WO2022237711A1 - 预编码矩阵的指示方法、终端及网络侧设备 - Google Patents

预编码矩阵的指示方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2022237711A1
WO2022237711A1 PCT/CN2022/091608 CN2022091608W WO2022237711A1 WO 2022237711 A1 WO2022237711 A1 WO 2022237711A1 CN 2022091608 W CN2022091608 W CN 2022091608W WO 2022237711 A1 WO2022237711 A1 WO 2022237711A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding matrix
indicated
indication information
information
tpmi
Prior art date
Application number
PCT/CN2022/091608
Other languages
English (en)
French (fr)
Inventor
拉盖施塔玛拉卡
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022237711A1 publication Critical patent/WO2022237711A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present application belongs to the technical field of terminal communication, and in particular relates to a method for indicating a precoding matrix, a terminal and a network side device.
  • the network side device may indicate the precoding matrix used for uplink transmission to the terminal before data transmission with the terminal. After receiving the instruction from the network side device, the terminal can transmit uplink data based on the indicated precoding matrix.
  • the terminal can support the use of precoding with different numbers of antennas for uplink data transmission, and the network side device can indicate precoding matrices with different numbers of antennas when indicating the precoding matrix to the terminal.
  • the network side device cannot dynamically indicate precoding matrices with different numbers of antennas through the same signaling.
  • Embodiments of the present application provide a method for indicating a precoding matrix, a terminal and a network side device, which can solve the current problem that precoding matrices with different numbers of antennas cannot be dynamically indicated through the same signaling.
  • a method for indicating a precoding matrix including:
  • the network side device sends precoding matrix indication information to the terminal
  • the precoding matrix indication information includes first indication information and transmission precoding matrix indication TPMI information
  • the first indication information is used to indicate the number of antennas corresponding to the precoding matrix used by the terminal, and the number of antennas At least include N or M, M is an integer greater than or equal to 1, and N is an integer greater than M.
  • a device for indicating a precoding matrix including:
  • a sending module configured to send precoding matrix indication information to the terminal
  • the precoding matrix indication information includes first indication information and transmission precoding matrix indication TPMI information
  • the first indication information is used to indicate the number of antennas corresponding to the precoding matrix used by the terminal, and the number of antennas At least include N or M, M is an integer greater than or equal to 1, and N is an integer greater than M.
  • a method for indicating a precoding matrix including:
  • the terminal receives precoding matrix indication information from the network side device, the precoding matrix indication information includes first indication information and TPMI information, and the first indication information is used to indicate the number of antennas corresponding to the precoding matrix used by the terminal , the number of antennas includes at least N or M, M is an integer greater than or equal to 1, and N is an integer greater than M;
  • a device for indicating a precoding matrix including:
  • the receiving module is configured to receive precoding matrix indication information from the network side device, the precoding matrix indication information includes first indication information and TPMI information, and the first indication information is used to indicate the corresponding precoding matrix used by the terminal.
  • the number of antennas the number of antennas at least includes N or M, M is an integer greater than or equal to 1, and N is an integer greater than M;
  • a determining module configured to determine the precoding matrix indicated by the network side device based on the precoding matrix indication information.
  • a network-side device includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, the program or instruction being executed by the When executed by the processor, the steps of the method described in the first aspect are realized.
  • a network side device including a processor and a communication interface, where the communication interface is used to send precoding matrix indication information to a terminal; wherein the precoding matrix indication information includes first indication information and transmission precoding matrix indication TPMI information, the first indication information is used to indicate the number of antennas corresponding to the precoding matrix used by the terminal, the number of antennas includes at least N or M, and M is an integer greater than or equal to 1 , N is an integer greater than M.
  • a terminal in a seventh aspect, includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, when the program or instruction is executed by the processor. The steps of the method as described in the third aspect are realized.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to receive precoding matrix indication information from a network side device, and the precoding matrix indication information includes first indication information and TPMI information, the first indication information is used to indicate the number of antennas corresponding to the precoding matrix used by the terminal, the number of antennas includes at least N or M, M is an integer greater than or equal to 1, and N is an integer greater than M
  • the processor is configured to determine the precoding matrix indicated by the network side device based on the precoding matrix indication information.
  • a readable storage medium is provided, and programs or instructions are stored on the readable storage medium, and when the programs or instructions are executed by a processor, the steps of the method described in the first aspect are realized, or the steps of the method described in the first aspect are realized, or The steps of the method described in the third aspect.
  • a chip in a tenth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method as described in the first aspect , or implement the method described in the third aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the program/program product is executed by at least one processor to implement the The steps of the method, or the steps of implementing the method as described in the third aspect.
  • the network side device when the network side device indicates the precoding matrix to the terminal, it may send the precoding matrix indication information to the terminal.
  • the precoding matrix indication information includes the first indication information and the transmission precoding matrix indication TPMI information.
  • the second The indication information is used to indicate the number of antennas corresponding to the precoding matrix used by the terminal, and the number of antennas includes at least N or M, where M is an integer greater than or equal to 1, and N is an integer greater than M.
  • the network side device can also use the first indication information to indicate the number of antennas when using the TPMI information to indicate the precoding matrix to the terminal, the precoding matrix indicated to the terminal can be dynamically changed by changing the number of antennas indicated by the first indication information , so as to achieve the purpose of dynamically indicating precoding matrices with different numbers of antennas through the same signaling.
  • FIG. 1 is a schematic diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for indicating a precoding matrix according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for indicating a precoding matrix according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of an indicating device for a precoding matrix according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a device for indicating a precoding matrix according to an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technologies can be used for the above-mentioned systems and radio technologies as well as other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • Fig. 1 shows a schematic diagram of a wireless communication system to which this embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 can be a mobile phone, a tablet computer (Tablet Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device ( VUE), Pedestrian Terminal (PUE) and other terminal-side devices, wearable devices include: smart watches, bracelets, earphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, where a base station may be called a node B, an evolved node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN access point, WiFi node, transmission Receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only The base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • the embodiment of the present application provides a method 200 for indicating a precoding matrix, which can be performed by a network-side device, in other words, the method can be performed by software or hardware installed on the network-side device, the method Including the following steps.
  • the network side device sends precoding matrix indication information to the terminal; wherein, the precoding matrix indication information includes first indication information and transmission precoding matrix indication TPMI information, and the first indication information is used to indicate that the precoding matrix used by the terminal corresponds to
  • the number of antennas includes at least N or M, where M is an integer greater than or equal to 1, and N is an integer greater than M.
  • the network side device since the network side device also uses the first indication information to indicate the number of antennas when using the TPMI information to indicate the precoding matrix to the terminal, it is possible to dynamically change the direction by changing the number of antennas indicated by the first indication information.
  • the precoding matrix indicated by the terminal so as to achieve the purpose of dynamically indicating the precoding matrix with different numbers of antennas through the same signaling.
  • the Transmitted Precoding Matrix Indicator (TPMI) information can be understood as the information carried by the TPMI field in the precoding matrix indicator information, which may specifically include the TPMI index (TPMI index) and the number (rank ) instructions.
  • the number of data streams may be understood as the number of data streams used by the terminal for data transmission, which may specifically be a single stream or multiple streams.
  • there is a predefined mapping relationship between the TPMI index and the number of data streams and the precoding matrix that is, between TPMI information and the precoding matrix.
  • the predefined mapping relationship may be described below by taking the number of antennas as 2 and 4, and the number of data streams as single stream and two streams as an example.
  • the network side device in order to achieve the purpose that the network side device can dynamically indicate the precoding matrix with different numbers of antennas through the same command, when the network side device indicates the precoding matrix to the terminal, in addition to sending the above TPMI information to the terminal,
  • the first indication information for indicating the number of antennas may also be sent to the terminal, so that the terminal can determine a corresponding precoding matrix based on the first indication information, TPMI information, and the above-mentioned predefined mapping relationship.
  • the number of antennas indicated by the first indication information may be N or M, and specific values of N and M may be determined according to the number of antennas supported by the terminal. In an implementation manner, if the number of antennas supported by the terminal includes 4, 2, and 1, then the foregoing N may be 4, and M may be 2 or 1. In other implementation manners, if the terminal can support other numbers of antennas, the above N and M can also be other values, which can be set according to actual conditions, and are not specifically limited here.
  • the precoding matrix indicated by the precoding matrix indication information is the precoding matrix corresponding to the TPMI information in the first mapping relationship (In order to distinguish, it may be represented by the target precoding matrix here), the first mapping relationship is the mapping relationship between the predefined N-antenna precoding matrix and TPMI information. That is to say, when the network-side device indicates an N-antenna precoding matrix (N is greater than 2), the TPMI domain resolves to a pre-defined precoding matrix with a length of N.
  • the precoding matrix indicated by the precoding matrix indication information is the first M elements or the last M elements of each column in the above target precoding matrix A precoding matrix composed of elements.
  • the terminal by indicating the number of antennas to the terminal, and when the number of antennas is N and N is greater than 2, indicating the precoding matrix with a length of N to the terminal, when the number of antennas changes from N to M and M is greater than 1,
  • the precoding matrix formed by the first M elements or the last M elements of each column in the precoding matrix with a length of N is indicated to the terminal, so that the purpose of dynamically indicating the precoding matrix with different numbers of antennas can be achieved through the same signaling.
  • the network side device instructs the terminal to parse the TPMI information according to the above Table 3, that is, the predefined first mapping relationship is In the above Table 3, the precoding matrix indicated by the network side device at this time is specifically the precoding matrix corresponding to the TPMI index P in Table 3.
  • the predefined first mapping relationship is the above table 4, that is, the network side device instructs the terminal to follow the above table 4 Parse the TPMI information.
  • the precoding matrix indicated by the network side device is specifically the precoding matrix corresponding to the TPMI index Q in Table 4.
  • the network-side device instructs the terminal to parse the TPMI information according to the above-mentioned Table 3, that is, the predefined first mapping relationship is the above-mentioned Table 3.
  • the network-side device indicates The precoding matrix of is specifically the precoding matrix formed by the first M elements or the last M elements of a column in the precoding matrix corresponding to the TPMI index P in Table 3. For example, if P is 5, the precoding matrix indicated by the network side device is The precoding matrix formed by the first two elements in Or the precoding matrix composed of the last two elements
  • the network-side device instructs the terminal to parse the TPMI information according to the above-mentioned Table 4, that is, the predefined first mapping relationship is the above-mentioned Table 4.
  • the network-side device indicates The precoding matrix of is specifically the precoding matrix formed by the first M elements or the last M elements of each column in the precoding matrix corresponding to the TPMI index Q in Table 4. For example, if Q is 6, the precoding matrix indicated by the network side device is The precoding matrix formed by the first two elements of each column in Or the precoding matrix composed of the last two elements
  • the first M or the last M elements of each column in the precoding matrix with a length of N may be all 0, and if the number of antennas indicated by the network side device is M, then there is The case where one or more columns of elements in the precoding matrix indicated by the network-side device are all 0, in this case, the terminal will not use one or more antennas indicated by the network-side device for data transmission. It can be considered that the precoding matrix indicated by the network side device is invalid or meaningless. In order to avoid this situation, when the indicated precoding matrix is the precoding matrix composed of the first M elements of each column, the network-side device can pre-agree with the terminal on the target precoding corresponding to the indicated TPMI information None of the first M elements of the matrix are 0.
  • the indicated precoding matrix is a precoding matrix composed of the last M elements of each column above
  • the target precoding matrix corresponding to the indicated TPMI information can be pre-agreed with the terminal.
  • the last M elements of the coding matrix are all non-zero. That is to say, the terminal does not expect that the elements in one or more columns in the precoding matrix indicated by the network side device are all 0, and the network side device will not indicate to the terminal a precoding matrix in which the elements in one or more columns are all 0 .
  • the predefined first mapping relationship is the above Table 3. It can be seen from Table 3 that when the TPMI index is 2 and 3, the first two elements in the corresponding precoding matrix are both 0, and when the TPMI index is 0 and 1, the corresponding precoding matrix The last two elements of are both 0. In order to avoid the situation that the elements in a column of the precoding matrix indicated by the network side device are all 0, then, when the precoding matrix indicated by the network side device is the precoding matrix formed by the first two elements of each column in the precoding matrix corresponding to the TPMI information When encoding the matrix, it can be pre-agreed with the terminal that the TPMI index indicated by the TPMI information is not 2 and 3.
  • the precoding matrix indicated by the network side device is a precoding matrix composed of the last 2 elements of each column in the precoding matrix corresponding to the TPMI information, it may be pre-agreed with the terminal that the TPMI index indicated by the TPMI information is not 0 and 1.
  • the predefined first mapping relationship is the above Table 4. It can be seen from Table 4 that when the TPMI index is 5, the first two elements of the two columns in the corresponding precoding matrix are both 0, and when the TPMI index is 1 to 4, the corresponding precoding matrix The first two elements of the second column are both 0. When the TPMI index is 0, the last two elements of the two columns in the corresponding precoding matrix are both 0. When the TPMI index is 1 to 4, the corresponding The last two elements of the first column in the precoding matrix of are both 0.
  • the precoding matrix indicated by the network side device is the first 2 elements of each column in the precoding matrix corresponding to the TPMI information
  • it may be pre-agreed with the terminal that the TPMI index indicated by the TPMI information is not 1 to 5.
  • the precoding matrix indicated by the network side device is a precoding matrix composed of the last two elements of each column in the precoding matrix corresponding to the TPMI information, it may be pre-agreed with the terminal that the TPMI index indicated by the TPMI information is not 0 to 4.
  • the precoding matrix indication information indicates The precoding matrix is a precoding matrix corresponding to the TPMI information in the first mapping relationship, and the first mapping relationship is a mapping relationship between a predefined N-antenna precoding matrix and the TPMI information. That is to say, when the TPMI information is indicated by multiple bits and the network-side device indicates an N-antenna precoding matrix (N is greater than 2), the TPMI field is parsed into a predefined precoding matrix with a length of N.
  • the precoding matrix indicated by the precoding matrix indication information is the second mapping The precoding matrix corresponding to the TPMI information indicated by Y bits in the relationship.
  • the second mapping relationship is the mapping relationship between the predefined M antenna precoding matrix and the TPMI information
  • Y bits are the first Y bits or the last Y bits in the X bits
  • Y is an integer greater than or equal to 1
  • Y is less than X.
  • the precoding matrix of length N can be indicated to the terminal.
  • the precoding matrix corresponding to the TPMI information of Y bits is indicated to the terminal through the first Y bits or the last Y bits of the X bits, so that the same signaling can be used to dynamically indicate different The number of antennas for the purpose of the precoding matrix.
  • the network side device wishes to indicate the 4-antenna precoding matrix of a single data stream to the terminal, that is, in the case where it is desired to use the above table 3 to indicate the precoding matrix to the terminal, it is known that there are 28 precoding matrices in Figure 3, and it can be used 5 bits indicate TPMI information (ie X equals 5). In this way, when the number of antennas indicated by the first indication information of the network side device is 4, the precoding matrix indicated by the precoding matrix indication information is the precoding matrix corresponding to the TPMI information in Table 3.
  • the number of antennas indicated by the first indication information of the network-side device changes from 4 to 2
  • they are represented by 3 bits. Therefore, The first 3 bits or the last 3 bits of the 5 bits corresponding to the TPMI information can be used as the above-mentioned Y bits.
  • the precoding matrix indicated by the precoding matrix indication information is the first 3 bits or the last 3 bits in Table 1
  • the precoding matrix indicated by the information indicates the precoding
  • the matrix is the precoding matrix corresponding to 01001 in Table 3. If the number of antennas indicated by the first indication information changes from 4 to 2, the precoding matrix indicated by the precoding matrix indication information is 010 (the first 3 bits of 01001) or 001 (the last 3 bits of 01001) in Table 1 The corresponding precoding matrix.
  • the network side device wishes to indicate the 4-antenna precoding matrix of dual data streams to the terminal, that is, to use the above table 4 to indicate the precoding matrix to the terminal, it is known that there are 21 precoding matrices in Figure 4, then you can use 5 bits indicate TPMI information (ie X equals 5). In this way, when the number of antennas indicated by the first indication information of the network side device is 4, the precoding matrix indicated by the precoding matrix indication information is the precoding matrix corresponding to the TPMI information in Table 4.
  • the number of antennas indicated by the first indication information of the network side device is changed from 4 to 2
  • they are represented by 2 bits, therefore,
  • the first 2 bits or the last 2 bits of the 5 bits corresponding to the TPMI information can be used as the above-mentioned Y bits.
  • the precoding matrix indicated by the precoding matrix indication information is the first 2 bits or the last 2 bits in Table 2
  • the precoding matrix indicated by the precoding matrix indicates the number of antennas indicated by the information.
  • the matrix is the precoding matrix corresponding to 01100 in Table 4. If the number of antennas indicated by the first indication information changes from 4 to 2, the precoding matrix indicated by the precoding matrix indication information is 01 (the first 2 bits of 01100) or 00 (the last 2 bits of 01100) in Table 2 The corresponding precoding matrix.
  • the length of Y bits may be related to at least one of the following: the number of data streams used by the terminal, and the coherent or non-coherent capabilities supported by the terminal.
  • the number of data streams used by the terminal may be indicated by the network side device, and the larger the number of data streams, the longer the length of Y bits.
  • the terminal supporting the coherent capability may be understood as the terminal supporting the simultaneous use of multiple antennas for data transmission
  • the terminal supporting the non-coherent capability may be understood as the terminal not supporting the simultaneous use of multiple antennas for data transmission.
  • the terminal supports the coherent or non-coherent capability can be the capability of the terminal itself, or it can be indicated by the network side device, and in the case of the terminal supporting the coherent capability, the length of Y bits is greater than that of the Y bits in the case of the terminal supporting the non-coherent capability length.
  • the network side device when the network side device indicates the precoding matrix through the above precoding matrix indication information, there is a case where the number of antennas indicated by the first indication information is M and M is equal to 1, that is, the network side device instructs the terminal to use a single Antenna for data transmission. Since the network side device does not need to indicate the precoding matrix when instructing the terminal to use a single antenna for data transmission, the TPMI information at this time can be regarded as invalid information.
  • Fig. 3 is a schematic diagram of an implementation flow of a method for indicating a precoding matrix according to an embodiment of the present application, which can be applied to a terminal. It can be understood that the interaction between the terminal and the network-side device described from the terminal is the same as the description of the network-side device in the method shown in FIG. 2 , and related descriptions are appropriately omitted to avoid repetition. As shown in FIG. 3 , the method 300 includes the following steps.
  • the terminal receives the precoding matrix indication information from the network side device, the precoding matrix indication information includes first indication information and TPMI information, the first indication information is used to indicate the number of antennas corresponding to the precoding matrix used by the terminal, the number of antennas At least include N or M, M is an integer greater than or equal to 1, and N is an integer greater than M.
  • the network side device may send precoding matrix indication information to the terminal when indicating the precoding matrix to the terminal, and at this time, the terminal may receive the precoding matrix indication information from the network side device.
  • the precoding matrix indication information For a detailed description of the precoding matrix indication information, reference may be made to the embodiment shown in FIG. 2 , which will not be repeated here.
  • S304 Based on the precoding matrix indication information, determine the precoding matrix indicated by the network side device.
  • the terminal may further determine the precoding matrix indicated by the network side device.
  • the network side device can also use the first indication information to indicate the number of antennas when using the TPMI information to indicate the precoding matrix to the terminal
  • the precoding matrix indicated to the terminal can be dynamically changed by changing the number of antennas indicated by the first indication information.
  • coding matrix so as to achieve the purpose of dynamically indicating precoding matrices with different numbers of antennas through the same signaling, so that the terminal can flexibly use precoding matrices with different numbers of antennas for data transmission according to the indication.
  • the TPMI information includes a TPMI index and indication information for indicating the number of data streams, the number of data streams includes single stream or multiple streams, the precoding matrix indicated by the network side device and the indicated data stream corresponding to the number of .
  • the terminal determines the precoding matrix indicated by the network side device based on the precoding matrix indication information. Specifically, the first The target precoding matrix corresponding to the TPMI information in the mapping relationship is determined as the precoding matrix indicated by the network side device.
  • the first mapping relationship is a mapping relationship between a predefined N-antenna precoding matrix and TPMI information.
  • the terminal determines the precoding matrix indicated by the network side device based on the precoding matrix indication information.
  • the precoding matrix formed by the first M elements or the last M elements of each column of is determined as the precoding matrix indicated by the network side device.
  • the terminal can combine the above Table 3 with the TPMI information The corresponding precoding matrix is determined as the precoding matrix indicated by the network side device. If the number of data streams indicated by the TPMI information is two streams, the terminal may determine the precoding matrix corresponding to the TPMI information in Table 4 as the precoding matrix indicated by the network side device.
  • the terminal can use the The precoding matrix formed by the first two elements or the last two elements is determined as the precoding matrix indicated by the network side device. If the number of data streams indicated by the TPMI information is two streams, the terminal can determine the precoding matrix formed by the first 2 elements or the last 2 elements of each column in the precoding matrix corresponding to the TPMI information in Table 4 above as the network The precoding matrix indicated by the side device.
  • the terminal can communicate with the network side
  • the device pre-agrees that the first M elements of the target precoding matrix corresponding to the indicated TPMI information are not 0.
  • the terminal and the network-side device can agree in advance on the last M elements of the target precoding matrix corresponding to the indicated TPMI information. None of the elements are 0.
  • the terminal indicates the information based on the precoding matrix , determine the precoding matrix indicated by the network side device, specifically, determine the precoding matrix corresponding to the TPMI information in the first mapping relationship as the precoding matrix indicated by the network side device, the first mapping relationship is a predefined N antenna Mapping relationship between precoding matrix and TPMI information. That is, the terminal parses the TPMI domain into a predefined precoding matrix with a length of N.
  • the terminal determines the precoding matrix indicated by the network side device based on the precoding matrix indication information.
  • the second mapping relationship may be combined with The precoding matrix corresponding to the TPMI information indicated by the Y bits is determined as the precoding matrix indicated by the network side device.
  • the second mapping relationship is the mapping relationship between the predefined M antenna precoding matrix and TPMI information, Y bits are the first Y bits or the last Y bits in the X bits, and Y is greater than or equal to 1 and less than X an integer of .
  • the terminal may determine the precoding matrix corresponding to the TPMI information in Table 3 as the one indicated by the network side device. Precoding matrix; if the number of antennas indicated by the first indication information changes from 4 to 2, the terminal can determine the precoding matrix corresponding to the first 3 bits or the last 3 bits of the TPMI information in Table 1 as the precoding matrix indicated by the network side device. encoding matrix.
  • the terminal may determine the precoding matrix corresponding to the TPMI information in Table 4 as the one indicated by the network side device. Precoding matrix; if the number of antennas indicated by the first indication information changes from 4 to 2, the terminal can determine the precoding matrix corresponding to the first 2 bits or the last 2 bits of the TPMI information in Table 2 as the precoding matrix indicated by the network side device. encoding matrix.
  • the length of Y bits may be related to at least one of the following: the number of data streams used by the terminal, and the coherent or non-coherent capabilities supported by the terminal. For details, reference may be made to the corresponding description in the embodiment shown in FIG. 2 , which will not be repeated here.
  • M indicated by the first indication information is equal to 1, that is, the network side device instructs the terminal to use a single antenna for data transmission.
  • the terminal may determine to use a single antenna for uplink data transmission and ignore the indicated TPMI information.
  • the method for indicating the precoding matrix provided in the embodiment of the present application may be executed by the indicating device for the precoding matrix, or the device for performing the indicating method for the precoding matrix in the indicating device for the precoding matrix control module.
  • the method for indicating the precoding matrix performed by the device for indicating the precoding matrix is taken as an example to describe the device for indicating the precoding matrix provided in the embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of an apparatus for indicating a precoding matrix according to an embodiment of the present application, and the apparatus may correspond to a network side device in other embodiments. As shown in FIG. 4 , the device 400 includes the following modules.
  • a sending module 401 configured to send precoding matrix indication information to the terminal
  • the precoding matrix indication information includes first indication information and transmission precoding matrix indication TPMI information
  • the first indication information is used to indicate the number of antennas corresponding to the precoding matrix used by the terminal, and the number of antennas At least include N or M, M is an integer greater than or equal to 1, and N is an integer greater than M.
  • the network side device can also use the first indication information to indicate the number of antennas when using the TPMI information to indicate the precoding matrix to the terminal, the precoding matrix indicated to the terminal can be dynamically changed by changing the number of antennas indicated by the first indication information , so as to achieve the purpose of dynamically indicating precoding matrices with different numbers of antennas through the same signaling.
  • the precoding matrix indicated by the precoding matrix indication information is the The target precoding matrix corresponding to the TPMI information
  • the first mapping relationship is a mapping relationship between a predefined N-antenna precoding matrix and the TPMI information.
  • the precoding matrix indicated by the precoding matrix indication information is The precoding matrix formed by the first M elements or the last M elements of each column of .
  • the indicating device and the terminal agree in advance on the indicated TPMI information None of the first M elements of the corresponding target precoding matrix are 0;
  • the indicating device and the terminal agree in advance that the indicated target precoding matrix corresponds to the TPMI information. None of the last M elements are 0.
  • the TPMI information is indicated by X bits, where X is an integer greater than 1;
  • the precoding matrix indicated by the precoding matrix indication information is the precoding matrix corresponding to the TPMI information indicated by Y bits in the second mapping relationship;
  • the second mapping relationship is the mapping relationship between the predefined M antenna precoding matrix and TPMI information
  • the Y bits are the first Y bits or the last Y bits of the X bits
  • Y is an integer greater than or equal to 1 and less than X.
  • the length of the Y bits is related to at least one of the following: the number of data streams used by the terminal, and the coherent or non-coherent capability supported by the terminal.
  • the TPMI information further includes indication information for indicating the number of data streams, the number of data streams includes single stream or multiple streams, the predefined first mapping relationship and the second The mapping relationship corresponds to the number of data streams.
  • the TPMI information is invalid.
  • the device 400 according to the embodiment of the present application can refer to the process of the method 200 corresponding to the embodiment of the present application, and each unit/module in the device 400 and the above-mentioned other operations and/or functions are respectively in order to realize the corresponding process in the method 200, And can achieve the same or equivalent technical effect, for the sake of brevity, no more details are given here.
  • Fig. 5 is a schematic structural diagram of an apparatus for indicating a precoding matrix according to an embodiment of the present application, and the apparatus may correspond to a network side device in other embodiments. As shown in FIG. 5 , the device 500 includes the following modules.
  • the receiving module 501 is configured to receive precoding matrix indication information from a network side device, the precoding matrix indication information includes first indication information and TPMI information, and the first indication information is used to indicate that the precoding matrix used by the terminal corresponds to
  • the number of antennas the number of antennas at least includes N or M, M is an integer greater than or equal to 1, and N is an integer greater than M;
  • the determining module 502 is configured to determine the precoding matrix indicated by the network side device based on the precoding matrix indication information.
  • the network side device can also use the first indication information to indicate the number of antennas when using the TPMI information to indicate the precoding matrix to the terminal, the precoding matrix indicated to the terminal can be dynamically changed by changing the number of antennas indicated by the first indication information , thereby achieving the purpose of dynamically indicating precoding matrices with different numbers of antennas through the same signaling, so that the terminal can flexibly use precoding matrices with different numbers of antennas for data transmission according to the indication.
  • the determining module 502 is configured to:
  • the first mapping relationship is a mapping relationship between a predefined N-antenna precoding matrix and TPMI information.
  • the determining module 502 is configured to:
  • the number of antennas indicated by the first indication information is M and M is greater than 1, determine the precoding matrix formed by the first M elements or the last M elements of each column in the target precoding matrix as the The precoding matrix indicated by the network side device.
  • the indicating device and the network side device agree in advance that the indicated The first M elements of the target precoding matrix corresponding to the TPMI information are not 0;
  • the indicating device and the network side equipment agree in advance on the target precoding matrix corresponding to the indicated TPMI information None of the last M elements is 0.
  • the TPMI information is indicated by X bits, and X is an integer greater than 1; wherein, the determining module 502 is configured to:
  • the second mapping relationship is the mapping relationship between the predefined M antenna precoding matrix and TPMI information
  • the Y bits are the first Y bits or the last Y bits of the X bits
  • Y is greater than Or an integer equal to 1 and less than X.
  • the TPMI information further includes indication information for indicating the number of data streams, the number of data streams includes single stream or multiple streams, and the precoding matrix indicated by the network side device Corresponds to the indicated number of said data streams.
  • the determining module 502 is configured to:
  • the number of antennas indicated by the first indication information is M and M is equal to 1, it is determined to use a single antenna for uplink data transmission and the indicated TPMI information is ignored.
  • the device 500 according to the embodiment of the present application can refer to the process of the method 200 corresponding to the embodiment of the present application, and each unit/module in the device 500 and the above-mentioned other operations and/or functions are respectively in order to realize the corresponding process in the method 300, And can achieve the same or equivalent technical effect, for the sake of brevity, no more details are given here.
  • the device for indicating the precoding matrix in the embodiment of the present application may be a device, a device with an operating system or an electronic device, or a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the device for indicating the precoding matrix in the embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in this embodiment of the present application.
  • the device for indicating the precoding matrix provided by the embodiment of the present application can realize various processes realized by the method embodiment in FIG. 3 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application further provides a communication device 600, including a processor 601, a memory 602, and programs or instructions stored in the memory 602 and operable on the processor 601,
  • a communication device 600 including a processor 601, a memory 602, and programs or instructions stored in the memory 602 and operable on the processor 601
  • the communication device 600 is a terminal
  • the program or instruction is executed by the processor 601
  • each process of the method embodiment 300 above can be implemented, and the same technical effect can be achieved.
  • the communication device 600 is a network-side device
  • the program or instruction is executed by the processor 601
  • each process of the method embodiment 200 above can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, the communication interface is used to receive precoding matrix indication information from a network side device, and the precoding matrix indication information includes first indication information and TPMI information
  • the first indication information is used to indicate the number of antennas corresponding to the precoding matrix used by the terminal, the number of antennas includes at least N or M, M is an integer greater than or equal to 1, and N is an integer greater than M, so
  • the processor is configured to determine the precoding matrix indicated by the network side device based on the precoding matrix indication information.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 7 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, and a processor 710, etc. at least some of the components.
  • the terminal 700 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 710 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 704 may include a graphics processor (Graphics Processing Unit, GPU) 7041 and a microphone 7042, and the graphics processor 7041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and other input devices
  • the touch panel 7071 is also called a touch screen.
  • the touch panel 7071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 7072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 701 receives the downlink data from the network side device, and processes it to the processor 710; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 709 can be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 709 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM , SLDRAM) and Direct Memory Bus Random Access Memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM , SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus
  • the processor 710 may include one or more processing units; optionally, the processor 710 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface and application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 710 .
  • the radio frequency unit 701 is configured to receive precoding matrix indication information from the network side device, the precoding matrix indication information includes first indication information and TPMI information, and the first indication information is used to indicate the The number of antennas corresponding to the precoding matrix, the number of antennas at least includes N or M, where M is an integer greater than or equal to 1, and N is an integer greater than M.
  • the processor 710 is configured to determine the precoding matrix indicated by the network side device based on the precoding matrix indication information.
  • the network side device can also use the first indication information to indicate the number of antennas when using the TPMI information to indicate the precoding matrix to the terminal, the precoding matrix indicated to the terminal can be dynamically changed by changing the number of antennas indicated by the first indication information , thereby achieving the purpose of dynamically indicating precoding matrices with different numbers of antennas through the same signaling, so that the terminal can flexibly use precoding matrices with different numbers of antennas for data transmission according to the indication.
  • the terminal 700 provided in the embodiment of the present application can also implement the various processes in the above embodiment of the method for indicating the precoding matrix, and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, and the communication interface is used to send the precoding matrix indication information to the terminal; wherein, the precoding matrix indication information includes the first indication information and the transmission precoding
  • the matrix indicates TPMI information
  • the first indication information is used to indicate the number of antennas corresponding to the precoding matrix used by the terminal, the number of antennas includes at least N or M
  • M is an integer greater than or equal to 1
  • N is greater than Integer of M.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network device 800 includes: an antenna 81 , a radio frequency device 82 , and a baseband device 83 .
  • the antenna 81 is connected to a radio frequency device 82 .
  • the radio frequency device 82 receives information through the antenna 81, and sends the received information to the baseband device 83 for processing.
  • the baseband device 83 processes the information to be sent and sends it to the radio frequency device 82
  • the radio frequency device 82 processes the received information and sends it out through the antenna 81 .
  • the foregoing frequency band processing device may be located in the baseband device 83 , and the method performed by the network side device in the above embodiments may be implemented in the baseband device 83 , and the baseband device 83 includes a processor 84 and a memory 85 .
  • Baseband device 83 for example can comprise at least one baseband board, and this baseband board is provided with a plurality of chips, as shown in Fig. The network device operations shown in the above method embodiments.
  • the baseband device 83 may also include a network interface 86 for exchanging information with the radio frequency device 82, such as a common public radio interface (CPRI for short).
  • a network interface 86 for exchanging information with the radio frequency device 82, such as a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in the embodiment of the present invention also includes: instructions or programs stored in the memory 85 and operable on the processor 84, and the processor 84 calls the instructions or programs in the memory 85 to execute the modules shown in FIG. 4 To avoid duplication, the method of implementation and to achieve the same technical effect will not be repeated here.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by a processor, each process of the above embodiment of the method for indicating the precoding matrix is implemented, and The same technical effect can be achieved, so in order to avoid repetition, details will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to realize the above-mentioned indication method of the precoding matrix
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to realize the above-mentioned indication method of the precoding matrix
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种预编码矩阵的指示方法、终端及网络侧设备,属于终端通信技术领域,本申请实施例的预编码矩阵的指示方法包括:网络侧设备向终端发送预编码矩阵指示信息;所述预编码矩阵指示信息包括第一指示信息和传输预编码矩阵指示TPMI信息,所述第一指示信息用于指示所述终端使用的预编码矩阵所对应的天线数目,所述天线数目至少包括N或M,M为大于或等于1的整数,N为大于M的整数。

Description

预编码矩阵的指示方法、终端及网络侧设备
相关申请的交叉引用
本申请要求于2021年05月10日提交的申请号为202110504609.2,发明名称为“预编码矩阵的指示方法、终端及网络侧设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于终端通信技术领域,具体涉及一种预编码矩阵的指示方法、终端及网络侧设备。
背景技术
通常,网络侧设备在与终端进行数据传输之前,可以向终端指示用于上行传输的预编码矩阵。终端在接收到网络侧设备的指示后,可以基于指示的预编码矩阵进行上行数据的传输。
目前,终端可以支持使用不同数目天线的预编码进行上行数据的传输,网络侧设备在向终端指示预编码矩阵时,可以指示不同天线数目的预编码矩阵。然而,目前的预编码矩阵指示方案中,网络侧设备还无法通过同一信令动态指示不同天线数目的预编码矩阵。
发明内容
本申请实施例提供一种预编码矩阵的指示方法、终端及网络侧设备,能够解决目前无法通过同一信令动态指示不同天线数目的预编码矩阵的问题。
第一方面,提供了一种预编码矩阵的指示方法,包括:
网络侧设备向终端发送预编码矩阵指示信息;
其中,所述预编码矩阵指示信息包括第一指示信息和传输预编码矩阵指示TPMI信息,所述第一指示信息用于指示所述终端使用的预编码矩阵所对应的天线数目,所述天线数目至少包括N或M,M为大于或等于1的整数,N为大于M的整数。
第二方面,提供了一种预编码矩阵的指示装置,包括:
发送模块,用于向终端发送预编码矩阵指示信息;
其中,所述预编码矩阵指示信息包括第一指示信息和传输预编码矩阵指示TPMI信息,所述第一指示信息用于指示所述终端使用的预编码矩阵所对应的天线数目,所述天线数目至少包括N或M,M为大于或等于1的整数,N为大于M的整数。
第三方面,提供了一种预编码矩阵的指示方法,包括:
终端接收来自网络侧设备的预编码矩阵指示信息,所述预编码矩阵指示信息包括第一指示信息和TPMI信息,所述第一指示信息用于指示所述终端使用的预编码矩阵对应的天线数目,所述天线数目至少包括N或M,M为大于或等于1的整数,N为大于M的整数;
基于所述预编码矩阵指示信息,确定所述网络侧设备指示的预编码矩阵。
第四方面,提供了一种预编码矩阵的指示装置,包括:
接收模块,用于接收来自网络侧设备的预编码矩阵指示信息,所述预编码矩阵指示信息包括第一指示信息和TPMI信息,所述第一指示信息用于指示终端使用的预编码矩阵对应的天线数目,所述天线数目至少包括N或M,M为大于或等于1的整数,N为大于M的整数;
确定模块,用于基于所述预编码矩阵指示信息,确定所述网络侧设备指示的预编码矩阵。
第五方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所 述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于向终端发送预编码矩阵指示信息;其中,所述预编码矩阵指示信息包括第一指示信息和传输预编码矩阵指示TPMI信息,所述第一指示信息用于指示所述终端使用的预编码矩阵所对应的天线数目,所述天线数目至少包括N或M,M为大于或等于1的整数,N为大于M的整数。
第七方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第八方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于接收来自网络侧设备的预编码矩阵指示信息,所述预编码矩阵指示信息包括第一指示信息和TPMI信息,所述第一指示信息用于指示所述终端使用的预编码矩阵对应的天线数目,所述天线数目至少包括N或M,M为大于或等于1的整数,N为大于M的整数,所述处理器用于基于所述预编码矩阵指示信息,确定所述网络侧设备指示的预编码矩阵。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第三方面所述的方法。
第十一方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法 的步骤。
在本申请实施例中,网络侧设备在向终端指示预编码矩阵时,可以向终端发送预编码矩阵指示信息,预编码矩阵指示信息包括第一指示信息和传输预编码矩阵指示TPMI信息,该第一指示信息用于指示终端使用的预编码矩阵所对应的天线数目,天线数目至少包括N或M,M为大于或等于1的整数,N为大于M的整数。由于网络侧设备在使用TPMI信息向终端指示预编码矩阵时,还可以使用第一指示信息指示天线数目,因此可以通过改变第一指示信息所指示的天线数目来动态改变向终端指示的预编码矩阵,从而实现通过同一信令动态指示不同天线数目的预编码矩阵的目的。
附图说明
图1是根据本申请实施例的无线通信系统的示意图;
图2是根据本申请实施例的预编码矩阵的指示方法的示意性流程图;
图3是根据本申请实施例的预编码矩阵的指示方法的示意性流程图;
图4是根据本申请实施例的预编码矩阵的指示装置的结构示意图;
图5是根据本申请实施例的预编码矩阵的指示装置的结构示意图;
图6是根据本申请实施例的通信设备的结构示意图;
图7是根据本申请实施例的终端的结构示意图;
图8是根据本申请实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是 全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的示意图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板 电脑(Tablet Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Intemet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:智能手表、手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的预编码矩阵的指示方法、终端及网络侧设备进行详细地说明。
如图2所示,本申请实施例提供一种预编码矩阵的指示方法200,该方法可以由网络侧设备执行,换言之,该方法可以由安装在网络侧设备的软件或硬件来执行,该方法包括如下步骤。
S202:网络侧设备向终端发送预编码矩阵指示信息;其中,预编码矩阵指示信息包括第一指示信息和传输预编码矩阵指示TPMI信息,第一指示信息用于指示终端使用的预编码矩阵所对应的天线数目,天线数目至少包括N或M,M为大于或等于1的整数,N为大于M的整数。
在本申请实施例中,由于网络侧设备在使用TPMI信息向终端指示 预编码矩阵时,还使用第一指示信息指示天线数目,因此可以通过改变第一指示信息所指示的天线数目来动态改变向终端指示的预编码矩阵,从而实现通过同一信令动态指示不同天线数目的预编码矩阵的目的。
传输预编码矩阵指示(Transmitted Precoding Matrix Indicator,TPMI)信息可以理解为由预编码矩阵指示信息中的TPMI域承载的信息,具体可以包括TPMI索引(TPMI index)和用于指示数据流的数目(rank)的指示信息。数据流的数目可以理解为终端进行数据传输时所使用的数据流数,具体可以是单流或多流。其中,在不同的天线数目下,TPMI索引和数据流的数目与预编码矩阵之间(即TPMI信息与预编码矩阵之间)存在预定义的映射关系。为了便于理解,以下可以以天线数目为2和4,数据流的数目为单流和两流为例对预定义的映射关系进行说明。
在天线数目为2,数据流的数目为1的情况下,TPMI信息与2天线预编码矩阵之间的预定义的映射关系如表1所示。
表1
Figure PCTCN2022091608-appb-000001
在天线数目为2,数据流的数目为2的情况下,TPMI信息与2天线预编码矩阵之间的预定义的映射关系如表2所示。
表2
Figure PCTCN2022091608-appb-000002
在天线数目为4,数据流的数目为1的情况下,TPMI信息与4天线预编码矩阵之间的预定义的映射关系如表3所示。
表3
Figure PCTCN2022091608-appb-000003
在天线数目为4,数据流的数目为2的情况下,TPMI信息与4天线预编码矩阵之间的预定义的映射关系如表4所示。
表4
Figure PCTCN2022091608-appb-000004
基于上述预定义的映射关系,为了实现网络侧设备可以通过同一指令动态指示不同天线数目的预编码矩阵的目的,网络侧设备在向终端指示预编码矩阵时,除了向终端发送上述TPMI信息外,还可以向终端发送用于指示天线数目的第一指示信息,以便终端可以基于该第一指示信息、TPMI信息以及上述预定义的映射关系,确定对应的预编码矩阵。
第一指示信息指示的天线数目可以是N,也可以是M,N和M的具体取值可以根据终端支持的天线数目确定。在一种实现方式中,若终端支持的天线数目包括4、2和1,则上述N可以是4,M可以是2或1。在其他实现方式中,若终端可以支持其他的天线数目,则上述N和M还可以是其他数值,具体可以根据实际情况进行设置,这里不做具体限 定。
在一种实现方式中,在第一指示信息指示的天线数目为N且N大于2的情况下,预编码矩阵指示信息指示的预编码矩阵为第一映射关系中与TPMI信息对应的预编码矩阵(为了区分,这里可以由目标预编码矩阵表示),第一映射关系为预定义的N天线预编码矩阵和TPMI信息之间的映射关系。也就是说,当网络侧设备指示为N天线预编码矩阵时(N大于2),TPMI域解析为预定义的长度为N的预编码矩阵。
在第一指示信息指示的天线数目由N变为M且M大于1的情况下,预编码矩阵指示信息指示的预编码矩阵为上述目标预编码矩阵中的每列的前M个元素或后M个元素构成的预编码矩阵。
这样,通过向终端指示天线数目,且在天线数目为N且N大于2的情况下,向终端指示长度为N的预编码矩阵,在天线数目由N变为M且M大于1的情况下,向终端指示长度为N的预编码矩阵中每列的前M个元素或后M个元素构成的预编码矩阵,由此可以实现通过同一个信令动态指示不同天线数目的预编码矩阵的目的。
为了便于理解,以下可以以N=4,M=2为例对网络侧设备指示的预编码矩阵进行说明。
在第一指示信息指示的天线数目为4的情况下:
若TPMI信息指示的数据流的数目为1以及TPMI索引为P(P为大于或等于0的整数),则网络侧设备指示终端按照上述表3解析TPMI信息,即预定义的第一映射关系为上述表3,此时网络侧设备指示的预编码矩阵具体为表3中与TPMI索引P对应的预编码矩阵。
若TPMI信息指示的数据流的数目为2以及TPMI索引为Q(Q为大于或等于0的整数),则预定义的第一映射关系为上述表4,即网络侧设备指示终端按照上述表4解析TPMI信息,此时网络侧设备指示的预编码矩阵具体为表4中与TPMI索引Q对应的预编码矩阵。
在第一指示信息指示的天线数目由4变为2的情况下:
若TPMI信息指示的数据流的数目为1以及TPMI索引为P,则网络侧设备指示终端按照上述表3解析TPMI信息,即预定义的第一映射关系为上述表3,此时网络侧设备指示的预编码矩阵具体为表3中与TPMI索引P对应的预编码矩阵中一列的前M个元素或后M个元素构成的预编码矩阵。比如,若P为5,则网络侧设备指示的预编码矩阵为
Figure PCTCN2022091608-appb-000005
中的前两个元素构成的预编码矩阵
Figure PCTCN2022091608-appb-000006
或后两个元素构成的预编码矩阵
Figure PCTCN2022091608-appb-000007
若TPMI信息指示的数据流的数目为2以及TPMI索引为Q,则网络侧设备指示终端按照上述表4解析TPMI信息,即预定义的第一映射关系为上述表4,此时网络侧设备指示的预编码矩阵具体为表4中与TPMI索引Q对应的预编码矩阵中每列的前M个元素或后M个元素构成的预编码矩阵。比如,若Q为6,则网络侧设备指示的预编码矩阵为
Figure PCTCN2022091608-appb-000008
中的每列的前两个元素构成的预编码矩阵
Figure PCTCN2022091608-appb-000009
或后两个元素构成的预编码矩阵
Figure PCTCN2022091608-appb-000010
需要说明的是,在实际应用中,长度为N的预编码矩阵中每列的前M个或后M个元素可能存在均为0的情况,若网络侧设备指示的天线数目为M,则存在网络侧设备指示的预编码矩阵中的某一列或多列元素均为0的情况,在这种情况下,终端将不会使用网络侧设备指示的其中一 根或多根天线进行数据传输,此时可以认为网络侧设备指示的预编码矩阵是无效或无意义的。为了避免出现这种情况,网络侧设备在所指示的预编码矩阵为上述每列的前M个元素构成的预编码矩阵的情况下,可以和终端预先约定所指示的TPMI信息对应的目标预编码矩阵的前M个元素均不为0,在所指示的预编码矩阵为上述每列的后M个元素构成的预编码矩阵的情况下,可以和终端预先约定所指示的TPMI信息对应的目标预编码矩阵的后M个元素均不为0。也就是说,终端不期望网络侧设备指示的预编码矩阵中某一列或多列的元素均为0,网络侧设备也不会向终端指示某一列或多列的元素均为0的预编码矩阵。
为了便于理解,以下可以以N=4,M=2,网络侧设备指示的天线数目为2为例进行说明。
若TPMI信息指示的数据流的数目为1,则预定义的第一映射关系为上述表3。从表3可以看出,在TPMI索引为2和3的情况下,对应的预编码矩阵中的前两个元素均为0,在TPMI索引为0和1的情况下,对应的预编码矩阵中的后两个元素均为0。为了避免出现网络侧设备指示的预编码矩阵的一列元素均为0的情况,则,当网络侧设备指示的预编码矩阵为TPMI信息对应的预编码矩阵中每列的前2个元素构成的预编码矩阵时,可以和终端预先约定TPMI信息指示的TPMI索引不为2和3。当网络侧设备指示的预编码矩阵为TPMI信息对应的预编码矩阵中每列的后2个元素构成的预编码矩阵时,可以和终端预先约定TPMI信息指示的TPMI索引不为0和1。
若TPMI信息指示的数据流的数目为2,则预定义的第一映射关系为上述表4。从表4可以看出,在TPMI索引为5的情况下,对应的预编码矩阵中两列的前两个元素均为0,在TPMI索引为1至4的情况下,对应的预编码矩阵中第二列的前两个元素均为0,在TPMI索引为0的情况下,对应的预编码矩阵中两列的后两个元素均为0,在TPMI索引为1至 4的情况下,对应的预编码矩阵中第一列的后两个元素均为0。为了避免出现网络侧设备指示的预编码矩阵的一列或两列元素均为0的情况,则,当网络侧设备指示的预编码矩阵为TPMI信息对应的预编码矩阵中每列的前2个元素构成的预编码矩阵时,可以和终端预先约定TPMI信息指示的TPMI索引不为1至5。当网络侧设备指示的预编码矩阵为TPMI信息对应的预编码矩阵中每列的后2个元素构成的预编码矩阵时,可以和终端预先约定TPMI信息指示的TPMI索引不为0至4。
在另一种实现方式中,若TPMI信息由X比特指示且X为大于1的整数,则在第一指示信息指示的天线数目为N且N大于2的情况下,预编码矩阵指示信息指示的预编码矩阵为第一映射关系中与TPMI信息对应的预编码矩阵,第一映射关系为预定义的N天线预编码矩阵和TPMI信息之间的映射关系。也就是说,当TPMI信息由多个比特指示且网络侧设备指示为N天线预编码矩阵时(N大于2),TPMI域解析为预定义的长度为N的预编码矩阵。
在TPMI信息由上述X比特指示的情况下,若网络侧设备的第一指示信息指示的天线数目由N变为M且M大于1,则预编码矩阵指示信息指示的预编码矩阵为第二映射关系中与Y比特所指示的TPMI信息对应的预编码矩阵。其中,第二映射关系为预定义的M天线预编码矩阵和TPMI信息之间的映射关系,Y比特为X比特中的前Y个比特或后Y个比特,Y为大于或等于1的整数,且Y小于X。
这样,通过向终端指示天线数目且由多个比特指示TPMI信息,可以实现在天线数目为N且N大于2的情况下,向终端指示长度为N的预编码矩阵,在天线数目由N变为M且M大于1的情况下,通过X比特中的前Y个比特或后Y个比特向终端指示与Y比特的TPMI信息对应的预编码矩阵,由此可以实现通过同一个信令动态指示不同天线数目的预编码矩阵的目的。
为了便于理解,以下可以以N=4,M=2为例对网络侧设备指示的预编码矩阵进行说明。
在网络侧设备希望向终端指示单数据流的4天线预编码矩阵,即希望使用上述表3向终端指示预编码矩阵的情况下,已知图3中的预编码矩阵共28个,则可以使用5比特指示TPMI信息(即X等于5)。这样,在网络侧设备的第一指示信息指示的天线数目为4的情况下,预编码矩阵指示信息指示的预编码矩阵为表3中与TPMI信息对应的预编码矩阵。在网络侧设备的第一指示信息指示的天线数目由4为2的情况下,由于单数据流的2天线预编码矩阵共6个(从表1可以看出),由3比特表示,因此,可以将TPMI信息对应的5个比特中的前3个比特或后3个比特作为上述Y比特,此时预编码矩阵指示信息指示的预编码矩阵为表1中该前3个比特或后3个比特所指示的TPMI信息对应的预编码矩阵。
比如,在网络侧设备指示终端使用单数据流进行数据传输的情况下,若第一指示信息指示的天线数目为4,TPMI信息由5个比特01001指示,则预编码矩阵指示信息指示的预编码矩阵为表3中与01001对应的预编码矩阵。若第一指示信息指示的天线数目由4变为2,则预编码矩阵指示信息指示的预编码矩阵为表1中与010(01001的前3个比特)或001(01001的后3个比特)对应的预编码矩阵。
在网络侧设备希望向终端指示双数据流的4天线预编码矩阵,即希望使用上述表4向终端指示预编码矩阵的情况下,已知图4中的预编码矩阵共21个,则可以使用5比特指示TPMI信息(即X等于5)。这样,在网络侧设备的第一指示信息指示的天线数目为4的情况下,预编码矩阵指示信息指示的预编码矩阵为表4中与TPMI信息对应的预编码矩阵。在网络侧设备的第一指示信息指示的天线数目由4为2的情况下,由于双数据流的2天线预编码矩阵共3个(从表2可以看出),由2 比特表示,因此,可以将TPMI信息对应的5个比特中的前2个比特或后2个比特作为上述Y比特,此时预编码矩阵指示信息指示的预编码矩阵为表2中该前2个比特或后2个比特所指示的TPMI信息对应的预编码矩阵。
比如,在网络侧设备指示终端使用双数据流进行数据传输的情况下,若第一指示信息指示的天线数目为4,TPMI信息由5个比特01100指示,则预编码矩阵指示信息指示的预编码矩阵为表4中与01100对应的预编码矩阵。若第一指示信息指示的天线数目由4变为2,则预编码矩阵指示信息指示的预编码矩阵为表2中与01(01100的前2个比特)或00(01100的后2个比特)对应的预编码矩阵。
需要说明的是,在上述实现方式中,Y比特的长度可以与以下至少一项相关:终端使用的数据流的数目、终端支持的相干或非相干能力。其中,终端使用的数据流的数目可以由网络侧设备指示,且数据流的数目越大,Y比特的长度越长。终端支持相干能力可以理解为终端支持同时使用多根天线进行数据传输,终端支持非相干能力可以理解为终端不支持同时使用多根天线进行数据传输。终端是否支持的相干或非相干能力可以是终端自身的能力,也可以由网络侧设备指示,且在终端支持相干能力的情况下,Y比特的长度大于终端支持非相干能力情况下的Y比特的长度。
在本申请实施例中,网络侧设备在通过上述预编码矩阵指示信息指示预编码矩阵时,存在第一指示信息指示的天线数目为M且M等于1的情况,即网络侧设备指示终端使用单根天线进行数据传输。由于网络侧设备在指示终端使用单根天线进行数据传输时,可以无需指示预编码矩阵,因此,此时的TPMI信息可以视为无效的信息。
以上结合图2详细描述了根据本申请实施例的预编码矩阵的指示方法。下面将结合图3详细描述根据本申请另一实施例的预编码矩阵的指 示方法。
图3是本申请实施例的预编码矩阵的指示方法实现流程示意图,可以应用在终端。可以理解的是,从终端描述的终端与网络侧设备的交互与图2所示的方法中的网络侧设备的描述相同,为避免重复,适当省略相关描述。如图3所示,该方法300包括如下步骤。
S302:终端接收来自网络侧设备的预编码矩阵指示信息,所预编码矩阵指示信息包括第一指示信息和TPMI信息,第一指示信息用于指示终端使用的预编码矩阵对应的天线数目,天线数目至少包括N或M,M为大于或等于1的整数,N为大于M的整数。
在S302中,网络侧设备在向终端指示预编码矩阵时,可以向终端发送预编码矩阵指示信息,此时,终端可以接收到来自网络侧设备的预编码矩阵指示信息。该预编码矩阵指示信息的详细描述可以参见图2所示的实施例,这里不再重复说明。
S304:基于预编码矩阵指示信息,确定网络侧设备指示的预编码矩阵。
终端在接收到预编码矩阵指示信息后,可以进一步确定网络侧设备指示的预编码矩阵。这样,由于网络侧设备在使用TPMI信息向终端指示预编码矩阵时,还可以使用第一指示信息指示天线数目,因此可以通过改变第一指示信息所指示的天线数目来动态改变向终端指示的预编码矩阵,从而实现通过同一信令动态指示不同天线数目的预编码矩阵的目的,以便终端可以根据指示灵活地使用不同天线数目的预编码矩阵进行数据传输。
本实施例中,TPMI信息中包括TPMI索引和用于指示数据流的数目的指示信息,数据流的数目包括单流或多流,网络侧设备指示的预编码矩阵与所指示的所述数据流的数目相对应。
在一种实现方式中,在第一指示信息指示的天线数目为N且N大于 2的情况下,终端基于预编码矩阵指示信息,确定网络侧设备指示的预编码矩阵,具体可以是将第一映射关系中与TPMI信息对应的目标预编码矩阵确定为网络侧设备指示的预编码矩阵。其中,第一映射关系为预定义的N天线预编码矩阵和TPMI信息之间的映射关系。
在第一指示信息指示的天线数目由N变为M且M大于1的情况下,终端基于预编码矩阵指示信息,确定网络侧设备指示的预编码矩阵,具体可以是将上述目标预编码矩阵中的每列的前M个元素或后M个元素构成的预编码矩阵确定为网络侧设备指示的预编码矩阵。
以N=4,M=2为例,在第一指示信息指示的天线数目为4的情况下:若TPMI信息指示的数据流的数目为单流,则终端可以将上述表3中与TPMI信息对应的预编码矩阵确定为网络侧设备指示的预编码矩阵。若TPMI信息指示的数据流的数目为两流,则终端可以将上述表4中与TPMI信息对应的预编码矩阵确定为网络侧设备指示的预编码矩阵。
在第一指示信息指示的天线数目由4变为2的情况下:若TPMI信息指示的数据流的数目为单流,则终端可以将上述表3中与TPMI信息对应的预编码矩阵中一列的前2个元素或后2个元素构成的预编码矩阵确定为网络侧设备指示的预编码矩阵。若TPMI信息指示的数据流的数目为两流,则终端可以将上述表4中与TPMI信息对应的预编码矩阵中每列的前2个元素或后2个元素构成的预编码矩阵确定为网络侧设备指示的预编码矩阵。
此外,为了避免网络侧设备指示的预编码矩阵无效或无意义,在网络侧设备所指示的预编码矩阵为上述每列的前M个元素构成的预编码矩阵的情况下,终端可以和网络侧设备预先约定所指示的TPMI信息对应的目标预编码矩阵的前M个元素均不为0。在网络侧设备所指示的预编码矩阵为上述每列的后M个元素构成的预编码矩阵的情况下,终端可以 和网络侧设备预先约定所指示的TPMI信息对应的目标预编码矩阵的后M个元素均不为0。具体可以参见图2所示实施例中的相应描述,这里不再重复说明。
在另一种实现方式中,若TPMI信息由X比特指示且X为大于1的整数,则在第一指示信息指示的天线数目为N且N大于2的情况下,终端基于预编码矩阵指示信息,确定网络侧设备指示的预编码矩阵,具体可以是将第一映射关系中与TPMI信息对应的预编码矩阵确定为网络侧设备指示的预编码矩阵,该第一映射关系为预定义的N天线预编码矩阵和TPMI信息之间的映射关系。即终端将TPMI域解析为预定义的长度为N的预编码矩阵。
在第一指示信息指示的天线数目由N变为M且M大于1的情况下,终端基于预编码矩阵指示信息,确定网络侧设备指示的预编码矩阵,具体可以是将第二映射关系中与Y比特所指示的TPMI信息对应的预编码矩阵确定为网络侧设备指示的预编码矩阵。其中,第二映射关系为预定义的M天线预编码矩阵和TPMI信息之间的映射关系,Y比特为X比特中的前Y个比特或后Y个比特,Y为大于或等于1且小于X的整数。
以N=4,M=2为例,若网络侧设备由5比特指示TPMI信息,则:
在TPMI信息指示的数据流的数目为单流的情况下,若第一指示信息指示的天线数目为4,则终端可以将表3中与TPMI信息对应的预编码矩阵确定为网络侧设备指示的预编码矩阵;若第一指示信息指示的天线数目由4变为2,则终端可以将表1中与TPMI信息的前3比特或后3比特对应的预编码矩阵确定为网络侧设备指示的预编码矩阵。
在TPMI信息指示的数据流的数目为两流的情况下,若第一指示信息指示的天线数目为4,则终端可以将表4中与TPMI信息对应的预编码矩阵确定为网络侧设备指示的预编码矩阵;若第一指示信息指示的天线 数目由4变为2,则终端可以将表2中与TPMI信息的前2比特或后2比特对应的预编码矩阵确定为网络侧设备指示的预编码矩阵。
在上述实现方式中红,Y比特的长度可以与以下至少一项相关:终端使用的数据流的数目、终端支持的相干或非相干能力。具体可以参见图2所示实施例中的相应描述,这里不再重复说明。
在本申请实施例中,终端接收到的预编码矩阵指示信息中,第一指示信息指示的M存在等于1的情况,即网络侧设备指示终端使用单根天线进行数据传输。在这种情况下,终端可以确定使用单根天线进行上行数据的传输而且忽略所指示的TPMI信息。
需要说明的是,本申请实施例提供的预编码矩阵的指示方法,执行主体可以为预编码矩阵的指示装置,或者,该预编码矩阵的指示装置中的用于执行预编码矩阵的指示方法的控制模块。本申请实施例中以预编码矩阵的指示装置执行预编码矩阵的指示方法为例,说明本申请实施例提供的预编码矩阵的指示装置。
图4是根据本申请实施例的预编码矩阵的指示装置的结构示意图,该装置可以对应于其他实施例中的网络侧设备。如图4所示,装置400包括如下模块。
发送模块401,用于向终端发送预编码矩阵指示信息;
其中,所述预编码矩阵指示信息包括第一指示信息和传输预编码矩阵指示TPMI信息,所述第一指示信息用于指示所述终端使用的预编码矩阵所对应的天线数目,所述天线数目至少包括N或M,M为大于或等于1的整数,N为大于M的整数。
由于网络侧设备在使用TPMI信息向终端指示预编码矩阵时,还可以使用第一指示信息指示天线数目,因此可以通过改变第一指示信息所指示的天线数目来动态改变向终端指示的预编码矩阵,从而实现通过同一信令动态指示不同天线数目的预编码矩阵的目的。
可选地,作为一个实施例,在所述第一指示信息指示的天线数目为N且N大于2的情况下,所述预编码矩阵指示信息指示的预编码矩阵为第一映射关系中与所述TPMI信息对应的目标预编码矩阵,所述第一映射关系为预定义的N天线预编码矩阵和TPMI信息之间的映射关系。
可选地,作为一个实施例,在所述第一指示信息指示的天线数目为M且M大于1的情况下,所述预编码矩阵指示信息指示的预编码矩阵为所述目标预编码矩阵中的每列的前M个元素或后M个元素构成的预编码矩阵。
可选地,作为一个实施例,在所指示的预编码矩阵为所述每列的前M个元素构成的预编码矩阵的情况下,所述指示装置和所述终端预先约定所指示的TPMI信息对应的目标预编码矩阵的所述前M个元素均不为0;
在所指示的预编码矩阵为所述每列的后M个元素构成的预编码矩阵的情况下,所述指示装置和所述终端预先约定所指示的TPMI信息对应的目标预编码矩阵的所述后M个元素均不为0。
可选地,作为一个实施例,所述TPMI信息由X比特指示,X为大于1的整数;
在所述第一指示信息指示的天线数目为M的情况下,所述预编码矩阵指示信息指示的预编码矩阵为第二映射关系中与Y比特所指示的TPMI信息对应的预编码矩阵;
其中,所述第二映射关系为预定义的M天线预编码矩阵和TPMI信息之间的映射关系,所述Y比特为所述X比特中的前Y个比特或后Y
个比特,Y为大于或等于1且小于X的整数。
可选地,作为一个实施例,所述Y比特的长度与以下至少一项相关:所述终端使用的数据流的数目、所述终端支持的相干或非相干能力。
可选地,作为一个实施例,所述TPMI信息中还包括用于指示数据流的数目的指示信息,所述数据流的数目包括单流或多流,预定义的第一映射关系和第二映射关系与所述数据流的数目相对应。
可选地,作为一个实施例,在所述第一指示信息指示的天线数目为M且M等于1的情况下,所述TPMI信息无效。
根据本申请实施例的装置400可以参照对应本申请实施例的方法200的流程,并且,该装置400中的各个单元/模块和上述其他操作和/或功能分别为了实现方法200中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
图5是根据本申请实施例的预编码矩阵的指示装置的结构示意图,该装置可以对应于其他实施例中的网络侧设备。如图5所示,装置500包括如下模块。
接收模块501,用于接收来自网络侧设备的预编码矩阵指示信息,所述预编码矩阵指示信息包括第一指示信息和TPMI信息,所述第一指示信息用于指示终端使用的预编码矩阵对应的天线数目,所述天线数目至少包括N或M,M为大于或等于1的整数,N为大于M的整数;
确定模块502,用于基于所述预编码矩阵指示信息,确定所述网络侧设备指示的预编码矩阵。
由于网络侧设备在使用TPMI信息向终端指示预编码矩阵时,还可以使用第一指示信息指示天线数目,因此可以通过改变第一指示信息所指示的天线数目来动态改变向终端指示的预编码矩阵,从而实现通过同一信令动态指示不同天线数目的预编码矩阵的目的,以便终端可以根据指示灵活地使用不同天线数目的预编码矩阵进行数据传输。
可选地,作为一个实施例,所述确定模块502,用于:
在所述第一指示信息指示的天线数目为N且N大于2的情况下,将第一映射关系中与所述TPMI信息对应的目标预编码矩阵确定为所述网 络侧设备指示的预编码矩阵,所述第一映射关系为预定义的N天线预编码矩阵和TPMI信息之间的映射关系。
可选地,作为一个实施例,所述确定模块502,用于:
在所述第一指示信息指示的天线数目为M且M大于1的情况下,将所述目标预编码矩阵中的每列的前M个元素或后M个元素构成的预编码矩阵确定为所述网络侧设备指示的预编码矩阵。
可选地,作为一个实施例,在所指示的预编码矩阵为所述每列的前M个元素构成的预编码矩阵的情况下,所述指示装置和所述网络侧设备预先约定所指示的TPMI信息对应的目标预编码矩阵的所述前M个元素均不为0;
在所指示的预编码矩阵为所述每列的后M个元素构成的预编码矩阵的情况下,所述指示装置和所述网络侧设备预先约定所指示的TPMI信息对应的目标预编码矩阵的所述后M个元素均不为0。
可选地,作为一个实施例,所述TPMI信息由X比特指示,X为大于1的整数;其中,所述确定模块502,用于:
在所述第一指示信息指示的天线数目为M的情况下,将第二映射关系中与Y比特所指示的TPMI信息对应的预编码矩阵确定为所述网络侧设备指示的预编码矩阵;
其中,所述第二映射关系为预定义的M天线预编码矩阵和TPMI信息之间的映射关系,所述Y比特为所述X比特中的前Y个比特或后Y个比特,Y为大于或等于1且小于X的整数。
可选地,作为一个实施例,所述TPMI信息中还包括用于指示数据流的数目的指示信息,所述数据流的数目包括单流或多流,所述网络侧设备指示的预编码矩阵与所指示的所述数据流的数目相对应。
可选地,作为一个实施例,所述确定模块502,用于:
在所述第一指示信息指示的天线数目为M且M等于1的情况下,确 定使用单根天线进行上行数据的传输而且忽略所指示的所述TPMI信息。
根据本申请实施例的装置500可以参照对应本申请实施例的方法200的流程,并且,该装置500中的各个单元/模块和上述其他操作和/或功能分别为了实现方法300中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
本申请实施例中的预编码矩阵的指示装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的预编码矩阵的指示装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的预编码矩阵的指示装置能够实现图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图6所示,本申请实施例还提供一种通信设备600,包括处理器601,存储器602,存储在存储器602上并可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述300方法实施例的各个过程,且能达到相同的技术效果。该通信设备600为网络侧设备时,该程序或指令被处理器601执行时实现上述200方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,所述通信接口用于接收来自网络侧设备的预编码矩阵指示信息,所述预编码矩阵指示信息包括第一指示信息和TPMI信息,所述第一指示信息用于指示所述终端使用的预编码矩阵对应的天线数目,所述天线数目至少包括N或M,M为大于或等于1的整数,N为大于M的整数,所述处理器用于基于所述预编码矩阵指示信息,确定所述网络侧设备指示的预编码矩阵。该终端实施例是与上述终端侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图7为实现本申请实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、以及处理器710等中的至少部分部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备
7072。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701将来自网络侧设备的下行数据接收后,给处理器710处理;另外,将上行的数据发送给网络侧设备。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器709包括但不限于这些和任意其它适合类型的存储器。
处理器710可包括一个或多个处理单元;可选地,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,射频单元701,用于接收来自网络侧设备的预编码矩阵指示信息,所述预编码矩阵指示信息包括第一指示信息和TPMI信息,所述第一指示信息用于指示所述终端使用的预编码矩阵对应的天线数目,所述天线数目至少包括N或M,M为大于或等于1的整数,N为大于M的整数。
处理器710,用于基于所述预编码矩阵指示信息,确定所述网络侧设备指示的预编码矩阵。
由于网络侧设备在使用TPMI信息向终端指示预编码矩阵时,还可以使用第一指示信息指示天线数目,因此可以通过改变第一指示信息所指示的天线数目来动态改变向终端指示的预编码矩阵,从而实现通过同一信令动态指示不同天线数目的预编码矩阵的目的,以便终端可以根据指示灵活地使用不同天线数目的预编码矩阵进行数据传输。
本申请实施例提供的终端700还可以实现上述预编码矩阵的指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于向终端发送预编码矩阵指示信息;其中,所述预编码矩阵指示信息包括第一指示信息和传输预编码矩阵指示TPMI信息,所述第一指示信息用于指示所述终端使用的预编码矩阵所对应的天线数目,所述天线数目至少包括N或M,M为大于或等于1的整数,N为大于M的整数。该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述 方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图8所示,该网络设备800包括:天线81、射频装置82、基带装置83。天线81与射频装置82连接。在上行方向上,射频装置82通过天线81接收信息,将接收的信息发送给基带装置83进行处理。在下行方向上,基带装置83对要发送的信息进行处理,并发送给射频装置82,射频装置82对收到的信息进行处理后经过天线81发送出去。
上述频带处理装置可以位于基带装置83中,以上实施例中网络侧设备执行的方法可以在基带装置83中实现,该基带装置83包括处理器84和存储器85。
基带装置83例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为处理器84,与存储器85连接,以调用存储器85中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置83还可以包括网络接口86,用于与射频装置82交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器85上并可在处理器84上运行的指令或程序,处理器84调用存储器85中的指令或程序执行图4所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述预编码矩阵的指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述预编码矩阵的指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介 质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (35)

  1. 一种预编码矩阵的指示方法,包括:
    网络侧设备向终端发送预编码矩阵指示信息;
    其中,所述预编码矩阵指示信息包括第一指示信息和传输预编码矩阵指示TPMI信息,所述第一指示信息用于指示所述终端使用的预编码矩阵所对应的天线数目,所述天线数目至少包括N或M,M为大于或等于1的整数,N为大于M的整数。
  2. 根据权利要求1所述的指示方法,其中,
    在所述第一指示信息指示的天线数目为N且N大于2的情况下,所述预编码矩阵指示信息指示的预编码矩阵为第一映射关系中与所述TPMI信息对应的目标预编码矩阵,所述第一映射关系为预定义的N天线预编码矩阵和TPMI信息之间的映射关系。
  3. 根据权利要求2所述的指示方法,其中,
    在所述第一指示信息指示的天线数目为M且M大于1的情况下,所述预编码矩阵指示信息指示的预编码矩阵为所述目标预编码矩阵中的每列的前M个元素或后M个元素构成的预编码矩阵。
  4. 根据权利要求3所述的指示方法,其中,
    在所指示的预编码矩阵为所述每列的前M个元素构成的预编码矩阵的情况下,所述网络侧设备和所述终端预先约定所指示的TPMI信息对应的目标预编码矩阵的所述前M个元素均不为0;
    在所指示的预编码矩阵为所述每列的后M个元素构成的预编码矩阵的情况下,所述网络侧设备和所述终端预先约定所指示的TPMI信息对应的目标预编码矩阵的所述后M个元素均不为0。
  5. 根据权利要求1所述的指示方法,其中,所述TPMI信息由X比特指示,X为大于1的整数;
    在所述第一指示信息指示的天线数目为M且M大于1的情况下,所 述预编码矩阵指示信息指示的预编码矩阵为第二映射关系中与Y比特所指示的TPMI信息对应的预编码矩阵;
    其中,所述第二映射关系为预定义的M天线预编码矩阵和TPMI信息之间的映射关系,所述Y比特为所述X比特中的前Y个比特或后Y个比特,Y为大于或等于1且小于X的整数。
  6. 根据权利要求5所述的指示方法,其中,
    所述Y比特的长度与以下至少一项相关:所述终端使用的数据流的数目、所述终端支持的相干或非相干能力。
  7. 根据权利要求1至6任一项所述的指示方法,其中,
    所述TPMI信息中还包括用于指示数据流的数目的指示信息,所述数据流的数目包括单流或多流,预定义的第一映射关系和第二映射关系与所述数据流的数目相对应。
  8. 根据权利要求1所述的指示方法,其中,
    在所述第一指示信息指示的天线数目为M且M等于1的情况下,所述TPMI信息无效。
  9. 一种预编码矩阵的指示方法,包括:
    终端接收来自网络侧设备的预编码矩阵指示信息,所述预编码矩阵指示信息包括第一指示信息和TPMI信息,所述第一指示信息用于指示所述终端使用的预编码矩阵对应的天线数目,所述天线数目至少包括N或M,M为大于或等于1的整数,N为大于M的整数;
    基于所述预编码矩阵指示信息,确定所述网络侧设备指示的预编码矩阵。
  10. 根据权利要求9所述的指示方法,其中,基于所述预编码矩阵指示信息,确定所述网络侧设备指示的预编码矩阵,包括:
    在所述第一指示信息指示的天线数目为N且N大于2的情况下,将第一映射关系中与所述TPMI信息对应的目标预编码矩阵确定为所述网络侧设备指示的预编码矩阵,所述第一映射关系为预定义的N天线预编 码矩阵和TPMI信息之间的映射关系。
  11. 根据权利要求10所述的指示方法,其中,基于所述预编码矩阵指示信息,确定所述网络侧设备指示的预编码矩阵,包括:
    在所述第一指示信息指示的天线数目为M且M大于1的情况下,将所述目标预编码矩阵中的每列的前M个元素或后M个元素构成的预编码矩阵确定为所述网络侧设备指示的预编码矩阵。
  12. 根据权利要求11所述的指示方法,其中,
    在所指示的预编码矩阵为所述每列的前M个元素构成的预编码矩阵的情况下,所述终端和所述网络侧设备预先约定所指示的TPMI信息对应的目标预编码矩阵的所述前M个元素均不为0;
    在所指示的预编码矩阵为所述每列的后M个元素构成的预编码矩阵的情况下,所述终端和所述网络侧设备预先约定所指示的TPMI信息对应的目标预编码矩阵的所述后M个元素均不为0。
  13. 根据权利要求9所述的指示方法,其中,所述TPMI信息由X比特指示,X为大于1的整数;其中,基于所述预编码矩阵指示信息,确定所述网络侧设备指示的预编码矩阵,包括:
    在所述第一指示信息指示的天线数目为M且M大于1的情况下,将第二映射关系中与Y比特所指示的TPMI信息对应的预编码矩阵确定为所述网络侧设备指示的预编码矩阵;
    其中,所述第二映射关系为预定义的M天线预编码矩阵和TPMI信息之间的映射关系,所述Y比特为所述X比特中的前Y个比特或后Y个比特,Y为大于或等于1且小于X的整数。
  14. 根据权利要求9至13任一项所述的指示方法,其中,
    所述TPMI信息中还包括用于指示数据流的数目的指示信息,所述数据流的数目包括单流或多流,所述网络侧设备指示的预编码矩阵与所指示的所述数据流的数目相对应。
  15. 根据权利要求9所述的指示方法,其中,所述方法还包括:
    在所述第一指示信息指示的天线数目为M且M等于1的情况下,确定使用单根天线进行上行数据的传输而且忽略所指示的所述TPMI信息。
  16. 一种预编码矩阵的指示装置,包括:
    发送模块,用于向终端发送预编码矩阵指示信息;
    其中,所述预编码矩阵指示信息包括第一指示信息和传输预编码矩阵指示TPMI信息,所述第一指示信息用于指示所述终端使用的预编码矩阵所对应的天线数目,所述天线数目至少包括N或M,M为大于或等于1的整数,N为大于M的整数。
  17. 根据权利要求16所述的指示装置,其中,
    在所述第一指示信息指示的天线数目为N且N大于2的情况下,所述预编码矩阵指示信息指示的预编码矩阵为第一映射关系中与所述TPMI信息对应的目标预编码矩阵,所述第一映射关系为预定义的N天线预编码矩阵和TPMI信息之间的映射关系。
  18. 根据权利要求17所述的指示装置,其中,
    在所述第一指示信息指示的天线数目为M且M大于1的情况下,所述预编码矩阵指示信息指示的预编码矩阵为所述目标预编码矩阵中的每列的前M个元素或后M个元素构成的预编码矩阵。
  19. 根据权利要求18所述的指示装置,其中,
    在所指示的预编码矩阵为所述每列的前M个元素构成的预编码矩阵的情况下,所述网络侧设备和所述终端预先约定所指示的TPMI信息对应的目标预编码矩阵的所述前M个元素均不为0;
    在所指示的预编码矩阵为所述每列的后M个元素构成的预编码矩阵的情况下,所述网络侧设备和所述终端预先约定所指示的TPMI信息对应的目标预编码矩阵的所述后M个元素均不为0。
  20. 根据权利要求16所述的指示装置,其中,所述TPMI信息由X比特指示,X为大于1的整数;
    在所述第一指示信息指示的天线数目为M的情况下,所述预编码矩阵指示信息指示的预编码矩阵为第二映射关系中与Y比特所指示的TPMI信息对应的预编码矩阵;
    其中,所述第二映射关系为预定义的M天线预编码矩阵和TPMI信息之间的映射关系,所述Y比特为所述X比特中的前Y个比特或后Y个比特,Y为大于或等于1且小于X的整数。
  21. 根据权利要求20所述的指示装置,其中,
    所述Y比特的长度与以下至少一项相关:所述终端使用的数据流的数目、所述终端支持的相干或非相干能力。
  22. 根据权利要求16至21任一项所述的指示装置,其中,
    所述TPMI信息中还包括用于指示数据流的数目的指示信息,所述数据流的数目包括单流或多流,预定义的第一映射关系和第二映射关系与所述数据流的数目相对应。
  23. 根据权利要求16所述的指示装置,其中,
    在所述第一指示信息指示的天线数目为M且M等于1的情况下,所述TPMI信息无效。
  24. 一种预编码矩阵的指示装置,包括:
    接收模块,用于接收来自网络侧设备的预编码矩阵指示信息,所述预编码矩阵指示信息包括第一指示信息和TPMI信息,所述第一指示信息用于指示终端使用的预编码矩阵对应的天线数目,所述天线数目至少包括N或M,M为大于或等于1的整数,N为大于M的整数;
    确定模块,用于基于所述预编码矩阵指示信息,确定所述网络侧设备指示的预编码矩阵。
  25. 根据权利要求24所述的指示装置,其中,所述确定模块,用于:
    在所述第一指示信息指示的天线数目为N且N大于2的情况下,将第一映射关系中与所述TPMI信息对应的目标预编码矩阵确定为所述网 络侧设备指示的预编码矩阵,所述第一映射关系为预定义的N天线预编码矩阵和TPMI信息之间的映射关系。
  26. 根据权利要求25所述的指示装置,其中,所述确定模块,用于:
    在所述第一指示信息指示的天线数目为M且M大于1的情况下,将所述目标预编码矩阵中的每列的前M个元素或后M个元素构成的预编码矩阵确定为所述网络侧设备指示的预编码矩阵。
  27. 根据权利要求26所述的指示装置,其中,
    在所指示的预编码矩阵为所述每列的前M个元素构成的预编码矩阵的情况下,所述终端和所述网络侧设备预先约定所指示的TPMI信息对应的目标预编码矩阵的所述前M个元素均不为0;
    在所指示的预编码矩阵为所述每列的后M个元素构成的预编码矩阵的情况下,所述终端和所述网络侧设备预先约定所指示的TPMI信息对应的目标预编码矩阵的所述后M个元素均不为0。
  28. 根据权利要求24所述的指示装置,其中,所述TPMI信息由X比特指示,X为大于1的整数;其中,所述确定模块,用于:
    在所述第一指示信息指示的天线数目为M的情况下,将第二映射关系中与Y比特所指示的TPMI信息对应的预编码矩阵确定为所述网络侧设备指示的预编码矩阵;
    其中,所述第二映射关系为预定义的M天线预编码矩阵和TPMI信息之间的映射关系,所述Y比特为所述X比特中的前Y个比特或后Y个比特,Y为大于或等于1且小于X的整数。
  29. 根据权利要求24至28任一项所述的指示装置,其中,
    所述TPMI信息中还包括用于指示数据流的数目的指示信息,所述数据流的数目包括单流或多流,所述网络侧设备指示的预编码矩阵与所指示的所述数据流的数目相对应。
  30. 根据权利要求24所述的指示装置,其中,所述确定模块,用 于:
    在所述第一指示信息指示的天线数目为M且M等于1的情况下,确定使用单根天线进行上行数据的传输而且忽略所指示的所述TPMI信息。
  31. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至8任一项所述的预编码矩阵的指示方法的步骤。
  32. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求9至15任一项所述的预编码矩阵的指示方法的步骤。
  33. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至8任一项所述的预编码矩阵的指示方法,或者实现如权利要求9至15任一项所述的预编码矩阵的指示方法的步骤。
  34. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至8任一项所述的预编码矩阵的指示方法,或者实现如权利要求9至15任一项所述的预编码矩阵的指示方法的步骤。
  35. 一种计算机程序产品,所述计算机程序产品被至少一个处理器执行时实现如权利要求1至8任一项所述的预编码矩阵的指示方法,或者实现如权利要求9至15任一项所述的预编码矩阵的指示方法的步骤。
PCT/CN2022/091608 2021-05-10 2022-05-09 预编码矩阵的指示方法、终端及网络侧设备 WO2022237711A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110504609.2A CN115333584B (zh) 2021-05-10 2021-05-10 预编码矩阵的指示方法、终端及网络侧设备
CN202110504609.2 2021-05-10

Publications (1)

Publication Number Publication Date
WO2022237711A1 true WO2022237711A1 (zh) 2022-11-17

Family

ID=83912783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091608 WO2022237711A1 (zh) 2021-05-10 2022-05-09 预编码矩阵的指示方法、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN115333584B (zh)
WO (1) WO2022237711A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803419A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种通信方法、终端及基站
CN111034063A (zh) * 2017-11-15 2020-04-17 华为技术有限公司 通信方法、通信装置和系统
CN111182631A (zh) * 2018-11-12 2020-05-19 电信科学技术研究院有限公司 一种上行传输方法和设备
EP3761520A1 (en) * 2017-11-17 2021-01-06 Telefonaktiebolaget LM Ericsson (publ) Variable coherence adaptive antenna array

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113965231A (zh) * 2017-03-24 2022-01-21 华为技术有限公司 信息的传输方法和设备
CN108631836B (zh) * 2017-03-24 2021-07-16 华为技术有限公司 数据传输方法和装置
CN110475330B (zh) * 2018-05-11 2021-05-25 电信科学技术研究院有限公司 一种上行功率控制方法、终端及网络设备
CN110572193B (zh) * 2018-06-05 2021-01-08 维沃移动通信有限公司 用于上行预编码传输的方法、网络侧设备和终端设备
CN110838856B (zh) * 2018-08-17 2021-11-26 大唐移动通信设备有限公司 一种数据传输方法、终端及网络设备
CN110535589B (zh) * 2018-09-27 2023-01-10 中兴通讯股份有限公司 指示方法、信息确定方法、装置、基站、终端及存储介质
CN111867022B (zh) * 2019-04-26 2022-03-04 华为技术有限公司 一种调整终端设备的传输能力的方法及装置
CN111800850B (zh) * 2019-08-07 2021-12-21 维沃移动通信有限公司 上行满功率传输方法及设备
WO2021026898A1 (zh) * 2019-08-15 2021-02-18 Oppo广东移动通信有限公司 功率确定方法、装置及设备
EP4054086A4 (en) * 2019-11-01 2023-07-19 Ntt Docomo, Inc. TERMINAL AND WIRELESS COMMUNICATION METHOD

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111034063A (zh) * 2017-11-15 2020-04-17 华为技术有限公司 通信方法、通信装置和系统
CN109803419A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种通信方法、终端及基站
CN110708100A (zh) * 2017-11-17 2020-01-17 华为技术有限公司 一种通信方法、终端及基站
EP3761520A1 (en) * 2017-11-17 2021-01-06 Telefonaktiebolaget LM Ericsson (publ) Variable coherence adaptive antenna array
CN111182631A (zh) * 2018-11-12 2020-05-19 电信科学技术研究院有限公司 一种上行传输方法和设备

Also Published As

Publication number Publication date
CN115333584A (zh) 2022-11-11
CN115333584B (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
KR102657672B1 (ko) 데이터 전송 방법, 장치, 시스템 및 저장 매체
WO2022117039A1 (zh) Srs的功控指示方法、资源集簇的划分方法和设备
WO2022083634A1 (zh) 资源配置方法、装置、设备及可读存储介质
CN113727298B (zh) 层二标识确定方法、装置及终端
JP2023527056A (ja) チャネル情報の処理方法及び装置
WO2023025017A1 (zh) 传输处理方法、装置及设备
WO2023284796A1 (zh) Tci状态的指示方法、装置、终端和网络侧设备
WO2022228341A1 (zh) 上行信道的传输参数方法、终端及网络侧设备
WO2022237711A1 (zh) 预编码矩阵的指示方法、终端及网络侧设备
WO2022028524A1 (zh) 物理下行控制信道的监听方法、装置和设备
US20200229229A1 (en) Data transmission method, data detection method and devices
WO2023061344A1 (zh) 信号传输方法、装置和终端设备
WO2023104025A1 (zh) Srs资源配置方法、装置、终端及网络侧设备
WO2023186156A1 (zh) Dmrs端口信息的指示方法、终端及网络侧设备
WO2023066340A1 (zh) 信息上报方法、接收方法、终端、网络侧设备和存储介质
WO2024083101A1 (zh) 信息指示方法、装置、终端、网络侧设备及可读存储介质
WO2023284638A1 (zh) 下行控制信息发送、获取方法、装置、终端及网络侧设备
WO2024078456A1 (zh) 上行控制信息传输方法、装置及终端
WO2024001981A1 (zh) 预编码矩阵的指示方法、终端及网络侧设备
WO2023036142A1 (zh) 时隙配置方法、终端及网络侧设备
WO2024032539A1 (zh) 中断传输指示方法、取消指示方法、终端及网络侧设备
WO2022253312A1 (zh) 上行数据传输方法、装置、终端及介质
WO2023179478A1 (zh) 传输模式确定方法、装置、终端及网络侧设备
WO2024078440A1 (zh) 信息反馈方法、装置、终端、网络侧设备及可读存储介质
WO2023160535A1 (zh) 解调参考信号信息确定方法、指示方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE