WO2024027747A1 - 数据传输处理方法、装置、终端及网络侧设备 - Google Patents

数据传输处理方法、装置、终端及网络侧设备 Download PDF

Info

Publication number
WO2024027747A1
WO2024027747A1 PCT/CN2023/110692 CN2023110692W WO2024027747A1 WO 2024027747 A1 WO2024027747 A1 WO 2024027747A1 CN 2023110692 W CN2023110692 W CN 2023110692W WO 2024027747 A1 WO2024027747 A1 WO 2024027747A1
Authority
WO
WIPO (PCT)
Prior art keywords
time unit
time
terminal
sbfd
domain window
Prior art date
Application number
PCT/CN2023/110692
Other languages
English (en)
French (fr)
Inventor
姜蕾
王理惠
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024027747A1 publication Critical patent/WO2024027747A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a data transmission processing method, device, terminal and network side equipment.
  • SBFD subband full duplex
  • DMRS demodulation reference signal
  • Embodiments of the present application provide a data transmission processing method, device, terminal and network side equipment, which can solve the problem of reduced communication reliability when the terminal supports both SBFD and DMRS bundling capabilities.
  • the first aspect provides a data transmission processing method, including:
  • the terminal sends capability information to the network side device
  • the terminal performs the first behavior
  • Said first act includes any of the following:
  • the terminal does not expect the network side device to configure SBFD and DMRS binding at the same time;
  • At least two consecutive uplink time units include a first time unit and a second time unit, and the first uplink time unit of the first time unit and the second time unit are When the transmission parameters are different, the first time unit is regarded as an event that destroys power consistency and phase continuity, and the actual time domain window in the first nominal time domain window of the first transmission is determined;
  • the terminal does not expect to use DMRS bundling for at least two consecutive times.
  • the unit simultaneously includes the first time unit and the second time unit;
  • the first nominal time domain window includes the first time unit and the second time unit, the first time unit is a time unit configured with SBFD, and the second time unit is a time unit without SBFD configured. time unit, the first uplink transmission parameter includes at least one of power and spatial relationship.
  • the second aspect provides a data transmission processing method, including:
  • the network side device receives capability information from the terminal
  • the network side device sends the first configuration for configuring SBFD or the first configuration for configuring DMRS binding to the terminal. Defined second configuration.
  • a data transmission processing device including:
  • the first sending module is used to send capability information to the network side device
  • An execution module configured to perform the first behavior when the capability information includes the capability to support subband full-duplex SBFD and the capability to support demodulation reference signal DMRS binding;
  • Said first act includes any of the following:
  • the terminal does not expect the network side device to configure SBFD and DMRS binding at the same time;
  • the terminal is configured with SBFD and DMRS binding at the same time.
  • At least two consecutive uplink time units include a first time unit and a second time unit, and the first uplink transmission parameters of the first time unit and the second time unit are different.
  • treating the first time unit as an event that destroys power consistency and phase continuity, and determining the actual time domain window in the first nominal time domain window of the first transmission;
  • the terminal does not expect to use at least two consecutive time units of DMRS bundling at the same time. including the first time unit and the second time unit;
  • the first nominal time domain window includes the first time unit and the second time unit, the first time unit is a time unit configured with SBFD, and the second time unit is a time unit without SBFD configured. time unit, the first uplink transmission parameter includes at least one of power and spatial relationship.
  • a data transmission processing device including:
  • a receiving module used to receive capability information from the terminal
  • the second sending module is configured to send the first configuration for configuring SBFD to the terminal or for configuring when the capability information includes the capability to support subband full-duplex SBFD and the capability to support demodulation reference signal DMRS binding. Second configuration of DMRS binding.
  • a terminal in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to send capability information to a network side device; the processor is used to support subband full duplex when the capability information includes: When the SBFD capability and the demodulation reference signal DMRS binding capability are supported, the first behavior is performed; the first behavior includes the following Any item: the terminal does not expect the network side device to be configured with SBFD and DMRS binding at the same time; the terminal is configured with SBFD and DMRS binding at the same time, and at least two consecutive uplink time units include the first time unit and the second time unit, and When the first uplink transmission parameters of the first time unit and the second time unit are different, the first time unit is regarded as an event that destroys power consistency and phase continuity, and the first transmission parameter of the first time unit is determined.
  • An actual time domain window in a defined time domain window when the terminal is configured with SBFD and DMRS binding at the same time, and the first uplink transmission parameters of the first time unit and the second time unit are different, the terminal is not expected to use At least two consecutive time units bound by DMRS include the first time unit and the second time unit at the same time; wherein the first nominal time domain window includes the first time unit and the second time unit.
  • the first time unit is a time unit configured with SBFD
  • the second time unit is a time unit without SBFD configured
  • the first uplink transmission parameter includes at least one of power and spatial relationship.
  • a network side device in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor.
  • a network-side device including a processor and a communication interface, wherein the communication interface is used to receive capability information from a terminal; the capability information includes supporting subband full-duplex SBFD capabilities and supporting solution When the reference signal DMRS binding capability is adjusted, the first configuration for configuring SBFD or the second configuration for configuring DMRS binding is sent to the terminal.
  • a ninth aspect provides a communication system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the data transmission processing method described in the first aspect.
  • the network side device can be used to perform the steps of the second aspect. The steps of the data transmission processing method described in this aspect.
  • a readable storage medium In a tenth aspect, a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the second aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. The steps of a method, or steps of implementing a method as described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement as described in the first aspect
  • the terminal sends capability information to the network side device; when the capability information includes the capability to support sub-band full-duplex SBFD and the capability to support demodulation reference signal DMRS binding, the terminal performs the first Behavior; the first behavior includes any of the following: the terminal does not expect the network side device to configure SBFD and DMRS binding at the same time; when the terminal is configured with SBFD and DMRS binding at the same time, at least two consecutive uplink
  • the time unit includes a first time unit and a second time unit, and when the first uplink transmission parameters of the first time unit and the second time unit are different, the first time unit is regarded as destroying power consistency.
  • the terminal does not expect to use at least two consecutive time units bound by DMRS to include the first time unit and the second time unit at the same time; wherein the first nominal time domain window includes the first time unit.
  • a time unit and the second time unit the first time unit is a time unit configured with SBFD, the second time unit is a time unit without SBFD configured, the first uplink transmission parameter includes power and At least one of the spatial relationships.
  • the embodiments of the present application can improve the reliability of communication.
  • the embodiments of the present application can also enable the terminal to perform DMRS bundling when supporting SBFD operation, thereby improving the accuracy of channel assessment and improving communication performance.
  • Figure 1 is a schematic diagram of the network structure applicable to this application.
  • Figure 2 is a flow chart of a data transmission processing method provided by this application.
  • Figures 3 to 8 are examples of transmission scenarios of a data transmission processing method provided by this application.
  • FIG. 9 is a flow chart of another data transmission processing method provided by this application.
  • FIG. 10 is a structural diagram of a data transmission processing device provided by this application.
  • FIG 11 is a structural diagram of another data transmission processing device provided by this application.
  • Figure 12 is a structural diagram of a communication device provided by this application.
  • Figure 13 is a structural diagram of a terminal provided by this application.
  • Figure 14 is a structural diagram of a network side device provided by this application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of this application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and NR terminology is used in much of the following description, but these techniques can also be applied to applications other than NR system applications, such as 6th generation Generation, 6G) communication system.
  • 6G 6th generation Generation
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet device
  • augmented reality augmented reality, AR
  • VR virtual reality
  • robots wearable devices
  • Vehicle user equipment VUE
  • pedestrian terminal pedestrian terminal
  • PUE pedestrian terminal
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computer, PC), teller machine or self-service machine and other terminal-side devices.
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets) bracelets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side equipment 12 may include access network equipment or core network equipment, where the access network equipment may also be called wireless access network equipment, radio access network (Radio Access Network, RAN), radio access network function or wireless access network unit.
  • Access network equipment can include base stations, Wireless Local Area Networks (WLAN) access points or Wireless Fidelity (WiFi) nodes, etc.
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • the base station can be called Node B, Evolved Node B (eNB), Access Entry point, Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B node, home evolution Type B node, Transmitting Receiving Point (TRP) or some other appropriate terminology in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in this application, In the embodiment, only the base station in the NR system is taken as an example for introduction, and the specific type of the base station is not limited.
  • the uplink and downlink configurations are based on time slots or subframes.
  • the uplink and downlink configurations include 7 configurations of LTE Time Division Duplex (TDD).
  • TDD Time Division Duplex
  • the uplink and downlink configuration is based on symbol granularity, making the configuration more flexible.
  • the specific configuration process is as follows:
  • this parameter includes the reference subcarrier spacing (Subcarrier Spacing, SCS) u and mode 1 (pattern1), where u is indicated by the reference subcarrier spacing configuration (reference SCS configuration).
  • pattern1 also contains the following content:
  • Time slot configuration period (slot configuration period)P ms;
  • the first Dslots time slots are downlink time slots, followed by Dsym downlink symbols, then Usym uplink symbols, and finally Uslots uplink time slots.
  • the remaining symbols are flexible symbols X.
  • pattern1 If parameters are given to both pattern1 and pattern2, two different time slot formats can be configured continuously.
  • the parameter form in pattern2 is similar to pattern1.
  • TDD-UL-DL-ConfigDedicated is further provided on the basis of configuring TDD-UL-DL-ConfigurationCommon, then this parameter can be used to configure the flexible symbol configured by the parameter TDD-UL-DL-ConfigurationCommon. That is to say, the uplink and downlink symbols configured in TDD-UL-DL-ConfigurationCommon cannot be changed, but the flexible symbols can be rewritten by TDD-UL-DL-ConfigurationDedicated.
  • This parameter provides a series of time slot configurations. For each time slot configuration, the slot index and symbol configuration are provided.
  • DCI Dynamic downlink control information
  • DCI format 2-0 is specifically used as the slot format indicator (Slot Format Indicator, SFI).
  • SFI mainly implements periodic frame structure configuration based on the time slot format that a single time slot can support, that is, starting from receiving DCI format 2-0, it continues the physical downlink control channel (Physical downlink control channel, PDCCH) monitoring period (monitoring period) ) are configured according to the instructions of the SFI in this DCI.
  • PDCCH Physical downlink control channel
  • monitoring period monitoring period
  • the maximum number of formats supported by a single time slot is 256, and the number of standardized formats is 56.
  • the base station configures uplink transmission resources and downlink transmission in a frequency-division manner on a continuous resource, such as downlink (DL) bandwidth part (Bandwidth Part, BWP) or uplink (uplink, UL) BWP. resource. That is, on the DL BWP, the base station configures part of the resources as uplink transmission resources, or on the UL BWP, the gNB configures part of the resources as downlink resources. In this way, the gNB base station can perform uplink reception (for example, receiving data from terminal 1) and downlink transmission (for example, sending data to terminal 2) at the same time. The terminal only chooses to transmit on part of the resources, that is, either sending or receiving. This duplex mode can be called SBFD.
  • the transmit power of the terminal may be adjusted for each repeated transmission or transmission within each time slot.
  • the terminal reports the DMRS bundling capability and the base station configures DMRS bundling for the terminal, if the terminal maintains consistent transmit power and continuous phase for each repetition within the nominal time domain window (TDW), then DMRS bundling can be implemented.
  • the terminal For the Transport Block (TB) transmitted in multiple slots or the Physical Uplink Control Channel (PUCCH) repeatedly transmitted, the terminal must also ensure that the transmit power and phase of the transmission within the TDW are consistent Continuous to achieve DMRS bundling.
  • the terminal can determine the actual TDW based on the event within the nominal TDW, and maintain consistent power and phase continuity within the actual TDW to achieve DMRS bundling.
  • the terminal In the SBFD slot, because the interference situation suffered by the terminal is very complicated, such as interference from inter-band, intra-band inter-cell, intra-cell, etc., the terminal is The interference power level can be determined by sensing before sending. When the interference exceeds a predetermined threshold, the terminal can adjust the transmit power to ensure transmission performance, such as increasing the transmit power to increase the probability of correct demodulation, or reducing the transmit power to reduce interference to surrounding devices.
  • the above SBFD slot can be understood as a slot with SBFD, or a slot using SBFD. For example, if the network side device configures SBFD on some slots, the slot can be called an SBFD slot.
  • the data transmission processing method includes:
  • Step 201 The terminal sends capability information to the network side device
  • Step 202 If the capability information includes the capability to support subband full-duplex SBFD and the capability to support demodulation reference signal DMRS binding, the terminal performs the first behavior;
  • Said first act includes any of the following:
  • Behavior 1 The terminal does not expect the network side device to configure SBFD and DMRS binding at the same time;
  • At least two consecutive uplink time units include a first time unit and a second time unit, and the first time unit and the second time unit are When the first uplink transmission parameters are different, use the first time unit as an event that destroys power consistency and phase continuity, and determine the actual time domain window in the first nominal time domain window of the first transmission;
  • Behavior 3 When the terminal is configured with SBFD and DMRS binding at the same time, and the first uplink transmission parameters of the first time unit and the second time unit are different, the terminal does not expect to use at least two of the DMRS bindings.
  • Continuous time units include both the first time unit and the second time unit;
  • the first nominal time domain window includes the first time unit and the second time unit, the first time unit is a time unit configured with SBFD, and the second time unit is a time unit without SBFD configured. time unit, the first uplink transmission parameter includes at least one of power and spatial relationship.
  • the above time unit may include at least one of the following: at least one time slot and at least one symbol.
  • the network side device configures SBFD on a certain time slot or symbol, it can be assumed, considered or determined that the time slot or symbol is a time slot or symbol configured with SBFD.
  • the first transmission of the terminal may include one or more nominal time domain windows. If an event occurs in a certain nominal time domain window that destroys power consistency and phase continuity, the nominal window may be re-used.
  • Split into actual time domain windows The actual time domain windows after splitting only contain non-SBFD slots/symbols (that is, full uplink/flexible slots/symbols) or only contain SBFD slots/symbols.
  • the full uplink slot/symbol can be understood as the slot/symbol is only used for uplink transmission
  • the slot/symbol containing only SBFD can be understood as the slot/symbol with SBFD (that is, the first time unit mentioned above).
  • the time unit in which SBFD is not configured may include non-SBFD slots/symbols (i.e., full uplink or flexible slots/symbols).
  • the terminal's ability to support SBFD can be understood as the terminal's ability to support operations under SBFD configuration, that is, the terminal supports SBFD operation.
  • the protocol stipulates that the terminal does not expect the network side device to configure SBFD and DMRS binding at the same time.
  • the network side device can support the subband full-duplex SBFD capability and support demodulation in the terminal.
  • configure SBFD or configure DMRS binding for the terminal For example, the network side device sends the first configuration for configuring SBFD or the second configuration for configuring DMRS binding to the terminal.
  • the terminal can only perform SBFD or DMRS binding, thereby avoiding the network-side device configuring SBFD and DMRS binding for the terminal at the same time, causing the SBFD operation to destroy power consistency and phase continuity, thereby causing DMRS binding failure. Therefore, the embodiments of the present application can improve the reliability of communication.
  • the network side device can be based on the information agreed by the protocol.
  • the DMRS binding can be performed only in the first Within the time unit or only within the second time unit, in this way, power consistency and phase continuity will not be destroyed, and the terminal can also perform DMRS bundling when supporting SBFD operation. Therefore, the embodiment of the present application improves channel evaluation. accuracy, improving communication performance.
  • the network side device can not configure SBFD and DMRS binding at the same time to avoid SBFD operation destroying power consistency and phase continuity and causing DMRS binding failure. Therefore, the embodiments of the present application can improve the reliability of communication.
  • the terminal sends capability information to the network side device; when the capability information includes the capability to support sub-band full-duplex SBFD and the capability to support demodulation reference signal DMRS binding, the terminal performs the first Behavior; the first behavior includes any of the following: the terminal does not expect the network side device to configure SBFD and DMRS binding at the same time; when the terminal is configured with SBFD and DMRS binding at the same time, at least two consecutive uplink
  • the time unit includes a first time unit and a second time unit, and when the first uplink transmission parameters of the first time unit and the second time unit are different, the first time unit is regarded as destroying power consistency.
  • the terminal is configured with SBFD and DMRS binding at the same time, and the first time unit and the second time unit
  • the terminal does not expect to use at least two consecutive time units bound by DMRS to include the first time unit and the second time unit at the same time;
  • the first nominal time unit The time domain window includes the first time unit and the second time unit, the first time unit is a time unit configured with SBFD, the second time unit is a time unit without SBFD, and the third time unit
  • An uplink transmission parameter includes at least one of power and spatial relationship. In this way, SBFD operation can be avoided from destroying power consistency and phase continuity and causing DMRS binding failure. Therefore, the embodiments of the present application can improve the reliability of communication. At the same time, the embodiments of this application can also enable the terminal to perform DMRS bundling when supporting SBFD operation, thereby improving the accuracy of channel evaluation and improving communication performance.
  • the first transmission includes at least one of the following:
  • the physical uplink shared channel PUSCH of type A scheduled by the downlink control information DCI is repeatedly transmitted;
  • the physical uplink control channel PUCCH is repeatedly transmitted.
  • the method when the terminal is configured with SBFD, the method further includes:
  • the terminal determines a second behavior, and the second behavior includes any of the following:
  • the first detection is used to determine the interference power level, and the first time period only includes the first time unit.
  • the above-mentioned first detection can be similar to the detection in Listen Before Talk (LBT).
  • LBT Listen Before Talk
  • the terminal can adjust the transmission power to ensure transmission performance. For example, increase the transmit power to increase the probability of correct demodulation, or reduce the transmit power to reduce interference to surrounding devices.
  • the above-mentioned first detected position satisfies at least one of the following:
  • the first detection is located before the first allocated first resource, or the first detection is located before the first actually used first resource;
  • the first detection is located before a first second nominal time domain window of the first transmission, or before a first first actual time domain window of the first transmission;
  • the first detection is located before the first resource allocated within the first second nominal time domain window of the first transmission, or located before the first resource allocated within the first first actual time domain window of the first transmission. before a resource;
  • the first detection is located before each second nominal time domain window of the first transmission, or before each first actual time domain window of the first transmission;
  • the first detection is located before the first resource allocated within each second nominal time domain window of the first transmission, or located before the first resource allocated within each first actual time domain window of the first transmission.
  • the first actual time domain window is an actual time domain window including the first time unit, and the first actual time domain window is located within the first time period, and the first resource is the For the first transmitted resource, the second nominal time domain window is located within the first time period.
  • the above-mentioned first detection is located before the first allocated first resource, which can be understood as the end position of the first detection is located before the first allocated first resource.
  • the first The detection may be located within or outside the nominal time domain window where the first allocated first resource is located, without further limitation here.
  • the above-mentioned first detection is located before the first actually used first resource. It can be understood that the end position of the first detection is located before the first actually used first resource. Optionally, the first detection can be located at the first actually used resource. An actual used first resource is within or outside the nominal time domain window, which is not further limited here.
  • the above first detection is located before the first resource allocated within the first second nominal time domain window of the first transmission. It can be understood that the end position of the first detection is located at the first second nominal time domain window of the first transmission. Before the first resource is allocated within the second nominal time domain window, optionally, the first detection may be located within or outside the first second nominal time domain window, which is not further limited here.
  • the corresponding detection behavior is different depending on the location of the first detection.
  • specific detection behaviors can be understood as including at least one of the following:
  • Sensing is performed before the first resource allocated within the first second nominal time domain window or the first resource allocated within the first first actual time domain window starts;
  • Sensing is done before the first resource allocated in every second nominal time domain window or the first resource allocated in every first actual time domain window starts.
  • the first time period is located between two adjacent first detections and only includes the first actual window and/or the second nominal time domain window.
  • the power of all transmissions before the next first detection can be adjusted according to the detection result of the current first detection.
  • the start time of the above-mentioned first time period is located after the end time of the previous first detection among the two adjacent first detections, and the end time of the first time period is located after the end time of the previous two adjacent first detections. Before the start time of the last first detection in the detection.
  • the start time of the above-mentioned first time period is the start time of the previous first detection among the two adjacent first detections (or is located before the start time of the previous first detection), and the first time period The end time of is the end time of the last first detection among the two adjacent first detections (or is located after the end time of the last first detection).
  • the above-mentioned uplink and downlink configuration parameters of SBFD include: xdd-UL-DL-ConfigurationCommon and xdd-UL-DL-ConfigurationDedicated.
  • the first transmission includes 4 repetitions, and two nominal time domain windows (nominal TDW) are obtained according to parameters such as time domain window length TimeDomainWindowLength and DMRS binding maximum duration maxDMRS-BundlingDuration.
  • the first nominal TDW contains UL only slot/symbol and SBFD slot/symbol.
  • SBFD operation will destroy power consistency and phase continuity
  • the first nominal TDW is further divided into two actual TDWs, bounded by the UL only slot/symbol and SBFD slot/symbol boundaries.
  • each nominal TDW or actual TDW contains only UL only slot/symbol or only SBFD slot/symbol.
  • the first repetition is discarded (eg skipped).
  • the position of Sensing is before the first allocated first resource or the first actually used first resource.
  • the position of sensing is before the first allocated resource, that is, before the first repetition, as shown in Figure 4.
  • the position of sensing is before the first resource actually used, that is, before the second repetition, as shown in Figure 5.
  • the above-mentioned first resource can be understood as the transmission resources of all the above-mentioned repetitions.
  • each nominal TDW contains two repetitions, and the second nominal TDW is further split into two actual TDWs.
  • Method 1 Only perform sensing before the first nominal TDW, and do not perform sensing before the remaining nominal/actual TDW; or, only perform sensing before the first repetition of the first nominal TDW, and do not perform sensing before the remaining repetitions. ,As shown in Figure 6.
  • Method 2 Perform sensing before each nominal or actual TDM. Since the second nominal TDM is split into two actual TDWs, sensing needs to be done before each actual TDW; alternatively, before each nominal Or perform sensing before the first repetition of actual TDM. Since the second nominal TDM is split into two actual TDWs, sensing needs to be performed before the first repetition of each actual TDW, as shown in Figure 7.
  • Method 3 Only perform sensing before each nominal TDW; or, only perform sensing before the first repetition of each nominal TDW, as shown in Figure 8.
  • the power adjustment method after sensing can be one of the following:
  • Method 1 Make power adjustments for all transmissions before the next sensing. For example, in Figure 4 or Figure 5, after sensing, the power of repetition #2, 3, and 4 is adjusted uniformly. In Figure 6, after the first sensing is completed, the power adjustment is made to repetition #1 and 2. After the second sensing is completed, the power adjustment is made to repetition #3. After the third sensing is completed, the power adjustment is made to repetition #4. Other situations can be deduced by analogy and will not be described again here. If non-SBFD slots/symbols are included before the next sensing, the power of non-SBFD slots/symbols will not be adjusted. Optionally, power adjustment may include power backoff or power boosting.
  • this embodiment of the present application also provides a data transmission processing method, including:
  • Step 901 The network side device receives capability information from the terminal;
  • Step 902 In the case where the capability information includes the capability to support subband full-duplex SBFD and the capability to support demodulation reference signal DMRS binding, the network side device sends the first configuration for configuring SBFD to the terminal or the first configuration for configuring SBFD. Configure the second configuration of DMRS binding.
  • the network side device if the network side device sends the first configuration, it can be understood that the network side device configures SBFD for the terminal; if the network device sends the second configuration, it can be understood that the terminal configures DMRS binding.
  • the network side device configures SBFD or DMRS binding for the terminal, it avoids the network side device configuring SBFD and DMRS binding for the terminal at the same time, causing the SBFD operation to destroy power consistency and phase continuity and causing DMRS binding failure. Therefore, the embodiments of the present application can improve the reliability of communication.
  • the network side device configures SBFD or configures DMRS binding can be based on the implementation of the network side device, and can also be agreed by the protocol. For example, in some embodiments, the network side device sends a first message for configuring SBFD to the terminal.
  • Configuration or secondary configuration for configuring DMRS binding includes:
  • the network side device sends the first configuration for configuring SBFD or the second configuration for configuring DMRS binding to the terminal based on the configuration sending rules agreed in the protocol.
  • the execution subject may be a data transmission processing device.
  • a data transmission processing device performing a data transmission processing method is used as an example to illustrate the data transmission processing device provided by the embodiment of the present application.
  • the data transmission processing device 1000 includes:
  • the first sending module 1001 is used to send capability information to the network side device;
  • Execution module 1002 configured to include, in the capability information, support for subband full-duplex SBFD capabilities and support for demodulation parameters. In the case of testing the signal DMRS binding capability, perform the first behavior;
  • Said first act includes any of the following:
  • the terminal does not expect the network side device to configure SBFD and DMRS binding at the same time;
  • At least two consecutive uplink time units include a first time unit and a second time unit, and the first uplink time unit of the first time unit and the second time unit are When the transmission parameters are different, the first time unit is regarded as an event that destroys power consistency and phase continuity, and the actual time domain window in the first nominal time domain window of the first transmission is determined;
  • the terminal does not expect to use DMRS bundling for at least two consecutive times.
  • the unit simultaneously includes the first time unit and the second time unit;
  • the first nominal time domain window includes the first time unit and the second time unit, the first time unit is a time unit configured with SBFD, and the second time unit is a time unit without SBFD configured. time unit, the first uplink transmission parameter includes at least one of power and spatial relationship.
  • the first transmission includes at least one of the following:
  • the physical uplink shared channel PUSCH of type A scheduled by the downlink control information DCI is repeatedly transmitted;
  • the physical uplink control channel PUCCH is repeatedly transmitted.
  • the data transmission processing device 1000 further includes:
  • Determining module used to determine the second behavior, the second behavior includes any of the following:
  • the first detection is used to determine the interference power level, and the first time period only includes the first time unit.
  • the first detected position satisfies at least one of the following:
  • the first detection is located before the first allocated first resource, or the first detection is located before the first actually used first resource;
  • the first detection is located before a first second nominal time domain window of the first transmission, or before a first first actual time domain window of the first transmission;
  • the first detection is located before the first resource allocated within the first second nominal time domain window of the first transmission, or located before the first resource allocated within the first first actual time domain window of the first transmission. before a resource;
  • the first detection is located before each second nominal time domain window of the first transmission, or before each first actual time domain window of the first transmission;
  • said first detection precedes a first resource allocated within each second nominal time domain window of said first transmission, or be located before the first resource allocated within each first actual time domain window of the first transmission;
  • the first actual time domain window is an actual time domain window including the first time unit, and the first actual time domain window is located within the first time period, and the first resource is the For the first transmitted resource, the second nominal time domain window is located within the first time period.
  • the first time period is located between two adjacent first detections, and only includes the first actual window and/or the second nominal time domain window.
  • the time unit includes at least one of the following: at least one time slot and at least one symbol.
  • the data transmission processing device 1100 includes:
  • the second sending module 1102 is configured to send the first configuration for configuring SBFD to the terminal or the first configuration for configuring SBFD when the capability information includes the capability to support subband full-duplex SBFD and the capability to support demodulation reference signal DMRS binding. Configure the second configuration of DMRS binding.
  • the second sending module is specifically configured to: send the first configuration for configuring SBFD or the second configuration for configuring DMRS binding to the terminal based on the configuration sending rules agreed in the protocol.
  • the data transmission processing device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the data transmission and processing device provided by the embodiment of the present application can implement each process implemented by the method embodiments of Figures 2 to 9, and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 1200, including a processor 1201 and a memory 1202.
  • the memory 1202 stores programs or instructions that can be run on the processor 1201.
  • each step of the above-mentioned data transmission processing method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, the details will not be described here.
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface.
  • the communication interface is used to send capability information to a network side device;
  • the processor is configured to support sub-band full-duplex SBFD capability when the capability information includes and supports the demodulation reference signal DMRS binding capability, perform the first behavior;
  • the first behavior includes any of the following: the terminal does not expect the network side device to configure SBFD and DMRS binding at the same time; the terminal is configured at the same time When SBFD and DMRS are bound, at least two consecutive uplink time units include a first time unit and a second time unit, and the first uplink transmission parameters of the first time unit and the second time unit are different, Treat the first time unit as an event that destroys power consistency and phase continuity, and determine the actual time domain window in the first nominal time domain window of the first transmission; the terminal is configured with SBFD and DMRS binding at the same time, and When the first uplink transmission parameters of the first time unit and the second time unit are different, the terminal does not expect
  • FIG. 13 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 1300 includes but is not limited to: a radio frequency unit 1301, a network module 1302, an audio output unit 1303, an input unit 1304, a sensor 1305, a display unit 1306, a user input unit 1307, an interface unit 1308, a memory 1309, a processor 1310, etc. At least some parts.
  • the terminal 1300 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1310 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 13 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 1304 may include a graphics processing unit (Graphics Processing Unit, GPU) 13041 and a microphone 13042.
  • the graphics processor 13041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 1306 may include a display panel 13061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1307 includes a touch panel 13071 and at least one of other input devices 13072 . Touch panel 13071, also called touch screen.
  • the touch panel 13071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 13072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 1301 after receiving downlink data from the network side device, the radio frequency unit 1301 can transmit it to the processor 1310 for processing; in addition, the radio frequency unit 1301 can send uplink data to the network side device.
  • the radio frequency unit 1301 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 1309 may be used to store software programs or instructions as well as various data.
  • the memory 1309 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 1309 may include volatile memory or nonvolatile memory, or memory 1309 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • Memory 1309 in embodiments of the present application includes, but is not limited to, these and any other suitable types of memory.
  • the processor 1310 may include one or more processing units; optionally, the processor 1310 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 1310.
  • the radio frequency unit 1301 is used to send capability information to the network side device;
  • Processor 1310 configured to perform the first behavior when the capability information includes the capability to support subband full-duplex SBFD and the capability to support demodulation reference signal DMRS bundling;
  • Said first act includes any of the following:
  • the terminal does not expect the network side device to configure SBFD and DMRS binding at the same time;
  • the terminal is configured with SBFD and DMRS binding at the same time.
  • At least two consecutive uplink time units include a first time unit and a second time unit, and the first uplink transmission parameters of the first time unit and the second time unit are different.
  • treating the first time unit as an event that destroys power consistency and phase continuity, and determining the actual time domain window in the first nominal time domain window of the first transmission;
  • the terminal does not expect to use at least two consecutive time units of DMRS bundling at the same time. including the first time unit and the second time unit;
  • the first nominal time domain window includes the first time unit and the second time unit, the first time unit is a time unit configured with SBFD, and the second time unit is a time unit without SBFD configured. time unit, the first uplink transmission parameter includes at least one of power and spatial relationship.
  • Embodiments of the present application also provide a network side device, including a processor and a communication interface.
  • the communication interface is used to receive capability information from a terminal; the capability information includes support for subband full-duplex SBFD capabilities and support for demodulation reference signal DMRS.
  • the first configuration for configuring SBFD or the second configuration for configuring DMRS binding is sent to the terminal.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1400 includes: an antenna 1401, a radio frequency device 1402, a baseband device 1403, a processor 1404 and a memory 1405.
  • Antenna 1401 is connected to radio frequency device 1402.
  • the radio frequency device 1402 receives information through the antenna 1401 and sends the received information to the baseband device 1403 for processing.
  • the baseband device 1403 processes the information to be sent and sends it to the radio frequency device 1402.
  • the radio frequency device 1402 processes the received information and then sends it out through the antenna 1401.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 1403.
  • the baseband device 1403 Includes baseband processor.
  • the baseband device 1403 may include, for example, at least one baseband board, which is provided with multiple chips, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 1406, which is, for example, a common public radio interface (CPRI).
  • a network interface 1406 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1400 in this embodiment of the present invention also includes: instructions or programs stored in the memory 1405 and executable on the processor 1404.
  • the processor 1404 calls the instructions or programs in the memory 1405 to execute each of the steps shown in Figure 11
  • the method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above embodiments of the data transmission processing method is implemented, and can achieve The same technical effects are not repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above embodiments of the data transmission processing method. Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above data transmission processing method.
  • Each process in the example can achieve the same technical effect. To avoid repetition, we will not repeat it here.
  • Embodiments of the present application also provide a communication system, including: a terminal and a network side device.
  • the terminal is used to perform various processes of the various method embodiments on the terminal side as shown in Figure 2 and the above.
  • the network side device is used to perform the following: The processes in Figure 9 and the above method embodiments on the network side device side can achieve the same technical effect. To avoid duplication, they will not be described again here.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to related technologies.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Abstract

本申请公开了一种数据传输处理方法、装置、终端及网络侧设备,属于通信领域,该方法包括:终端发送能力信息;在能力信息包括SBFD能力和支持DMRS绑定能力的情况下,终端执行第一行为,包括以下任一项:终端不期望网络侧设备同时配置SBFD和DMRS绑定;在终端被同时配置SBFD和DMRS绑定,上行连续的至少两个时间单元包括第一时间单元和第二时间单元,且第一时间单元和第二时间单元的第一上行传输参数不同的情况下,确定第一传输的第一名义时域窗口中的实际时域窗口;在终端被同时配置SBFD和DMRS绑定,且第一时间单元和第二时间单元的第一上行传输参数不同的情况下,终端不期望使用DMRS绑定的至少两个连续的时间单元包括第一时间单元和第二时间单元。

Description

数据传输处理方法、装置、终端及网络侧设备
相关申请的交叉引用
本申请主张在2022年08月05日提交的中国专利申请No.202210940130.8的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种数据传输处理方法、装置、终端及网络侧设备。
背景技术
随着通信技术的发展,终端支持的能力越来越多,当终端同时支持在子带全双工(subband full duplex,SBFD)配置下工作(operation)的能力和解调参考信号(Demodulation Reference Signal,DMRS)绑定(bundling)能力时,SBFD operation可能破坏功率一致性和相位连续性进而导致DMRS bundling失效。因此,相关技术中,当终端同时SBFD operation和DMRS bundling的能力时,将会导致通信的可靠性降低。
发明内容
本申请实施例提供一种数据传输处理方法、装置、终端及网络侧设备,能够解决当终端同时支持SBFD和DMRS bundling的能力时,将会导致通信的可靠性降低的问题。
第一方面,提供了一种数据传输处理方法,包括:
终端向网络侧设备发送能力信息;
在所述能力信息包括支持子带全双工SBFD能力和支持解调参考信号DMRS绑定能力的情况下,所述终端执行第一行为;
所述第一行为包括以下任一项:
所述终端不期望所述网络侧设备同时配置SBFD和DMRS绑定;
在所述终端被同时配置SBFD和DMRS绑定,上行连续的至少两个时间单元包括第一时间单元和第二时间单元,且所述第一时间单元和所述第二时间单元的第一上行传输参数不同的情况下,将所述第一时间单元作为破坏功率一致性和相位连续性的事件,并确定第一传输的第一名义时域窗口中的实际时域窗口;
在所述终端被同时配置SBFD和DMRS绑定,且第一时间单元和第二时间单元的第一上行传输参数不同的情况下,所述终端不期望使用DMRS绑定的至少两个连续的时间单元同时包括所述第一时间单元和所述第二时间单元;
其中,所述第一名义时域窗口包括所述第一时间单元和所述第二时间单元,所述第一时间单元为配置有SBFD的时间单元,所述第二时间单元为未被配置SBFD的时间单元,所述第一上行传输参数包括功率和空间关系中的至少一项。
第二方面,提供了一种数据传输处理方法,包括:
网络侧设备从终端接收能力信息;
在所述能力信息包括支持子带全双工SBFD能力和支持解调参考信号DMRS绑定能力的情况下,所述网络侧设备向终端发送用于配置SBFD的第一配置或用于配置DMRS绑定的第二配置。
第三方面,提供了一种数据传输处理装置,包括:
第一发送模块,用于向网络侧设备发送能力信息;
执行模块,用于在所述能力信息包括支持子带全双工SBFD能力和支持解调参考信号DMRS绑定能力的情况下,执行第一行为;
所述第一行为包括以下任一项:
终端不期望所述网络侧设备同时配置SBFD和DMRS绑定;
终端被同时配置SBFD和DMRS绑定,上行连续的至少两个时间单元包括第一时间单元和第二时间单元,且所述第一时间单元和所述第二时间单元的第一上行传输参数不同的情况下,将所述第一时间单元作为破坏功率一致性和相位连续性的事件,并确定第一传输的第一名义时域窗口中的实际时域窗口;
在终端被同时配置SBFD和DMRS绑定,且第一时间单元和第二时间单元的第一上行传输参数不同的情况下,所述终端不期望使用DMRS绑定的至少两个连续的时间单元同时包括所述第一时间单元和所述第二时间单元;
其中,所述第一名义时域窗口包括所述第一时间单元和所述第二时间单元,所述第一时间单元为配置有SBFD的时间单元,所述第二时间单元为未被配置SBFD的时间单元,所述第一上行传输参数包括功率和空间关系中的至少一项。
第四方面,提供了一种数据传输处理装置,包括:
接收模块,用于从终端接收能力信息;
第二发送模块,用于在所述能力信息包括支持子带全双工SBFD能力和支持解调参考信号DMRS绑定能力的情况下,向终端发送用于配置SBFD的第一配置或用于配置DMRS绑定的第二配置。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于向网络侧设备发送能力信息;所述处理器用于在所述能力信息包括支持子带全双工SBFD能力和支持解调参考信号DMRS绑定能力的情况下,执行第一行为;所述第一行为包括以下 任一项:终端不期望所述网络侧设备同时配置SBFD和DMRS绑定;终端被同时配置SBFD和DMRS绑定,上行连续的至少两个时间单元包括第一时间单元和第二时间单元,且所述第一时间单元和所述第二时间单元的第一上行传输参数不同的情况下,将所述第一时间单元作为破坏功率一致性和相位连续性的事件,并确定第一传输的第一名义时域窗口中的实际时域窗口;在终端被同时配置SBFD和DMRS绑定,且第一时间单元和第二时间单元的第一上行传输参数不同的情况下,所述终端不期望使用DMRS绑定的至少两个连续的时间单元同时包括所述第一时间单元和所述第二时间单元;其中,所述第一名义时域窗口包括所述第一时间单元和所述第二时间单元,所述第一时间单元为配置有SBFD的时间单元,所述第二时间单元为未被配置SBFD的时间单元,所述第一上行传输参数包括功率和空间关系中的至少一项。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于从终端接收能力信息;在所述能力信息包括支持子带全双工SBFD能力和支持解调参考信号DMRS绑定能力的情况下,向终端发送用于配置SBFD的第一配置或用于配置DMRS绑定的第二配置。
第九方面,提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的数据传输处理方法的步骤,所述网络侧设备可用于执行如第二方面所述的数据传输处理方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
本申请实施例中,通过终端向网络侧设备发送能力信息;在所述能力信息包括支持子带全双工SBFD能力和支持解调参考信号DMRS绑定能力的情况下,所述终端执行第一行为;所述第一行为包括以下任一项:所述终端不期望所述网络侧设备同时配置SBFD和DMRS绑定;在所述终端被同时配置SBFD和DMRS绑定,上行连续的至少两个时间单元包括第一时间单元和第二时间单元,且所述第一时间单元和所述第二时间单元的第一上行传输参数不同的情况下,将所述第一时间单元作为破坏功率一致性和相位连续性的事件, 并确定第一传输的第一名义时域窗口中的实际时域窗口;在所述终端被同时配置SBFD和DMRS绑定,且第一时间单元和第二时间单元的第一上行传输参数不同的情况下,所述终端不期望使用DMRS绑定的至少两个连续的时间单元同时包括所述第一时间单元和所述第二时间单元;其中,所述第一名义时域窗口包括所述第一时间单元和所述第二时间单元,所述第一时间单元为配置有SBFD的时间单元,所述第二时间单元为未被配置SBFD的时间单元,所述第一上行传输参数包括功率和空间关系中的至少一项。这样,可以避免SBFD operation破坏功率一致性和相位连续性进而导致DMRS绑定失效。因此,本申请实施例可以提高通信的可靠性。与此同时,本申请实施例还可以使得终端在支持SBFD operation的时候也可以进行DMRS bundling,从而提高了信道评估的准确性,提升了通信性能。
附图说明
图1是本申请可应用的网络结构示意图;
图2是本申请提供的一种数据传输处理方法的流程图;
图3至图8是本申请提供的一种数据传输处理方法的传输场景示例图;
图9是本申请提供的另一种数据传输处理方法的流程图;
图10是本申请提供的一种数据传输处理装置的结构图;
图11是本申请提供的另一种数据传输处理装置的结构图;
图12是本申请提供的一种通信设备的结构图;
图13是本申请提供的一种终端的结构图;
图14是本申请提供的一种网络侧设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access, TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Networks,WLAN)接入点或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
为了方便理解,以下对本申请实施例涉及的一些内容进行说明:
一、时隙格式。
在LTE中,上下行的配置是以时隙或子帧为单位,上下行的配置包括LTE时分双工(Time Division Duplex,TDD)的7种配置。
在新空口(New Radio,NR)中,上下行配置是以符号(symbol)为粒度,配置更加灵活。具体的配置过程如下:
1、首先配置小区半静态上下行配置
高层提供参数TDD-UL-DL-ConfigurationCommon,例如该参数中包含参考子载波间隔(Subcarrier Spacing,SCS)u和模式1(pattern1),其中,u通过参考子载波间隔配置(reference SCS configuration)指示,pattern1中又包含以下内容:
时隙配置周期(slot configuration period)P ms;
下行时隙数(number of slots with only downlink symbols)Dslots;
下行符号数(number of downlink symbols)Dsym;
上行时隙数(number of slots with only uplink symbols)Uslots;
上行符号数(number of uplink symbols)Usym;
其中,配置周期P=0.625ms仅对120kHz子载波间隔有效,P=1.25ms仅对60和120kHz子载波间隔有效,P=2.5ms仅对30、60和120kHz子载波间隔有效。那么一个配置周期就可以通过公式S=P*2u得知该周期包含多少时隙(slot)。在这些时隙中,前Dslots个时隙是下行时隙,接着是Dsym个下行符号,接着是Usym个上行符号,最后是Uslots个上行时隙。S个时隙中配置完上下行之后,剩下的就是灵活符号X。
如果参数同时给了pattern1和pattern2,则可以连续配置两种不同的时隙格式,pattern2中的参数形式和pattern1类似。
2、然后配置小区专用上下行配置。
如果在配置了TDD-UL-DL-ConfigurationCommon的基础上,进一步提供了高层参数TDD-UL-DL-ConfigDedicated,那么该参数可以用于配置参数TDD-UL-DL-ConfigurationCommon配置的灵活符号。也就是说TDD-UL-DL-ConfigurationCommon中配置的上下行符号不可以改变,但灵活符号可以被TDD-UL-DL-ConfigurationDedicated重写。
该参数提供一系列时隙配置,对于每个时隙配置,提供时隙索引slot index和符号配置。
3、动态下行控制信息(Downlink Control Information,DCI)上下行配置。
动态DCI实现的上下行配置通过DCI格式(format)2-0实现,或者直接通过DCI format0-0、0-1、1-0和1-1的上下行数据调度直接实现。DCI format 2-0专门用作时隙格式指示(Slot Format Indicator,SFI)。SFI主要根据单时隙可支持的时隙格式,实现周期的帧结构配置,也就是从收到DCI format 2-0开始,持续物理下行控制信道(Physical downlink control channel,PDCCH)监听周期(monitoring period)内slot都按照这个DCI中的SFI的指示来配置。单时隙支持的最大格式数为256个,已经标准化的格式为56个。
一种比较直观的方法是,基站在一段连续的资源上,例如下行(downlink,DL)带宽部分(Bandwidth Part,BWP)或者上行(uplink,UL)BWP,频分地配置上行传输资源和下行传输资源。即,在DL BWP上,基站配置其中一部分资源为上行传输资源,或者在UL BWP上,gNB配置其中一部分资源为下行资源。这样,gNB在同一时刻,基站既可进行上行接收(例如接收终端1的数据),也可以进行下行发送(例如给终端2发送数据)。 而终端则只选择在其中一部分资源上进行传输,即,或者发送,或者接收。这种双工方式可以叫做SBFD。
二、DMRS bundling。
对于类型A或类型B的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)重复传输(repetition),针对每个重复传输或每个时隙内的传输,终端的发送功率都可能会进行调整。当终端上报了DMRS bundling的能力,且基站给终端配置了DMRS bundling时,终端如果在名义(nominal)时域窗口(time domain window,TDW)内保持每个repetition的发送功率一致和相位连续,则可以实现DMRS bundling。此外,针对在多个slot内传输的传输块(Transport Block,TB)或者重复传输的物理上行控制信道(Physical Uplink Control Channel,PUCCH),终端也必须保证在TDW内的传输的发送功率一致和相位连续,以实现DMRS bundling。相关技术中,存在一些事件(events)会破坏功率一致性和相位连续性。此时,终端可以在nominal TDW内根据event确定实际(actual)TDW,保持actual TDW内功率一致和相位连续以实现DMRS bundling。
三、基于检测(sensing)的功率调整。
在SBFD slot,由于终端受到的干扰情况很复杂,如受到包括带间(inter-band),带内小区间(intra-band inter-cell),小区间(intra-cell)的干扰等,终端在发送前可以通过sensing来确定干扰功率水平。当干扰超过一个预定门限时,终端可以通过调整发送功率来保证传输的性能,例如增大发送功率来增加正确解调概率,或者减少发送功率来降低对周围设备的干扰。上述SBFD slot可以理解为有SBFD的slot,或者使用了SBFD的slot,例如,网络侧设备在某些slot上配置了SBFD,则该slot可以称之为SBFD slot。
当引入SBFD时,在SBFD的slot/symbol内既有上行资源,又有下行资源,而仅用于上行的时隙或符号(UL only slot/symbol)内只有上行资源。考虑到SBFD slot/symbol内上行子带(UL subband)上的干扰情况和UL only slot/symbol不一样,可能会导致SBFD slot/symbol内上行传输功率以及选择的空域滤波器(spatial domain filter)等都不一样。在这种情况下,如果终端被配置了DMRS bundling,且TDW内包含了UL slot only和SBFD slot/symbol,则会破坏功率一致性和相位连续性的要求。为此,提出了本申请的数据传输处理方法。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的数据传输处理方法进行详细地说明。
参照图2,本申请实施例提供了一种数据传输处理方法,如图2所示,该数据传输处理方法包括:
步骤201,终端向网络侧设备发送能力信息;
步骤202,在所述能力信息包括支持子带全双工SBFD能力和支持解调参考信号DMRS绑定能力的情况下,所述终端执行第一行为;
所述第一行为包括以下任一项:
行为1,所述终端不期望所述网络侧设备同时配置SBFD和DMRS绑定;
行为2,在所述终端被同时配置SBFD和DMRS绑定,上行连续的至少两个时间单元包括第一时间单元和第二时间单元,且所述第一时间单元和所述第二时间单元的第一上行传输参数不同的情况下,将所述第一时间单元作为破坏功率一致性和相位连续性的事件,并确定第一传输的第一名义时域窗口中的实际时域窗口;
行为3,在所述终端被同时配置SBFD和DMRS绑定,且第一时间单元和第二时间单元的第一上行传输参数不同的情况下,所述终端不期望使用DMRS绑定的至少两个连续的时间单元同时包括所述第一时间单元和所述第二时间单元;
其中,所述第一名义时域窗口包括所述第一时间单元和所述第二时间单元,所述第一时间单元为配置有SBFD的时间单元,所述第二时间单元为未被配置SBFD的时间单元,所述第一上行传输参数包括功率和空间关系中的至少一项。
本申请实施例中,上述时间单元可以包括以下至少一项:至少一个时隙,至少一个符号。例如,网络侧设备在某一时隙或符号上配置了SBFD,则可以假设、认为或确定该时隙或符号为配置有SBFD的时隙或符号。
需要说明的是,终端的第一传输可以包括一个或多个名义时域窗口,其中,若某一名义时域窗口发生了破坏功率一致性和相位连续性的事件,则该名义窗口可以重新被拆分为实际时域窗口,拆分后的实际时域窗口仅包含非SBFD slot/symbol(即全上行/灵活(flexible)slot/symbol)或者仅包含SBFD slot/symbol。其中,全上行slot/symbol可以理解为该slot/symbol仅用于上行传输,仅包含SBFD slot/symbol可以理解为有SBFD的slot/symbol(即上述第一时间单元)。
可选地,未被配置SBFD的时间单元可以包括非SBFD slot/symbol(即全上行或者灵活slot/symbol)。终端支持SBFD能力可以理解为终端支持在SBFD配置下operation的能力,即终端支持SBFD operation。
可选地,针对上述行为1,可以为理解协议约定终端不期望所述网络侧设备同时配置SBFD和DMRS绑定,此时网络侧设备可以在终端支持子带全双工SBFD能力和支持解调参考信号DMRS绑定能力的情况下,为终端配置SBFD或配置DMRS绑定,例如,网络侧设备向终端发送用于配置SBFD的第一配置或用于配置DMRS绑定的第二配置,这样,可以使得终端仅执行SBFD或者DMRS绑定,从而避免因网络侧设备为终端同时配置SBFD和DMRS绑定,导致SBFD operation破坏功率一致性和相位连续性,进而导致DMRS绑定失效。因此,本申请实施例可以提高通信的可靠性。
可选地,针对上述行为2,由于终端对第一名义时域窗口拆分了实际时域窗口,在每一实际时域窗口内保证功率一致性和相位连续性,这样可以使得终端在支持SBFD operation的时候也可以进行DMRS bundling,从而提高信道评估的准确性,提升通信性能。
可选地,针对上述行为3,可以为理解为协议约定的行为信息,网络侧设备可以基于协议约定的信息,在为终端同时配置SBFD和DMRS绑定时,DMRS绑定可以仅在第一 时间单元内或者仅在第二时间单元内,这样,不会破坏功率一致性和相位连续性,可以使得终端在支持SBFD operation的时候也可以进行DMRS bundling,因此,本申请实施例提高了信道评估的准确性,提升了通信性能。或者,网络侧设备可以不同时配置SBFD和DMRS绑定,避免SBFD operation破坏功率一致性和相位连续性进而导致DMRS绑定失效。因此,本申请实施例可以提高通信的可靠性。
本申请实施例中,通过终端向网络侧设备发送能力信息;在所述能力信息包括支持子带全双工SBFD能力和支持解调参考信号DMRS绑定能力的情况下,所述终端执行第一行为;所述第一行为包括以下任一项:所述终端不期望所述网络侧设备同时配置SBFD和DMRS绑定;在所述终端被同时配置SBFD和DMRS绑定,上行连续的至少两个时间单元包括第一时间单元和第二时间单元,且所述第一时间单元和所述第二时间单元的第一上行传输参数不同的情况下,将所述第一时间单元作为破坏功率一致性和相位连续性的事件,并确定第一传输的第一名义时域窗口中的实际时域窗口;在所述终端被同时配置SBFD和DMRS绑定,且第一时间单元和第二时间单元的第一上行传输参数不同的情况下,所述终端不期望使用DMRS绑定的至少两个连续的时间单元同时包括所述第一时间单元和所述第二时间单元;其中,所述第一名义时域窗口包括所述第一时间单元和所述第二时间单元,所述第一时间单元为配置有SBFD的时间单元,所述第二时间单元为未被配置SBFD的时间单元,所述第一上行传输参数包括功率和空间关系中的至少一项。这样,可以避免SBFD operation破坏功率一致性和相位连续性进而导致DMRS绑定失效。因此,本申请实施例可以提高通信的可靠性。与此同时,本申请实施例还可以使得终端在支持SBFD operation的时候也可以进行DMRS bundling,从而提高了信道评估的准确性,提升了通信性能。
可选地,在一些实施例中,所述第一传输包括以下至少一项:
由下行控制信息DCI调度的类型A的物理上行共享信道PUSCH重复传输;
配置授权的类型A的PUSCH重复传输;
类型B的PUSCH重复传输;
在至少两个时隙上传输的传输块;
物理上行控制信道PUCCH重复传输。
可选地,在一些实施例中,在所述终端被配置SBFD的情况下,所述方法还包括:
所述终端确定第二行为,所述第二行为包括以下任一项:
在第一时间段基于第一检测执行功率调整操作;
在第一时间段基于第一检测不进行功率调整;
其中,所述第一检测用于确定干扰功率水平,所述第一时间段仅包括所述第一时间单元。
本申请实施例中,上述第一检测可以类似于先听后说(Listen Before Talk,LBT)中的检测,当检测到干扰超过一个预定门限时,终端可以通过调整发送功率来保证传输的性能,例如增大发送功率增加正确解调概率,或者减少发送功率来降低对周围设备的干扰。
可选地,上述第一检测的位置满足以下至少一项:
所述第一检测位于第一个分配的第一资源之前,或者所述第一检测位于第一个实际使用的第一资源之前;
所述第一检测位于所述第一传输的第一个第二名义时域窗口之前,或位于所述第一传输的第一个第一实际时域窗口之前;
所述第一检测位于所述第一传输的第一个第二名义时域窗口内分配的第一资源之前,或位于所述第一传输的第一个第一实际时域窗口内分配的第一资源之前;
所述第一检测位于所述第一传输的每个第二名义时域窗口之前,或位于所述第一传输的每个第一实际时域窗口之前;
所述第一检测位于所述第一传输的每个第二名义时域窗口内分配的第一资源之前,或位于所述第一传输的每个第一实际时域窗口内分配的第一资源之前;
其中,所述第一实际时域窗口为包括所述第一时间单元的实际时域窗口,且所述第一实际时域窗口位于所述第一时间段内,所述第一资源为所述第一传输的资源,所述第二名义时域窗口位于所述第一时间段内。
本申请实施例中,上述第一检测位于第一个分配的第一资源之前可以理解为,所述第一检测的结束位置位于第一个分配的第一资源之前,可选地,该第一检测可以位于第一个分配的第一资源所在的名义时域窗口内或外,在此不做进一步的限定。
上述第一检测位于第一个实际使用的第一资源之前可以理解为,所述第一检测的结束位置位于第一个实际使用的第一资源之前,可选地,该第一检测可以位于第一个实际使用的第一资源所在的名义时域窗口内或外,在此不做进一步的限定。
上述第一检测位于所述第一传输的第一个第二名义时域窗口内分配的第一资源之前可以理解为,所述第一检测的结束位置位于所述第一传输的第一个第二名义时域窗口内分配的第一资源之前,可选地,该第一检测可以位于所述第一个第二名义时域窗口内或外,在此不做进一步的限定。
本申请实施例中,针对第一检测的位置不同,对应的检测行为不同。在本申请实施例中,具体的检测行为可以理解为包括以下至少一项:
在第一个分配的第一资源或第一个实际使用的第一资源开始之前做sensing;
在第一个第二名义时域窗口或第一个第一实际时域窗口开始之前做sensing;
在第一个第二名义时域窗口内分配的第一资源或在第一个第一实际时域窗口内分配的第一资源开始之前做sensing;
在每个第二名义时域窗口或每个第一实际时域窗口开始之前做sensing;
在每第二名义时域窗口内分配的第一资源或在每个第一实际时域窗口内分配的第一资源开始之前做sensing。
可选地,在一些实施例中,所述第一时间段位于相邻两次所述第一检测之间,且仅包含所述第一实际窗口和/或所述第二名义时域窗口。
本申请实施例中,可以根据当前第一检测的检测结果对下一次第一检测前的所有传输进行功率调整。例如,在一些实施例中,上述第一时间段的开始时刻位于相邻两次第一检测中前一次第一检测的结束时刻之后,且第一时间段的结束时刻位于相邻两次第一检测中后一次第一检测的开始时刻之前。在一些实施例中,上述第一时间段的开始时刻为相邻两次第一检测中前一次第一检测的开始时刻(或者位于前一次第一检测的开始时刻之前),且第一时间段的结束时刻为相邻两次第一检测中后一次第一检测的结束时刻(或者位于后一次第一检测的结束时刻之后)。
为了更好的理解本申请以下通过一些实例进行详细说明。
当SBFD slot被作为破坏功率一致性和相位连续性的事件时,假设在非成对频谱(unpaired spectrum)基于SBFD的上下行配置参数进行下行接收或者下行监测,且任意两个连续的传输采用不同的起始物理资源块(Physical Resource Block,PRB)或者不同的空间关系(spatial relations)或者不同的功率控制参数或者上行定时(uplink timing)。
可选地,上述SBFD的上下行配置参数包括:xdd-UL-DL-ConfigurationCommon和xdd-UL-DL-ConfigurationDedicated。
基于上述场景,如图3所示,第一传输包括4个repetition,根据时域窗长度TimeDomainWindowLength和DMRS绑定最大持续时间maxDMRS-BundlingDuration等参数得到两个名义时域窗口(nominal TDW)。其中第一个nominal TDW包含了UL only slot/symbol和SBFD slot/symbol。考虑到SBFD operation会破坏功率一致性和相位连续性,第一个nominal TDW进一步分为两个actual TDW,以UL only slot/symbol和SBFD slot/symbol边界为界。此时,每一个nominal TDW或者actual TDW仅包含UL only slot/symbol或者仅包含SBFD slot/symbol。
可选地,假设第一传输有4个repetition,第一个repetition被丢弃(如跳过(drop))掉。Sensing的位置在第一个分配的第一资源或第一实际使用的第一资源之前。当没有使能(enable)或者配置可用时隙计数vailableSlotCounting时,sensing的位置在第一个分配的第一资源之前,即第一个repetition之前,如图4所示。当enable或者配置了vailableSlotCounting时,sensing的位置在第一实际使用的第一资源之前,即第二个repetition之前,如图5所示。其中,上述第一资源可以理解为上述所有repetition的传输资源。
可选地,假设第一传输有4个repetition,每个nominal TDW包含两个repetition,其中第二个nominal TDW又被进一步拆分为两个actual TDW。
针对TDW的sensing,可以有如下几种方式:
方法一:仅在第一个nominal TDW之前进行sensing,其余的nominal/actual TDW之前不做sensing;或者,仅在第一个nominal TDW的第一个repetition之前进行sensing,其余的repetition之前不做sensing,如图6所示。
方法二:在每个nominal或者actual TDM之前进行sensing。由于第二个nominal TDM被拆分为两个actual TDW,则每个actual TDW之前均需要做sensing;或者,在每个nominal 或者actual TDM的第一个repetition之前进行sensing。由于第二个nominal TDM被拆分为两个actual TDW,则每个actual TDW的第一个repetition之前均需要做sensing,如图7所示。
方法三:仅在每个nominal TDW之前做sensing;或者,仅在每个nominal TDW的第一个repetition之前做sensing,如图8所示。
可选地,在做sensing后功率调整方式可为如下一项:
方法一:对下一次sensing前的所有传输统一做功率调整。例如,图4或图5中,sensing完后,对repetition#2,3,4统一做功率调整。在图6中,第一次sensing完,对repetition#1,2做功率调整,第二次sensing完,对repetition#3做功率调整,第三次sensing完,对repetition#4做功率调整。其他情况以此类推,在此不再赘述。下一次sensing前若还包含非SBFD slot/symbol,则不对非SBFD slot/symbol进行功率调整。可选地,功率调整可以包括功率回退(power backoff)或者功率抬升(power boosting)。
方法二:不对任何传输做功率调整。
参照图9,本申请实施例还提供了一种数据传输处理方法,包括:
步骤901,网络侧设备从终端接收能力信息;
步骤902,在所述能力信息包括支持子带全双工SBFD能力和支持解调参考信号DMRS绑定能力的情况下,所述网络侧设备向终端发送用于配置SBFD的第一配置或用于配置DMRS绑定的第二配置。
本申请实施例中,若网络侧设备发送第一配置时,可以理解为网络侧设备为终端配置SBFD;若网络设备发送第二配置时,可以理解为终端配置DMRS绑定。
由于网络侧设备为终端配置SBFD或配置DMRS绑定,从而避免网络侧设备为终端同时配置SBFD和DMRS绑定,使得SBFD operation破坏功率一致性和相位连续性进而导致DMRS绑定失效。因此,本申请实施例可以提高通信的可靠性。
应理解,网络侧设备配置SBFD还是配置DMRS绑定可以基于网络侧设备的实现,还可以由协议约定,例如,在一些实施例中,所述网络侧设备向终端发送用于配置SBFD的第一配置或用于配置DMRS绑定的第二配置包括:
所述网络侧设备基于协议约定的配置发送规则,向终端发送用于配置SBFD的第一配置或用于配置DMRS绑定的第二配置。
本申请实施例提供的数据传输处理方法,执行主体可以为数据传输处理装置。本申请实施例中以数据传输处理装置执行数据传输处理方法为例,说明本申请实施例提供的数据传输处理装置。
参照图10,本申请实施例还提供一种数据传输处理装置,如图10所示,该数据传输处理装置1000包括:
第一发送模块1001,用于向网络侧设备发送能力信息;
执行模块1002,用于在所述能力信息包括支持子带全双工SBFD能力和支持解调参 考信号DMRS绑定能力的情况下,执行第一行为;
所述第一行为包括以下任一项:
所述终端不期望所述网络侧设备同时配置SBFD和DMRS绑定;
在所述终端被同时配置SBFD和DMRS绑定,上行连续的至少两个时间单元包括第一时间单元和第二时间单元,且所述第一时间单元和所述第二时间单元的第一上行传输参数不同的情况下,将所述第一时间单元作为破坏功率一致性和相位连续性的事件,并确定第一传输的第一名义时域窗口中的实际时域窗口;
在所述终端被同时配置SBFD和DMRS绑定,且第一时间单元和第二时间单元的第一上行传输参数不同的情况下,所述终端不期望使用DMRS绑定的至少两个连续的时间单元同时包括所述第一时间单元和所述第二时间单元;
其中,所述第一名义时域窗口包括所述第一时间单元和所述第二时间单元,所述第一时间单元为配置有SBFD的时间单元,所述第二时间单元为未被配置SBFD的时间单元,所述第一上行传输参数包括功率和空间关系中的至少一项。
可选地,所述第一传输包括以下至少一项:
由下行控制信息DCI调度的类型A的物理上行共享信道PUSCH重复传输;
配置授权的类型A的PUSCH重复传输;
类型B的PUSCH重复传输;
在至少两个时隙上传输的传输块;
物理上行控制信道PUCCH重复传输。
可选地,在所述终端被配置SBFD的情况下,所述数据传输处理装置1000还包括:
确定模块,用于确定第二行为,所述第二行为包括以下任一项:
在第一时间段基于第一检测执行功率调整操作;
在第一时间段基于第一检测不进行功率调整;
其中,所述第一检测用于确定干扰功率水平,所述第一时间段仅包括所述第一时间单元。
可选地,所述第一检测的位置满足以下至少一项:
所述第一检测位于第一个分配的第一资源之前,或者所述第一检测位于第一个实际使用的第一资源之前;
所述第一检测位于所述第一传输的第一个第二名义时域窗口之前,或位于所述第一传输的第一个第一实际时域窗口之前;
所述第一检测位于所述第一传输的第一个第二名义时域窗口内分配的第一资源之前,或位于所述第一传输的第一个第一实际时域窗口内分配的第一资源之前;
所述第一检测位于所述第一传输的每个第二名义时域窗口之前,或位于所述第一传输的每个第一实际时域窗口之前;
所述第一检测位于所述第一传输的每个第二名义时域窗口内分配的第一资源之前,或 位于所述第一传输的每个第一实际时域窗口内分配的第一资源之前;
其中,所述第一实际时域窗口为包括所述第一时间单元的实际时域窗口,且所述第一实际时域窗口位于所述第一时间段内,所述第一资源为所述第一传输的资源,所述第二名义时域窗口位于所述第一时间段内。
可选地,所述第一时间段位于相邻两次所述第一检测之间,且仅包含所述第一实际窗口和/或所述第二名义时域窗口。
可选地,所述时间单元包括以下至少一项:至少一个时隙,至少一个符号。
参照图11,本申请实施例还提供一种数据传输处理装置,如图11所示,该数据传输处理装置1100包括:
接收模块1101,用于从终端接收能力信息;
第二发送模块1102,用于在所述能力信息包括支持子带全双工SBFD能力和支持解调参考信号DMRS绑定能力的情况下,向终端发送用于配置SBFD的第一配置或用于配置DMRS绑定的第二配置。
可选地,所述第二发送模块具体用于:基于协议约定的配置发送规则,向终端发送用于配置SBFD的第一配置或用于配置DMRS绑定的第二配置。
本申请实施例中的数据传输处理装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的数据传输处理装置能够实现图2至图9的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图12所示,本申请实施例还提供一种通信设备1200,包括处理器1201和存储器1202,存储器1202上存储有可在所述处理器1201上运行的程序或指令,该程序或指令被处理器1201执行时实现上述数据传输处理方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,所述通信接口用于向网络侧设备发送能力信息;所述处理器用于在所述能力信息包括支持子带全双工SBFD能力和支持解调参考信号DMRS绑定能力的情况下,执行第一行为;所述第一行为包括以下任一项:终端不期望所述网络侧设备同时配置SBFD和DMRS绑定;终端被同时配置SBFD和DMRS绑定,上行连续的至少两个时间单元包括第一时间单元和第二时间单元,且所述第一时间单元和所述第二时间单元的第一上行传输参数不同的情况下,将所述第一时间单元作为破坏功率一致性和相位连续性的事件,并确定第一传输的第一名义时域窗口中的实际时域窗口;在终端被同时配置SBFD和DMRS绑定,且第一时间单元和第二时间单元的第一上行传输参数不同的情况下,所述终端不期望使用DMRS绑定的至少两个连续 的时间单元同时包括所述第一时间单元和所述第二时间单元;其中,所述第一名义时域窗口包括所述第一时间单元和所述第二时间单元,所述第一时间单元为配置有SBFD的时间单元,所述第二时间单元为未被配置SBFD的时间单元,所述第一上行传输参数包括功率和空间关系中的至少一项。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图13为实现本申请实施例的一种终端的硬件结构示意图。
该终端1300包括但不限于:射频单元1301、网络模块1302、音频输出单元1303、输入单元1304、传感器1305、显示单元1306、用户输入单元1307、接口单元1308、存储器1309以及处理器1310等中的至少部分部件。
本领域技术人员可以理解,终端1300还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1310逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图13中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1304可以包括图形处理单元(Graphics Processing Unit,GPU)13041和麦克风13042,图形处理器13041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1306可包括显示面板13061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板13061。用户输入单元1307包括触控面板13071以及其他输入设备13072中的至少一种。触控面板13071,也称为触摸屏。触控面板13071可包括触摸检测装置和触摸控制器两个部分。其他输入设备13072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1301接收来自网络侧设备的下行数据后,可以传输给处理器1310进行处理;另外,射频单元1301可以向网络侧设备发送上行数据。通常,射频单元1301包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1309可用于存储软件程序或指令以及各种数据。存储器1309可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1309可以包括易失性存储器或非易失性存储器,或者,存储器1309可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储 器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1309包括但不限于这些和任意其它适合类型的存储器。
处理器1310可包括一个或多个处理单元;可选地,处理器1310集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1310中。
其中,射频单元1301用于向网络侧设备发送能力信息;
处理器1310,用于在所述能力信息包括支持子带全双工SBFD能力和支持解调参考信号DMRS绑定能力的情况下,执行第一行为;
所述第一行为包括以下任一项:
终端不期望所述网络侧设备同时配置SBFD和DMRS绑定;
终端被同时配置SBFD和DMRS绑定,上行连续的至少两个时间单元包括第一时间单元和第二时间单元,且所述第一时间单元和所述第二时间单元的第一上行传输参数不同的情况下,将所述第一时间单元作为破坏功率一致性和相位连续性的事件,并确定第一传输的第一名义时域窗口中的实际时域窗口;
在终端被同时配置SBFD和DMRS绑定,且第一时间单元和第二时间单元的第一上行传输参数不同的情况下,所述终端不期望使用DMRS绑定的至少两个连续的时间单元同时包括所述第一时间单元和所述第二时间单元;
其中,所述第一名义时域窗口包括所述第一时间单元和所述第二时间单元,所述第一时间单元为配置有SBFD的时间单元,所述第二时间单元为未被配置SBFD的时间单元,所述第一上行传输参数包括功率和空间关系中的至少一项。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于从终端接收能力信息;在所述能力信息包括支持子带全双工SBFD能力和支持解调参考信号DMRS绑定能力的情况下,向终端发送用于配置SBFD的第一配置或用于配置DMRS绑定的第二配置。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图14所示,该网络侧设备1400包括:天线1401、射频装置1402、基带装置1403、处理器1404和存储器1405。天线1401与射频装置1402连接。在上行方向上,射频装置1402通过天线1401接收信息,将接收的信息发送给基带装置1403进行处理。在下行方向上,基带装置1403对要发送的信息进行处理,并发送给射频装置1402,射频装置1402对收到的信息进行处理后经过天线1401发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1403中实现,该基带装置1403 包括基带处理器。
基带装置1403例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图14所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1405连接,以调用存储器1405中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口1406,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1400还包括:存储在存储器1405上并可在处理器1404上运行的指令或程序,处理器1404调用存储器1405中的指令或程序执行图11所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述数据传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述数据传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述数据传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:终端及网络侧设备,所述终端用于执行如图2及上述终端侧各个方法实施例的各个过程,所述网络侧设备用于执行如图9及上述网络侧设备侧各个方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外, 参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (20)

  1. 一种数据传输处理方法,包括:
    终端向网络侧设备发送能力信息;
    在所述能力信息包括支持子带全双工SBFD能力和支持解调参考信号DMRS绑定能力的情况下,所述终端执行第一行为;
    所述第一行为包括以下任一项:
    所述终端不期望所述网络侧设备同时配置SBFD和DMRS绑定;
    在所述终端被同时配置SBFD和DMRS绑定,上行连续的至少两个时间单元包括第一时间单元和第二时间单元,且所述第一时间单元和所述第二时间单元的第一上行传输参数不同的情况下,将所述第一时间单元作为破坏功率一致性和相位连续性的事件,并确定第一传输的第一名义时域窗口中的实际时域窗口;
    在所述终端被同时配置SBFD和DMRS绑定,且第一时间单元和第二时间单元的第一上行传输参数不同的情况下,所述终端不期望使用DMRS绑定的至少两个连续的时间单元同时包括所述第一时间单元和所述第二时间单元;
    其中,所述第一名义时域窗口包括所述第一时间单元和所述第二时间单元,所述第一时间单元为配置有SBFD的时间单元,所述第二时间单元为未被配置SBFD的时间单元,所述第一上行传输参数包括功率和空间关系中的至少一项。
  2. 根据权利要求1所述的方法,其中,所述第一传输包括以下至少一项:
    由下行控制信息DCI调度的类型A的物理上行共享信道PUSCH重复传输;
    配置授权的类型A的PUSCH重复传输;
    类型B的PUSCH重复传输;
    在至少两个时隙上传输的传输块;
    物理上行控制信道PUCCH重复传输。
  3. 根据权利要求1所述的方法,其中,在所述终端被配置SBFD的情况下,所述方法还包括:
    所述终端执行第二行为,所述第二行为包括以下任一项:
    在第一时间段基于第一检测执行功率调整操作;
    在第一时间段基于第一检测不进行功率调整;
    其中,所述第一检测用于确定干扰功率水平,所述第一时间段仅包括所述第一时间单元。
  4. 根据权利要求3所述的方法,其中,所述第一检测的位置满足以下至少一项:
    所述第一检测位于分配的第一个第一资源之前,或者所述第一检测位于第一个实际使用的第一资源之前;
    所述第一检测位于所述第一传输的第一个第二名义时域窗口之前,或位于所述第一传 输的第一个第一实际时域窗口之前;
    所述第一检测位于所述第一传输的第一个第二名义时域窗口内分配的第一资源之前,或位于所述第一传输的第一个第一实际时域窗口内分配的第一资源之前;
    所述第一检测位于所述第一传输的每个第二名义时域窗口之前,或位于所述第一传输的每个第一实际时域窗口之前;
    所述第一检测位于所述第一传输的每个第二名义时域窗口内分配的第一资源之前,或位于所述第一传输的每个第一实际时域窗口内分配的第一资源之前;
    其中,所述第一实际时域窗口为包括所述第一时间单元的实际时域窗口,且所述第一实际时域窗口位于所述第一时间段内,所述第一资源为所述第一传输的资源,所述第二名义时域窗口位于所述第一时间段内。
  5. 根据权利要求4所述的方法,其中,所述第一时间段位于相邻两次所述第一检测之间,且仅包含所述第一实际窗口和/或所述第二名义时域窗口。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述时间单元包括以下至少一项:至少一个时隙,至少一个符号。
  7. 一种数据传输处理方法,包括:
    网络侧设备从终端接收能力信息;
    在所述能力信息包括支持子带全双工SBFD能力和支持解调参考信号DMRS绑定能力的情况下,所述网络侧设备向终端发送用于配置SBFD的第一配置或用于配置DMRS绑定的第二配置。
  8. 根据权利要求7所述的方法,其中,所述网络侧设备向终端发送用于配置SBFD的第一配置或用于配置DMRS绑定的第二配置包括:
    所述网络侧设备基于协议约定的配置发送规则,向终端发送用于配置SBFD的第一配置或用于配置DMRS绑定的第二配置。
  9. 一种数据传输处理装置,包括:
    第一发送模块,用于向网络侧设备发送能力信息;
    执行模块,用于在所述能力信息包括支持子带全双工SBFD能力和支持解调参考信号DMRS绑定能力的情况下,执行第一行为;
    所述第一行为包括以下任一项:
    终端不期望所述网络侧设备同时配置SBFD和DMRS绑定;
    终端被同时配置SBFD和DMRS绑定,上行连续的至少两个时间单元包括第一时间单元和第二时间单元,且所述第一时间单元和所述第二时间单元的第一上行传输参数不同的情况下,将所述第一时间单元作为破坏功率一致性和相位连续性的事件,并确定第一传输的第一名义时域窗口中的实际时域窗口;
    在终端被同时配置SBFD和DMRS绑定,且第一时间单元和第二时间单元的第一上行传输参数不同的情况下,所述终端不期望使用DMRS绑定的至少两个连续的时间单元 同时包括所述第一时间单元和所述第二时间单元;
    其中,所述第一名义时域窗口包括所述第一时间单元和所述第二时间单元,所述第一时间单元为配置有SBFD的时间单元,所述第二时间单元为未被配置SBFD的时间单元,所述第一上行传输参数包括功率和空间关系中的至少一项。
  10. 根据权利要求9所述的装置,其中,所述第一传输包括以下至少一项:
    由下行控制信息DCI调度的类型A的物理上行共享信道PUSCH重复传输;
    配置授权的类型A的PUSCH重复传输;
    类型B的PUSCH重复传输;
    在至少两个时隙上传输的传输块;
    物理上行控制信道PUCCH重复传输。
  11. 根据权利要求9所述的装置,其中,在所述终端被配置SBFD的情况下,所述数据传输处理装置还包括:
    确定模块,用于执行第二行为,所述第二行为包括以下任一项:
    在第一时间段基于第一检测执行功率调整操作;
    在第一时间段基于第一检测不进行功率调整;
    其中,所述第一检测用于确定干扰功率水平,所述第一时间段仅包括所述第一时间单元。
  12. 根据权利要求11所述的装置,其中,所述第一检测的位置满足以下至少一项:
    所述第一检测位于分配的第一个第一资源之前,或者所述第一检测位于第一个实际使用的第一资源之前;
    所述第一检测位于所述第一传输的第一个第二名义时域窗口之前,或位于所述第一传输的第一个第一实际时域窗口之前;
    所述第一检测位于所述第一传输的第一个第二名义时域窗口内分配的第一资源之前,或位于所述第一传输的第一个第一实际时域窗口内分配的第一资源之前;
    所述第一检测位于所述第一传输的每个第二名义时域窗口之前,或位于所述第一传输的每个第一实际时域窗口之前;
    所述第一检测位于所述第一传输的每个第二名义时域窗口内分配的第一资源之前,或位于所述第一传输的每个第一实际时域窗口内分配的第一资源之前;
    其中,所述第一实际时域窗口为包括所述第一时间单元的实际时域窗口,且所述第一实际时域窗口位于所述第一时间段内,所述第一资源为所述第一传输的资源,所述第二名义时域窗口位于所述第一时间段内。
  13. 一种数据传输处理装置,包括:
    接收模块,用于从终端接收能力信息;
    第二发送模块,用于在所述能力信息包括支持子带全双工SBFD能力和支持解调参考信号DMRS绑定能力的情况下,向终端发送用于配置SBFD的第一配置或用于配置DMRS 绑定的第二配置。
  14. 根据权利要求13所述的装置,其中,所述第二发送模块还用于:基于协议约定的配置发送规则,向终端发送用于配置SBFD的第一配置或用于配置DMRS绑定的第二配置。
  15. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至6任一项所述的数据传输处理方法的步骤。
  16. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求7至8任一项所述的数据传输处理方法的步骤。
  17. 一种通信系统,包括终端及网络侧设备,所述终端可用于执行如权利要求1至6任一项所述的数据传输处理方法的步骤,所述网络侧设备可用于执行如权利要求7至8任一项所述的数据传输处理方法的步骤。
  18. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至6任一项所述的数据传输处理方法的步骤,或,所述程序或指令被处理器执行时实现如权利要求7至8任一项所述的数据传输处理方法的步骤。
  19. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至6任一项所述的数据传输处理方法的步骤,或实现如权利要求7至8任一项所述的数据传输处理方法的步骤。
  20. 一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如权利要求1至6任一项所述的数据传输处理方法的步骤,或实现如权利要求7至8任一项所述的数据传输处理方法的步骤。
PCT/CN2023/110692 2022-08-05 2023-08-02 数据传输处理方法、装置、终端及网络侧设备 WO2024027747A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210940130.8A CN117580169A (zh) 2022-08-05 2022-08-05 数据传输处理方法、装置、终端及网络侧设备
CN202210940130.8 2022-08-05

Publications (1)

Publication Number Publication Date
WO2024027747A1 true WO2024027747A1 (zh) 2024-02-08

Family

ID=89848513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110692 WO2024027747A1 (zh) 2022-08-05 2023-08-02 数据传输处理方法、装置、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN117580169A (zh)
WO (1) WO2024027747A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021133616A1 (en) * 2019-12-27 2021-07-01 Qualcomm Incorporated Dmrs allocation in sub-band full duplex
US20210298026A1 (en) * 2020-03-19 2021-09-23 Qualcomm Incorporated Uplink indication for full-duplex operation
WO2022035643A1 (en) * 2020-08-10 2022-02-17 Qualcomm Incorporated Wireless communication using multiple active bandwidth parts
CN114826512A (zh) * 2021-01-18 2022-07-29 大唐移动通信设备有限公司 一种dmrs绑定窗口确定方法、装置及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021133616A1 (en) * 2019-12-27 2021-07-01 Qualcomm Incorporated Dmrs allocation in sub-band full duplex
US20210298026A1 (en) * 2020-03-19 2021-09-23 Qualcomm Incorporated Uplink indication for full-duplex operation
WO2022035643A1 (en) * 2020-08-10 2022-02-17 Qualcomm Incorporated Wireless communication using multiple active bandwidth parts
CN114826512A (zh) * 2021-01-18 2022-07-29 大唐移动通信设备有限公司 一种dmrs绑定窗口确定方法、装置及存储介质

Also Published As

Publication number Publication date
CN117580169A (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2023125906A1 (zh) 资源传输方向确定方法、装置及终端
CN113939036A (zh) 信道监听、传输方法、终端及网络侧设备
EP4319329A1 (en) Uplink power determination method and device
WO2024027747A1 (zh) 数据传输处理方法、装置、终端及网络侧设备
CN116367312A (zh) 传输确定方法、装置、终端、网络侧设备和存储介质
WO2023198122A1 (zh) 资源配置方法、装置及通信设备
WO2024032459A1 (zh) 传输处理方法、装置及终端
WO2024061261A1 (zh) 资源配置方法及装置、终端及网络侧设备
WO2023185819A1 (zh) Pdcch监听方法、终端、网络侧设备及介质
WO2024022159A1 (zh) 信息配置方法、装置、终端、网络侧设备及可读存储介质
WO2024022162A1 (zh) 信息配置方法、装置、终端、网络侧设备及可读存储介质
WO2023185901A1 (zh) 资源处理方法、装置及终端
CN113747559B (zh) 功率余量的上报方法、装置、终端及可读存储介质
WO2024067571A1 (zh) 灵活双工sbfd信息指示方法、终端及网络侧设备
WO2024022264A1 (zh) 信号处理方法、装置、终端、网络侧设备及介质
WO2023207785A1 (zh) 终端操作方法、装置、终端及网络侧设备
WO2023040778A1 (zh) 传输方法和设备
WO2023198146A1 (zh) 资源配置方法、装置、设备及介质
WO2023109759A1 (zh) Prach传输方法、装置及终端
WO2023216970A1 (zh) 信息上报方法、装置、通信设备及存储介质
WO2024032768A1 (zh) 控制信息处理方法、装置、终端及网络侧设备
WO2023125912A1 (zh) 上行传输的跳频、指示方法、装置、终端及网络侧设备
WO2024022160A1 (zh) 信息配置方法、装置、终端、网络侧设备及可读存储介质
WO2023109678A1 (zh) 资源冲突处理方法、装置及终端
WO2024061302A1 (zh) 信号检测和发送方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849452

Country of ref document: EP

Kind code of ref document: A1