WO2024032539A1 - 中断传输指示方法、取消指示方法、终端及网络侧设备 - Google Patents

中断传输指示方法、取消指示方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2024032539A1
WO2024032539A1 PCT/CN2023/111428 CN2023111428W WO2024032539A1 WO 2024032539 A1 WO2024032539 A1 WO 2024032539A1 CN 2023111428 W CN2023111428 W CN 2023111428W WO 2024032539 A1 WO2024032539 A1 WO 2024032539A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
prb
frequency domain
downlink
uplink
Prior art date
Application number
PCT/CN2023/111428
Other languages
English (en)
French (fr)
Inventor
鲁智
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024032539A1 publication Critical patent/WO2024032539A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a transmission interruption instruction method, a cancellation instruction method, a terminal and a network side device.
  • 5G 5th Generation
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-Reliable and Low Latency Communications
  • mMTC Massive Machine Type Communication
  • Downlink INT indicates to some terminals which previous transmission resources do not belong to the user's schedule and are used for the transmission of higher priority services that suddenly arrive.
  • the network sends downlink INT. If the resources allocated to the previously scheduled terminal fall within the time-frequency area where the downlink INT acts, the terminal will exclude this part of the time-frequency resource and then perform decoding.
  • the network also introduces uplink cancellation indication (Cancellation Indication, CI), that is, the network can instruct certain terminals to cancel scheduled services for the transmission of higher priority services that suddenly arrive.
  • CI uplink cancellation indication
  • the network sends the uplink CI. If the allocated resources of the previously scheduled terminal fall within the time-frequency region indicated by the uplink CI, the terminal will cancel the previously scheduled transmission.
  • the uplink symbols indicated by cell-level uplink and downlink configuration (TDD-UL-DL-ConfigurationCommon) signaling may include downlink subbands; or, for TDD-UL-DL-
  • the downlink symbols indicated by ConfigurationCommon signaling may include uplink subbands.
  • the time-frequency resource indication method of downlink INT or uplink CI in the related technology is no longer applicable.
  • Embodiments of the present application provide a transmission interruption instruction method, a cancellation instruction method, a terminal, and a network-side device, which can solve the problem in related technologies that the time-frequency resource indication method of downlink INT or uplink CI cannot be applied to full-duplex scenarios.
  • the first aspect provides a method for interrupting transmission instructions, including:
  • the terminal receives the downlink interrupt transmission indication INT;
  • the terminal determines the physical resource block PRB set included in each of the plurality of symbol groups included in the second symbol set of the downlink INT function according to the time-frequency domain indication granularity indicated by the higher layer; wherein the second symbol set is Obtained by excluding uplink symbols that do not include the downlink subband in the first symbol set;
  • the terminal determines whether the downlink transmission corresponding to the PRB set on each symbol group is interrupted according to the indication of the downlink INT.
  • a method for interrupting transmission instructions including:
  • the network side device determines the second symbol set for which the downlink interruption transmission indication INT acts; wherein the second symbol set is obtained by excluding uplink symbols that do not include the downlink subband from the first symbol set;
  • the network side device divides the second symbol set into a set of physical resource blocks (PRBs) included in each of the plurality of symbol groups according to a preset time-frequency domain indication granularity;
  • PRBs physical resource blocks
  • the network side device generates and sends downlink INT according to whether the downlink transmission needs corresponding to the PRB set on each symbol group are interrupted.
  • the third aspect provides a cancellation instruction method, including:
  • the terminal receives the uplink cancellation indication CI
  • the terminal determines, based on the time-frequency domain indication granularity, that the uplink cancellation indication CI acts on a physical resource block PRB set included in each of the plurality of symbol groups included in the fourth symbol set; wherein the fourth symbol set is a third symbol set. Obtained by excluding downlink symbols that do not include uplink subbands in the symbol set;
  • the terminal determines whether the uplink transmission corresponding to the PRB set on each symbol group is canceled according to the indication of the uplink CI.
  • the fourth aspect provides a method for canceling instructions, including:
  • the network side device determines a fourth symbol set for which the uplink cancellation indication CI acts, wherein the fourth symbol set is obtained by excluding downlink symbols that do not contain the uplink subband from the third symbol set;
  • the network side device divides the fourth symbol set into a set of physical resource blocks (PRBs) included in each of the plurality of symbol groups according to the time-frequency domain indication granularity;
  • PRBs physical resource blocks
  • the network side device generates and sends the uplink CI according to whether the uplink transmission corresponding to the PRB set on each symbol group needs to be canceled.
  • an interrupt transmission indicating device including:
  • the first receiving module is used to receive the downlink interrupt transmission indication INT;
  • the first determination module is configured to determine the set of physical resource blocks PRB included in each of the plurality of symbol groups included in the second symbol set of the downlink INT action according to the time-frequency domain indication granularity indicated by the higher layer; wherein, the second The symbol set is obtained by excluding the uplink symbols that do not include the downlink subband from the first symbol set;
  • the second determination module is configured to determine whether the downlink transmission corresponding to the PRB set on each symbol group is interrupted according to the indication of the downlink INT.
  • an interrupt transmission indicating device including:
  • the third determination module is used to determine the second symbol set for the downlink interruption transmission indication INT; wherein, the second The symbol set is obtained by excluding the uplink symbols that do not include the downlink subband from the first symbol set;
  • a first dividing module configured to divide the second symbol set into a set of physical resource blocks (PRBs) included in each of the plurality of symbol groups according to the preset time-frequency domain indication granularity;
  • PRBs physical resource blocks
  • the first generating and sending module is used to generate and send downlink INT according to whether the downlink transmission needs corresponding to the PRB set on each symbol group are interrupted.
  • a cancellation instruction device including:
  • the second receiving module is used to receive the uplink cancellation indication CI
  • the fourth determination module is configured to determine, according to the time-frequency domain indication granularity, the physical resource block PRB set included in each of the plurality of symbol groups included in the fourth symbol set for the uplink cancellation indication CI action; wherein, the fourth symbol set It is obtained by excluding the downlink symbols that do not include the uplink subband in the third symbol set;
  • the fifth determination module is configured to determine whether the uplink transmission corresponding to the PRB set on each symbol group is canceled according to the indication of the uplink CI.
  • a cancellation instruction device including:
  • the sixth determination module is used to determine the fourth symbol set for the uplink cancellation indication CI function, wherein the fourth symbol set is obtained by excluding the downlink symbols that do not contain the uplink subband from the third symbol set;
  • a second dividing module configured to divide the fourth symbol set into a set of physical resource blocks (PRBs) included in each of the plurality of symbol groups according to the time-frequency domain indication granularity;
  • PRBs physical resource blocks
  • the second generating and sending module is used to generate and send the uplink CI according to whether the uplink transmission corresponding to the PRB set on each symbol group needs to be canceled.
  • a terminal in a ninth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions When the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect, or the steps of implementing the method described in the third aspect.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to receive a downlink interruption transmission indication INT; the processor is used to determine the downlink transmission time according to the time-frequency domain indication granularity indicated by the higher layer.
  • PRBs physical resource blocks
  • a network side device in an eleventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are used by the processor. When executed, the steps of the method described in the second aspect are realized, or the steps of the method described in the fourth aspect are realized.
  • a network side device including a processor and a communication interface, wherein the processor is The second symbol set used to determine the effect of the downlink interruption transmission indication INT; wherein the second symbol set is obtained by excluding uplink symbols that do not include the downlink subband from the first symbol set; and according to the preset time-frequency domain indication granularity , dividing the second symbol set into a set of physical resource blocks (PRBs) included in each of the plurality of symbol groups; and then generating a downlink INT according to whether the downlink transmission needs corresponding to the PRB sets on each symbol group are interrupted;
  • the communication interface is used to send downlink INT; or, the processor is used to determine a fourth symbol set for the uplink cancellation indication CI, wherein the fourth symbol set excludes downlink symbols that do not include the uplink subband in the third symbol set.
  • PRBs physical resource blocks
  • the fourth symbol set is divided into a set of physical resource blocks PRB included in each symbol group in multiple symbol groups; and then according to the uplink transmission corresponding to the PRB set on each symbol group Whether it needs to be canceled, the uplink CI is generated; the communication interface is used to send the uplink CI.
  • a communication system including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the method described in the first aspect or the third aspect.
  • the network side device can be used to perform the steps of the method as described in the first aspect or the third aspect. The steps of the method described in the second or fourth aspect.
  • a readable storage medium is provided.
  • Programs or instructions are stored on the readable storage medium.
  • the steps of the method described in the first aspect are implemented, or the steps of the method are implemented.
  • a chip in a fifteenth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. method, or implement the method described in the second aspect, or implement the method described in the third aspect, or implement the method described in the fourth aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement as described in the first aspect
  • a new downlink INT indication method and/or an uplink CI indication method are provided, so that the time-frequency resource indication of downlink INT and/or uplink CI can be applied to full-duplex scenarios.
  • Industrial scenarios to improve the application scope and indication accuracy of downlink INT and/or uplink CI.
  • Figure 1 shows a block diagram of a wireless communication system to which embodiments of the present application can be applied
  • Figure 2 shows one of the schematic diagrams of the full-duplex scenario provided by the embodiment of the present application
  • Figure 3 shows the second schematic diagram of the full-duplex scenario provided by the embodiment of the present application.
  • Figure 4 shows one of the step flow charts of the interrupt transmission indication method provided by the embodiment of the present application.
  • Figure 5 shows the second step flow chart of the interrupt transmission instruction method provided by the embodiment of the present application.
  • Figure 6 shows one of the schematic diagrams of Example 1 provided by the embodiment of the present application.
  • Figure 7 shows the second schematic diagram of Example 1 provided by the embodiment of the present application.
  • Figure 8 shows one of the step flow charts of the cancellation instruction method provided by the embodiment of the present application.
  • Figure 9 shows the second step flow chart of the cancellation instruction method provided by the embodiment of the present application.
  • Figure 10 shows one of the schematic diagrams of Example 2 provided by the embodiment of the present application.
  • Figure 11 shows the second schematic diagram of Example 2 provided by the embodiment of the present application.
  • Figure 12 shows one of the structural schematic diagrams of the interrupt transmission indicating device provided by the embodiment of the present application.
  • Figure 13 shows the second structural schematic diagram of the interrupt transmission indicating device provided by the embodiment of the present application.
  • Figure 14 shows one of the structural schematic diagrams of the cancellation instruction device provided by the embodiment of the present application.
  • Figure 15 shows the second structural schematic diagram of the cancellation instruction device provided by the embodiment of the present application.
  • Figure 16 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 17 shows a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • Figure 18 shows a schematic structural diagram of a network side device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a laptop computer or a personal digital assistant (Personal Digital Assistant).
  • PDA handheld computer
  • netbook ultra-mobile personal computer
  • MID mobile Internet device
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • VUE vehicle user equipment
  • pedestrian terminals Pedestrian User Equipment, PUE
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • PCs personal computers
  • teller machines or self-service machines and other terminal-side devices wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets) , smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side equipment may include access network equipment or core network equipment, where the access network equipment may also be called wireless access network equipment, radio access network (Radio Access Network, RAN), radio access network function or radio access network equipment.
  • the access network device 12 may include a base station, a Wireless Local Area Network (WLAN) access point or a WiFi node, etc.
  • the base station may be called a Node B, an Evolved Node B (eNB), an access point, or a base transceiver station.
  • Base Transceiver Station BTS
  • radio base station radio transceiver
  • BSS Basic Service Set
  • ESS Extended Service Set
  • home B-node home evolved B-node
  • transmitting and receiving point TRP
  • TRP Transmitting Receiving Point
  • the DL slot is configured by the time slot configuration parameters.
  • the network configures the DL slot by configuring the downlink bandwidth part (DL BWP) for the terminal, as shown in Figure 2 DL Time slot 1; for the uplink time slot (UL slot), the UL slot is configured by the time slot configuration parameters.
  • the network configures the UL slot by configuring the uplink bandwidth part (UL BWP) for the terminal, as shown in Figure 3 UL slot 4 is shown.
  • the full-duplex scenario includes the following situations:
  • Case 1 Configure DL BWP for UE, that is, DL timeslot 1;
  • Case 2 Configure UL resources in DL BWP for UE, such as configuring UL subband in DL slot 2;
  • Case 3 Configure DL resources in UL BWP for UE, such as configuring DL subband in UL slot 3;
  • Case 4 Configure UL BWP for UE, that is, UL timeslot 4;
  • Case 5 Configure DL resources in UL BWP for UE, such as configuring DL subband in UL slot 5;
  • Case 6 Configure UL resources in DL BWP for UE, such as configuring DL subband in DL time slot 6.
  • this embodiment of the present application provides a method for interrupting transmission instructions, including:
  • Step 401 The terminal receives the downlink interruption transmission indication INT;
  • Step 402 The terminal determines the set of physical resource blocks (PRBs) included in each of the plurality of symbol groups included in the second symbol set used by the downlink INT according to the time-frequency domain indication granularity indicated by the higher layer; wherein , the second symbol set is obtained by excluding uplink symbols that do not include the downlink subband from the first symbol set;
  • PRBs physical resource blocks
  • the terminal excludes uplink symbols that do not include downlink subbands in the first symbol set to obtain a second symbol set for downlink INT; wherein the first symbol set is indicated by the network; and the second symbol set does not Exclude uplink symbols containing downlink subbands;
  • Step 403 The terminal determines whether the downlink transmission corresponding to the PRB set on each symbol group is interrupted according to the instruction of the downlink INT.
  • the cell-level uplink and downlink configuration (TDD-UL-DL-ConfigurationCommon) signaling indication is the uplink symbol, but Semi-static signaling A indicates that the uplink symbol includes a downlink subband (that is, a DL subband).
  • the terminal does not exclude such uplink symbols, but the terminal needs to exclude uplink symbols that do not include the DL subband.
  • the semi-static signaling B can indicate that the downlink symbol includes the uplink subband (i.e. UL subband). bring).
  • the semi-static signaling A and the semi-static signaling B may be different signalings, or they may be the same signaling.
  • xdd-UL-DL-ConfigurationCommon is a semi-static signaling configured by the network for full duplex operation UE, indicating which subbands within a UL symbol set or time slot are used as DL and a DL symbol set or time slot. Which subbands within the slot are used as UL.
  • the semi-static signaling is not limited to group common signaling or dynamic signaling.
  • step 402 includes:
  • the terminal determines multiple symbol groups included in the second symbol set according to the time domain indication granularity indicated by the higher layer;
  • the terminal determines the set of physical resource blocks (PRBs) included in each symbol group according to the frequency domain indication granularity indicated by the higher layer.
  • PRBs physical resource blocks
  • the plurality of symbol groups included in the second symbol set are divided as follows:
  • Front symbol groups contain symbols
  • N represents the time domain indication granularity
  • T INT represents the number of symbols included in the second symbol set; means rounding down; Indicates rounding up.
  • the terminal determines the set of physical resource blocks (PRBs) included in each symbol group according to the frequency domain indication granularity indicated by the higher layer, including:
  • the terminal For each symbol group, if a PRB subset completely overlaps with an uplink subband, the terminal obtains an effective frequency domain area after excluding the PRB subset, and divides the effective frequency domain area of the symbol group into M PRB collection;
  • a PRB group contains: PRB; remaining A PRB group contains: PRB;
  • M is the frequency domain indication granularity
  • B INT_DLsubband is the number of PRBs in the effective frequency domain area of the symbol group.
  • the downlink INT includes a 14-bit bitmap; correspondingly:
  • the terminal determines that the second symbol set includes 14 symbol groups according to the time-frequency domain indication granularity indicated by the higher layer, Each symbol group includes 1 PRB set; wherein, the 14-bit bitmap indicates 14 symbol groups respectively; that is, the time domain indication granularity indicated by the high layer is 14, and the frequency domain indication granularity is 1.
  • the frequency domain indication granularity is 1, which means that the frequency domain can only indicate one PRB set. If full-duplex operation is not configured, the size of this PRB set is equal to the DL BWP bandwidth.
  • Front symbol groups contain symbols
  • N INT represents the number of symbols included in the second symbol set; means rounding down; Indicates rounding up.
  • the downlink INT includes a 14-bit bitmap.
  • step 402 includes:
  • the terminal determines that the second symbol set includes 7 symbol groups according to the time-frequency domain indication granularity indicated by the higher layer, and each symbol group includes 2 PRB sets; wherein, the 14-bit bitmap is divided into 7 bits Yes, 1 bit pair is used to indicate 2 PRB sets of 1 symbol group; that is, the time domain indication granularity indicated by the high layer is 7, and the frequency domain indication granularity is 2.
  • the frequency domain indication granularity is 2, which can be understood as the frequency domain can indicate 2 PRB sets. If full duplex is not configured, the DL BWP bandwidth will be divided into 2 PRB sets.
  • Front symbol groups contain symbols
  • N INT represents the number of symbols included in the second symbol set; means rounding down; Indicates rounding up.
  • the terminal when the second symbol set includes 7 symbol groups, in order to achieve more precise frequency domain resource indication, for each symbol group, if a PRB subset and an uplink subband Completely overlapping, the terminal obtains the effective frequency domain area after excluding the PRB subset, and divides the effective frequency domain area of the symbol group into 2 PRB sets;
  • the first PRB set includes: the first part of the symbol group physical resource blocks PRB
  • the second PRB set includes: the last part of the symbol group PRBs
  • B INT_DLsubband is the number of PRBs in the effective frequency domain region of the symbol group.
  • B INT_DLsubband is the sum of the bandwidths of the multiple DL subbands.
  • B INT_DLsubband can also be understood as the number of PRBs in the DL subband within the symbol group.
  • the first bit indicates the first PRB set
  • the second bit indicates the second PRB set.
  • the number of PRBs in the effective frequency domain area of the symbol group B INT_DLsubband is equal to B INT minus B INT_UL subband ;
  • B INT_UL subband is the number of PRBs in the uplink subband of the symbol group; B INT is the activation of the symbol group. The number of PRBs for downstream BWP.
  • the terminal determines the set of physical resource blocks (PRBs) included in each symbol group according to the frequency domain indication granularity indicated by the higher layer, including:
  • the terminal divides the activated downlink bandwidth part BWP of the symbol group into M PRB sets;
  • a PRB group contains: PRB; remaining A PRB group contains: PRB;
  • M is the frequency domain indication granularity
  • B INT is the number of PRBs that activate downlink BWP of the symbol group.
  • the downlink INT is a 14-bit bitmap and the second symbol set includes 7 symbol groups
  • M is equal to 2
  • the first PRB set includes: the first part of the symbol group.
  • PRBs, the second PRB set includes: the last part of the symbol group PRB;
  • B INT is the number of PRBs that activate downlink BWP of the symbol group.
  • the first bit indicates the first PRB set
  • the second bit indicates the second PRB set.
  • UEs supporting full-duplex operation may be divided into different groups from other UEs.
  • the network may indicate that an INT only acts on UL symbols that include DL subbands, or acts on DL symbols that include UL subbands, or acts on DL symbols that do not include UL subbands; there is no specific limitation here.
  • a new downlink INT indication method is provided for the full-duplex scenario, so that the time-frequency resource indication of the downlink INT can be applied to the full-duplex scenario and improve the indication accuracy of the downlink INT.
  • this embodiment of the present application also provides a method for interrupting transmission instructions, which includes:
  • Step 501 The network side device determines the second symbol set for the downlink interruption transmission indication INT; wherein the second symbol set is obtained by excluding uplink symbols that do not include the downlink subband from the first symbol set;
  • the network side device excludes uplink symbols that do not include the downlink subband in the first symbol set to obtain a second symbol set for which the downlink interruption transmission indication INT acts; wherein, the second symbol set does not exclude uplink symbols that include the downlink subband. ascending symbol;
  • Step 502 The network-side device divides the second symbol set into a set of physical resource blocks (PRBs) included in each of the plurality of symbol groups according to the preset time-frequency domain indication granularity;
  • PRBs physical resource blocks
  • Step 503 The network side device generates and sends a downlink INT according to whether the downlink transmission needs corresponding to the PRB set on each symbol group are interrupted.
  • the cell-level uplink and downlink configuration (TDD-UL-DL-ConfigurationCommon) signaling indication is the uplink symbol, but Semi-static signaling A indicates that the uplink symbol includes a downlink subband (that is, a DL subband).
  • the network side device does not exclude such uplink symbols, but the network side device needs to exclude uplink symbols that do not include the DL subband.
  • the semi-static signaling B can indicate that the downlink symbol includes the uplink subband (i.e. UL subband). bring).
  • the semi-static signaling A and the semi-static signaling B may be different signalings, or they may be the same signaling.
  • xdd-UL-DL-ConfigurationCommon is a semi-static signaling configured by the network for full duplex operation UE, indicating which subbands within a UL symbol set or time slot are used as DL and a DL symbol set or time slot. Which subbands within the slot are used as UL.
  • the semi-static signaling is not limited to group common signaling or dynamic signaling.
  • step 502 includes:
  • the network side device determines multiple symbol groups included in the second symbol set according to the time domain indication granularity indicated by the higher layer;
  • the network side device determines the set of physical resource blocks (PRBs) included in each symbol group according to the frequency domain indication granularity indicated by the higher layer.
  • PRBs physical resource blocks
  • the plurality of symbol groups included in the second symbol set are divided as follows:
  • Front symbol groups contain symbols
  • N represents the time domain indication granularity
  • T INT represents the number of symbols included in the second symbol set; means rounding down; Indicates rounding up.
  • the network side device determines the set of physical resource blocks (PRBs) included in each symbol group according to the frequency domain indication granularity indicated by the higher layer, including:
  • the network side device For each symbol group, if a PRB subset completely overlaps an uplink subband, the network side device obtains an effective frequency domain area after excluding the PRB subset, and divides the effective frequency domain area of the symbol group into M PRB sets;
  • a PRB group contains: PRB; remaining A PRB group contains: PRB;
  • M is the frequency domain indication granularity
  • B INT_DLsubband is the number of PRBs in the effective frequency domain area of the symbol group.
  • the downlink INT includes a 14-bit bitmap; correspondingly:
  • the network side device divides the second symbol set into 14 symbol groups according to the preset time-frequency domain indication granularity, and each symbol group includes 1 PRB set; wherein, the 14-bit bitmap respectively indicates 14 symbol groups; that is, the time domain indication granularity of high-level indication is 14, and the frequency domain indication granularity is 1.
  • the frequency domain indication granularity is 1, which means that the frequency domain can only indicate one PRB set. If full-duplex operation is not configured, the size of this PRB set is equal to the DL BWP bandwidth.
  • Front symbol groups contain symbols
  • N INT represents the number of symbols included in the second symbol set; means rounding down; Indicates rounding up.
  • step 502 includes:
  • the network side device divides the second symbol set into 7 symbol groups according to the preset time-frequency domain indication granularity, and each symbol group includes 2 PRB sets; wherein, the 14-bit bitmap is divided into 7 symbol groups. 1 bit pair, 1 bit pair is used to indicate 2 PRB sets of 1 symbol group; that is, the time domain indication granularity of the high layer indication is 7, and the frequency domain indication granularity is 2.
  • the frequency domain indication granularity is 2, which can be understood as the frequency domain can indicate 2 PRB sets. If full duplex is not configured, the DL BWP bandwidth will be divided into 2 PRB sets.
  • Front symbol groups contain symbols
  • N INT represents the number of symbols included in the second symbol set; means rounding down; Indicates rounding up.
  • the network side device obtains the effective frequency domain area after excluding the PRB subset, and divides the effective frequency domain area of the symbol group into 2 PRB sets;
  • the first PRB set includes: the first part of the symbol group physical resource blocks PRB
  • the second PRB set includes: the last part of the symbol group PRBs
  • B INT_DLsubband is the number of PRBs in the effective frequency domain region of the symbol group.
  • B INT_DLsubband can also be understood as the number of PRBs in the DL subband within the symbol group.
  • the first bit indicates the first PRB set
  • the second bit indicates the second PRB set.
  • the number of PRBs in the effective frequency domain area of the symbol group B INT_DLsubband is equal to B INT minus B INT_UL subband ;
  • B INT_UL subband is the number of PRBs in the uplink subband of the symbol group; B INT is the number of PRBs in the symbol group that activates downlink BWP.
  • the network side device determines the set of physical resource blocks (PRBs) included in each symbol group according to the frequency domain indication granularity indicated by the higher layer, including:
  • the network side device divides the activated downlink bandwidth part BWP of the symbol group into M PRB sets;
  • a PRB group contains: PRB; remaining A PRB group contains: PRB;
  • M is the frequency domain indication granularity
  • B INT is the number of PRBs that activate downlink BWP of the symbol group.
  • the downlink INT is a 14-bit bitmap and the second symbol set includes 7 symbol groups
  • M is equal to 2
  • the first PRB set includes: the first part of the symbol group.
  • PRBs, the second PRB set includes: the last part of the symbol group PRB;
  • B INT is the number of PRBs that activate downlink BWP of the symbol group.
  • the first bit indicates the first PRB set
  • the second bit indicates the second PRB set.
  • a new downlink INT indication method is provided for the full-duplex scenario, so that the time-frequency resource indication of the downlink INT can be applied to the full-duplex scenario and improve the indication accuracy of the downlink INT.
  • Figure 6 shows an example of INT indication in full duplex.
  • the network is configured as DL slot, for time slot n+1 (slot n+1), the network is configured as UL slot, for example, by TDD-UL-DL -ConfigurationCommon signaling configuration.
  • the network is configured with a UL subband on slot n and a DL subband on slot n+1.
  • the PRB of the UL subband of the DL slot can be excluded.
  • the DL subband of the UL slot configured in the network should be included in the INT indication, that is, this part of the symbol should not be excluded.
  • the following figure gives an example of INT operation in a full duplex scenario.
  • the time-division duplex TDD configuration of two slots is 13 DL symbols and 1 UL. symbol.
  • the DL symbol on slot n is configured with a UL subband
  • the UL symbols on slot n and slot n+1 are configured with DL subbands.
  • PRBs that completely fall in the UL subband can be excluded because these PRBs will not be canceled by the INT indication.
  • the granularity of the indication can be finer. In fact, the granularity of the indication is determined per symbol group.
  • timeFrequencySet is set to 'set1', it is assumed that 28 symbols are divided into 7 symbol groups, each group containing 4 symbols.
  • the PRB subsets on their four symbols completely overlap with the UL subband B int_UL subband 1. These are used for UL transmission. PRBs will not be canceled by the INT instruction. At this time, these PRBs should be excluded when calculating the PRBs contained in a bit pair, that is, the PRBs of the effective DL subband, that is, B int_DL subband 1 , rather than the entire activated DL BWP PRB.
  • the first bit indicates before (first) PRB (that is, the first PRB set);
  • the second bit indicates the last (last) PRB (that is, the second PRB set).
  • the entire PRB that activates the DL BWP should be used, that is, B INT .
  • the first bit indicates before (first) PRB (i.e. the first PRB set);
  • the second bit indicates the last (last) PRB (i.e. the second PRB set).
  • both the DL subband of the UL symbol and the UL subband of the DL symbol are included. That is, the PRBs of the symbol group span different DL and/or UL subbands, and no PRB subset within the symbol group completely falls into place. within the UL subband. The entire PRB that activates the DL BWP should be used.
  • the first bit indicates PRB (that is, the first PRB set);
  • the second bit indicates the last PRB (that is, the second PRB set).
  • the terminal will exclude this part of the time-frequency resources before decoding the data channel.
  • this embodiment of the present application also provides a cancellation instruction method, which includes:
  • Step 801 The terminal receives the uplink cancellation instruction CI
  • Step 802 The terminal determines, according to the time-frequency domain indication granularity, the physical resource block PRB set included in each of the plurality of symbol groups included in the fourth symbol set for the uplink cancellation indication CI to be used; wherein the fourth symbol set is Obtained by excluding the downlink symbols that do not include the uplink subband in the third symbol set;
  • the terminal excludes downlink symbols that do not contain uplink subbands from the third symbol set to obtain a fourth symbol set with an uplink cancellation indication CI effect, wherein the third symbol set is indicated by the network; the third symbol set is The four-symbol set does not exclude downlink symbols including uplink subbands;
  • Step 803 The terminal determines whether the uplink transmission corresponding to the PRB set on each symbol group is canceled according to the indication of the uplink CI.
  • the cell-level uplink and downlink configuration (TDD-UL-DL-ConfigurationCommon) signaling indication is the downlink symbol, but If semi-static signaling indicates that the downlink symbol includes an uplink subband (i.e., UL subband), the terminal does not exclude such downlink symbols, but the terminal needs to exclude downlink symbols that do not include the UL subband.
  • the frequency domain area B CI where the uplink CI acts is configured by Radio Resource Control RRC.
  • the time domain region in which the uplink CI acts (ie, the fourth symbol set) is configured by RRC, excluding receiving DL symbols and/or SSB symbols. If semi-static signaling indicates that UL subbands are included in DL symbols, these DL symbols are not excluded.
  • the network can configure whether to exclude symbols from SSB included in the UL subband.
  • the time domain indication granularity G CI in which the uplink CI acts is configured by RRC.
  • the frequency domain indication granularity N BI of the uplink CI effect is calculated based on the number of bits NCI of the uplink CI and the time domain indication granularity G CI .
  • step 803 includes:
  • the terminal determines multiple symbol groups included in the fourth symbol set according to the time domain indication granularity configured by the higher layer;
  • the terminal determines the frequency domain resource granularity according to the time domain indication granularity and the number of bits of the uplink CI;
  • the terminal determines a set of physical resource blocks (PRBs) included in each symbol group according to the frequency domain indication granularity.
  • PRBs physical resource blocks
  • the plurality of symbol groups included in the fourth symbol set are divided as follows:
  • Front symbol groups contain symbols
  • G CI represents the time domain indication granularity
  • T CI represents the number of symbols included in the fourth symbol set; means rounding down; Indicates rounding up.
  • the method further includes:
  • the terminal receives the configuration information sent by the network side device, and the configuration information is used to indicate whether to exclude symbols including the received synchronization signal of the uplink subband or the physical broadcast channel block SSB in the fourth symbol set.
  • step 802 includes: the terminal excludes downlink symbols that do not include the uplink subband and symbols for receiving SSB (whether or not the uplink subband is included) in the third symbol set, Obtain the fourth symbol set for the uplink CI effect;
  • step 802 includes: the terminal excludes the symbols of the received SSB that do not include the uplink subband from the third symbol set, and obtain The fourth symbol set for the uplink CI function.
  • the network can configure whether to exclude the SSB symbol when determining the number of symbols in the time domain region T CI where the CI acts.
  • the terminal determines the set of physical resource blocks (PRBs) included in each symbol group according to the frequency domain indication granularity, including:
  • the terminal For each symbol group, if a PRB subset completely overlaps with a downlink subband, the terminal obtains an effective frequency domain area after excluding the PRB subset, and divides the effective frequency domain area of the symbol group into N BI frequency domain group;
  • a PRB group contains: PRB; remaining Each PRB group contains: PRB;
  • N BI is the frequency domain indication granularity
  • B CI_UL subband is the number of PRBs in the effective frequency domain area of the symbol group.
  • B CI_UL subband is the sum of the bandwidths of multiple uplink subbands.
  • the PRB subset is excluded.
  • the terminal determines the set of physical resource blocks (PRBs) included in each symbol group according to the frequency domain indication granularity, including:
  • the terminal divides the frequency domain area in which the uplink CI acts as indicated by the higher layer into N BI PRB groups;
  • a PRB group contains: PRB; remaining A PRB group contains: PRB;
  • N BI is the frequency domain indication granularity
  • B CI is the number of PRBs in the frequency domain area where the uplink CI indicated by the higher layer acts.
  • the signaling indicates an uplink symbol
  • the semi-static signaling C indicates that the symbol contains a DL subband
  • semi-static signaling D indicates that the symbol contains UL sub- band
  • the PRB subset of this symbol group is not excluded, that is, the frequency domain PRB group is calculated according to the B CI .
  • semi-static signaling C and D can be different signaling, or they can be the same signaling; for example, xdd-UL-DL-ConfigurationCommon is the semi-static signaling configured by the network for full-duplex operation UE. Indicates which subbands within a UL symbol set or time slot are used for DL and which subbands within a DL symbol set or time slot are used for UL. Without loss of generality, the above-mentioned semi-static signaling is not limited to group common signaling or dynamic signaling.
  • the network may instruct a CI to act only on UL symbols that include DL subbands, or act on DL symbols that include UL subbands, or act on UL symbols that do not include DL subbands; there is no specific limitation here.
  • a new uplink CI indication method is provided for the full-duplex scenario, so that the time-frequency resource indication of the uplink CI can be applied to the full-duplex scenario and improve the indication accuracy of the uplink CI.
  • the embodiment of the present application also provides a cancellation instruction method, which includes:
  • Step 901 The network side device determines the fourth symbol set for the uplink cancellation indication CI function, wherein the fourth symbol set is obtained by excluding the downlink symbols that do not include the uplink subband from the third symbol set;
  • Step 902 The network side device divides the fourth symbol set into a set of physical resource blocks (PRBs) included in each of the plurality of symbol groups according to the time-frequency domain indication granularity;
  • PRBs physical resource blocks
  • Step 903 The network side device generates and sends the uplink CI according to whether the uplink transmission corresponding to the PRB set on each symbol group needs to be cancelled.
  • the cell-level uplink and downlink configuration (TDD-UL-DL-ConfigurationCommon) signaling indication is the downlink symbol, but If semi-static signaling indicates that the downlink symbol includes an uplink subband (i.e., UL subband), the network side device does not exclude such downlink symbols, but the network side device needs to exclude downlink symbols that do not include the UL subband.
  • the frequency domain area B CI where the uplink CI acts is configured by Radio Resource Control RRC.
  • the time domain region in which the uplink CI acts (ie, the fourth symbol set) is configured by RRC, excluding receiving DL symbols and/or SSB symbols. If semi-static signaling indicates that UL subbands are included in DL symbols, these DL symbols are not excluded.
  • the network can configure whether to exclude symbols from SSB included in the UL subband.
  • the time domain indication granularity G CI in which the uplink CI acts is configured by RRC.
  • the frequency domain indication granularity N BI of the uplink CI effect is calculated based on the number of bits NCI of the uplink CI and the time domain indication granularity G CI .
  • step 902 includes:
  • the network side device divides the fourth symbol set into multiple symbol groups according to the time domain indication granularity
  • the network side device determines the frequency domain resource granularity according to the time domain indication granularity and the number of bits of the uplink CI;
  • the network side device determines a set of physical resource blocks (PRBs) included in each symbol group according to the frequency domain indication granularity.
  • PRBs physical resource blocks
  • the plurality of symbol groups included in the fourth symbol set are divided as follows:
  • Front symbol groups contain symbols
  • G CI represents the time domain indication granularity
  • T CI represents the number of symbols included in the fourth symbol set; means rounding down; Indicates rounding up.
  • the method further includes:
  • the network side device sends configuration information to the terminal, where the configuration information is used to indicate whether to exclude symbols including the received synchronization signal of the uplink subband or the physical broadcast channel block SSB in the fourth symbol set.
  • step 802 includes: the terminal excludes downlink symbols that do not include the uplink subband and symbols for receiving SSB (whether or not the uplink subband is included) in the third symbol set, Obtain the fourth symbol set for the uplink CI effect;
  • step 802 includes: the terminal excludes the symbols of the received SSB that do not include the uplink subband from the third symbol set, and obtain The fourth symbol set for the uplink CI function.
  • the network can configure whether to exclude the SSB symbol when determining the number of symbols in the time domain region T CI where the CI acts.
  • the network side device determines the set of physical resource blocks (PRBs) included in each symbol group according to the frequency domain indication granularity, including:
  • the network side device For each symbol group, if a PRB subset completely overlaps with a downlink subband, the network side device obtains an effective frequency domain area after excluding the PRB subset, and divides the effective frequency domain area of the symbol group into N BI frequency domain groups;
  • a PRB group contains: PRB; remaining Each PRB group contains: PRB;
  • N BI is the frequency domain indication granularity
  • B CI_UL subband is the number of PRBs in the effective frequency domain area of the symbol group.
  • the PRB subset is excluded.
  • the network side device determines the set of physical resource blocks (PRBs) included in each symbol group according to the frequency domain indication granularity, including:
  • the network side device divides the frequency domain area in which the uplink CI acts as indicated by the higher layer into N BI PRB groups;
  • a PRB group contains: PRB; remaining A PRB group contains: PRB;
  • N BI is the frequency domain indication granularity
  • B CI is the number of PRBs in the frequency domain area where the uplink CI indicated by the higher layer acts.
  • the PRB subset of this symbol group is not excluded, that is, the frequency domain PRB group is calculated according to the B CI .
  • semi-static signaling C and D can be different signaling, or they can be the same signaling; for example, xdd-UL-DL-ConfigurationCommon is the semi-static signaling configured by the network for full-duplex operation UE. Indicates which subbands within a UL symbol set or time slot are used for DL and which subbands within a DL symbol set or time slot are used for UL. Without loss of generality, the above-mentioned semi-static signaling is not limited to group common signaling or dynamic signaling.
  • the network may instruct a CI to act only on UL symbols that include DL subbands, or act on DL symbols that include UL subbands, or act on UL symbols that do not include DL subbands; there is no specific limitation here.
  • a new uplink CI indication method is provided for the full-duplex scenario, so that the time-frequency resource indication of the uplink CI can be applied to the full-duplex scenario and improve the indication accuracy of the uplink CI.
  • the terminal will cancel the previously scheduled transmission.
  • Figure 10 shows an example of CI indication in full duplex.
  • the network configuration is DL slot
  • the network configuration is UL slot, for example, configured by TDD-UL-DL-ConfigurationCommon signaling.
  • the network is configured with a UL subband on slot n and a DL subband on slot n+1.
  • the PRB of the DL subband of the UL slot can be excluded.
  • the UL subband of the DL slot configured in the network should be included in the CI indication, that is, this part of the symbol should not be excluded.
  • Figure 11 shows a full-duplex example.
  • the UL-DL ratio of two slots is configured through the configuration parameter TDD-UL-DL-ConfigurationCommon.
  • the first slot has 7 DL symbols and 7 UL symbols.
  • In the second slot there are 2 DL symbols and 12 UL symbols.
  • a UL subband is configured on the DL symbol in slot n. Since DL symbols contain UL subbands, DL symbols should not be excluded from symbol grouping at this time.
  • slot n+1 has 2 DL symbols, these symbols should be excluded during symbol grouping. Therefore, the number of symbols participating in the grouping is 26.
  • the first 2 groups have 6 symbols each, and the last 2 groups have 7 symbols each.
  • PRBs that completely fall in the DL subband can be excluded. Because these PRBs will not be canceled by the CI indication, such as the DL subband of the first 6 symbols in slot n. Similarly, for UL symbols containing DL subbands, if these PRBs completely overlap with the UL subbands for a symbol group, these PRBs should should be excluded. This improves the accuracy of the indication and, in effect, determines the granularity of the indication per symbol group.
  • the time domain area where CI acts contains 26 symbols (the two DL symbols in slot n+1 are excluded, and the DL symbols including the UL subband are not excluded.), which are divided into 4 symbol groups.
  • the first symbol group can use the PRB in the effective frequency domain area, that is, B_CI_UL subband 1;
  • the frequency domain indication granularity N_BI is calculated based on N_CI and G_CI;
  • Front symbol groups contain PRB
  • the 2nd symbol group and the 3rd symbol group have subbands with different directions, no PRB subset (across all symbols) completely falls on the DL subband, so the frequency domain indication granularity calculation uses the number of PRBs of the frequency domain area BCI calculate.
  • the frequency domain indication granularity calculation of the fourth symbol group is calculated using the PRB number of the BCI in the frequency domain area.
  • the execution subject may be an interruption transmission instruction device or a cancellation instruction device.
  • the interruption transmission instruction device or the cancellation instruction device executing the interruption transmission instruction method or the cancellation instruction method is used as an example to illustrate the interruption transmission instruction device or the cancellation instruction device provided by the embodiment of the application.
  • this embodiment of the present application also provides an interrupt transmission indication device 1200, which includes:
  • the first receiving module 1201 is used to receive the downlink interruption transmission indication INT;
  • the first determination module 1202 is configured to determine the set of physical resource blocks PRB included in each of the plurality of symbol groups included in the second symbol set of the downlink INT action according to the time-frequency domain indication granularity indicated by the higher layer; wherein, the third The second symbol set is obtained by excluding the uplink symbols that do not include the downlink subband from the first symbol set;
  • the second determination module 1203 is configured to determine whether the downlink transmission corresponding to the PRB set on each symbol group is interrupted according to the indication of the downlink INT.
  • the first determination module is further used to:
  • the set of physical resource blocks (PRBs) included in each symbol group is determined.
  • the first determination module is further used to:
  • the effective frequency domain area is obtained after excluding the PRB subset, and the effective frequency domain area of the symbol group is divided into M PRB sets;
  • a PRB group contains: PRB; remaining A PRB group contains: PRB;
  • M is the frequency domain indication granularity
  • B INT_DLsubband is the number of PRBs in the effective frequency domain area of the symbol group.
  • the first PRB set includes: the first part of the symbol group physical resource block PRB;
  • the second PRB set includes: the symbol group after PRB.
  • the first determination module is further used to:
  • the activated downlink bandwidth part BWP of the symbol group is divided into M PRB sets;
  • a PRB group contains: PRB; remaining A PRB group contains: PRB;
  • M is the frequency domain indication granularity
  • B INT is the number of PRBs that activate downlink BWP of the symbol group.
  • the first PRB set includes: the first part of the symbol group PRB;
  • the second PRB set includes: the symbol group after PRB.
  • the number of PRBs in the effective frequency domain area of the symbol group B INT_DLsubband is equal to B INT minus B INT_UL subband ;
  • B INT_UL subband is the number of PRBs in the uplink subband of the symbol group; B INT is the number of PRBs in the symbol group that activates downlink BWP.
  • a new downlink INT indication method is provided for the full-duplex scenario, so that the time-frequency resource indication of the downlink INT can be applied to the full-duplex scenario and improve the indication accuracy of the downlink INT.
  • interrupt transmission instruction device provided by the embodiment of the present application is a device capable of executing the above-mentioned interrupt transmission instruction method, then all embodiments of the above-mentioned interrupt transmission instruction method are applicable to this device, and can achieve the same or similar results. beneficial effects.
  • an embodiment of the present invention also provides an interrupt transmission indication device 1300, which includes:
  • the third determination module 1301 is used to determine the second symbol set for the downlink interruption transmission indication INT; wherein the second symbol set is obtained by excluding uplink symbols that do not include the downlink subband from the first symbol set;
  • the first dividing module 1302 is configured to divide the second symbol set into a set of physical resource blocks (PRBs) included in each of the plurality of symbol groups according to the preset time-frequency domain indication granularity;
  • PRBs physical resource blocks
  • the first generating and sending module 1303 is used to generate and send downlink INT according to whether the downlink transmission needs corresponding to the PRB set on each symbol group are interrupted.
  • the third determination module is further used to:
  • the set of physical resource blocks (PRBs) included in each symbol group is determined.
  • the third determination module is further used to:
  • the effective frequency domain area is obtained after excluding the PRB subset, and the effective frequency domain area of the symbol group is divided into M PRB sets;
  • a PRB group contains: PRB; remaining A PRB group contains: PRB;
  • M is the frequency domain indication granularity
  • B INT_DLsubband is the number of PRBs in the effective frequency domain area of the symbol group.
  • the first PRB set includes: the first part of the symbol group physical resource block PRB;
  • the second PRB set includes: the symbol group after PRB.
  • the third determination module is further used to:
  • the activated downlink bandwidth part BWP of the symbol group is divided into M PRB sets;
  • a PRB group contains: PRB; remaining A PRB group contains: PRB;
  • M is the frequency domain indication granularity
  • B INT is the number of PRBs that activate downlink BWP of the symbol group.
  • the first PRB set includes: the first part of the symbol group PRB;
  • the second PRB set includes: the symbol group after PRB.
  • the number of PRBs in the effective frequency domain area of the symbol group B INT_DLsubband is equal to B INT minus B INT_UL subband ;
  • B INT_UL subband is the number of PRBs in the uplink subband of the symbol group; B INT is the number of PRBs in the symbol group that activates downlink BWP.
  • a new downlink INT indication method is provided for the full-duplex scenario, so that the time-frequency resource indication of the downlink INT can be applied to the full-duplex scenario and improve the indication accuracy of the downlink INT.
  • interrupt transmission instruction device provided by the embodiment of the present application is a device capable of executing the above-mentioned interrupt transmission instruction method, then all embodiments of the above-mentioned interrupt transmission instruction method are applicable to this device, and can achieve the same or similar results. beneficial effects.
  • this embodiment of the present invention also provides a cancellation instruction device 1400, which includes:
  • the second receiving module 1401 is used to receive the uplink cancellation indication CI;
  • the fourth determination module 1402 is configured to determine, according to the time-frequency domain indication granularity, the physical resource block PRB set included in each of the plurality of symbol groups included in the fourth symbol group for the uplink cancellation indication CI to act on; wherein, the fourth symbol The set is obtained by excluding the downlink symbols that do not include the uplink subband in the third symbol set;
  • the fifth determination module 1403 is configured to determine whether the uplink transmission corresponding to the PRB set on each symbol group is canceled according to the indication of the uplink CI.
  • the fourth determination module is further used to:
  • a set of physical resource blocks (PRBs) included in each symbol group is determined.
  • the device further includes:
  • the eighth receiving module is configured to receive configuration information sent by the network side device, where the configuration information is used to indicate whether to exclude symbols including the received synchronization signal of the uplink subband or the physical broadcast channel block SSB in the fourth symbol set.
  • the fourth determination module is further used to:
  • the effective frequency domain area is obtained after excluding the PRB subset, and the effective frequency domain area of the symbol group is divided into N BI frequency domains Group;
  • a PRB group contains: PRB; remaining Each PRB group contains: PRB;
  • N BI is the frequency domain indication granularity
  • B CI_UL subband is the number of PRBs in the effective frequency domain area of the symbol group.
  • the fourth determination module is further used to:
  • the frequency domain area where the uplink CI acts as indicated by the higher layer is divided into N BI PRB groups;
  • a PRB group contains: PRB; remaining A PRB group contains: PRB;
  • N BI is the frequency domain indication granularity
  • B CI is the number of PRBs in the frequency domain area where the uplink CI indicated by the higher layer acts.
  • a new uplink CI indication method is provided for the full-duplex scenario, so that the time-frequency resource indication of the uplink CI can be applied to the full-duplex scenario and improve the indication accuracy of the uplink CI.
  • the cancellation instruction device provided by the embodiment of the present application is a device capable of executing the above-mentioned cancellation instruction method, and all embodiments of the above-mentioned cancellation instruction method are applicable to this device, and can achieve the same or similar beneficial effects.
  • this embodiment of the present application also provides a cancellation instruction device 1500, which includes:
  • the sixth determination module 1501 is used to determine the fourth symbol set for which the uplink cancellation indication CI takes effect, wherein the fourth symbol set is obtained by excluding the downlink symbols that do not contain the uplink subband from the third symbol set;
  • the second dividing module 1502 is configured to divide the fourth symbol set into a set of physical resource blocks (PRBs) included in each of the plurality of symbol groups according to the time-frequency domain indication granularity;
  • PRBs physical resource blocks
  • the second generation and transmission module 1503 is configured to generate and send uplink CIs according to whether the uplink transmission corresponding to the PRB set on each symbol group needs to be canceled.
  • the second dividing module is further used to:
  • a set of physical resource blocks (PRBs) included in each symbol group is determined.
  • the device further includes:
  • the eighth sending module is configured to send configuration information to the terminal, where the configuration information is used to indicate whether to exclude symbols including the received synchronization signal of the uplink subband or the physical broadcast channel block SSB in the fourth symbol set.
  • the second dividing module is further used to:
  • the effective frequency domain area is obtained after excluding the PRB subset, and the effective frequency domain area of the symbol group is divided into N BI frequency domains Group;
  • a PRB group contains: PRB; remaining Each PRB group contains: PRB;
  • N BI is the frequency domain indication granularity
  • B CI_UL subband is the number of PRBs in the effective frequency domain area of the symbol group.
  • the second dividing module is further used to:
  • the frequency domain area where the uplink CI acts as indicated by the higher layer is divided into N BI PRB groups;
  • a PRB group contains: PRB; remaining A PRB group contains: PRB;
  • N BI is the frequency domain indication granularity
  • B CI is the number of PRBs in the frequency domain area where the uplink CI indicated by the higher layer acts.
  • a new uplink CI indication method is provided for the full-duplex scenario, so that the time-frequency resource indication of the uplink CI can be applied to the full-duplex scenario and improve the indication accuracy of the uplink CI.
  • the cancellation instruction device provided by the embodiment of the present application is a device capable of executing the above-mentioned cancellation instruction method, and all embodiments of the above-mentioned cancellation instruction method are applicable to this device, and can achieve the same or similar beneficial effects.
  • the interrupt transmission instructing device or cancellation instructing device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the interrupt transmission instruction device or the cancellation instruction device provided by the embodiments of the present application can implement each process implemented by the method embodiments of FIG. 1 to FIG. 11 and achieve the same technical effect. To avoid duplication, they will not be described again here.
  • this embodiment of the present application also provides a communication device 1600, which includes a processor 1601 and a memory 1602.
  • the memory 1602 stores programs or instructions that can be run on the processor 1601, such as , when the communication device 1600 is a terminal, the above-mentioned interrupt transmission instruction method is implemented when the program or instruction is executed by the processor 1601 Method or cancel each step of the instruction method embodiment, and the same technical effect can be achieved.
  • the communication device 1600 is a network-side device, when the program or instruction is executed by the processor 1601, each step of the above-mentioned interrupt transmission instruction method or cancellation instruction method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, the steps are not discussed here. Again.
  • Embodiments of the present application also provide a terminal, including a processor and a communication interface, wherein the communication interface is used to receive a downlink interruption transmission indication INT; the processor is used to determine the downlink based on the time-frequency domain indication granularity indicated by the higher layer.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to receive a downlink interruption transmission indication INT; the processor is used to determine the downlink based on the time-frequency domain indication granularity indicated by the higher layer.
  • PRBs physical resource blocks
  • FIG. 17 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 1700 includes but is not limited to: a radio frequency unit 1701, a network module 1702, an audio output unit 1703, an input unit 1704, a sensor 1705, a display unit 1706, a user input unit 1707, an interface unit 1708, a memory 1709, a processor 1710, etc. At least some parts.
  • the terminal 1700 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1710 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 17 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 1704 may include a graphics processing unit (Graphics Processing Unit, GPU) 17041 and a microphone 17042.
  • the graphics processor 17041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 1706 may include a display panel 17061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1707 includes a touch panel 17071 and at least one of other input devices 17072 . Touch panel 17071, also known as touch screen.
  • the touch panel 17071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 17072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 1701 after receiving downlink data from the network side device, the radio frequency unit 1701 can transmit it to the processor 1710 for processing; in addition, the radio frequency unit 1701 can send uplink data to the network side device.
  • the radio frequency unit 1701 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 1709 may be used to store software programs or instructions as well as various data.
  • Memory 1709 may primarily include storage A first storage area for programs or instructions and a second storage area for storing data, where the first storage area can store an operating system, an application program or instructions required for at least one function (such as a sound playback function, an image playback function, etc.), etc. .
  • memory 1709 may include volatile memory or nonvolatile memory, or memory 1709 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory Synchronous DRAM, SDRAM
  • Double data rate synchronous dynamic random access memory Double Data Rate SDRAM, DDRSDRAM
  • Enhanced SDRAM, ESDRAM synchronous link dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • the processor 1710 may include one or more processing units; optionally, the processor 1710 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 1710.
  • the radio frequency unit 1701 is used to receive the downlink interruption transmission indication INT;
  • the processor 1710 is configured to determine the physical resource block PRB set included in each of the plurality of symbol groups included in the second symbol set of the downlink INT action according to the time-frequency domain indication granularity indicated by the higher layer; wherein, the second symbol The set is obtained by excluding uplink symbols that do not include downlink subbands in the first symbol set; according to the instructions of the downlink INT, it is determined whether the downlink transmission corresponding to the PRB set on each symbol group is interrupted.
  • a new downlink INT indication method is provided for the full-duplex scenario, so that the time-frequency resource indication of the downlink INT can be applied to the full-duplex scenario and improve the indication accuracy of the downlink INT.
  • the terminal provided by the embodiments of the present application is a terminal that can perform the above-mentioned interrupt transmission instruction method, then all embodiments of the above-mentioned interrupt transmission instruction method are applicable to the terminal, and can achieve the same or similar beneficial effects.
  • the radio frequency unit 1701 is also used to receive the uplink cancellation indication CI;
  • the processor 1710 is further configured to determine, according to the time-frequency domain indication granularity, the set of physical resource blocks PRB included in each of the plurality of symbol groups included in the fourth symbol set for which the uplink cancellation indication CI acts; wherein, the fourth symbol set It is obtained by excluding the downlink symbols that do not include the uplink subband in the third symbol set; according to the indication of the uplink CI, it is determined whether the uplink transmission corresponding to the PRB set on each symbol group is canceled.
  • a new uplink CI indication method is provided for the full-duplex scenario, so that the time-frequency resource indication of the uplink CI can be applied to the full-duplex scenario and improve the indication accuracy of the uplink CI.
  • the terminal provided by the embodiment of the present application is a terminal capable of executing the above cancellation instruction method. All embodiments of the cancellation instruction method are applicable to the terminal, and can achieve the same or similar beneficial effects.
  • An embodiment of the present application also provides a network side device, including a processor and a communication interface, wherein the processor is used to determine the second symbol set for the downlink interruption transmission indication INT; wherein the second symbol set is pre-agreed The uplink symbols that do not include the downlink subband in the first symbol set are excluded; and then generate downlink INT according to whether the downlink transmission needs corresponding to the PRB set on each symbol group are interrupted; the communication interface is used to send downlink INT; or , the processor is used to determine the fourth symbol set for the uplink cancellation indication CI, wherein the fourth symbol set is obtained by excluding the downlink symbols that do not include the uplink subband from the pre-agreed third symbol set; and then according to each symbol Whether the uplink transmission corresponding to the PRB set on the group needs to be canceled and an uplink CI is generated; the communication interface is used to send the uplink CI.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1800 includes: an antenna 181, a radio frequency device 182, a baseband device 183, a processor 184 and a memory 185.
  • the antenna 181 is connected to the radio frequency device 182 .
  • the radio frequency device 182 receives information through the antenna 181 and sends the received information to the baseband device 183 for processing.
  • the baseband device 183 processes the information to be sent and sends it to the radio frequency device 182.
  • the radio frequency device 182 processes the received information and then sends it out through the antenna 181.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 183, which includes a baseband processor.
  • the baseband device 183 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 186, which is, for example, a common public radio interface (CPRI).
  • a network interface 186 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1800 in this embodiment of the present invention also includes: instructions or programs stored in the memory 185 and executable on the processor 184.
  • the processor 184 calls the instructions or programs in the memory 185 to execute Figure 13 or Figure 15
  • the execution methods of each module are shown and achieve the same technical effect. To avoid repetition, they will not be described in detail here.
  • Embodiments of the present application also provide a readable storage medium, with a program or instructions stored on the readable storage medium.
  • a program or instructions stored on the readable storage medium.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above interrupt transmission instruction method or cancel Each process of the method embodiment is indicated and can achieve the same technical effect. To avoid repetition, it will not be described again here.
  • the chip mentioned in the embodiment of this application may also be called a system-level chip, a system chip, a chip system or a chip. System chip etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above-mentioned interrupt transmission instruction method or Each process of the instruction method embodiment can be canceled and the same technical effect can be achieved. To avoid repetition, the details will not be described again here.
  • Embodiments of the present application also provide a communication system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the interrupt transmission instruction method or the cancellation instruction method as described above.
  • the network side device can be used to perform the above steps. The steps of the interruption transmission instruction method or the cancellation instruction method.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to related technologies.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Abstract

本申请公开了一种中断传输指示方法、取消指示方法、终端及网络侧设备,属于通信技术领域,本申请实施例的方法包括:终端接收到下行中断传输指示INT;所述终端确定下行INT作用的第二符号集包括的多个符号组中各个符号组包括的物理资源块PRB集合;其中,所述第二符号集是将第一符号集中不包含下行子带的上行符号排除后得到的;所述终端根据所述下行INT的指示,确定各个符号组上的PRB集合对应的下行传输是否被中断。

Description

中断传输指示方法、取消指示方法、终端及网络侧设备
相关申请的交叉引用
本申请主张在2022年08月11日提交的中国专利申请No.202210964200.3的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种中断传输指示方法、取消指示方法、终端及网络侧设备。
背景技术
与以往的移动通信系统相比,未来第5代(5th Generation,5G)移动通信系统需要适应更加多样化的场景和业务需求。5G的主要场景包括增强移动带宽(Enhanced Mobile Broadband,eMBB),超可靠和低时延通信(Ultra-Reliable and Low Latency Communications,URLLC),大规模机器通信(Massive Machine Type Communication,mMTC),这些场景对系统提出了高可靠,低时延,大带宽,广覆盖等要求。
目前网络引入下行中断传输指示(Interrupted transmission indication,INT),下行INT指示某些终端在之前的哪些传输资源不属于该用户的调度,用于突然到达的更高优先级的业务的传输。网络发送下行INT,如果之前被调度的终端的分配的资源落在下行INT作用的时频区域内,终端将排除这部分时频资源再进行译码。
目前网络还引入上行取消指示(Cancellation Indication,CI),即网络可以指示某些终端取消已经被调度的业务,用于突然到达的更高优先级的业务的传输。网络发送上行CI,如果之前被调度的终端的分配的资源落在上行CI指示的时频区域内,终端将取消之前被调度的传输。
当前技术中引入full duplex(全双工)操作,对于小区级上下行配置(TDD-UL-DL-ConfigurationCommon)信令指示的上行符号,可能包含下行子带;或者,对于TDD-UL-DL-ConfigurationCommon信令指示的下行符号,可能包含上行子带。该种场景下,相关技术中的下行INT或上行CI的时频资源指示方式不再适用。
发明内容
本申请实施例提供一种中断传输指示方法、取消指示方法、终端及网络侧设备,能够解决相关技术中下行INT或上行CI的时频资源指示方式无法适用全双工场景的问题。
第一方面,提供了一种中断传输指示方法,包括:
终端接收到下行中断传输指示INT;
所述终端根据高层指示的时频域指示粒度,确定下行INT作用的第二符号集包括的多个符号组中各个符号组包括的物理资源块PRB集合;其中,所述第二符号集是将第一符号集中不包含下行子带的上行符号排除后得到的;
所述终端根据所述下行INT的指示,确定各个符号组上的PRB集合对应的下行传输是否被中断。
第二方面,提供了一种中断传输指示方法,包括:
网络侧设备确定下行中断传输指示INT作用的第二符号集;其中,所述第二符号集是将第一符号集中不包含下行子带的上行符号排除后得到的;
所述网络侧设备根据预设时频域指示粒度,将所述第二符号集划分为多个符号组中各个符号组包括的物理资源块PRB集合;
所述网络侧设备根据各个符号组上的PRB集合对应的下行传输需要是否被中断,生成并发送下行INT。
第三方面,提供了一种取消指示方法,包括:
终端接收上行取消指示CI;
所述终端根据时频域指示粒度,确定上行取消指示CI作用第四符号集包括的多个符号组中各个符号组包括的物理资源块PRB集合;其中,所述第四符号集是将第三符号集中不包含上行子带的下行符号排除后得到的;
所述终端根据所述上行CI的指示,确定各个符号组上的PRB集合对应的上行传输是否被取消。
第四方面,提供了一种取消指示方法,包括:
网络侧设备确定上行取消指示CI作用的第四符号集,其中,所述第四符号集是将第三符号集中不包含上行子带的下行符号排除后得到的;
所述网络侧设备根据时频域指示粒度,将所述第四符号集划分为多个符号组以中各个符号组包括的物理资源块PRB集合;
所述网络侧设备根据各个符号组上的PRB集合对应的上行传输是否需要被取消,生成并发送上行CI。
第五方面,提供了一种中断传输指示装置,包括:
第一接收模块,用于接收到下行中断传输指示INT;
第一确定模块,用于根据高层指示的时频域指示粒度,确定下行INT作用的第二符号集包括的多个符号组中各个符号组包括的物理资源块PRB集合;其中,所述第二符号集是将第一符号集中不包含下行子带的上行符号排除后得到的;
第二确定模块,用于根据所述下行INT的指示,确定各个符号组上的PRB集合对应的下行传输是否被中断。
第六方面,提供了一种中断传输指示装置,包括:
第三确定模块,用于确定下行中断传输指示INT作用的第二符号集;其中,所述第二 符号集是将第一符号集中不包含下行子带的上行符号排除后得到的;
第一划分模块,用于根据预设时频域指示粒度,将所述第二符号集划分为多个符号组中各个符号组包括的物理资源块PRB集合;
第一生成发送模块,用于根据各个符号组上的PRB集合对应的下行传输需要是否被中断,生成并发送下行INT。
第七方面,提供了一种取消指示装置,包括:
第二接收模块,用于接收上行取消指示CI;
第四确定模块,用于根据时频域指示粒度,确定上行取消指示CI作用第四符号集包括的多个符号组中各个符号组包括的物理资源块PRB集合;其中,所述第四符号集是将第三符号集中不包含上行子带的下行符号排除后得到的;
第五确定模块,用于根据所述上行CI的指示,确定各个符号组上的PRB集合对应的上行传输是否被取消。
第八方面,提供了一种取消指示装置,包括:
第六确定模块,用于确定上行取消指示CI作用的第四符号集,其中,所述第四符号集是将第三符号集中不包含上行子带的下行符号排除后得到的;
第二划分模块,用于根据时频域指示粒度,将所述第四符号集划分为多个符号组中各个符号组包括的物理资源块PRB集合;
第二生成发送模块,用于根据各个符号组上的PRB集合对应的上行传输是否需要被取消,生成并发送上行CI。
第九方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或实现如第三方面所的方法的步骤。
第十方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于接收到下行中断传输指示INT;所述处理器用于根据高层指示的时频域指示粒度,确定下行INT作用的第二符号集包括的多个符号组中各个符号组包括的物理资源块PRB集合;其中,所述第二符号集是将第一符号集中不包含下行子带的上行符号排除后得到的;再根据所述下行INT的指示,确定各个符号组上的PRB集合对应的下行传输是否被中断;或者,所述通信接口用于接收上行取消指示CI;所述处理器用于根据时频域指示粒度,确定上行取消指示CI作用第四符号集包括的多个符号组中各个符号组包括的物理资源块PRB集合;其中,所述第四符号集是将第三符号集中不包含上行子带的下行符号排除后得到的;再根据所述上行CI的指示,确定各个符号组上的PRB集合对应的上行传输是否被取消。
第十一方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤,或实现如第四方面所述的方法的步骤。
第十二方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述处理器用 于确定下行中断传输指示INT作用的第二符号集;其中,所述第二符号集是将第一符号集中不包含下行子带的上行符号排除后得到的;并根据预设时频域指示粒度,将所述第二符号集划分为多个符号组中各个符号组包括的物理资源块PRB集合;再根据各个符号组上的PRB集合对应的下行传输需要是否被中断,生成下行INT;所述通信接口用于发送下行INT;或者,所述处理器用于确定上行取消指示CI作用的第四符号集,其中,所述第四符号集是将第三符号集中不包含上行子带的下行符号排除后得到的;并根据时频域指示粒度,将所述第四符号集划分为多个符号组中各个符号组包括的物理资源块PRB集合;再根据各个符号组上的PRB集合对应的上行传输是否需要被取消,生成上行CI;所述通信接口用于发送上行CI。
第十三方面,提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面或第三方面所述的方法的步骤,所述网络侧设备可用于执行如第二方面或第四方面所述的方法的步骤。
第十四方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤,或者实现如第四方面所述的方法的步骤。
第十五方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法,或实现如第三方面所述的方法,或实现如第四方面所述的方法。
第十六方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤,或实现如第三方面所述的方法的步骤,或实现如第四方面所述的方法的步骤。
在本申请实施例中,针对全双工场景,提供了新的下行INT的指示方法和/或上行CI的指示方法,从而使得下行INT和/或上行CI的时频资源指示能够适用于全双工场景,提升下行INT和/或上行CI的应用范围及指示精度。
附图说明
图1表示本申请实施例可应用的一种无线通信系统的框图;
图2表示本申请实施例提供的全双工场景的示意图之一;
图3表示本申请实施例提供的全双工场景的示意图之二;
图4表示本申请实施例提供的中断传输指示方法的步骤流程图之一;
图5表示本申请实施例提供的中断传输指示方法的步骤流程图之二;
图6表示本申请实施例提供的示例1的示意图之一;
图7表示本申请实施例提供的示例1的示意图之二;
图8表示本申请实施例提供的取消指示方法的步骤流程图之一;
图9表示本申请实施例提供的取消指示方法的步骤流程图之二;
图10表示本申请实施例提供的示例2的示意图之一;
图11表示本申请实施例提供的示例2的示意图之二;
图12表示本申请实施例提供的中断传输指示装置的结构示意图之一;
图13表示本申请实施例提供的中断传输指示装置的结构示意图之二;
图14表示本申请实施例提供的取消指示装置的结构示意图之一;
图15表示本申请实施例提供的取消指示装置的结构示意图之二;
图16表示本申请实施例提供的通信设备的结构示意图;
图17表示本申请实施例提供的终端的结构示意图;
图18表示本申请实施例提供的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant, PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
对于一个下行时隙(DL slot),该DL slot由时隙配置参数配置,例如,网络通过为终端配置下行带宽部分(Downlink Bandwidth Part,DL BWP)来配置DL slot,如图2所示的DL时隙1;对于上行时隙(UL slot),该UL slot由时隙配置参数配置,例如,网络通过为终端配置上行带宽部分(Uplink Bandwidth Part,UL BWP)来配置UL slot,如图3所示的UL时隙4。如图2及图3所示,全双工场景中,包括如下情况:
情况1:为UE配置DL BWP,即DL时隙1;
情况2:为UE在DL BWP中配置UL资源,如在DL时隙2中配置UL子带;
情况3:为UE在UL BWP中配置DL资源,如在UL时隙3中配置DL子带;
情况4:为UE配置UL BWP,即UL时隙4;
情况5:为UE在UL BWP中配置DL资源,如在UL时隙5中配置DL子带;
情况6:为UE在DL BWP中配置UL资源,如在DL时隙6中配置DL子带。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的中断传输指示方及取消指示方法进行详细地说明。
如图4所示,本申请实施例提供一种中断传输指示方法,包括:
步骤401,终端接收到下行中断传输指示INT;
步骤402,所述终端根据高层指示的时频域指示粒度,确定下行INT作用的第二符号集包括的多个符号组中各个符号组包括的物理资源块(Physical Resource Block,PRB)集合;其中,所述第二符号集是将第一符号集中不包含下行子带的上行符号排除后得到的;
可选地,终端将第一符号集中不包含下行子带的上行符号排除,得到下行INT作用的第二符号集;其中,所述第一符号集为网络指示的;所述第二符号集中不排除包含下行子带的上行符号;
步骤403,所述终端根据所述下行INT的指示,确定各个符号组上的PRB集合对应的下行传输是否被中断。
换言之,本申请实施例中,对于下行INT作用的第二符号集(相当于时频资源)的确定,对于小区级上下行配置(TDD-UL-DL-ConfigurationCommon)信令指示为上行符号,但是半静态信令A指示该上行符号包含下行子带(即DL子带),则终端不排除这种上行符号,但终端需排除不包含DL子带的上行符号。
可选地,全双工场景中,对于小区级上下行配置(TDD-UL-DL-ConfigurationCommon)信令指示为下行符号,半静态信令B可以指示该下行符号包含上行子带(即UL子带)。其中,半静态信令A和半静态信令B可以是不同的信令,也可以是同一个信令。例如,xdd-UL-DL-ConfigurationCommon是网络为full dulex(全双工)操作UE配置的半静态信令,指示一个UL符号集或时隙内哪些子带用作DL以及一个DL符号集或时隙内哪些子带用作UL。可选地,该半静态信令不限制为组公共信令或动态信令。
在本申请的一个可选实施例中,步骤402包括:
所述终端根据高层指示的时域指示粒度,确定所述第二符号集包括的多个符号组;
所述终端根据高层指示的频域指示粒度,确定各个符号组包括的物理资源块PRB集合。
可选地,所述第二符号集包括的多个符号组的划分如下:
前面个符号组包含个符号;
剩余的个符号组包含个符号;
其中,N表示时域指示粒度,TINT表示第二符号集包含的符号数量;表示向下取整;表示向上取整。
作为一个可选实施例,所述终端根据高层指示的频域指示粒度,确定各个符号组包括的物理资源块PRB集合,包括:
针对每个符号组,若一个PRB子集与一个上行子带完全重叠,所述终端在排除所述PRB子集后得到有效频域区域,将所述符号组的有效频域区域分为M个PRB集合;
其中,前个PRB组包含:个PRB;剩余的个PRB组包含:个PRB;
其中,M为所述频域指示粒度;BINT_DLsubband为所述符号组的有效频域区域的PRB数量。
在本申请的一个可选实施例中,所述下行INT包括14比特的位图;相应的:
所述终端根据高层指示的时频域指示粒度,确定所述第二符号集包括14个符号组, 每个符号组包括1个PRB集合;其中,所述14比特的位图分别指示14个符号组;即高层指示的时域指示粒度为14,频域指示粒度为1。频域指示粒度为1可理解为频域只能指示1个PRB集合,如果没配置全双工操作,那么这个PRB集合的大小等于DL BWP带宽。
可选地,14个符号组的划分如下:
前面个符号组包含个符号;
后面个符号组包含符号;
其中,NINT表示第二符号集包括的符号数量;表示向下取整;表示向上取整。
在本申请的另一个可选实施例中,所述下行INT包括14比特的位图,相应的,步骤402包括:
所述终端根据高层指示的时频域指示粒度,确定所述第二符号集包括7个符号组,每个符号组包括2个PRB集合;其中,所述14比特的位图分为7个比特对,1个比特对用于指示1个符号组的2个PRB集合;即高层指示的时域指示粒度为7,频域指示粒度为2。频域指示粒度为2可理解为频域可以指示2个PRB集合,如果没配置全双工,那么DL BWP带宽将被分为2个PRB集合。
可选地,7个符号组的划分如下:
前面个符号组包含个符号;
后面个符号组包含个符号;
其中,NINT表示第二符号集包括的符号数量;表示向下取整;表示向上取整。
在本申请的至少一个实施例中,在第二符号集包括7个符号组的情况下,为了实现更精细的频域资源指示,针对每个符号组,若一个PRB子集与一个上行子带完全重叠,所述终端在排除所述PRB子集后得到有效频域区域,将所述符号组的有效频域区域分为2个PRB集合;
其中,第一个PRB集合包括:所述符号组的前个物理资源块PRB,第二个PRB集合包括:所述符号组的后个PRB;BINT_DLsubband为所述符号组的有效频域区域的PRB数量。
不失一般性地,如果网络配置了多个DL子带,BINT_DLsubband为多个DL子带的带宽的和。
可选地,该PRB子集中跨符号组的所有符号均与一个上行子带完全重叠的情况下,该PRB子集被排除。BINT_DLsubband也可以理解为该符号组内DL子带内的PRB数量。
其中,用于指示该符号组的2个PRB集合的1个比特对中,第一个比特指示第一个PRB集合,第二个比特指示第二个PRB集合。
可选地,所述符号组的有效频域区域的PRB数量BINT_DLsubband等于BINT减去BINT_UL subband
其中,BINT_UL subband为所述符号组的上行子带的PRB数量;BINT为所述符号组的激活 下行BWP的PRB数量。
作为另一个可选实施例,所述终端根据高层指示的频域指示粒度,确定各个符号组包括的物理资源块PRB集合,包括:
针对每个符号组,若没有PRB子集与一个上行子带完全重叠,所述终端将所述符号组的激活下行带宽部分BWP分为M个PRB集合;
其中,前个PRB组包含:个PRB;剩余的 个PRB组包含:个PRB;
其中,M为所述频域指示粒度;,BINT为所述符号组的激活下行BWP的PRB数量。
在所述下行INT为14比特的位图,所述第二符号集包括7个符号组的情况下,M等于2,第一个PRB集合包括:所述符号组的前个PRB,第二个PRB集合包括:所述符号组的后个PRB;
其中,BINT为所述符号组的激活下行BWP的PRB数量。
其中,用于指示该符号组的2个PRB集合的1个比特对中,第一个比特指示第一个PRB集合,第二个比特指示第二个PRB集合。
可选地,支持全双工操作的UE与其他UE可以被划分为不同的组。网络可以指示一个INT只作用于包含DL子带的UL符号,或者作用于包含UL子带的DL符号,或者作用于不包含UL子带的DL符号;在此不做具体限定。
综上,在本申请实施例中,针对全双工场景,提供新的下行INT的指示方法,从而使得下行INT的时频资源指示能够适用于全双工场景,提升下行INT的指示精度。
如图5所示,本申请实施例还提供一种中断传输指示方法,包括:
步骤501,网络侧设备确定下行中断传输指示INT作用的第二符号集;其中,所述第二符号集是将第一符号集中不包含下行子带的上行符号排除后得到的;
可选地,网络侧设备将第一符号集中不包含下行子带的上行符号排除,得到下行中断传输指示INT作用的第二符号集;其中,所述第二符号集中不排除包含下行子带的上行符号;
步骤502,所述网络侧设备根据预设时频域指示粒度,将所述第二符号集划分为多个符号组中各个符号组包括的物理资源块PRB集合;
步骤503,所述网络侧设备根据各个符号组上的PRB集合对应的下行传输需要是否被中断,生成并发送下行INT。
换言之,本申请实施例中,对于下行INT作用的第二符号集(相当于时频资源)的确定,对于小区级上下行配置(TDD-UL-DL-ConfigurationCommon)信令指示为上行符号,但是半静态信令A指示该上行符号包含下行子带(即DL子带),则网络侧设备不排除这种上行符号,但网络侧设备需排除不包含DL子带的上行符号。
可选地,全双工场景中,对于小区级上下行配置(TDD-UL-DL-ConfigurationCommon)信令指示为下行符号,半静态信令B可以指示该下行符号包含上行子带(即UL子带)。 其中,半静态信令A和半静态信令B可以是不同的信令,也可以是同一个信令。例如,xdd-UL-DL-ConfigurationCommon是网络为full dulex(全双工)操作UE配置的半静态信令,指示一个UL符号集或时隙内哪些子带用作DL以及一个DL符号集或时隙内哪些子带用作UL。不失一般性地,该半静态信令不限制为组公共信令或动态信令。
在本申请的一个可选实施例中,步骤502包括:
网络侧设备根据高层指示的时域指示粒度,确定所述第二符号集包括的多个符号组;
网络侧设备根据高层指示的频域指示粒度,确定各个符号组包括的物理资源块PRB集合。
可选地,所述第二符号集包括的多个符号组的划分如下:
前面个符号组包含个符号;
剩余的个符号组包含个符号;
其中,N表示时域指示粒度,TINT表示第二符号集包含的符号数量;表示向下取整;表示向上取整。
作为一个可选实施例,所述网络侧设备根据高层指示的频域指示粒度,确定各个符号组包括的物理资源块PRB集合,包括:
针对每个符号组,若一个PRB子集与一个上行子带完全重叠,所述网络侧设备在排除所述PRB子集后得到有效频域区域,将所述符号组的有效频域区域分为M个PRB集合;
其中,前个PRB组包含:个PRB;剩余的个PRB组包含:个PRB;
其中,M为所述频域指示粒度;BINT_DLsubband为所述符号组的有效频域区域的PRB数量。
在本申请的一个可选实施例中,所述下行INT包括14比特的位图;相应的:
所述网络侧设备根据预设时频域指示粒度,将所述第二符号集划分为14个符号组,每个符号组包括1个PRB集合;其中,所述14比特的位图分别指示14个符号组;即高层指示的时域指示粒度为14,频域指示粒度为1。频域指示粒度为1可理解为频域只能指示1个PRB集合,如果没配置全双工操作,那么这个PRB集合的大小等于DL BWP带宽。
可选地,14个符号组的划分如下:
前面个符号组包含个符号;
后面个符号组包含符号;
其中,NINT表示第二符号集包括的符号数量;表示向下取整;表示向上取整。
在本申请的另一个可选实施例中,所述下行INT包括14比特的位图;相应的,步骤502包括:
所述网络侧设备根据预设时频域指示粒度,将所述第二符号集划分为7个符号组,每个符号组包括2个PRB集合;其中,所述14比特的位图分为7个比特对,1个比特对用于指示1个符号组的2个PRB集合;即高层指示的时域指示粒度为7,频域指示粒度为2。频域指示粒度为2可理解为频域可以指示2个PRB集合,如果没配置全双工,那么DL BWP带宽将被分为2个PRB集合。
可选地,7个符号组的划分如下:
前面个符号组包含个符号;
后面个符号组包含个符号;
其中,NINT表示第二符号集包括的符号数量;表示向下取整;表示向上取整。
在本申请的至少一个实施例中,在第二符号集被划分为7个符号组的情况下,为了实现更精细的频域资源指示,针对每个符号组,若一个PRB子集与一个上行子带完全重叠,所述网络侧设备在排除所述PRB子集后得到有效频域区域,将所述符号组的有效频域区域分为2个PRB集合;
其中,第一个PRB集合包括:所述符号组的前个物理资源块PRB,第二个PRB集合包括:所述符号组的后个PRB;BINT_DLsubband为所述符号组的有效频域区域的PRB数量。
可选地,该PRB子集中跨符号组的所有符号均与一个上行子带完全重叠的情况下,该PRB子集被排除。BINT_DLsubband也可以理解为该符号组内DL子带内的PRB数量。
其中,用于指示该符号组的2个PRB集合的1个比特对中,第一个比特指示第一个PRB集合,第二个比特指示第二个PRB集合。
可选地,所述符号组的有效频域区域的PRB数量BINT_DLsubband等于BINT减去BINT_UL subband
其中,BINT_UL subband为所述符号组的上行子带的PRB数量;BINT为所述符号组的激活下行BWP的PRB数量。
作为另一个可选实施例,所述网络侧设备根据高层指示的频域指示粒度,确定各个符号组包括的物理资源块PRB集合,包括:
针对每个符号组,若没有PRB子集与一个上行子带完全重叠,所述网络侧设备将所述符号组的激活下行带宽部分BWP分为M个PRB集合;
其中,前个PRB组包含:个PRB;剩余的 个PRB组包含:个PRB;
其中,M为所述频域指示粒度;,BINT为所述符号组的激活下行BWP的PRB数量。
在所述下行INT为14比特的位图,所述第二符号集包括7个符号组的情况下,M等于2,第一个PRB集合包括:所述符号组的前个PRB,第二个PRB集合包括:所述符号组的后个PRB;
其中,BINT为所述符号组的激活下行BWP的PRB数量。
其中,用于指示该符号组的2个PRB集合的1个比特对中,第一个比特指示第一个PRB集合,第二个比特指示第二个PRB集合。
综上,在本申请实施例中,针对全双工场景,提供新的下行INT的指示方法,从而使得下行INT的时频资源指示能够适用于全双工场景,提升下行INT的指示精度。
为了更清楚的描述本申请实施例提供的全双工场景下的中断传输指示方法,下面结合一个示例进行说明。
示例1
如图6所示为全双工中INT指示的例子。相应于一个子载波间隔SCS u,对于时隙n(slot n),网络配置为DL slot,对于时隙n+1(slot n+1),网络配置为UL slot,例如由TDD-UL-DL-ConfigurationCommon信令配置。
进一步地,网络在slot n上配置有UL子带,在slot n+1上配置有DL子带。对于网络配置的DL slot上的UL子带,在使用INT指示的时候,可以把DL slot的UL子带的PRB排除。在网络配置的UL slot的DL子带,应该包含在INT指示中,即这部分符号不应该排除。
如图7所示,下图给出一个full duplex场景INT操作的示例,在网络通过配置参数TDD-UL-DL-ConfigurationCommon在两个slot的时分双工TDD配置都是13个DL符号1个UL符号。在slot n上DL符号上配置有UL子带,在slot n和slot n+1上的UL符号配置有DL子带。
由于UL符号中包含DL子带,此时UL符号不应该在符号分组时被排除。
对于PRB确定,对于某一个符号组,完全落在UL子带的PRB可以被排除,因为这些PRB不会被INT指示取消。这样可以是指示的粒度更精细,实际上,是一种每符号组确定指示粒度。
例如,INT作用的符号组,当timeFrequencySet设置为'set1'时,假设28个符号分为7个符号组,每组包含4个符号。
对于第1个符号组,第2个符号组,第3个符号组由于配置有UL子带,其4个符号上PRB子集与UL子带Bint_UL subband 1完全重叠,这些用作UL传输的PRB不会被INT指示取消,此时,在计算一个bit pair(bit对)包含的PRB时应该排除这些PRB,即用有效DL子带的PRB,即Bint_DL subband 1,而不是整个激活DL BWP的PRB。
第一个bit指示前(first)个PRB(即第一个PRB集合);
第二个bit指示最后的(last)个PRB(即第二个PRB集合)。
对于第5个符号组和第6个符号组,应该使用整个激活DL BWP的PRB,即BINT
第一个bit指示前(first)PRB(即第一个PRB集合);
第二个bit指示最后的(last)PRB(即第二个PRB集合)。
对于第4个符号组和第7符号组,既包括UL符号的DL子带,也包括DL符号的UL子带。即符号组的PRB跨不同的DL和/或UL子带,该符号组内的没有PRB子集完全落 在UL子带内。应该使用整个激活DL BWP的PRB。
第一个bit指示前个PRB(即第一个PRB集合);
第二个bit指示最后的个PRB(即第二个PRB集合)。
如果之前被调度的终端的分配的资源落在下行INT作用的时频区域内,终端将排除这部分时频资源再进行数据信道的译码。
如图8所示,本申请实施例还提供一种取消指示方法,包括:
步骤801,终端接收上行取消指示CI;
步骤802,所述终端根据时频域指示粒度,确定上行取消指示CI作用第四符号集包括的多个符号组中各个符号组包括的物理资源块PRB集合;其中,所述第四符号集是将第三符号集中不包含上行子带的下行符号排除后得到的;
可选地,所述终端将第三符号集中不包含上行子带的下行符号排除,得到上行取消指示CI作用的第四符号集,其中,所述第三符号集为网络指示的;所述第四符号集中不排除包含上行子带的下行符号;
步骤803,所述终端根据所述上行CI的指示,确定各个符号组上的PRB集合对应的上行传输是否被取消。
换言之,本申请实施例中,对于上行CI作用的第四符号集(相当于时频资源)的确定,对于小区级上下行配置(TDD-UL-DL-ConfigurationCommon)信令指示为下行符号,但半静态信令指示该下行符号包含上行子带(即UL子带),则终端不排除这种下行符号,但终端需排除不包含UL子带的下行符号。
可选地,上行CI作用的频域区域BCI由无线资源控制RRC配置。
可选地,上行CI作用的时域区域(即第四符号集)由RRC配置,排除接收DL符号和/或SSB的符号。如果半静态信令指示在DL符号包括UL子带,这些DL符号并不排除。网络可以配置是否排除包含的UL子带的SSB的符号。
可选地,上行CI作用的时域指示粒度GCI由RRC配置。
可选地,上行CI作用的频域指示粒度NBI是根据上行CI的比特数NCI和时域指示粒度GCI计算得到的。
在本申请的至少一个实施例中,步骤803包括:
所述终端根据高层配置的时域指示粒度,确定所述第四符号集包括的多个符号组;
所述终端根据所述时域指示粒度以及上行CI的比特数,确定频域资源粒度;
所述终端根据所述频域指示粒度,确定各个符号组包括的物理资源块PRB集合。
可选地,所述第四符号集包括的多个符号组的划分如下:
前面个符号组包含个符号;
剩余的个符号组包含个符号;
其中,GCI表示时域指示粒度,TCI表示第四符号集包含的符号数量;表示向下取整;表示向上取整。
作为一个可选实施例,所述方法还包括:
所述终端接收网络侧设备发送的配置信息,所述配置信息用于指示第四符号集中是否排除包含上行子带的接收同步信号或物理广播信道块SSB的符号。
若网络配置排除包含上行子带的接收SSB的符号,则步骤802包括:所述终端将第三符号集中不包含上行子带的下行符号以及接收SSB的符号(无论是否包含上行子带)排除,得到上行CI作用的第四符号集;
若网络配置不排除包含上行子带的接收SSB的符号,则步骤802包括:所述终端将第三符号集中不包含上行子带的下行符号以及不包含上行子带的接收SSB的符号排除,得到上行CI作用的第四符号集。
换言之,如果SSB符号配置UL子带,在确定CI作用的时域区域TCI的符号数时,网络可以配置是否排除该SSB符号。
作为一个可选实施例,所述终端根据所述频域指示粒度,确定各个符号组包括的物理资源块PRB集合,包括:
针对每个符号组,若一个PRB子集与一个下行子带完全重叠,所述终端在排除所述PRB子集后得到有效频域区域,将所述符号组的有效频域区域分为NBI个频域组;
其中,前个PRB组包含:个PRB;剩余的个PRB组组包含:个PRB;
其中,NBI为所述频域指示粒度;BCI_UL subband为所述符号组的有效频域区域的PRB数量。
不失一般性地,如果网络配置了频域范围内有多个UL子带,BCI_UL subband则为多个上行子带的带宽的和。
可选地,该PRB子集中跨符号组的所有符号均与一个下行子带完全重叠的情况下,该PRB子集被排除。
作为另一个可选实施例,所述终端根据所述频域指示粒度,确定各个符号组包括的物理资源块PRB集合,包括:
针对每个符号组,若没有PRB子集与一个下行子带完全重叠,所述终端将高层指示的上行CI作用的频域区域分为NBI个PRB组;
其中,前个PRB组包含:个PRB;剩余的 个PRB组包含:个PRB;
其中,NBI为所述频域指示粒度,BCI为高层指示的上行CI作用的频域区域的PRB数量。
换言之,对于一个确定的符号组(包括对于TDD-UL-DL-ConfigurationCommon信令指示为上行符号,但是半静态信令C指示该符号包含DL子带,或者对于TDD-UL-DL-ConfigurationCommon信令指示为下行符号,但是半静态信令D指示该符号包含UL子 带),如果一个PRB子集(跨该符号组的所有符号)与一个DL子带重叠,这个PRB子集被排除。否则,如果对于该符号组,没有PRB子集(跨该符号组的所有符号)与一个DL子带完全重叠,不排除该符号组的PRB子集,即根据BCI计算频域PRB组。
需要说明的是,半静态信令C和D可以是不同的信令,也可以是同一个信令;例如xdd-UL-DL-ConfigurationCommon是网络为全双工操作UE配置的半静态信令,指示一个UL符号集或时隙内哪些子带用作DL以及一个DL符号集或时隙内哪些子带用作UL。不失一般性地,上述半静态信令不限制为组公共信令或动态信令。
可选地,网络可以指示一个CI只作用于包含DL子带的UL符号,或者作用于包含UL子带的DL符号,或者作用于不包含DL子带的UL符号;在此不做具体限定。
综上,在本申请实施例中,针对全双工场景,提供新的上行CI的指示方法,从而使得上行CI的时频资源指示能够适用于全双工场景,提升上行CI的指示精度。
如图9所示,本申请实施例还提供一种取消指示方法,包括:
步骤901,网络侧设备确定上行取消指示CI作用的第四符号集,其中,所述第四符号集是将第三符号集中不包含上行子带的下行符号排除后得到的;
步骤902,所述网络侧设备根据时频域指示粒度,将所述第四符号集划分为多个符号组中各个符号组包括的物理资源块PRB集合;
步骤903,所述网络侧设备根据各个符号组上的PRB集合对应的上行传输是否需要被取消,生成并发送上行CI。
换言之,本申请实施例中,对于上行CI作用的第四符号集(相当于时频资源)的确定,对于小区级上下行配置(TDD-UL-DL-ConfigurationCommon)信令指示为下行符号,但半静态信令指示该下行符号包含上行子带(即UL子带),则网络侧设备不排除这种下行符号,但网络侧设备需排除不包含UL子带的下行符号。
可选地,上行CI作用的频域区域BCI由无线资源控制RRC配置。
可选地,上行CI作用的时域区域(即第四符号集)由RRC配置,排除接收DL符号和/或SSB的符号。如果半静态信令指示在DL符号包括UL子带,这些DL符号并不排除。网络可以配置是否排除包含的UL子带的SSB的符号。
可选地,上行CI作用的时域指示粒度GCI由RRC配置。
可选地,上行CI作用的频域指示粒度NBI是根据上行CI的比特数NCI和时域指示粒度GCI计算得到的。
在本申请的至少一个实施例中,步骤902包括:
所述网络侧设备根据时域指示粒度,将所述第四符号集划分为多个符号组;
所述网络侧设备根据所述时域指示粒度以及上行CI的比特数,确定频域资源粒度;
所述网络侧设备根据所述频域指示粒度,确定各个符号组包括的物理资源块PRB集合。
可选地,所述第四符号集包括的多个符号组的划分如下:
前面个符号组包含个符号;
剩余的个符号组包含个符号;
其中,GCI表示时域指示粒度,TCI表示第四符号集包含的符号数量;表示向下取整;表示向上取整。
作为一个可选实施例,所述方法还包括:
所述网络侧设备向终端发送配置信息,所述配置信息用于指示第四符号集中是否排除包含上行子带的接收同步信号或物理广播信道块SSB的符号。
若网络配置排除包含上行子带的接收SSB的符号,则步骤802包括:所述终端将第三符号集中不包含上行子带的下行符号以及接收SSB的符号(无论是否包含上行子带)排除,得到上行CI作用的第四符号集;
若网络配置不排除包含上行子带的接收SSB的符号,则步骤802包括:所述终端将第三符号集中不包含上行子带的下行符号以及不包含上行子带的接收SSB的符号排除,得到上行CI作用的第四符号集。
换言之,如果SSB符号配置UL子带,在确定CI作用的时域区域TCI的符号数时,网络可以配置是否排除该SSB符号。
作为一个可选实施例,所述网络侧设备根据所述频域指示粒度,确定各个符号组包括的物理资源块PRB集合,包括:
针对每个符号组,若一个PRB子集与一个下行子带完全重叠,所述网络侧设备在排除所述PRB子集后得到有效频域区域,将所述符号组的有效频域区域分为NBI个频域组;
其中,前个PRB组包含:个PRB;剩余的个PRB组组包含:个PRB;
其中,NBI为所述频域指示粒度;BCI_UL subband为所述符号组的有效频域区域的PRB数量。
可选地,该PRB子集中跨符号组的所有符号均与一个下行子带完全重叠的情况下,该PRB子集被排除。
作为另一个可选实施例,所述网络侧设备根据所述频域指示粒度,确定各个符号组包括的物理资源块PRB集合,包括:
针对每个符号组,若没有PRB子集与一个下行子带完全重叠,所述网络侧设备将高层指示的上行CI作用的频域区域分为NBI个PRB组;
其中,前个PRB组包含:个PRB;剩余的 个PRB组包含:个PRB;
其中,NBI为所述频域指示粒度,BCI为高层指示的上行CI作用的频域区域的PRB数量。
换言之,对于一个确定的符号组(包括对于TDD-UL-DL-ConfigurationCommon信令指 示为上行符号,但是半静态信令C指示该符号包含DL子带,或者对于TDD-UL-DL-ConfigurationCommon信令指示为下行符号,但是半静态信令D指示该符号包含UL子带),如果一个PRB子集(跨该符号组的所有符号)与一个DL子带重叠,这个PRB子集被排除。否则,如果对于该符号组,没有PRB子集(跨该符号组的所有符号)与一个DL子带完全重叠,不排除该符号组的PRB子集,即根据BCI计算频域PRB组。
需要说明的是,半静态信令C和D可以是不同的信令,也可以是同一个信令;例如xdd-UL-DL-ConfigurationCommon是网络为全双工操作UE配置的半静态信令,指示一个UL符号集或时隙内哪些子带用作DL以及一个DL符号集或时隙内哪些子带用作UL。不失一般性地,上述半静态信令不限制为组公共信令或动态信令。
可选地,网络可以指示一个CI只作用于包含DL子带的UL符号,或者作用于包含UL子带的DL符号,或者作用于不包含DL子带的UL符号;在此不做具体限定。
综上,在本申请实施例中,针对全双工场景,提供新的上行CI的指示方法,从而使得上行CI的时频资源指示能够适用于全双工场景,提升上行CI的指示精度。
如果之前被调度的终端的分配的资源落在上行CI指示的时频区域内,终端将取消之前被调度的传输。
为了更清楚的描述本申请实施例提供的全双工场景下的取消指示方法,下面结合一个示例进行说明。
示例2
如图10所示为全双工中CI指示的例子。相应于一个SCS u,对于slot n,网络配置为DL slot,对于slot n+1,网络配置为UL slot,例如由TDD-UL-DL-ConfigurationCommon信令配置。
进一步地,网络在slot n上配置有UL子带,在slot n+1上配置有DL子带。对于网络配置的DL slot上的UL子带,在使用CI指示的时候,可以把UL slot的DL子带的PRB排除。在网络配置的DL slot的UL子带,应该包含在CI指示中,即这部分符号不应该排除。
图11给出一个全双工的示例,在网络通过配置参数TDD-UL-DL-ConfigurationCommon配置两个slot的UL-DL配比,第1个slot是7个DL符号,7个UL符号。在第二个slot,2个DL符号,12个UL符号。
在slot n上DL符号上配置有UL子带。由于DL符号中包含UL子带,此时DL符号不应该在符号分组时被排除。
由于slot n+1有2个DL符号,这些符号应该在符号分组时被排除。因此参与分组的符号数为26个。前面2组每组6个符号,后面2组每组7个符号。
对于PRB确定,对于某一个符号组,完全落在DL子带的PRB可以被排除。因为这些PRB不会被CI指示取消,如slot n中前面6个符号的DL子带。同样地,对于UL符号中包含DL子带,如果对于一个符号组,这些PRB与UL子带完全重叠,这些PRB应 该被排除。这样可以提高指示的精度,实际上,是一种每符号组确定指示粒度。
例如CI作用的时域区域包含26个符号(slot n+1的两个DL符号被排除,包含UL子带的DL符号没有被排除。),分为4个符号组。
第1个符号组可以使用有效的频域区域的PRB,即B_CI_UL subband 1;
频域指示粒度N_BI是根据N_CI和G_CI计算得到;
前面个符号组包含个PRB;
剩余的个符号组包含个PRB。
第2个符号组和第3个符号组具有不同的方向的子带,没有PRB子集(跨所有符号)完全落在DL子带上,因此频域指示粒度计算使用频域区域BCI的PRB数计算。
第4个符号组的频域指示粒度计算使用频域区域BCI的PRB数计算。
本申请实施例提供的中断传输指示方法或取消指示方法,执行主体可以为中断传输指示装置或取消指示装置。本申请实施例中以中断传输指示装置或取消指示装置执行中断传输指示方法或取消指示方法为例,说明本申请实施例提供的中断传输指示装置或取消指示装置。
如图12所示,本申请实施例还提供一种中断传输指示装置1200,包括:
第一接收模块1201,用于接收到下行中断传输指示INT;
第一确定模块1202,用于根据高层指示的时频域指示粒度,确定下行INT作用的第二符号集包括的多个符号组中各个符号组包括的物理资源块PRB集合;其中,所述第二符号集是将第一符号集中不包含下行子带的上行符号排除后得到的;
第二确定模块1203,用于根据所述下行INT的指示,确定各个符号组上的PRB集合对应的下行传输是否被中断。
作为一个可选实施例,所述第一确定模块进一步用于:
根据高层指示的时域指示粒度,确定所述第二符号集包括的多个符号组;
根据高层指示的频域指示粒度,确定各个符号组包括的物理资源块PRB集合。
作为一个可选实施例,所述第一确定模块进一步用于:
针对每个符号组,若一个PRB子集与一个上行子带完全重叠,在排除所述PRB子集后得到有效频域区域,将所述符号组的有效频域区域分为M个PRB集合;
其中,前个PRB组包含:个PRB;剩余的个PRB组包含:个PRB;
其中,M为所述频域指示粒度;BINT_DLsubband为所述符号组的有效频域区域的PRB数量。
作为一个可选实施例,在所述下行INT为14比特的位图,所述第二符号集包括7个符号组的情况下,M等于2,
第一个PRB集合包括:所述符号组的前个物理资源块PRB;
第二个PRB集合包括:所述符号组的后个PRB。
作为一个可选实施例,所述第一确定模块进一步用于:
针对每个符号组,若没有PRB子集与一个上行子带完全重叠,将所述符号组的激活下行带宽部分BWP分为M个PRB集合;
其中,前个PRB组包含:个PRB;剩余的 个PRB组包含:个PRB;
其中,M为所述频域指示粒度;,BINT为所述符号组的激活下行BWP的PRB数量。
作为一个可选实施例,在所述下行INT为14比特的位图,所述第二符号集包括7个符号组的情况下,M等于2,
第一个PRB集合包括:所述符号组的前个PRB;
第二个PRB集合包括:所述符号组的后个PRB。
作为一个可选实施例,所述符号组的有效频域区域的PRB数量BINT_DLsubband等于BINT减去BINT_UL subband
其中,BINT_UL subband为所述符号组的上行子带的PRB数量;BINT为所述符号组的激活下行BWP的PRB数量。
在本申请实施例中,针对全双工场景,提供新的下行INT的指示方法,从而使得下行INT的时频资源指示能够适用于全双工场景,提升下行INT的指示精度。
需要说明的是,本申请实施例提供的中断传输指示装置是能够执行上述中断传输指示方法的装置,则上述中断传输指示方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
如图13所示,本发明实施例还提供一种中断传输指示装置1300,包括:
第三确定模块1301,用于确定下行中断传输指示INT作用的第二符号集;其中,所述第二符号集是将第一符号集中不包含下行子带的上行符号排除后得到的;
第一划分模块1302,用于根据预设时频域指示粒度,将所述第二符号集划分为多个符号组中各个符号组包括的物理资源块PRB集合;
第一生成发送模块1303,用于根据各个符号组上的PRB集合对应的下行传输需要是否被中断,生成并发送下行INT。
作为一个可选实施例,所述第三确定模块进一步用于:
根据高层指示的时域指示粒度,确定所述第二符号集包括的多个符号组;
根据高层指示的频域指示粒度,确定各个符号组包括的物理资源块PRB集合。
作为一个可选实施例,所述第三确定模块进一步用于:
针对每个符号组,若一个PRB子集与一个上行子带完全重叠,在排除所述PRB子集后得到有效频域区域,将所述符号组的有效频域区域分为M个PRB集合;
其中,前个PRB组包含: 个PRB;剩余的个PRB组包含:个PRB;
其中,M为所述频域指示粒度;BINT_DLsubband为所述符号组的有效频域区域的PRB数量。
作为一个可选实施例,在所述下行INT为14比特的位图,所述第二符号集包括7个符号组的情况下,M等于2,
第一个PRB集合包括:所述符号组的前个物理资源块PRB;
第二个PRB集合包括:所述符号组的后个PRB。
作为一个可选实施例,所述第三确定模块进一步用于:
针对每个符号组,若没有PRB子集与一个上行子带完全重叠,将所述符号组的激活下行带宽部分BWP分为M个PRB集合;
其中,前个PRB组包含:个PRB;剩余的 个PRB组包含:个PRB;
其中,M为所述频域指示粒度;,BINT为所述符号组的激活下行BWP的PRB数量。
作为一个可选实施例,在所述下行INT为14比特的位图,所述第二符号集包括7个符号组的情况下,M等于2,
第一个PRB集合包括:所述符号组的前个PRB;
第二个PRB集合包括:所述符号组的后个PRB。
作为一个可选实施例,所述符号组的有效频域区域的PRB数量BINT_DLsubband等于BINT减去BINT_UL subband
其中,BINT_UL subband为所述符号组的上行子带的PRB数量;BINT为所述符号组的激活下行BWP的PRB数量。
在本申请实施例中,针对全双工场景,提供新的下行INT的指示方法,从而使得下行INT的时频资源指示能够适用于全双工场景,提升下行INT的指示精度。
需要说明的是,本申请实施例提供的中断传输指示装置是能够执行上述中断传输指示方法的装置,则上述中断传输指示方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
如图14所示,本发明实施例还提供一种取消指示装置1400,包括:
第二接收模块1401,用于接收上行取消指示CI;
第四确定模块1402,用于根据时频域指示粒度,确定上行取消指示CI作用第四符号集包括的多个符号组中各个符号组包括的物理资源块PRB集合;其中,所述第四符号集是将第三符号集中不包含上行子带的下行符号排除后得到的;
第五确定模块1403,用于根据所述上行CI的指示,确定各个符号组上的PRB集合对应的上行传输是否被取消。
作为一个可选实施例,所述第四确定模块进一步用于:
根据高层配置的时域指示粒度,确定所述第四符号集包括的多个符号组;
根据所述时域指示粒度以及上行CI的比特数,确定频域资源粒度;
根据所述频域指示粒度,确定各个符号组包括的物理资源块PRB集合。
作为一个可选实施例,所述装置还包括:
第八接收模块,用于接收网络侧设备发送的配置信息,所述配置信息用于指示第四符号集中是否排除包含上行子带的接收同步信号或物理广播信道块SSB的符号。
作为一个可选实施例,第四确定模块进一步用于:
针对每个符号组,若一个PRB子集与一个下行子带完全重叠,在排除所述PRB子集后得到有效频域区域,将所述符号组的有效频域区域分为NBI个频域组;
其中,前个PRB组包含:个PRB;剩余的个PRB组组包含:个PRB;
其中,NBI为所述频域指示粒度;BCI_UL subband为所述符号组的有效频域区域的PRB数量。
作为一个可选实施例,第四确定模块进一步用于:
针对每个符号组,若没有PRB子集与一个下行子带完全重叠,将高层指示的上行CI作用的频域区域分为NBI个PRB组;
其中,前个PRB组包含:个PRB;剩余的 个PRB组包含:个PRB;
其中,NBI为所述频域指示粒度,BCI为高层指示的上行CI作用的频域区域的PRB数量。
在本申请实施例中,针对全双工场景,提供新的上行CI的指示方法,从而使得上行CI的时频资源指示能够适用于全双工场景,提升上行CI的指示精度。
需要说明的是,本申请实施例提供的取消指示装置是能够执行上述取消指示方法的装置,则上述取消指示方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
如图15所示,本申请实施例还提供一种取消指示装置1500,包括:
第六确定模块1501,用于确定上行取消指示CI作用的第四符号集,其中,所述第四符号集是将第三符号集中不包含上行子带的下行符号排除后得到的;
第二划分模块1502,用于根据时频域指示粒度,将所述第四符号集划分为多个符号组中各个符号组包括的物理资源块PRB集合;
第二生成发送模块1503,用于根据各个符号组上的PRB集合对应的上行传输是否需要被取消,生成并发送上行CI。
作为一个可选实施例,所述第二划分模块进一步用于:
根据时域指示粒度,将所述第四符号集划分为多个符号组;
根据所述时域指示粒度以及上行CI的比特数,确定频域资源粒度;
根据所述频域指示粒度,确定各个符号组包括的物理资源块PRB集合。
作为一个可选实施例,所述装置还包括:
第八发送模块,用于向终端发送配置信息,所述配置信息用于指示第四符号集中是否排除包含上行子带的接收同步信号或物理广播信道块SSB的符号。
作为一个可选实施例,所述第二划分模块进一步用于:
针对每个符号组,若一个PRB子集与一个下行子带完全重叠,在排除所述PRB子集后得到有效频域区域,将所述符号组的有效频域区域分为NBI个频域组;
其中,前个PRB组包含:个PRB;剩余的个PRB组组包含:个PRB;
其中,NBI为所述频域指示粒度;BCI_UL subband为所述符号组的有效频域区域的PRB数量。
作为一个可选实施例,所述第二划分模块进一步用于:
针对每个符号组,若没有PRB子集与一个下行子带完全重叠,将高层指示的上行CI作用的频域区域分为NBI个PRB组;
其中,前个PRB组包含:个PRB;剩余的 个PRB组包含:个PRB;
其中,NBI为所述频域指示粒度,BCI为高层指示的上行CI作用的频域区域的PRB数量。
在本申请实施例中,针对全双工场景,提供新的上行CI的指示方法,从而使得上行CI的时频资源指示能够适用于全双工场景,提升上行CI的指示精度。
需要说明的是,本申请实施例提供的取消指示装置是能够执行上述取消指示方法的装置,则上述取消指示方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
本申请实施例中的中断传输指示装置或取消指示装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的中断传输指示装置或取消指示装置能够实现图1至图11的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图16所示,本申请实施例还提供一种通信设备1600,包括处理器1601和存储器1602,存储器1602上存储有可在所述处理器1601上运行的程序或指令,例如,该通信设备1600为终端时,该程序或指令被处理器1601执行时实现上述中断传输指示方 法或取消指示方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1600为网络侧设备时,该程序或指令被处理器1601执行时实现上述中断传输指示方法或取消指示方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,其中,所述通信接口用于接收到下行中断传输指示INT;所述处理器用于根据高层指示的时频域指示粒度,确定下行INT作用的第二符号集包括的多个符号组中各个符号组包括的物理资源块PRB集合;其中,所述第二符号集是将第一符号集中不包含下行子带的上行符号排除后得到的;再根据所述下行INT的指示,确定各个符号组上的PRB集合对应的下行传输是否被中断;或者,所述通信接口用于接收上行取消指示CI;所述处理器用于根据时频域指示粒度,确定上行取消指示CI作用第四符号集包括的多个符号组中各个符号组包括的物理资源块PRB集合;其中,所述第四符号集是将第三符号集中不包含上行子带的下行符号排除后得到的;再根据所述上行CI的指示,确定各个符号组上的PRB集合对应的上行传输是否被取消。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图17为实现本申请实施例的一种终端的硬件结构示意图。
该终端1700包括但不限于:射频单元1701、网络模块1702、音频输出单元1703、输入单元1704、传感器1705、显示单元1706、用户输入单元1707、接口单元1708、存储器1709以及处理器1710等中的至少部分部件。
本领域技术人员可以理解,终端1700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图17中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1704可以包括图形处理单元(Graphics Processing Unit,GPU)17041和麦克风17042,图形处理器17041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1706可包括显示面板17061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板17061。用户输入单元1707包括触控面板17071以及其他输入设备17072中的至少一种。触控面板17071,也称为触摸屏。触控面板17071可包括触摸检测装置和触摸控制器两个部分。其他输入设备17072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1701接收来自网络侧设备的下行数据后,可以传输给处理器1710进行处理;另外,射频单元1701可以向网络侧设备发送上行数据。通常,射频单元1701包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1709可用于存储软件程序或指令以及各种数据。存储器1709可主要包括存储 程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1709可以包括易失性存储器或非易失性存储器,或者,存储器1709可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1709包括但不限于这些和任意其它适合类型的存储器。
处理器1710可包括一个或多个处理单元;可选的,处理器1710集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1710中。
其中,射频单元1701,用于接收到下行中断传输指示INT;
处理器1710,用于根据高层指示的时频域指示粒度,确定下行INT作用的第二符号集包括的多个符号组中各个符号组包括的物理资源块PRB集合;其中,所述第二符号集是将第一符号集中不包含下行子带的上行符号排除后得到的;根据所述下行INT的指示,确定各个符号组上的PRB集合对应的下行传输是否被中断。
在本申请实施例中,针对全双工场景,提供新的下行INT的指示方法,从而使得下行INT的时频资源指示能够适用于全双工场景,提升下行INT的指示精度。
需要说明的是,本申请实施例提供的终端是能够执行上述中断传输指示方法的终端,则上述中断传输指示方法的所有实施例均适用于该终端,且均能达到相同或相似的有益效果。
或者,射频单元1701,还用于接收上行取消指示CI;
处理器1710,还用于根据时频域指示粒度,确定上行取消指示CI作用第四符号集包括的多个符号组中各个符号组包括的物理资源块PRB集合;其中,所述第四符号集是将第三符号集中不包含上行子带的下行符号排除后得到的;根据所述上行CI的指示,确定各个符号组上的PRB集合对应的上行传输是否被取消。
在本申请实施例中,针对全双工场景,提供新的上行CI的指示方法,从而使得上行CI的时频资源指示能够适用于全双工场景,提升上行CI的指示精度。
需要说明的是,本申请实施例提供的终端是能够执行上述取消指示方法的终端,则上 述取消指示方法的所有实施例均适用于该终端,且均能达到相同或相似的有益效果。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,其中,所述处理器用于确定下行中断传输指示INT作用的第二符号集;其中,所述第二符号集是预先约定的第一符号集中不包含下行子带的上行符号被排除得到;再根据各个符号组上的PRB集合对应的下行传输需要是否被中断,生成下行INT;所述通信接口用于发送下行INT;或者,所述处理器用于确定上行取消指示CI作用的第四符号集,其中,所述第四符号集是预先约定的第三符号集中不包含上行子带的下行符号被排除得到;再根据各个符号组上的PRB集合对应的上行传输是否需要被取消,生成上行CI;所述通信接口用于发送上行CI。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图18所示,该网络侧设备1800包括:天线181、射频装置182、基带装置183、处理器184和存储器185。天线181与射频装置182连接。在上行方向上,射频装置182通过天线181接收信息,将接收的信息发送给基带装置183进行处理。在下行方向上,基带装置183对要发送的信息进行处理,并发送给射频装置182,射频装置182对收到的信息进行处理后经过天线181发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置183中实现,该基带装置183包括基带处理器。
基带装置183例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图18所示,其中一个芯片例如为基带处理器,通过总线接口与存储器185连接,以调用存储器185中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口186,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1800还包括:存储在存储器185上并可在处理器184上运行的指令或程序,处理器184调用存储器185中的指令或程序执行图13或图15所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述中断传输指示方法或取消指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述中断传输指示方法或取消指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片 上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述中断传输指示方法或取消指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的中断传输指示方法或取消指示方法的步骤,所述网络侧设备可用于执行如上所述的中断传输指示方法或取消指示方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (31)

  1. 一种中断传输指示方法,包括:
    终端接收到下行中断传输指示INT;
    所述终端根据高层指示的时频域指示粒度,确定下行INT作用的第二符号集包括的多个符号组中各个符号组包括的物理资源块PRB集合;其中,所述第二符号集是将第一符号集中不包含下行子带的上行符号排除后得到的;
    所述终端根据所述下行INT的指示,确定各个符号组上的PRB集合对应的下行传输是否被中断。
  2. 根据权利要求1所述的方法,其中,所述终端根据高层指示的时频域指示粒度,确定下行INT作用的第二符号集包括的多个符号组中各个符号组包括的物理资源块PRB集合,包括:
    所述终端根据高层指示的时域指示粒度,确定所述第二符号集包括的多个符号组;
    所述终端根据高层指示的频域指示粒度,确定各个符号组包括的物理资源块PRB集合。
  3. 根据权利要求2所述的方法,其中,所述终端根据高层指示的频域指示粒度,确定各个符号组包括的物理资源块PRB集合,包括:
    针对每个符号组,若一个PRB子集与一个上行子带完全重叠,所述终端在排除所述PRB子集后得到有效频域区域,将所述符号组的有效频域区域分为M个PRB集合;
    其中,前个PRB组包含:个PRB;剩余的个PRB组包含:个PRB;
    其中,M为所述频域指示粒度;BINT_DLsubband为所述符号组的有效频域区域的PRB数量。
  4. 根据权利要求3所述的方法,其中,在所述下行INT为14比特的位图,所述第二符号集包括7个符号组的情况下,M等于2,
    第一个PRB集合包括:所述符号组的前个物理资源块PRB;
    第二个PRB集合包括:所述符号组的后个PRB。
  5. 根据权利要求2所述的方法,其中,所述终端根据高层指示的频域指示粒度,确定各个符号组包括的物理资源块PRB集合,包括:
    针对每个符号组,若没有PRB子集与一个上行子带完全重叠,所述终端将所述符号组的激活下行带宽部分BWP分为M个PRB集合;
    其中,前个PRB组包含:个PRB;剩余的 个PRB组包含:个PRB;
    其中,M为所述频域指示粒度;,BINT为所述符号组的激活下行BWP的PRB数量。
  6. 根据权利要求5所述的方法,其中,在所述下行INT为14比特的位图,所述第二 符号集包括7个符号组的情况下,M等于2,
    第一个PRB集合包括:所述符号组的前个PRB;
    第二个PRB集合包括:所述符号组的后个PRB。
  7. 根据权利要求3或4所述的方法,其中,所述符号组的有效频域区域的PRB数量BINT_DLsubband等于BINT减去BINT_UL subband
    其中,BINT_UL subband为所述符号组的上行子带的PRB数量;BINT为所述符号组的激活下行BWP的PRB数量。
  8. 一种中断传输指示方法,包括:
    网络侧设备确定下行中断传输指示INT作用的第二符号集;其中,所述第二符号集是将第一符号集中不包含下行子带的上行符号排除后得到的;
    所述网络侧设备根据预设时频域指示粒度,将所述第二符号集划分为多个符号组中各个符号组包括的物理资源块PRB集合;
    所述网络侧设备根据各个符号组上的PRB集合对应的下行传输需要是否被中断,生成并发送下行INT。
  9. 根据权利要求8所述的方法,其中,所述网络侧设备根据预设时频域指示粒度,将所述第二符号集划分为多个符号组中各个符号组包括的物理资源块PRB集合,包括:
    所述网络侧设备根据高层指示的时域指示粒度,确定所述第二符号集包括的多个符号组;
    所述网络侧设备根据高层指示的频域指示粒度,确定各个符号组包括的物理资源块PRB集合。
  10. 根据权利要求9所述的方法,其中,所述网络侧设备根据高层指示的频域指示粒度,确定各个符号组包括的物理资源块PRB集合,包括:
    针对每个符号组,若一个PRB子集与一个上行子带完全重叠,所述网络侧设备在排除所述PRB子集后得到有效频域区域,将所述符号组的有效频域区域分为M个PRB集合;
    其中,前个PRB组包含:个PRB;剩余的个PRB组包含:个PRB;
    其中,M为所述频域指示粒度;BINT_DLsubband为所述符号组的有效频域区域的PRB数量。
  11. 根据权利要求10所述的方法,其中,在所述下行INT为14比特的位图,所述第二符号集包括7个符号组的情况下,M等于2,
    第一个PRB集合包括:所述符号组的前个物理资源块PRB;
    第二个PRB集合包括:所述符号组的后个PRB。
  12. 根据权利要求9所述的方法,其中,所述网络侧设备根据高层指示的频域指示粒 度,确定各个符号组包括的物理资源块PRB集合,包括:
    针对每个符号组,若没有PRB子集与一个上行子带完全重叠,所述网络侧设备将所述符号组的激活下行带宽部分BWP分为M个PRB集合;
    其中,前个PRB组包含:个PRB;剩余的 个PRB组包含:个PRB;
    其中,M为所述频域指示粒度;,BINT为所述符号组的激活下行BWP的PRB数量。
  13. 根据权利要求12所述的方法,其中,在所述下行INT为14比特的位图,所述第二符号集包括7个符号组的情况下,M等于2,
    第一个PRB集合包括:所述符号组的前个PRB;
    第二个PRB集合包括:所述符号组的后个PRB。
  14. 根据权利要求10或11所述的方法,其中,所述符号组的有效频域区域的PRB数量BINT_DLsubband等于BINT减去BINT_UL subband
    其中,BINT_UL subband为所述符号组的上行子带的PRB数量;BINT为所述符号组的激活下行BWP的PRB数量。
  15. 一种取消指示方法,包括:
    终端接收上行取消指示CI;
    所述终端根据时频域指示粒度,确定上行取消指示CI作用第四符号集包括的多个符号组中各个符号组包括的物理资源块PRB集合;其中,所述第四符号集是将第三符号集中不包含上行子带的下行符号排除后得到的;
    所述终端根据所述上行CI的指示,确定各个符号组上的PRB集合对应的上行传输是否被取消。
  16. 根据权利要求15所述的方法,其中,所述终端根据时频域指示粒度,确定所述第四符号集包括的多个符号组中各个符号组包括的物理资源块PRB集合,包括:
    所述终端根据高层配置的时域指示粒度,确定所述第四符号集包括的多个符号组;
    所述终端根据所述时域指示粒度以及上行CI的比特数,确定频域资源粒度;
    所述终端根据所述频域指示粒度,确定各个符号组包括的物理资源块PRB集合。
  17. 根据权利要求15所述的方法,其中,所述方法还包括:
    所述终端接收网络侧设备发送的配置信息,所述配置信息用于指示第四符号集中是否排除包含上行子带的接收同步信号或物理广播信道块SSB的符号。
  18. 根据权利要求16所述的方法,其中,所述终端根据所述频域指示粒度,确定各个符号组包括的物理资源块PRB集合,包括:
    针对每个符号组,若一个PRB子集与一个下行子带完全重叠,所述终端在排除所述PRB子集后得到有效频域区域,将所述符号组的有效频域区域分为NBI个频域组;
    其中,前个PRB组包含:个PRB;剩余的个PRB组包含: 个PRB;
    其中,NBI为所述频域指示粒度;BCI_UL subband为所述符号组的有效频域区域的PRB数量。
  19. 根据权利要求16所述的方法,其中,所述终端根据所述频域指示粒度,确定各个符号组包括的物理资源块PRB集合,包括:
    针对每个符号组,若没有PRB子集与一个下行子带完全重叠,所述终端将高层指示的上行CI作用的频域区域分为NBI个PRB组;
    其中,前个PRB组包含:个PRB;剩余的 个PRB组包含:个PRB;
    其中,NBI为所述频域指示粒度,BCI为高层指示的上行CI作用的频域区域的PRB数量。
  20. 一种取消指示方法,包括:
    网络侧设备确定上行取消指示CI作用的第四符号集,其中,所述第四符号集是将第三符号集中不包含上行子带的下行符号排除后得到的;
    所述网络侧设备根据时频域指示粒度,将所述第四符号集划分为多个符号组中各个符号组包括的物理资源块PRB集合;
    所述网络侧设备根据各个符号组上的PRB集合对应的上行传输是否需要被取消,生成并发送上行CI。
  21. 根据权利要求20所述的方法,其中,所述网络侧设备根据时频域指示粒度,将所述第四符号集划分为多个符号组中各个符号组包括的物理资源块PRB集合,包括:
    所述网络侧设备根据时域指示粒度,将所述第四符号集划分为多个符号组;
    所述网络侧设备根据所述时域指示粒度以及上行CI的比特数,确定频域资源粒度;
    所述网络侧设备根据所述频域指示粒度,确定各个符号组包括的物理资源块PRB集合。
  22. 根据权利要求20所述的方法,其中,所述方法还包括:
    所述网络侧设备向终端发送配置信息,所述配置信息用于指示第四符号集中是否排除包含上行子带的接收同步信号或物理广播信道块SSB的符号。
  23. 根据权利要求21所述的方法,其中,所述网络侧设备根据所述频域指示粒度,确定各个符号组包括的物理资源块PRB集合,包括:
    针对每个符号组,若一个PRB子集与一个下行子带完全重叠,所述网络侧设备在排除所述PRB子集后得到有效频域区域,将所述符号组的有效频域区域分为NBI个频域组;
    其中,前个PRB组包含:个PRB;剩余的个PRB组组包含:个PRB;
    其中,NBI为所述频域指示粒度;BCI_UL subband为所述符号组的有效频域区域的PRB数 量。
  24. 根据权利要求21所述的方法,其中,所述网络侧设备根据所述频域指示粒度,确定各个符号组包括的物理资源块PRB集合,包括:
    针对每个符号组,若没有PRB子集与一个下行子带完全重叠,所述网络侧设备将高层指示的上行CI作用的频域区域分为NBI个PRB组;
    其中,前个PRB组包含:个PRB;剩余的 个PRB组包含:个PRB;
    其中,NBI为所述频域指示粒度,BCI为高层指示的上行CI作用的频域区域的PRB数量。
  25. 一种中断传输指示装置,包括:
    第一接收模块,用于接收到下行中断传输指示INT;
    第一确定模块,用于根据高层指示的时频域指示粒度,确定下行INT作用的第二符号集包括的多个符号组中各个符号组包括的物理资源块PRB集合;其中,所述第二符号集是将第一符号集中不包含下行子带的上行符号排除后得到的;
    第二确定模块,用于根据所述下行INT的指示,确定各个符号组上的PRB集合对应的下行传输是否被中断。
  26. 一种中断传输指示装置,包括:
    第三确定模块,用于确定下行中断传输指示INT作用的第二符号集;其中,所述第二符号集是将第一符号集中不包含下行子带的上行符号排除后得到的;
    第一划分模块,用于根据预设时频域指示粒度,将所述第二符号集划分为多个符号组中各个符号组包括的物理资源块PRB集合;
    第一生成发送模块,用于根据各个符号组上的PRB集合对应的下行传输需要是否被中断,生成并发送下行INT。
  27. 一种取消指示装置,包括:
    第二接收模块,用于接收上行取消指示CI;
    第四确定模块,用于根据时频域指示粒度,确定上行取消指示CI作用第四符号集包括的多个符号组中各个符号组包括的物理资源块PRB集合;其中,所述第四符号集是将第三符号集中不包含上行子带的下行符号排除后得到的;
    第五确定模块,用于根据所述上行CI的指示,确定各个符号组上的PRB集合对应的上行传输是否被取消。
  28. 一种取消指示装置,包括:
    第六确定模块,用于确定上行取消指示CI作用的第四符号集,其中,所述第四符号集是将第三符号集中不包含上行子带的下行符号排除后得到的;
    第二划分模块,用于根据时频域指示粒度,将所述第四符号集划分为多个符号组中各个符号组包括的物理资源块PRB集合;
    第二生成发送模块,用于根据各个符号组上的PRB集合对应的上行传输是否需要被取消,生成并发送上行CI。
  29. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1至7任一项所述的中断传输指示方法的步骤,或实现如权利要求15至19任一项所述的取消指示方法的步骤。
  30. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求8至14任一项所述的中断传输指示方法的步骤,或实现如权利要求20至24任一项所述的取消指示方法的步骤。
  31. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至7任一项或8至14任一项所述的中断传输指示方法的步骤,或者实现如权利要求15至19任一项或20至24任一项所述的取消指示方法的步骤。
PCT/CN2023/111428 2022-08-11 2023-08-07 中断传输指示方法、取消指示方法、终端及网络侧设备 WO2024032539A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210964200.3 2022-08-11
CN202210964200.3A CN117676865A (zh) 2022-08-11 2022-08-11 中断传输指示方法、取消指示方法、终端及网络侧设备

Publications (1)

Publication Number Publication Date
WO2024032539A1 true WO2024032539A1 (zh) 2024-02-15

Family

ID=89850829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111428 WO2024032539A1 (zh) 2022-08-11 2023-08-07 中断传输指示方法、取消指示方法、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN117676865A (zh)
WO (1) WO2024032539A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518451A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 一种通信方法及装置
WO2022006001A1 (en) * 2020-06-29 2022-01-06 Qualcomm Incorporated Configuring flexible resources in a full-duplex symbol
WO2022017358A1 (zh) * 2020-07-22 2022-01-27 维沃移动通信有限公司 取消传输的方法、终端及网络侧设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518451A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 一种通信方法及装置
WO2022006001A1 (en) * 2020-06-29 2022-01-06 Qualcomm Incorporated Configuring flexible resources in a full-duplex symbol
WO2022017358A1 (zh) * 2020-07-22 2022-01-27 维沃移动通信有限公司 取消传输的方法、终端及网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Discussions on Subband Non-overlapping Full Duplex", 3GPP DRAFT; R1-2204800, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 30 April 2022 (2022-04-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052144061 *

Also Published As

Publication number Publication date
CN117676865A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN108521887A (zh) 传输同步广播块和rmsi的相关信息的方法及装置
US20240040595A1 (en) Method and Apparatus for Determining Sidelink Feedback Resource, Terminal, and Storage Medium
WO2023284796A1 (zh) Tci状态的指示方法、装置、终端和网络侧设备
WO2024032539A1 (zh) 中断传输指示方法、取消指示方法、终端及网络侧设备
WO2023216970A1 (zh) 信息上报方法、装置、通信设备及存储介质
WO2024027747A1 (zh) 数据传输处理方法、装置、终端及网络侧设备
WO2023051609A1 (zh) 下行控制信道监测方法、装置及通信设备
WO2022242557A1 (zh) 控制信道监测方法和设备
WO2023006026A1 (zh) 上行传输方法、装置及终端
WO2023134585A1 (zh) 下行传输方法、终端及网络侧设备
WO2023116675A1 (zh) 混合自动重传请求反馈处理方法、装置及终端
WO2023061344A1 (zh) 信号传输方法、装置和终端设备
WO2022237711A1 (zh) 预编码矩阵的指示方法、终端及网络侧设备
WO2023078296A1 (zh) 可用时隙的确定方法、装置及终端
WO2023143428A1 (zh) 信息传输方法、设备、终端及网络侧设备
WO2023125912A1 (zh) 上行传输的跳频、指示方法、装置、终端及网络侧设备
WO2023011532A1 (zh) 波束应用时间的确定方法、终端及网络侧设备
WO2024093895A1 (zh) 传输方法、装置、终端及可读存储介质
WO2022214059A1 (zh) 监听pdcch的方法、装置及终端
US20240023108A1 (en) Method and apparatus for determining pucch resource, and terminal
WO2024094015A1 (zh) 传输方法、ue及可读存储介质
WO2023040778A1 (zh) 传输方法和设备
WO2024094011A1 (zh) 通信方法、装置及终端
WO2023109759A1 (zh) Prach传输方法、装置及终端
EP4322673A1 (en) Transmission resource determining method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851760

Country of ref document: EP

Kind code of ref document: A1