中,喷嘴C20设置成可伸缩地,以在清洗装置C100处于关闭状态时位于壳体C10的内部;在清洗装置C100处于喷水状态时至少部分喷嘴C20伸出壳体C10。该实施例将喷嘴C20设置成可伸缩地,从而可以在需要对雷达进行清洗时将喷嘴C20伸出壳体C10,在不需要对雷达进行清洗时使得喷嘴C20位于壳体C10的内部,避免遭受灰尘或雨水污染。
在一个实施例中,喷嘴C20上设有滑块,壳体C10上设有与滑块配合的滑槽,以在液体通道C11内的水压达到预设水压时使得滑块沿滑槽滑动,从而使得喷嘴C20伸出壳体C10。这里的预设水压可以根据具体需求设定。也就是说,需要水流的一定推力才可以将喷嘴C20推动,从而伸出壳体C10;当水流的推力小于一定值时,喷嘴C20会由于推力的减小从而收缩至壳体C10的内部。在其他实施例中,还可以通过设置电机C50驱动喷嘴C20伸出壳体C10或收缩至壳体C10的内部。
进一步地,壳体C10上设有挡板C60,挡板C60配置成在需要对雷达进行清洗时受控地翻转打开,以便喷嘴C20可以从壳体C10的内部伸出。当对雷达清洗完毕后且喷水收缩至壳体C10内部时,挡板C60受控地翻转关闭,防止灰尘或雨水进入到壳体C10内部。
进一步地,喷嘴C20的远离液体通道C11的一侧上设有多个喷水孔,以使得经过液体通道C11里流出的液体从多个喷水孔处喷出。本实施例相当于将一个横截面积较大的喷水孔拆分成多个横截面积较小的喷水孔,减小了横截面积,从而增加了喷水压强,进一步提高了清洗性能。在一个实施例中,喷嘴C20的横截面呈方形。多个喷水孔可以间隔布置在喷嘴C20上。
进一步地,用于雷达的清洗装置C100还包括控制单元C40,其与壳体C10固定连接,且与电磁阀C30连接,用于控制电磁阀C30开启或关闭。这里,控制单元C40还与水泵连接,在控制电磁阀C30开启的同时还控制水泵开启。
进一步地,用于雷达的清洗装置C100还包括检测单元,其与控制单元C40连接,用于检测雷达的外表面是否存在脏污。这里,检测单元可以是摄像头,当摄像头拍摄到雷达的镜面上有脏污时会发送信号给控制单元C40,控制单元C40接收到信号后会控制电磁阀C30和水泵同时开启。且控制单元C40还与挡板C60连接,控制单元C40在接收到信号后控制挡板C60翻转开启,在喷嘴C20收缩至壳体C10的内部时控制挡板C60翻转关闭。另外,控制单元C40还配置成在接收到车辆语音系统发送的语音信号时控制挡板C60翻转,以及控制电磁阀C30和水泵开启,以对利用喷嘴C20对雷达的镜面进行清洗。这里的语音信号可以是驾驶员发出的,通过上述设计,进一步提高了清洗装置C100的智能化和人性化。
根据本发明第二方面的目的,本发明还提供了一种用于车辆的雷达系统,雷达系统安装有雷达和上述的清洗装置C100。
进一步地,清洗装置C100的数量为两个,两个清洗装置C100分别设置在雷达的两侧。
本发明还提供了一种车辆,车辆安装有上述任一项实施例中的雷达系统。对于雷达系统,这里不一一赘述。
本发明在检测到雷达的镜面有脏污时会自动控制清洗装置C100随时随地对雷达进行清洗,不需要停车手动对雷达进行清洗,在自动驾驶过程中不需要中断自动驾驶也可以实现雷达的清洗,比较方便且智能化。
在一实施例中,图7A是根据本发明一个实施例的车载雷达系统安装于车辆上时的结构示意图。作为本发明的又一个用于雷达系统处的清洗装置的一个具体的实施例,如图7A所示,本实施例中的车载雷达系统包括雷达组件D10、驱动机构(未示出)和清洗单元D20。雷达组件D10包括雷达D11,可以是激光雷达。驱动机构与雷达组件D10相连,用于受控地驱动雷达组件D10相对于车身转动或升降,以将雷达D11的发射端露出于车外(即图7A中的状态)或将雷达组件D10隐藏于车内。这里的驱动机构可以是现有技术中任意一种能够实现举升或翻转的机构,例如电动升降台,液压翻转台等,在此不做限制。清洗单元D20用于受控地在发射端露出于车外时伸出并向发射端的镜面喷射清洗液。这里可以通过专门设置一个车载雷达系统的集成盒控制器D50来控制驱动机构和清 洗单元D20的动作。
本实施例的车载雷达系统能够实现雷达组件D10相对于车身翻转或举升,从而控制雷达D11伸出车外进行探测工作,也可以隐藏于车内,不易落灰积尘。另外,该车载雷达系统还包括清洗单元D20,能够对雷达D11的镜面进行清洗,进一步保证了雷达D11的洁净,以便保证智能驾驶的精确性。
如图7A所示,雷达组件D10还包括雷达盒D12,雷达盒D12在雷达D11的发射端的一侧设有第一开口D121和第二开口D122,第一开口D121用于露出发射端,第二开口D122用于为清洗单元D20提供伸缩通道。
图7B是根据本发明一个实施例的车载雷达系统的清洗单元D20的结构示意图。图7C是根据本发明一个实施例的车载雷达系统的连接框图。如图7B所示,本实施例中,清洗单元D20包括洗涤壶(未示出)、洗涤泵D21(参见图7C)、可伸缩的清洗执行器D22和盖板D24。洗涤壶用于存放清洗液。洗涤泵D21通过第一水管与洗涤壶相连,用于将洗涤壶中的清洗液泵出。清洗执行器D22设置于雷达盒D12内部且包括通过第二水管与洗涤泵D21相连的喷嘴,喷嘴用于向镜面喷射清洗液,第二水管上设有电磁阀D23,用于控制第二水管的通断。盖板D24与喷嘴相连且与第二开口D122相匹配,用于在清洗执行器D22缩回至雷达盒D12内部时将第二开口D122封闭。这里的清洗执行器D22包括与喷嘴相连的伸缩机构,该伸缩机构可以是在电磁阀D23开启后受水压自动弹出的机构,也可以是电动的伸缩机构,只要能够实现喷嘴的自动伸缩即可。
本实施例的清洗单元D20包括与第二开口D122匹配的盖板D24,即通过清洗单元D20自身的结构设置能够自封闭雷达盒D12的第二开口D122,而不需要另外设置开闭门,因此结构简单、成本较低。
在一个实施例中在一个实施例中,盖板D24的周缘设有第一密封条,用于密封盖板D24与第二开口D122。密封条的设置使得清洗结构不工作时能够保证雷达盒D12的密封性,防止雨水灰尘进入雷达盒D12内部。
如图7C所示,车载雷达系统还包括模数转换器D30、与模数转换器D30均相连的中央电子模块D40和集成盒控制器D50。模数转换器D30还与雷达D11相连。本实施例中的雷达D11自带脏污检测功能,雷达D11用于在检测到镜面有脏污时发送模拟信号至模数转换器D30,模数转换器D30将模拟信号处理成数字信号后发送至中央电子模块D40和集成盒控制器D50,所中央电子模块D40用于根据数字信号生成第一控制信号并发送至洗涤泵D21,以控制洗涤泵D21工作,集成盒控制器D50用于根据数字信号生成第二控制信号并发送至电磁阀D23,以控制电磁阀D23开启。这里,模数转换器D30通过FlexRay传递给中央电子模块D40,中央电子模块D40编译信号后通知洗涤泵D21工作,同时模数转换器D30转译Lin信号通过线束传递至集成盒控制器D50,集成盒控制器D50控制电磁阀D23开通水路,水压使得喷嘴伸出。
本实施例通过雷达D11、模数转换器D30、中央电子模块D40和集成盒控制器D50之间的通信实现了清洗单元D20工作过程的自动控制。当然此过程一般是在智能驾驶过程中雷达D11处于外露的工作状态时进行。
在一个实施例中一个实施例中,如图7C所示,集成盒控制器D50还与驱动机构相连,即与驱动机构的驱动源D93相连,用于控制驱动机构的动作,模数转换器D30还通过车内网关D60与车辆的娱乐信息主机D70相连,以便在娱乐信息主机D70接收到开启智能驾驶功能的信号时,集成盒控制器D50控制驱动机构驱动雷达组件D10动作,以将雷达D11的发射端露出于车外。娱乐信息主机D70可以通过触摸屏的触摸操作或语音交互的方式来实现智能驾驶功能的开启。
本实施例通过将车辆的娱乐信息主机D70与车载雷达系统进行通信连接,实现了雷达组件D10运动的自动控制。
图7D是根据本发明一个实施例的车载雷达系统安装于车辆上时的剖面示意图。如图7D所示,本实施例中,车载雷达系统还包括密封结构,密封结构包括安装支架D81和第二密封条D82。安装支架D81与车身固定连接,例如通过双面胶D85与车身D200粘结。第二密封条D82与安装支架D81相连且位于雷达盒D12与车身D200的第三开口之间,雷达盒D12与第三开口的形状相匹配且通过第三开口运动至车外。当然,第二密封条D82是围绕雷达盒D12设置的,由此起到全面密封的效果。
本实施例通过设置第二密封条D82能够在雷达组件D10未工作时起到密封作用,防止车外雨水进入车载雷达系统内部。
图7E是根据本发明一个实施例的车载雷达系统的分解示意图,图7E中未示出密封膜D83。如图7D所示,在一个实施例中,密封结构还包括软质的密封膜D83和排水口D84(参见图7E)。密封膜D83围绕雷达盒D12设置,密封膜D83的两端分别与雷达盒D12的侧壁以及安装支架D81的下侧相连,这样在雷达组件D10相对于车身运动至工作状态时,第三开口被部分打开,此时通过密封膜D83能够进一步阻挡雨水进入车身内。排水口D84贯穿密封膜D83,且其远离雷达盒D12的一侧与车辆的排水管连通。排水口 D84的设置可以将落入密封膜D83内的液体排出,以保持干燥清洁。一个实施例中,通过在雷达盒D12上形成与排水口D84相连的管道结构D123,该管道结构D123设有连通口与密封膜D83内的空间连通。
如图7D所示,车载雷达系统还包括固定底部和固定座D92。固定底板D91的底部与车身固定连接,其边缘处设有多个向上伸出的连接臂D911(也可以参见图7E),连接臂D911与安装支架D81的底部相连。固定座D92设置于固定底板D91处,用于放置清洗单元D20和驱动机构的驱动源D93,例如电机。
如图7E所示,一个实施例中,该固定座D92的两侧设有与清洗执行器D22相匹配的圆弧形凹部D921,用于放置清洗执行器D22,固定座D92的中部形成用于放置雷达D11的凹部D922,固定座D92的后部设有与雷达D11形成可枢转连接的转轴D923,使得本实施例的固定座D92成为一个综合功能的安装座。
本发明还提供了一种车辆,包括上述任一实施例或实施例的组合中的车载雷达系统。
该车辆的车载雷达系统能够实现雷达组件D10相对于车身翻转或举升,从而控制雷达伸出车外进行探测工作,也可以隐藏于车内,不易落灰积尘。另外,该车载雷达系统还包括清洗单元D20,能够对雷达的镜面进行清洗,进一步保证了雷达的洁净,以便保证智能驾驶的精确性。
在一实施例中,图8A是根据本发明一个实施例的可隐藏式车载雷达安装总成F100安装于车辆时的俯视图。图8B是图8A沿A-A剖切线的剖视图。图8C是图8A沿B-B剖切线的剖视图。图8D是根据本发明一个实施例的可隐藏式车载雷达安装总成F100的雷达包壳F20的结构示意图。作为本发明一个具体的关于雷达装置的实施例,如图8A所示,本发明的可隐藏式车载雷达安装总成F100设置于车身F200的安装开口F201处,这里的车身F200可以是车辆的顶盖、前围、侧翼等需要安装雷达的位置,这里的雷达可以是激光雷达。如图8B所示,车载雷达安装总成F100包括固定组件F10、雷达包壳F20和密封组件F30。固定组件F10与车身F200相连且构造成凹部。雷达包壳F20设置于凹部内且可枢转地连接于固定组件F10处。这里可以利用电机、液压组件等驱动源来实现雷达包壳F20的转动,驱动源可以与车辆的控制单元相连,来实现雷达翻转的自动化控制。雷达包壳F20的内部设有用于放置雷达的容置空间,例如形成一个开口朝向车内的凹部,该凹部就是上述的容置空间。雷达包壳F20的侧壁处设有用于展露雷达的窗口F21(参见图8D),使得雷达的发射端的信号能够直接通过该窗口F21发出。雷达包壳F20用于在相对于固定组件F10转动时形成雷达包壳F20隐藏于凹部内的关闭状态(参见图8B)以及雷达包壳F20的有窗口F21完全露出于凹部的开启状态(未示出)。密封组件F30包括柔性的密封膜F31,密封膜F31围绕雷达包壳F20设置,且其一侧与目标车身F200直接或间接地密封连接,另一侧与雷达包壳F20的外侧密封连接,以在目标车身和雷达包壳F20之间形成密封的蓄水空间,目标车身为安装开口F201的周缘侧的车身F200部分。密封膜F31在雷达包壳F20处于关闭状态时的最低处还设有与车辆的排水管连通,用于将所蓄水空间内的液体排出。由于密封膜F31一端是与雷达包壳F20固定的,而雷达包壳F20会相对于固定组件F10,也即相对于车身F200转动,因此密封膜F31也会随之转动,因此这里的密封膜F31的最低处是相对于雷达包壳F20处于关闭状态而言的,只要能保证关闭状态下密封膜F31的最低处是与车辆的排水管相连就可以防止漏进上述蓄水空间内的液体囤积。
本实施例提供了一种可隐藏的雷达安装总成,可以在需要使用雷达时将雷达包壳F20带着雷达翻出车外,以从雷达包壳F20的窗口F21处露出发射端,在不需要使用雷达时将雷达包壳F20恢复到车辆内部的位置,保证车辆外观的美观性。
进一步地,该雷达安装总成还设置有与雷达包壳F20随动的密封组件F30,能够适应可翻转的雷达包壳F20,实现实时的防水密封效果。另外,由于该密封组件F30的密封膜F31与车辆的排水管连通,且连通的位置是雷达包壳F20处于关闭状态时该密封膜F31的最低处,因此能够在关闭状态时排出积水,防止密封膜F31长期浸水。
如图8A所示,一个实施例中,密封组件F30还包括密封条F32,围绕雷达包壳F20设置,设置于目标车身和雷达包壳F20之间。由于密封条F32的设置,使得雷达包壳F20处于关闭状态时封闭雷达包壳F20和目标车身之间的缝隙,在不使用雷达时起到防水的作用,避免雨水或其他液体进入总成内。
如图8B所示,本实施例中,密封组件F30还包括密封支架F33,其一侧与目标车身相连,另一侧用于固定密封膜F31。可选地,密封支架F33与目标车身的底部通过双面胶F40粘结。
通过密封支架F33的设置可以实现密封条F32的安装,而不需要在车身F200上加工出特殊的安装部来安装密封条F32,而双面胶粘结的方式,一方面有一定的防水作用,另外也简化了安装过程。
如图8D所示,雷达包壳F20的外壁处设有沿远离其自身伸出的环形翻边F22,密封膜F31的两端分别与密封支架F33和环形翻边F22相连(参见图8B或图8C)。
一个实施例中,如图8B所示,雷达包壳F20设有窗口F21的一侧的外壁的高度大于其相对侧的高度,环形翻边F22设置于雷达包壳F20的外壁的底部。如图8D所示,雷达包壳F20的底部形成为一个斜面。如此设置,一方面考虑了雷达包壳F20本身一侧为枢转连接侧,一侧是翻出侧(即设有窗口F21的一侧),由于翻出侧的运动位移较大,因此需要设置较大位移量的密封膜F31,以便其随动,另外在枢转连接侧设置高度较小的外壁可以节约空间,其下部与固定组件F10之间就可以设置其他部件,例如用于驱动雷达包壳F20转动的驱动电机。
如图8D所示,雷达包壳F20形成有蓄水空间和排水管均连通的引流管道F23,密封膜F31设有用于穿设引流管道F23的通道。引流管道F23的两端可以通过两个柔性的管道与两个排水管连通,以便在雷达包壳F20转动时适应引流管道F23的位置变化。
另一个实施例中,如图8E所示,固定组件F10包括固定底板F11和多个连接支架F12。每一连接支架F12的两端分别与目标车身和固定底板F11的周缘相连。连接支架F12与目标车身之间可以焊接、粘结或采用紧固件相连,连接支架F12与固定底板F11之间是可拆卸连接的。
图8E是根据本发明一个实施例的可隐藏式车载雷达安装总成F100的固定底板F11的结构示意图。如图8E所示,本实施例中,固定底板F11包括平板部F111和多个位于平板部F111周缘处的连接支脚F112。每一连接支脚F112均朝向目标车身伸出且与连接支架F12相连。如图8B中,连接支脚F112和连接支架F12部分重叠,且通过螺栓相连,在连接支架F12先固定在目标车身后,通过紧固件就可以连接固定底板F11和连接支架F12,装配较为方便。
本发明还提供了一种车辆,包括上述任一实施例或实施例的组合中的可隐藏式车载雷达安装总成F100。
该车辆安装了可隐藏的雷达安装总成,可以在需要使用雷达时将雷达包壳F20带着雷达翻出车外,以从雷达包壳F20的窗口F21处露出发射端,在不需要使用雷达时将雷达包壳F20恢复到车辆内部的位置,保证车辆外观的美观性。
进一步地,该雷达安装总成还设置有与雷达包壳F20随动的密封组件F30,能够适应可翻转的雷达包壳F20,实现实时的防水密封效果。另外,由于该密封组件F30的密封膜F31与车辆的排水管连通,且连通的位置是雷达包壳F20处于关闭状态时该密封膜F31的最低处,因此能够在关闭状态时排出积水,防止密封膜F31长期浸水。
可以理解的是,在上述某些实施例中,可能存在某些结构或特征满足以下情况:
第一,对于某一结构,在不同实施例中对该结构的命名和/或编号可能会有所不同,但实际可以表示同一个结构特征,具体应结合相应的附图以及相应实施例的描述进行理解。
第二,在不同实施例中命名和/或编号相同的结构或特征,含义可能相同,也可能不相同,具体应结合相应的附图以及相应实施例的描述进行理解。
可以理解的是,上述描述的各个实施例之间,可以相互结合。
例如,上述实施例中描述了多种雷达盒的实施方式,多种具有清洗功能的清洗装置或清洗结构或清洗机构等,多种具有将雷达进行升降的升降结构或升降装置或升降机构等,多种密封结构或密封装置或密封机构等。可以理解的是,不限于以上列出的几种。
以上任意一种或多种雷达盒、任意一种或多种清洗装置或清洗结构或清洗机构等、任意一种或多种升降结构或升降装置或升降机构等、任意一种或多种密封结构或密封装置或密封机构等,其相互之间可以相互结合。即使可能存在某一种特征的实施例在上述实施例描述中仅仅与某一种特征结合,但是实际上根据说明书和说明书附图的综合理解仍然可以与其他实施例中的相应特征结合,相互结合的技术方案仍在本发明的保护范围之内。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (73)

  1. 一种激光雷达集成装置,至少包括盖板、固定支架、升降结构、弹出结构、激光雷达、控制器,所述盖板位于车身翼子板上,并与所述翼子板上的开口大小吻合,所述固定支架、升降结构、弹出结构、激光雷达、控制器均位于所述翼子板的内部,所述升降结构设于所述固定支架上且与所述盖板连接,并能够在所述控制器的控制下驱动所述盖板上下运动,所述激光雷达设于所述弹出结构上,所述弹出结构设于所述固定支架上,且能够在所述控制器的控制下相对所述固定支架向外运动,将所述激光雷达推出所述翼子板的内部。
  2. 如权利要求1所述的激光雷达集成装置,其中,所述固定支架包括第一固定板、连接板,所述第一固定板位于所述连接板的两侧,所述第一固定板与所述翼子板内侧的前车身纵梁通过螺栓固定。
  3. 如权利要求2所述的激光雷达集成装置,其中,所述升降结构至少包括第一电机、传动轴、第一齿轮、丝杆、升降杆、滑轨、固定块、第二固定板,所述滑轨自所述固定支架的下方向上方向内倾斜,其底端与所述连接板固定,顶端设有固定块;所述丝杆穿过所述固定块与所述滑轨平行设置,其下端设有升降杆,所述丝杆的顶部固定有第一齿轮,所述升降杆与所述盖板连接;所述第二固定板上固定有第一电机和所述控制器,所述第一电机连接有传动轴,所述传动轴与所述第一齿轮啮合。
  4. 如权利要求3所述的激光雷达集成装置,其中,所述固定块与所述丝杆螺纹连接,所述升降杆包括第一升降杆、第二升降杆,所述第一升降杆套设在所述丝杆的下端且与其螺纹连接,所述第二升降杆的一端与所述第一升降杆连接,另一端与所述盖板一侧的底端固定连接。
  5. 如权利要求1所述的激光雷达集成装置,还包括清洗结构,所述清洗结构与所述激光雷达一起设于所述弹出结构上。
  6. 如权利要求5所述的激光雷达集成装置,其中,所述清洗结构至少包括固定架、电磁阀、喷嘴、连接部、进水口,所述电磁阀一端和所述连接部连接,另一端和所述进水口连接,所述进水口连接的管路与整车水路连接;所述喷嘴和所述连接部连接,且具有伸缩功能。
  7. 如权利要求2所述的激光雷达集成装置,其中,所述弹出结构至少包括第二电机、减速器、第二齿轮、移动板、移动杆、密封条,所述第二电机的输出轴和所述减速器连接,所述减速器与所述第二齿轮连接,所述移动板放置在所述固定支架的连接板上,且与所述连接板的外边缘呈设定的角度,所述激光雷达和清洗结构安装在所述移动板上,所述密封条安装在所述移动板的前侧。
  8. 如权利要求7所述的激光雷达集成装置,其中,所述移动板上还设有一小孔,所述移动杆包括第一移动杆和第二移动杆,所述第二移动杆与所述第一移动杆呈设定的角度连接,所述第一移动杆一端的下方还设有凸柱,所述凸柱与所述小孔卡接,所述第二移动杆为弧形,外侧一段设有齿,所述齿与所述第二齿轮啮合。
  9. 如权利要求1所述的激光雷达集成装置,其中,所述激光雷达的一侧固定有镜面,另一侧设有第二线束,所述第二线束与自动驾驶域控制器或高级辅助驾驶域控制器连接。
  10. 一种车辆,包括如权利要求1-9任一项所述的一种激光雷达集成装置。
  11. 一种雷达集成系统,设置在车辆的翼子板处,所述翼子板处设置有第一开口,其中,所述雷达集成系统包括:盖板;
    盖板驱动机构,与所述盖板连接,用于受控地运动以带动所述盖板开启或关闭所述第一开口;
    雷达装置,位于所述第一开口附近;
    雷达驱动机构,与所述雷达装置连接,用于受控地运动,以带动所述雷达装置从所述第一开口处伸出或缩回所述翼子板;和
    控制装置,其与所述盖板驱动机构、所述雷达驱动机构和所述雷达装置均连接,所述控制装置配置成在接收到开启所述雷达装置的指令时,控制所述盖板驱动机构带动所述盖板开启所述第一开口,并控制所述雷达驱动机构带动所述雷达装置翻转运动从所述第一开口伸出所述翼子板,在接收到关闭所述雷达装置的指令时,控制所述盖板驱动机构带动所述盖板关闭所述第一开口,并控制所述雷达驱动机构带动所述雷达装置翻转运动从所述第一开口处缩回至所述翼子板内。
  12. 根据权利要求11所述的雷达集成系统,其中,
    所述雷达装置运动轨迹所在平面的垂直线与所述盖板运动轨迹所在平面的垂直线之间呈预设角度,所述预设角度为90±15°。
  13. 根据权利要求12所述的雷达集成系统,其中,
    所述控制装置配置成,控制所述盖板驱动机构带动所述盖板开启所述第一开口第一预设时间后再控制所述雷达驱动机构带动所述雷达装置翻转运动从所述第一开口伸出所 述翼子板,控制所述盖板驱动机构带动所述盖板关闭所述第一开口第二预设时间后再控制所述雷达驱动机构带动所述雷达装置翻转运动从所述第一开口处缩回至所述翼子板。
  14. 根据权利要求11-13中任一项所述的雷达集成系统,
    还包括清洗装置,其设置在所述翼子板内侧,并且位于所述雷达装置的远离所述翼子板的一侧,用于受控地启动以清洗所述雷达装置。
  15. 根据权利要求14所述的雷达集成系统,其中,
    所述清洗装置包括:
    储水盒,用于存储清洁所述雷达装置所需的清洁液;
    管道,其一端与储水盒连通并位于所述清洁液内,所述管道上设有水泵;和
    喷嘴,其与所述管道的另一端连接,所述喷嘴处设置电磁阀,所述水泵和所述电磁阀受控地启动以将所述储水盒内的清洁液喷洒在所述雷达装置处。
  16. 根据权利要求15所述的雷达集成系统,其中,
    所述控制装置还与所述水泵和所述电磁阀均连接,所述控制装置配置成在接收到需要清洁所述雷达装置的指令后控制所述电磁阀和所述水泵开启,从而使得清洁液从所述喷嘴处喷出,并在第三预设时间后控制所述水泵和所述电磁阀关闭。
  17. 根据权利要求16所述的雷达集成系统,其中,
    所述喷嘴处还设置流量传感器,所述流量传感器与所述控制装置连接,用于检测流经所述喷嘴的液体的流量;
    所述雷达集成系统还包括警报装置,所述警报装置与所述控制装置连接;
    其中,所述控制装置配置成在所述流量传感器监测到流经所述喷嘴的所述液体的流量小于预设流量时,控制所述警报装置进行报警。
  18. 根据权利要求14所述的雷达集成系统,
    还包括设置有第二开口的壳体,所述壳体设置在所述翼子板的内侧,所述第二开口与所述第一开口对应设置;
    所述盖板、所述盖板驱动机构、所述雷达装置、雷达驱动机构、所述控制装置和清洗装置均设置在所述壳体内。
  19. 一种车辆,包括权利要求11-18中任一项所述的雷达集成系统。
  20. 一种盖板可翻转开合的雷达集成系统,设置在车辆的翼子板处,所述翼子板处设置有第一开口,其中,所述雷达集成系统包括:
    固定框架,与所述翼子板固连,所述固定框架上设置有滑槽;
    盖板,用于受控地开启和关闭所述第一开口;
    盖板驱动机构,包括驱动电机和运动机构,所述运动机构一端与所述驱动电机连接,并受所述驱动电机的驱动,另一端连接所述盖板,所述运动机构在所述驱动电机的驱动下,带动所述盖板沿着所述滑槽运动,同时带动所述盖板转动,以开启和关闭所述第一开口;
    雷达组件,配置成受控地在所述第一开口开启时从所述第一开口伸出所述翼子板外。
  21. 根据权利要求20所述的盖板可翻转开合的雷达集成系统,其中,
    所述运动机构包括:
    曲柄,其一端与所述驱动电机的输出轴固连,以跟随所述输出轴转动;
    第一连杆,其一端与所述曲柄的远离所述输出轴的一端可转动连接,另一端与所述盖板连接,所述第一连杆转动的转轴与所述曲柄转动的转轴平行;所述第一连杆的侧边设置有凸轮,所述凸轮卡接在所述滑槽处,当所述曲柄跟随所述输出轴转动时,所述凸轮沿着所述滑槽运动,以使得所述盖板沿着与所述滑槽平行的轨迹运行。
  22. 根据权利要求21所述的盖板可翻转开合的雷达集成系统,其中,
    所述滑槽的数量为两个,两个所述滑槽镜像相对设置,所述第一连杆位于两个所述滑槽之间;
    所述凸轮的数量为两个,设置在所述第一连杆的面向两个所述滑槽的两个相对的侧面处,每一所述凸轮与其中一个所述滑槽对应设置。
  23. 根据权利要求21或22所述的盖板可翻转开合的雷达集成系统,其中,
    所述运动机构还包括第二连杆,所述第二连杆的一端与所述固定框架可转动连接,另一端与所述盖板可转动连接;
    其中,所述第二连杆的第二轴心线与所述第一连杆的第一轴心线相互平行,以在所述盖板在所述驱动电机的带动下沿着所述滑槽运动时,所述盖板在所述第二连杆的作用下转动;其中,所述第二轴心线为所述第二连杆与所述盖板可转动连接处的转轴的轴心线,所述第一轴心线为所述第一连杆与所述盖板可转动连接的转轴的轴心线。
  24. 根据权利要求23所述的盖板可翻转开合的雷达集成系统,
    还包括铰链杆,其与所述盖板固连,并沿着与所述第二连杆转轴的轴线平行的方向延伸,所述第二连杆的一个端部与所述铰链杆的一端可转动连接,以使得所述盖板与所述铰链杆共同相对所述第二连杆转动;
    所述铰链杆位于所述盖板的一侧,以在所述盖板关闭所述第一开口时,所述铰链杆位于所述翼子板内部。
  25. 根据权利要求24所述的盖板可翻转开合的雷达集成系统,其中,
    所述第二连杆的数量为两个,两个所述第二连杆相互平行,且分别位于所述铰链杆的两端,两个所述第二连杆与所述铰链杆形成U字形结构。
  26. 根据权利要求25所述的盖板可翻转开合的雷达集成系统,其中,所述雷达组件包括:
    雷达装置;和
    设置在所述固定框架处的雷达驱动机构,所述雷达驱动机构与所述雷达装置连接,用于受控地运动,以带动所述雷达装置从所述第一开口处伸出或缩回所述翼子板。
  27. 根据权利要求26所述的盖板可翻转开合的雷达集成系统,
    还包括设置有第二开口的壳体,所述壳体设置在所述翼子板的内侧,所述第二开口与所述第一开口对应设置;所述固定框架位于所述壳体内。
  28. 一种车辆,包括权利要求20-27中任一项所述的盖板可翻转开合的雷达集成系统。
  29. 一种雷达可翻转运动的雷达集成系统,设置在车辆的翼子板处,所述翼子板处设置有第一开口,其中,所述雷达集成系统包括:
    雷达装置,位于所述第一开口附近;
    雷达驱动机构,包括驱动电机和双连杆机构,所述双连杆机构的一端与所述雷达装置可转动连接,另一端与所述翼子板可转动连接,在所述驱动电机受控地带动所述双连杆机构运动时,所述双连杆机构带动所述雷达装置相对所述翼子板翻转运动以从所述第一开口处伸出或缩回所述翼子板。
  30. 根据权利要求29所述的雷达可翻转运动的雷达集成系统,其中,
    所述双连杆机构包括:
    第一转轴,与所述翼子板可转动连接,所述第一转轴与所述驱动电机连接,以在所述驱动电机的带动下转动;
    第一摆臂,其一端与所述第一转轴固连,以在所述第一转轴转动时绕所述第一转轴的轴线转动,其另一端与所述雷达装置可转动连接;
    第二转轴,与所述翼子板可转动连接,并与所述第一转轴平行设置;
    第二摆臂,其一端与所述雷达装置可转动连接,另一端与所述第二转轴固连;
    其中,当所述第一转轴在所述驱动电机的带动下转动时,在所述第一摆臂、所述第二摆臂和所述第二转轴的共同作用下带动所述雷达装置翻转移动。
  31. 根据权利要求30所述的雷达可翻转运动的雷达集成系统,其中,
    所述第一摆臂的数量为两个,两个所述第一摆臂平行设置,两个所述第一摆臂分别与所述雷达装置的上下两个侧面可转动连接。
  32. 根据权利要求31所述的雷达可翻转运动的雷达集成系统,其中,
    所述第二摆臂的数量为两个,两个所述第二摆臂平行设置,两个所述第二摆臂分别与所述雷达装置的上下两个侧面可转动连接。
  33. 根据权利要求29-32中任一项所述的雷达可翻转运动的雷达集成系统,其中,
    所述第二摆臂的长度与所述第一摆臂的长度不等,或所述第一转轴和所述第二转轴之间的距离与目标距离不等,所述目标距离为所述第一摆臂与所述雷达机构的铰接点以及所述第二摆臂与所述雷达机构的铰接点之间的距离。
  34. 根据权利要求33所述的雷达可翻转运动的雷达集成系统,其中,
    所述第一摆臂的长度大于所述第二摆臂的长度,所述第一转轴与所述第二转轴之间的距离小于所述目标距离。
  35. 根据权利要求29-32中任一项所述的雷达可翻转运动的雷达集成系统,
    还包括:
    设置有第二开口的壳体,所述壳体固定设置在所述翼子板的内侧,所述第二开口与所述第一开口对应设置;和
    固定框架,设置在所述壳体内,所述第一转轴和所述第二转轴均与所述固定框架可转动连接。
  36. 根据权利要求35所述的雷达可翻转运动的雷达集成系统,
    还包括:
    盖板;
    位于所述壳体内的盖板驱动机构,所述盖板驱动机构与所述盖板连接,用于受控地运动以带动所述盖板开启或关闭所述第一开口。
  37. 一种车辆,包括权利要求29-36中任一项所述的雷达可翻转运动的雷达集成系统。
  38. 一种翻转式雷达集成盒,设置于目标车身的预设开口处且包括:
    托盘,与所述目标车身相连且位于所述预设开口的下方;
    防护壳,与所述预设开口相匹配,所述防护壳朝向车内的一侧与雷达固定连接;
    安装固定座,固定于所述托盘处,且与所述防护壳或所述雷达形成可枢转连接;以及
    转动机构,安装于所述安装固定座处,用于受控地驱动所述雷达和所述防护壳相对于所述安装固定座转动,以在车外露出所述雷达或将所述雷达隐藏于车内。
  39. 根据权利要求38所述的翻转式雷达集成盒,还包括外密封组件,其包括外密封支架和外密封条,所述外密封支架与所述目标车身密封连接,用于安装所述外密封条,所述外密封条位于所述防护壳和所述目标车身之间,用于密封所述防护壳和所述密封支架之间的缝隙。
  40. 根据权利要求39所述的翻转式雷达集成盒,其中,所述外密封支架包括环形的本体以及与所述本体相连的各个连接支脚,所述本体与所述目标车身密封连接,且与所述外密封条固定连接,所述外密封条的一端与所述防护壳抵接,每一所述连接支脚的底端与所述托盘相连。
  41. 根据权利要求40所述的翻转式雷达集成盒,其中,
    所述本体包括与所述目标车辆平行布置的平板部,所述平板部粘结于所述目标车身处。
  42. 根据权利要求41所述的翻转式雷达集成盒,其中,
    所述本体还包括用于卡接所述外密封条的竖直卡接部,所述竖直卡接部连接于所述平板部靠近所述防护壳的一侧且与所述平板部垂直,所述目标车身在所述预设开口处形成有指向所述平板部的折弯部,所述平板部与所述折弯部抵接,所述竖直部位于所述折弯部和所述防护壳之间。
  43. 根据权利要求42所述的翻转式雷达集成盒,还包括:
    柔性的防水膜,设置于所述本体的底部与所述防护壳的外侧之间,用于在所述本体和所述防护壳之间形成密封空间。
  44. 根据权利要求43所述的翻转式雷达集成盒,其中,
    所述防护壳设有流水管,所述流水管与所述密封空间连通且位于所述密封空间的最低位置处,所述流水管通过软管与车辆的排水管连通。
  45. 根据权利要求44所述的翻转式雷达集成盒,其中,
    所述目标车身为车辆的顶盖,所述托盘通过紧固件连接于车辆的顶盖横梁总成处。
  46. 一种车辆,包括权利要求38-45中任一项所述的翻转式雷达集成盒。
  47. 一种用于雷达的清洗装置,包括:
    壳体,所述壳体内设有液体通道,所述液体通道的一端与供水装置连接;
    喷嘴,设置在所述液体通道的远离所述供水装置的一端,且至少部分所述喷嘴位于所述壳体的内部,所述喷嘴用于对雷达的镜面进行喷水;
    电磁阀,设置在所述液体通道上,用于在受控下导通或断开所述液体通道,从而使得所述清洗装置处于喷水状态或关闭状态。
    水泵,与所述液体通道连接,用于在所述电磁阀开启时协同开启,以驱动所述液体通道的液体流动,并使得所述液体从所述喷嘴处喷出。
  48. 根据权利要求47所述的清洗装置,其中,
    所述喷嘴设置成可伸缩地,以在所述清洗装置处于关闭状态时位于所述壳体的内部;在所述清洗装置处于喷水状态时至少部分所述喷嘴伸出所述壳体。
  49. 根据权利要求48所述的清洗装置,其中,
    所述喷嘴上设有滑块,所述壳体上设有与所述滑块配合的滑槽,以在所述液体通道内的水压达到预设水压时使得所述滑块沿所述滑槽滑动,从而使得所述喷嘴伸出所述壳体。
  50. 根据权利要求49所述的清洗装置,其中,
    所述喷嘴的远离所述液体通道的一侧上设有多个喷水孔,以使得经过所述液体通道里流出的液体从所述多个喷水孔处喷出。
  51. 根据权利要求50所述的清洗装置,还包括:
    控制单元,与所述壳体固定连接,且与所述电磁阀连接,用于控制所述电磁阀开启或关闭。
  52. 根据权利要求51所述的清洗装置,其中,
    检测单元,与所述控制单元连接,用于检测雷达的外表面是否存在脏污。
  53. 一种用于车辆的雷达系统,所述雷达系统安装有雷达和如权利要求47-53中任一项所述的清洗装置。
  54. 一种车辆,所述车辆安装有如权利要求53所述的雷达系统。
  55. 一种车载雷达系统,包括:
    雷达组件,包括雷达;
    驱动机构,与所述雷达组件相连,用于受控地驱动所述雷达组件相对于车身转动或升降,以将所述雷达的发射端露出于车外或将所述雷达组件隐藏于车内;以及
    清洗单元,用于受控地在所述发射端露出于车外时伸出并向所述发射端的镜面喷射清洗液。
  56. 根据权利要求55所述的车载雷达系统,其中,
    所述雷达组件还包括雷达盒,所述雷达盒在所述雷达的所述发射端的一侧设有第一开口和第二开口,所述第一开口用于露出所述发射端,所述第二开口用于为所述清洗单元提供伸缩通道。
  57. 根据权利要求56所述的车载雷达系统,其中,所述清洗单元包括:
    洗涤壶,用于存放清洗液;
    洗涤泵,通过第一水管与所述洗涤壶相连,用于将所述洗涤壶中的清洗液泵出;
    可伸缩的清洗执行器,设置于所述雷达盒内部且包括通过第二水管与所述洗涤泵相连的喷嘴,所述喷嘴用于向所述镜面喷射清洗液,所述第二水管上设有电磁阀,用于控制所述第二水管的通断;
    盖板,与所述喷嘴相连且与所述第二开口相匹配,用于在所述清洗执行器缩回至所述雷达盒内部时将所述第二开口封闭。
  58. 根据权利要求57所述的车载雷达系统,其中,
    所述盖板的周缘设有第一密封条,用于密封所述盖板与所述第二开口。
  59. 根据权利要求57所述的车载雷达系统,其中,所述车载雷达系统还包括模数转换器、与所述模数转换器均相连的中央电子模块和集成盒控制器,所述模数转换器还与所述雷达相连,所述雷达用于在检测到镜面有脏污时发送模拟信号至所述模数转换器,所述模数转换器将所述模拟信号处理成数字信号后发送至所述中央电子模块和所述集成盒控制器,所中央电子模块用于根据所述数字信号生成第一控制信号并发送至所述洗涤泵,以控制所述洗涤泵工作,所述集成盒控制器用于根据所述数字信号生成第二控制信号并发送至所述电磁阀,以控制所述电磁阀开启。
  60. 根据权利要求57所述的车载雷达系统,其中,
    所述集成盒控制器还与所述驱动机构相连,用于控制所述驱动机构的动作,所述模数转换器还通过车内网关与车辆的娱乐信息主机相连,以便在所述娱乐信息主机接收到开启智能驾驶功能的信号时,所述集成盒控制器控制所述驱动机构驱动所述雷达组件动作,以将所述雷达的发射端露出于车外。
  61. 根据权利要求55-60中任一项所述的车载雷达系统,还包括密封结构,其包括:
    安装支架,与车身固定连接;
    第二密封条,与所述安装支架相连且位于所述雷达盒与车身的第三开口之间,所述雷达盒与所述第三开口的形状相匹配且通过所述第三开口运动至车外。
  62. 根据权利要求61所述的车载雷达系统,其中,所述密封结构还包括:
    软质的密封膜,围绕所述雷达盒设置,所述密封膜的两端分别与所述雷达盒的侧壁以及所述安装支架的下侧相连;
    排水口,贯穿所述密封膜,且其远离所述雷达盒的一侧与车辆的排水管连通。
  63. 根据权利要求62所述的车载雷达系统,还包括:
    固定底板,其底部与车身固定连接,其边缘处设有多个向上伸出的连接臂,所述连接臂与所述安装支架的底部相连;
    固定座,设置于所述固定底板处,用于放置所述清洗单元和所述驱动机构的驱动源。
  64. 一种车辆,包括权利要求55-63中任一项所述的车载雷达系统。
  65. 一种可隐藏式车载雷达安装总成,设置于车身的安装开口处,其中,所述车载雷达安装总成包括:
    固定组件,与所述车身相连,且构造成凹部;
    雷达包壳,设置于所述凹部内且可枢转地连接于所述固定组件处,所述雷达包壳的内部设有用于放置雷达的容置空间、侧壁处设有用于展露所述雷达的窗口,所述雷达包壳用于在相对于所述固定组件转动时形成所述雷达包壳隐藏于所述凹部内的关闭状态以及所述雷达包壳的有所述窗口完全露出于所述凹部的开启状态;
    密封组件,包括柔性的密封膜,所述密封膜围绕所述雷达包壳设置,且其一侧与目标车身直接或间接地密封连接,另一侧与所述雷达包壳的外侧密封连接,以在所述目标车身和所述雷达包壳之间形成密封的蓄水空间,所述目标车身为所述安装开口的周缘侧的车身部分,所述密封膜在所述雷达包壳处于所述关闭状态时的最低处还设有与车辆的排水管连通,用于将所蓄水空间内的液体排出。
  66. 根据权利要求65所述的可隐藏式车载雷达安装总成,其中,所述密封组件还包括:
    密封条,围绕所述雷达包壳设置,设置于所述目标车身和所述雷达包壳之间。
  67. 根据权利要求66所述的可隐藏式车载雷达安装总成,其中,所述密封组件还包括:
    密封支架,其一侧与所述目标车身相连,另一侧用于固定所述密封膜。
  68. 根据权利要求67所述的可隐藏式车载雷达安装总成,其中,
    所述雷达包壳的外壁处设有沿远离其自身伸出的环形翻边,所述密封膜的两端分别与所述密封支架和所述环形翻边相连。
  69. 根据权利要求68所述的可隐藏式车载雷达安装总成,其中,
    所述雷达包壳设有所述窗口的一侧的外壁的高度大于其相对侧的高度,所述环形翻边设置于所述雷达包壳的外壁的底部。
  70. 根据权利要求65所述的可隐藏式车载雷达安装总成,其中,
    所述雷达包壳形成有所述蓄水空间和所述排水管均连通的引流管道,所述密封膜设有用于穿设所述引流管道的通道。
  71. 根据权利要求66-70中任一项所述的可隐藏式车载雷达安装总成,其中,所述固定组件包括:
    固定底板;
    多个连接支架,每一所述连接支架的两端分别与目标车身和所述固定底板的周缘相连。
  72. 根据权利要求71所述的可隐藏式车载雷达安装总成,其中,所述固定底板包括:
    平板部;
    多个位于所述平板部周缘处的连接支脚,每一所述连接支脚均朝向所述目标车身伸出且与所述连接支架相连。
  73. 一种车辆,包括权利要求65-72中任一项所述的可隐藏式车载雷达安装总成。
PCT/CN2022/092297 2021-05-12 2022-05-11 激光雷达集成装置及具有其的车辆 WO2022237847A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/388,842 US20240077575A1 (en) 2021-05-12 2023-11-12 Laser radar integrated device and vehicle provided with same

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN202121029038.3 2021-05-12
CN202121029038.3U CN216052167U (zh) 2021-05-12 2021-05-12 一种隐藏式角激光雷达集成装置及具有其的车辆
CN202111175708.7 2021-10-09
CN202111177109.9 2021-10-09
CN202111177107.XA CN113917489A (zh) 2021-10-09 2021-10-09 一种盖板可翻转开合的雷达集成系统及车辆
CN202111175708.7A CN113682238B (zh) 2021-10-09 2021-10-09 一种可隐藏式车载雷达安装总成及车辆
CN202111177109.9A CN113917438A (zh) 2021-10-09 2021-10-09 一种雷达可翻转运动的雷达集成系统及车辆
CN202111177107.X 2021-10-09
CN202111175698.7 2021-10-09
CN202111175705.3A CN113917404A (zh) 2021-10-09 2021-10-09 一种雷达集成系统及车辆
CN202111175698.7A CN113917468A (zh) 2021-10-09 2021-10-09 一种车载雷达系统及车辆
CN202111175705.3 2021-10-09
CN202122481286.8U CN215706204U (zh) 2021-10-13 2021-10-13 一种用于雷达的清洗装置、雷达系统及车辆
CN202122481286.8 2021-10-13
CN202111192613.6 2021-10-13
CN202111192613.6A CN113928230B (zh) 2021-10-13 2021-10-13 一种翻转式雷达集成盒及车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/388,842 Continuation US20240077575A1 (en) 2021-05-12 2023-11-12 Laser radar integrated device and vehicle provided with same

Publications (1)

Publication Number Publication Date
WO2022237847A1 true WO2022237847A1 (zh) 2022-11-17

Family

ID=84028160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092297 WO2022237847A1 (zh) 2021-05-12 2022-05-11 激光雷达集成装置及具有其的车辆

Country Status (2)

Country Link
US (1) US20240077575A1 (zh)
WO (1) WO2022237847A1 (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180060110A (ko) * 2016-11-28 2018-06-07 르노삼성자동차 주식회사 차량용 전방 레이더 고정 구조물
CN110586578A (zh) * 2019-10-22 2019-12-20 北京易控智驾科技有限公司 激光雷达的清洁防护一体化装置、清洁控制方法及系统
CN111071165A (zh) * 2018-10-22 2020-04-28 丰田合成株式会社 毫米波雷达单元及其安装方法
CN111389778A (zh) * 2020-05-15 2020-07-10 吉林大学 一种嵌入车身式固态激光雷达的保护清洁装置及清洁方法
CN111409739A (zh) * 2020-04-13 2020-07-14 新石器慧通(北京)科技有限公司 一种包括可伸缩安装结构激光雷达的无人车
CN111891045A (zh) * 2020-07-09 2020-11-06 北京三快在线科技有限公司 雷达防护装置及车辆
CN112477768A (zh) * 2019-09-12 2021-03-12 郑州宇通客车股份有限公司 一种激光雷达安装结构及车辆
CN113682238A (zh) * 2021-10-09 2021-11-23 武汉路特斯汽车有限公司 一种可隐藏式车载雷达安装总成及车辆
CN113917489A (zh) * 2021-10-09 2022-01-11 武汉路特斯汽车有限公司 一种盖板可翻转开合的雷达集成系统及车辆
CN113917404A (zh) * 2021-10-09 2022-01-11 武汉路特斯汽车有限公司 一种雷达集成系统及车辆
CN113917438A (zh) * 2021-10-09 2022-01-11 武汉路特斯汽车有限公司 一种雷达可翻转运动的雷达集成系统及车辆
CN113917468A (zh) * 2021-10-09 2022-01-11 武汉路特斯汽车有限公司 一种车载雷达系统及车辆
CN113928230A (zh) * 2021-10-13 2022-01-14 武汉路特斯汽车有限公司 一种翻转式雷达集成盒及车辆
CN215706204U (zh) * 2021-10-13 2022-02-01 武汉路特斯汽车有限公司 一种用于雷达的清洗装置、雷达系统及车辆
CN216052167U (zh) * 2021-05-12 2022-03-15 武汉路特斯汽车有限公司 一种隐藏式角激光雷达集成装置及具有其的车辆

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180060110A (ko) * 2016-11-28 2018-06-07 르노삼성자동차 주식회사 차량용 전방 레이더 고정 구조물
CN111071165A (zh) * 2018-10-22 2020-04-28 丰田合成株式会社 毫米波雷达单元及其安装方法
CN112477768A (zh) * 2019-09-12 2021-03-12 郑州宇通客车股份有限公司 一种激光雷达安装结构及车辆
CN110586578A (zh) * 2019-10-22 2019-12-20 北京易控智驾科技有限公司 激光雷达的清洁防护一体化装置、清洁控制方法及系统
CN111409739A (zh) * 2020-04-13 2020-07-14 新石器慧通(北京)科技有限公司 一种包括可伸缩安装结构激光雷达的无人车
CN111389778A (zh) * 2020-05-15 2020-07-10 吉林大学 一种嵌入车身式固态激光雷达的保护清洁装置及清洁方法
CN111891045A (zh) * 2020-07-09 2020-11-06 北京三快在线科技有限公司 雷达防护装置及车辆
CN216052167U (zh) * 2021-05-12 2022-03-15 武汉路特斯汽车有限公司 一种隐藏式角激光雷达集成装置及具有其的车辆
CN113682238A (zh) * 2021-10-09 2021-11-23 武汉路特斯汽车有限公司 一种可隐藏式车载雷达安装总成及车辆
CN113917489A (zh) * 2021-10-09 2022-01-11 武汉路特斯汽车有限公司 一种盖板可翻转开合的雷达集成系统及车辆
CN113917404A (zh) * 2021-10-09 2022-01-11 武汉路特斯汽车有限公司 一种雷达集成系统及车辆
CN113917438A (zh) * 2021-10-09 2022-01-11 武汉路特斯汽车有限公司 一种雷达可翻转运动的雷达集成系统及车辆
CN113917468A (zh) * 2021-10-09 2022-01-11 武汉路特斯汽车有限公司 一种车载雷达系统及车辆
CN113928230A (zh) * 2021-10-13 2022-01-14 武汉路特斯汽车有限公司 一种翻转式雷达集成盒及车辆
CN215706204U (zh) * 2021-10-13 2022-02-01 武汉路特斯汽车有限公司 一种用于雷达的清洗装置、雷达系统及车辆

Also Published As

Publication number Publication date
US20240077575A1 (en) 2024-03-07

Similar Documents

Publication Publication Date Title
WO2022237848A1 (zh) 一种激光雷达集成盒、清洗装置及车辆
CN215474853U (zh) 一种隐藏式顶激光雷达集成盒及具有其的车辆
US11667269B2 (en) Device of unmanned vehicle with sensor device and cleaning mechanism
WO2022237342A1 (zh) 一种隐藏式角激光雷达集成装置及具有其的车辆
US20180072240A1 (en) Imaging device protector and cleaner
EP4172001A1 (en) Self-driving sensor system
KR102552085B1 (ko) 센서 직접세척 장치 및 자율주행차량
CN203292137U (zh) 摄像机远程遥控自动清洁控制器
KR20210040099A (ko) 액티브 플로우 제어 액추에이터들을 사용한 기상 환경 및 동작 컨디션들로 인한 투과 표면을 통한 무선 및 광 신호 투과 손실의 방지
WO2022237847A1 (zh) 激光雷达集成装置及具有其的车辆
CN113928230B (zh) 一种翻转式雷达集成盒及车辆
WO2020137823A1 (ja) 車両用クリーナユニットおよび車両用クリーナシステム
CN112929525A (zh) 一种翻转式摄像头结构及车辆
CN113917405A (zh) 一种车载雷达的安装装置
KR20180102462A (ko) 차량용 무빙 카메라의 렌즈 이물질 세척 장치
CN217506116U (zh) 一种雷达组件及车辆
CN215925826U (zh) 自动喷洒装置及清扫车
CN206252949U (zh) 自动控制的水淋防尘装置
CN113917404A (zh) 一种雷达集成系统及车辆
CN113917438A (zh) 一种雷达可翻转运动的雷达集成系统及车辆
CN113917489A (zh) 一种盖板可翻转开合的雷达集成系统及车辆
CN211263772U (zh) 一种收缩式激光雷达及扫地机器人
US20070267517A1 (en) Telescopic Liquid-Ejection Device for Vehicle Window-Washing Systems
CN111492954A (zh) 液体喷洒装置、载体及液体喷洒方法
CN213728011U (zh) 旋转式相机自清洁机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806809

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022806809

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022806809

Country of ref document: EP

Effective date: 20231114

122 Ep: pct application non-entry in european phase

Ref document number: 22806809

Country of ref document: EP

Kind code of ref document: A1