WO2024094011A1 - 通信方法、装置及终端 - Google Patents

通信方法、装置及终端 Download PDF

Info

Publication number
WO2024094011A1
WO2024094011A1 PCT/CN2023/128585 CN2023128585W WO2024094011A1 WO 2024094011 A1 WO2024094011 A1 WO 2024094011A1 CN 2023128585 W CN2023128585 W CN 2023128585W WO 2024094011 A1 WO2024094011 A1 WO 2024094011A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
terminal
downlink transmission
time
downlink
Prior art date
Application number
PCT/CN2023/128585
Other languages
English (en)
French (fr)
Inventor
王理惠
潘学明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024094011A1 publication Critical patent/WO2024094011A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control

Definitions

  • the present application belongs to the field of wireless communication technology, and specifically relates to a communication method, device and terminal.
  • R18 discloses that the maximum bandwidth capability of the RedCap terminal in Frequency Range 1 (FR1) is only 5MHz, which will result in the RedCap terminal having lower terminal capability.
  • the embodiments of the present application provide a communication method, device and terminal, which can ensure that the RedCap terminal implements a normal communication process and thus ensure the communication quality.
  • a communication method wherein a terminal processes a target transmission according to a bandwidth capability; wherein the bandwidth capability of the terminal is a predetermined value, the predetermined value is less than or equal to 5 MHz, and the target transmission includes a first downlink transmission and/or a first uplink transmission.
  • a communication device comprising: a processing module, configured to process a target transmission according to a bandwidth capability; wherein the bandwidth capability of the terminal is a predetermined value, the predetermined value is less than or equal to 5 MHz, and the target transmission comprises a first downlink transmission and/or a first uplink transmission.
  • a terminal comprising a processor and a memory, wherein the memory stores a program or instruction that can be executed on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect are implemented.
  • a terminal comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the steps of the method described in the first aspect.
  • a communication system including: a terminal and a network side device, wherein the terminal can be used to perform the following steps: The steps of the method described in the first aspect.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the steps of the method described in the first aspect.
  • a computer program product/program product is provided, wherein the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the steps of the method described in the first aspect.
  • the terminal relaxes the restrictions on network-side scheduling/configuration by processing the target transmission according to its own bandwidth capability, thereby ensuring that the terminal implements a normal communication process and thereby ensuring the communication quality.
  • FIG1 is a schematic diagram of the structure of a wireless communication system provided by an exemplary embodiment of the present application.
  • FIG2 is a flow chart of a communication method according to an exemplary embodiment of the present application.
  • FIG3 is a second flow chart of a communication method provided by an exemplary embodiment of the present application.
  • FIG4 is a third flow chart of a communication method provided by an exemplary embodiment of the present application.
  • FIG5 is a schematic diagram of the structure of a communication device provided by an exemplary embodiment of the present application.
  • FIG. 6 is a schematic diagram of the structure of a terminal provided by an exemplary embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • NR New Radio
  • 6G 6th Generation
  • FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal 11 and a network-side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, an ultra-mobile personal computer (Ultra-Mobile Personal Computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), an augmented reality (Augmented Reality, AR)/virtual reality (Virtual Reality, VR) device , robots, wearable devices (Wearable Device), vehicle user equipment (VUE), pedestrian user equipment (PUE), smart home (home appliances with wireless communication functions, such as refrigerators, televisions, washing machines or furniture, etc.), game consoles, personal computers (Personal Computer, PC), ATMs or self-service machines and other terminal side devices, wearable devices include: smart watches, smart bracelet
  • the network side device 12 may include access network equipment or core network equipment, wherein the access network equipment may also be called wireless access network equipment, wireless access network (Radio Access Network, RAN), wireless access network function or wireless access network unit.
  • the access network equipment may include a base station, a wireless local area network (WLAN) access point (AS) or a wireless fidelity (WiFi) node, etc.
  • WLAN wireless local area network
  • WiFi wireless fidelity
  • the base station may be called a Node B (NB), an evolved Node B (eNB), an access point, a base transceiver station (BTS), a radio base station, a radio transceiver, a basic service set (BSS), an extended service set (ESS), a home Node B (HNB), a home evolved Node B (Home evolved Node B), a transmission reception point (TRP) or some other appropriate term in the field.
  • NB Node B
  • eNB evolved Node B
  • BTS basic service set
  • ESS extended service set
  • HNB home Node B
  • HNB home evolved Node B
  • TRP transmission reception point
  • FIG. 2 it is a flow chart of a communication method 200 provided by an exemplary embodiment of the present application, which can be, but is not limited to, executed by a terminal, and specifically can be executed by hardware and/or software installed in the terminal.
  • the method 200 can at least include the following steps.
  • the terminal processes the target transmission according to the bandwidth capability.
  • the bandwidth capability of the terminal can be understood as the ability of the terminal to process signals or the baseband to process data.
  • the bandwidth capability of the terminal is a predetermined value, which is less than or equal to 5MHz, such as 5MHz, 4MHz, etc. That is, the terminal mentioned in this embodiment is a RedCap terminal, such as R18 RedCap terminal in, etc.
  • the bandwidth capability of the terminal is 5 MHz
  • the bandwidth capability of 5 MHz can also be understood as: for a subcarrier spacing (SCS) of 15 KHz, the frequency domain resources are 25 or 28 or 27 physical resource blocks (PRBs); for a SCS of 30 KHz, the frequency domain resources are 11 or 12 or 13 or 14 PRBs.
  • SCS subcarrier spacing
  • PRBs physical resource blocks
  • the target transmission includes a first downlink transmission and/or a first uplink transmission.
  • the first downlink transmission and the first uplink transmission may be independent of each other, or the first uplink transmission may be scheduled by the first downlink transmission, which is not limited here.
  • the first downlink transmission and the first uplink transmission described in this embodiment may be initial transmission or retransmission.
  • the first downlink transmission may include an initial transmission and/or retransmission of message 2 (message 2, MSG 2)
  • the first uplink transmission may include first feedback information and/or an initial transmission or retransmission of MSG 3, and the MSG 3 is scheduled by MSG 2 or target downlink control information (Downlink Control Information, DCI).
  • DCI Downlink Control Information
  • the target DCI may be a DCI scrambled by a temporary cell radio network temporary identifier (TC-RNTI) or a cell (Cell, C)-RNTI, etc., which is not limited here.
  • TC-RNTI temporary cell radio network temporary identifier
  • Cell, C cell-RNTI
  • the frequency domain resource allocation (FDRA) field in the target DCI may indicate that the total frequency domain resources of MSG 3 (such as retransmitted MSG 3) do not exceed a predetermined value.
  • the first feedback information corresponds to MSG 4, such as the first feedback information is feedback information of a hybrid automatic repeat request acknowledgment (HARQ-ACK) scheduled by MSG 4.
  • HARQ-ACK hybrid automatic repeat request acknowledgment
  • the first downlink transmission may be an initial transmission and/or retransmission of MSG B, and the first uplink transmission includes MSG A and/or second feedback information.
  • the second feedback information corresponds to the MSG B, such as the second feedback information is feedback information of HARQ-ACK scheduled by MSG B.
  • the first uplink transmission includes a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) based on a configured grant (Configured Grant, CG) and/or a PUSCH based on a random access (Random Access, RA).
  • PUSCH Physical Uplink Shared Channel
  • CG configured Grant
  • RA Random Access
  • the terminal relaxes the restrictions on network-side scheduling/configuration by processing the target transmission according to its own bandwidth capability, such as allowing the frequency domain resources used for the target transmission to exceed or not exceed the bandwidth capability of the terminal, thereby ensuring that the terminal can achieve a normal communication process and thus ensure the communication quality.
  • FIG. 3 it is a flow chart of a communication method 300 provided by an exemplary embodiment of the present application, and the method can be, but is not limited to, executed by a terminal, and specifically can be executed by hardware and/or software installed in the terminal.
  • the method 300 can at least include the following steps.
  • the terminal processes the target transmission according to the bandwidth capability.
  • the bandwidth capability of the terminal is a predetermined value, the predetermined value is less than or equal to 5 MHz, and the target transmission Includes a first downlink transmission and/or a first uplink transmission.
  • the terminal processes the target transmission according to the bandwidth capability, including at least one of the following methods 1-6.
  • Mode 1 It is expected that the size of the total frequency domain resources used for the first downlink transmission does not exceed the predetermined value.
  • the “expectation" mentioned in method 1 and subsequent embodiments can be understood as: the network side equipment cannot guarantee whether the frequency domain resources used for downlink transmission and the total frequency domain resources scheduled or configured for uplink transmission do not exceed the predetermined value.
  • the network side device may use frequency domain resources exceeding the predetermined value to transmit the first downlink transmission, or may use frequency domain resources not exceeding the predetermined value to transmit the first downlink transmission, that is, for method 1, the network side device cannot guarantee the use of frequency domain resources not exceeding the predetermined value to transmit the first downlink transmission.
  • Mode 2 It is not expected that the size of the total frequency domain resources used by the first downlink transmission exceeds the predetermined value.
  • the network side device ensures that the frequency domain resources used for downlink transmission and the total frequency domain resources scheduled or configured for uplink transmission do not exceed the predetermined value.
  • the network side device when the terminal does not expect the size of the total frequency domain resources used for the first downlink transmission to exceed the predetermined value, the network side device cannot use frequency domain resources exceeding the predetermined value for the first downlink transmission, that is, for Mode 2, the network side device ensures that the first downlink transmission is transmitted using frequency domain resources not exceeding the predetermined value.
  • Mode 3 When the size of the total frequency domain resources used for the first downlink transmission exceeds the predetermined value, perform the first operation.
  • Method 3 can be understood as: the terminal processes the first downlink transmission according to the total frequency domain resources used by the first downlink transmission and the bandwidth capability of the terminal. Based on this, the implementation process of Method 3 is explained below in combination with different implementation methods, as follows.
  • the terminal demodulates the first downlink transmission and performs at least one of the following (11)-(15).
  • time unit mentioned in the above and below questions of this application can be a symbol, a time slot, a sub-time slot, etc., and is not limited here.
  • the second uplink transmission is an uplink transmission scheduled by the first downlink transmission.
  • the first number of the first downlink transmissions includes an initial transmission and/or repeated transmission of the first downlink transmission. For example, when the first number is 1, the first downlink transmission is an initial transmission, and when the first number is an integer greater than 1, the first downlink transmission includes an initial transmission and at least one repeated transmission.
  • the first number may be predetermined by a protocol or implemented by a network configuration, and is not limited here.
  • the first time threshold mentioned in this embodiment can be understood as the minimum time capability required for the terminal to complete the first downlink transmission and prepare for the second uplink transmission.
  • the first time threshold can be implemented by protocol agreement or high-level configuration, or it can be determined based on the first reference time and the time required for the terminal to process the downlink transmission on the first designated frequency domain resource, and the first designated frequency domain resource is determined based on the resource difference between the total frequency domain resource used by the first downlink transmission and the predetermined value.
  • the first designated frequency domain resource is (N1-5)MHz
  • the first time threshold is determined based on the first reference time and the processing time required for the terminal to process the frequency domain resource of (N1-5)MHz.
  • the first time threshold Tmin can be expressed as shown in the following formula (1).
  • T1 is the first reference time, which may be predetermined by the protocol.
  • T1 NT,1 + NT,2 + 0.5 milliseconds
  • N1 is the total frequency domain resource used by the first downlink transmission
  • M is the predetermined value
  • NT,1 is the N1 time units corresponding to the processing time of the PDSCH of the terminal processing capability 1 when an additional physical downlink shared channel (PDSCH) demodulation reference signal (DM-RS) is configured.
  • the duration, NT,2 is the duration of N2 time units corresponding to the PUSCH processing time of the terminal processing capability 1 when the additional physical uplink shared channel PUSCH DM-RS is configured.
  • the processing time requirements for terminals with limited baseband bandwidth capability (i.e., RedCap) during the communication process are relaxed (such as the first time threshold is greater than the minimum requirement for other terminal processing time in R18), and the restrictions on network-side scheduling/configuration of frequency domain resources are relaxed, so that all terminal types can share the resource allocation of the first downlink transmission, and the feasibility and reliability of terminal behavior with limited baseband bandwidth capability are ensured.
  • the second number of the first downlink transmission includes the initial transmission and/or repeated transmission of the first downlink transmission.
  • the first downlink transmission is the initial transmission.
  • the second number is an integer greater than 1
  • the first downlink transmission includes the initial transmission and at least one repeated transmission.
  • the second number can be predetermined by the protocol or implemented by the network configuration, and is not limited here.
  • the terminal is not required to demodulate the first downlink transmission. (21) can be understood as the terminal can demodulate or not demodulate the first downlink transmission.
  • the terminal determines whether to demodulate the first downlink transmission.
  • the terminal can determine whether to demodulate based on implementation information.
  • the implementation information of the terminal can be the demodulation information of the first downlink transmission preset in the terminal when leaving the factory (such as demodulation or not), or it can be the communication process information initiated by the terminal, etc., which is not limited here.
  • the demodulation information of the first downlink transmission preset in the terminal may be that when the total amount of frequency domain resources used by the first downlink transmission is greater than the predetermined value, the terminal demodulates or does not demodulate the first downlink transmission according to the preset demodulation information of the first downlink transmission, and there is no limitation here.
  • the communication process initiated by the terminal may be a random access process, etc.
  • the terminal demodulates the first downlink transmission.
  • the restrictions on the scheduling/configuration of network-side equipment are relaxed (such as allowing the frequency domain resources used by the first downlink transmission to exceed the bandwidth capability of the terminal (such as 5MHz), allowing the time for scheduling uplink transmission to not meet the minimum requirements of the terminal processing time defined in R18).
  • the above implementation method further relaxes the requirement for terminal processing time with limited baseband bandwidth capability by setting the first time threshold, thereby improving the flexibility of the entire communication network from both the network side and the terminal side.
  • Mode 4 It is expected that the size of the total frequency domain resources configured or scheduled for the first uplink transmission does not exceed the predetermined value.
  • Mode 5 It is not expected that the size of the total frequency domain resources configured or scheduled for the first uplink transmission exceeds the predetermined value.
  • Method 4 and Method 5 please refer to the relevant descriptions in the aforementioned Method 1 and Method 2, which will not be repeated here.
  • Mode 6 When the size of the total frequency domain resources configured or scheduled for the first uplink transmission exceeds the predetermined value, the terminal performs a second operation.
  • Mode 6 can be understood as: the terminal processes the first uplink transmission according to the total frequency domain resources used by the first uplink transmission and the bandwidth capability of the terminal. Based on this, the implementation process of Mode 6 is described below, as follows.
  • the terminal When the size of the total frequency domain resources configured or scheduled for the first uplink transmission exceeds the predetermined value, the terminal performs at least one of the following (31)-(34).
  • the first uplink transmission is an uplink transmission scheduled by the second downlink transmission.
  • the random access process corresponding to the first uplink transmission has failed.
  • determine that the random access process corresponding to the first uplink transmission has failed including: when the first uplink transmission is a third number and the third number of first uplink transmissions are scheduled by a third number of second downlink transmissions received continuously, determine that the random access process corresponding to the first uplink transmission has failed; wherein the third number of second downlink transmissions includes an initial transmission and/or repeated transmission of the second downlink transmission.
  • the third number may be predetermined by the protocol or implemented by the network configuration, and is not limited here.
  • the second time threshold mentioned in this embodiment can also be understood as the minimum time capability required for the terminal to complete processing the second downlink transmission and prepare for the first uplink transmission.
  • the second time threshold can be implemented by protocol agreement or network side configuration, or can be based on the second reference time and the terminal The second time threshold is determined according to the second reference time and the preparation time required for the uplink transmission on the frequency domain resource of the terminal transmission (N2-5) MHz.
  • the second time threshold T’min can be expressed as shown in the following formula (2).
  • T2 is the second reference time, which can be predetermined by the protocol.
  • T2 NT,1 + NT,2 + 0.5 milliseconds
  • DCI i.e., the second downlink transmission
  • T1 NT,2 milliseconds
  • N2 is the total frequency domain resource value used by the first uplink transmission
  • M is the predetermined value
  • NT,1 is the duration of N1 time units corresponding to the processing time of PDSCH of terminal processing capability 1 when additional physical downlink shared channel PDSCH demodulation reference signal DM-RS is configured
  • NT,2 is the duration of N2 time units corresponding to the processing time of PUSCH of terminal processing capability 1 when additional physical uplink shared channel PUSCH DM-RS is configured.
  • the requirements for the terminal processing time with limited baseband bandwidth capability during the communication process are relaxed (such as the second time threshold is greater than the minimum requirement for the terminal processing time in R18), and the restrictions on the network-side scheduling/configuration of frequency domain resources are relaxed, and the feasibility and reliability of the terminal behavior with limited baseband bandwidth capability are ensured.
  • the restrictions on the scheduling/configuration of network-side equipment are relaxed (such as allowing the frequency domain used by the first uplink transmission to exceed the bandwidth capacity of the terminal (such as 5MHz), allowing the time for scheduling uplink transmission not to meet the minimum terminal processing time requirement defined in R18), avoiding the impact on non-RedCap terminals (such as only limiting the uplink frequency domain resources of RedCap to not exceed the predetermined value); on the other hand, the complexity of processing terminals with limited baseband bandwidth capabilities is reduced (such as allowing the terminal to give up transmitting the first uplink transmission, etc.), or relative to the minimum terminal processing time requirement defined in R18, the aforementioned implementation method further relaxes the requirements for terminal processing time by setting the second time threshold. From both the network side and the terminal side, the flexibility of the entire communication network is improved.
  • first uplink transmission and the second uplink transmission may be the same or different, and the first downlink transmission and the second downlink transmission may also be the same or different, and there is no limitation here.
  • FIG4 it is a flow chart of a communication method 400 provided by an exemplary embodiment of the present application.
  • the method can be, but is not limited to, executed by a terminal, and specifically can be executed by hardware and/or software installed in the terminal.
  • the method 400 may at least include the following steps.
  • the terminal processes the target transmission according to the bandwidth capability.
  • the bandwidth capability of the terminal is a predetermined value, the predetermined value is less than or equal to 5 MHz, and the target transmission includes a first downlink transmission and/or a first uplink transmission.
  • the implementation process of S410 when the terminal processes the target transmission according to the bandwidth capability, can include S411: the terminal processes the target transmission according to the bandwidth capability and the first information.
  • the first information includes at least one of the following (41)-(44).
  • the terminal capability information includes that the maximum supported bandwidth capability of the terminal is 20 MHz, and/or that the maximum supported baseband bandwidth capability of the terminal is 5 MHz.
  • the terminal capability information may also include all (or necessary) capability information of the RedCap terminal defined in R17, all (or necessary) capability information of the RedCap terminal defined in R18, etc., which are not limited here.
  • the terminal identification information or terminal early identification information is used to indicate to the network side device that the type of the terminal at least includes that the bandwidth capability of the terminal is the predetermined value.
  • the terminal early identification information may include RedCap terminal early identification information defined in R17 and/or RedCap terminal early identification information defined in R18, etc.
  • the second information may be carried and sent by MSG 1 and/or MSG 3.
  • the MSG 1 may carry shared second information (such as the RedCap terminal early identification information defined in R17), and/or the MSG 3 may carry shared or specific second information (such as the RedCap terminal early identification information defined in R18).
  • the MSG 1 resources carrying the terminal early identification information of R17 RedCap are reused by R18 RedCap, thereby avoiding further segmentation of the Physical Random Access Channel (PRACH)/MSG 1 resources and ensuring the reliability of the communication process.
  • PRACH Physical Random Access Channel
  • the terminal is configured with an independent (or separate) initial bandwidth part (Bandwidth part, BWP), wherein the initial BWP includes an initial uplink (Up-Link, UL) BWP and/or an initial downlink (Down-Link, DL) BWP.
  • the independent initial BWP includes at least one of the following: a maximum bandwidth of the independent initial BWP does not exceed 20 MHz; a maximum bandwidth of the independent initial BWP does not exceed 5 MHz.
  • the network side device configures an independent initial BWP for the Rel-17 RedCap terminal
  • the maximum bandwidth of the independent initial BWP can be 20 MHz
  • the Rel-18 RedCap terminal can share the same independent initial DL/UL BWP with the Rel-17 RedCap terminal; otherwise, the Rel-18 RedCap terminal and the Rel-17 RedCap terminal share the same initial BWP as the non-RedCap terminal.
  • the network side equipment can use the independent initial BWP mechanism configured for R17 RedCap terminals in the relevant protocol to configure the Rel-18 RedCap terminals.
  • An independent initial BWP is set, but because there is no Rel-17 RedCap terminal in the cell at this time, the maximum bandwidth of the independent initial BWP configured by the network side device for the R18 RedCap terminal can be a predetermined value, such as 5MHz.
  • carrier information carrying third information the third information including the terminal capability information and/or the second information.
  • the carrier information may also be referred to as an early indication or a RedCap indication.
  • the carrier information carrying the third information is used to indicate whether the third information is sent in MSG 1 or MSG 3.
  • the sending of the aforementioned terminal early identification information can be sent by the terminal when the network side device enables the terminal early identification indication, or it can be sent by the terminal autonomously, and there is no limitation here.
  • the terminal when the terminal processes the target transmission according to the bandwidth capability and the first information, if the first information includes at least one of the terminal capability information sent by the terminal, the second information, the carrier information carrying the second information, and the terminal being configured with an independent initial BWP, the terminal performs at least one of the following (51)-(55).
  • the first downlink transmission is demodulated, and the time between the last time unit where the first downlink transmission is located and the first time unit where the second uplink transmission is located is expected to be no less than a first time threshold.
  • the communication method provided by the present application is further introduced in combination with Examples 1-3, as follows. It should be noted that the bandwidth capability of the R17 RedCap terminal mentioned in this embodiment is 20MHz, and the bandwidth capability of the R18 RedCap terminal is 5MHz.
  • the terminal sends MSG 1 to the network side device for random access, and the MSG 1 carries the second information (i.e., the terminal early identification information), then the terminal can perform at least one of the following:
  • the total frequency domain resources used by the RAR PDSCH are within 5MHz; in other words, if the network side device correctly receives the MSG 1 sent by the terminal, the network side device should ensure that the total frequency domain resources of the RAR of the terminal do not exceed 5MHz.
  • the terminal early indication of MSG 1 is an indication of sharing R17 RedCap
  • the total frequency domain resources of RAR corresponding to R17 RedCap and R18 RedCap shall not exceed 5 MHz.
  • the terminal early indication of MSG 1 is an indication of R18 RedCap (newly introduced for 18 RedCap indication)
  • the total frequency domain resources of RAR corresponding to R18 RedCap shall not exceed 5MHz
  • the total frequency domain resources of RAR corresponding to R17 RedCap may exceed 5MHz.
  • the terminal receives a RAR PDSCH and the total frequency domain resources used by the RAR PDSCH exceed 5 MHz (i.e., the total frequency domain resources used by the RAR PDSCH are allowed to exceed 5 MHz), then the terminal expects that the time interval between the last symbol of the time slot where the RAR PDSCH is located and the first symbol of the RAR scheduled MSG 3 transmission is not less than the minimum time capability required for the terminal to process the RAR PDSCH and prepare for MSG 3 transmission, i.e., the first time threshold Tmin, such as milliseconds or milliseconds, N1 is the total frequency domain resources used by RAR PDSCH.
  • Tmin such as milliseconds or milliseconds
  • the terminal may perform at least one of the following:
  • the terminal sends MSG 3 after demodulating MSG 2; otherwise, the terminal gives up transmitting MSG 3 or gives up demodulating MSG 2.
  • the terminal abandons demodulation of MSG 2.
  • the terminal may always expect the frequency domain resources of MSG 4 to be scheduled within 5 MHz, or the terminal may always expect the frequency domain resources of MSG 4 to be scheduled within 20 MHz.
  • the terminal always expects the frequency domain resources of the scheduled MSG 4. within 5 MHz; otherwise, the terminal expects the frequency domain resources of MSG 4 to be scheduled to be within 20 MHz.
  • LCID logical channel identity
  • the terminal can perform any of the following:
  • the time interval between the last symbol of the time slot where MSG 4 PDSCH is located and the first symbol of the PUCCH transmission carrying HARQ-ACK feedback for MSG 4 is no less than the minimum time capability required for the R18 terminal to process MSG 4 PDSCH and prepare for PUCCH transmission, that is, the first time threshold.
  • the terminal sends PUCCH carrying HARQ-ACK after demodulating MSG 4; otherwise, the terminal gives up transmitting PUCCH or the terminal gives up demodulating MSG 4, the terminal gives up transmitting PUCCH or the terminal gives up demodulating MSG 4.
  • the terminal sends MSG 1 (MSG 1 carries R17 RedCap terminal early identification information or R18 RedCap terminal early identification information) to the network side device for random access and receives MSG 2.
  • MSG 1 carries R17 RedCap terminal early identification information or R18 RedCap terminal early identification information
  • the behavior of the Rel-18 RedCap terminal includes: the Rel-18 RedCap terminal expects the frequency domain resources indicated by the FDRA field of the initial transmission of MSG 3 scheduled by UL grant in RAR and/or the retransmission of MSG 3 scheduled by DCI format (format) 0_0 carrying UL grant and scrambled by TC-RNTI to be within 5MHz.
  • the terminal sends MSG 1 to the network side device for random access and receives MSG 2.
  • the behavior of the Rel-18 RedCap terminal includes allowing the frequency domain resources indicated by the FDRA field of MSG 3 scheduled by DCI format 0_0 scrambled by TC-RNTI and carrying UL grant to exceed 5MHz.
  • the frequency domain resources of MSG 3 received by the Rel-18 RedCap terminal exceed 5MHz, the Rel-18 RedCap terminal abandons the transmission of MSG 3.
  • the Transport Block Size (TBS) is 56 bits or 72 bits in most cases, and the required resources will not exceed 5MHz. Therefore, ensuring that the resource allocation of MSG 3 PUSCH is within 5MHz does not impose a great restriction on the network side (Network, NW).
  • the bandwidth capability of the terminal (such as the R18 RedCap terminal) is 5MHz, and the network-side device does not enable the terminal early indication of MSG 1, then for MSG 2 and MSG 3, the total frequency domain resources used can exceed 5MHz. For MSG 4, because the R17 RedCap indication must be sent in MSG 3, the frequency domain resources of MSG 4 cannot exceed 5MHz.
  • the network side when the network side does not enable the terminal early indication of MSG 1, and based on the received MSG 1, it knows that a terminal in the cell has initiated a random access process, for MSG 2, if the scheduling frequency domain resources of RAR PDSCH exceed 5MHz, then the R18 RedCap terminal behavior includes at least one of (a)-(b).
  • the frequency domain resources indicated by the FDRA field of the RAR UL grant and/or the MSG 3 scheduled by the DCI format 0_0 scrambled by TC-RNTI carrying UL grant are allowed to exceed 5 MHz.
  • the frequency domain resources of the MSG 3 received by the Rel-18 RedCap terminal exceed 5 MHz, the Rel-18 RedCap terminal abandons the transmission of MSG 3.
  • the terminal For MSG 4, the terminal always expects the frequency domain resources of the scheduled MSG 4 to be within 5 MHz.
  • the communication methods 200-400 provided in the embodiments of the present application may be executed by a communication device.
  • a communication device executing a communication method is taken as an example to illustrate the communication device provided in the embodiments of the present application.
  • FIG. 5 it is a structural diagram of a communication device 500 provided for an exemplary embodiment of the present application, and the device 500 includes a processing module 510, which is used to process the target transmission according to the bandwidth capability; wherein the bandwidth capability of the terminal is a predetermined value, the predetermined value is less than or equal to 5MHz, and the target transmission includes a first downlink transmission and/or a first uplink transmission.
  • a processing module 510 which is used to process the target transmission according to the bandwidth capability
  • the bandwidth capability of the terminal is a predetermined value
  • the predetermined value is less than or equal to 5MHz
  • the target transmission includes a first downlink transmission and/or a first uplink transmission.
  • the device 500 further includes a transmission module for performing the target transmission.
  • the processing module 510 processes the target transmission according to the bandwidth capability, including at least one of the following: expecting that the size of the total frequency domain resources used by the first downlink transmission does not exceed the predetermined value; not expecting the size of the total frequency domain resources used by the first downlink transmission to exceed the predetermined value; performing a first operation when the size of the total frequency domain resources used by the first downlink transmission exceeds the predetermined value; expecting that the size of the total frequency domain resources configured or scheduled for the first uplink transmission does not exceed the predetermined value; not expecting the size of the total frequency domain resources configured or scheduled for the first uplink transmission to exceed the predetermined value; and the terminal performing a second operation when the size of the total frequency domain resources configured or scheduled for the first uplink transmission exceeds the predetermined value.
  • the processing module 510 performs a first operation, including: when the size of the total frequency domain resources used by the first downlink transmission exceeds the predetermined value, demodulating the first downlink transmission, and performing at least one of the following: expecting that the time between the last time unit of the first downlink transmission and the first time unit of the second uplink transmission is not less than a first time threshold; not expecting that the time after the last time unit of the first downlink transmission is less than the first time threshold of the first time unit of the second uplink transmission; abandoning the second uplink transmission when the time between the last time unit of the first downlink transmission and the first time unit of the second uplink transmission is less than the first time threshold; performing the second uplink transmission when the time between the last time unit of the first downlink transmission and the first time unit of the second uplink transmission is not less than the first time threshold; determining that the random access process corresponding to the first downlink transmission has failed when the time between the last time threshold
  • the random access process corresponding to the first downlink transmission has failed, including: when there are a first number of first downlink transmissions and the time between the last time unit where the first number of first downlink transmissions are located and the first time unit where the second uplink transmission is located is less than the first time threshold, it is determined that the random access process corresponding to the first downlink transmission has failed; wherein the first number of the first downlink transmissions includes the initial transmission and/or repeated transmission of the first downlink transmission.
  • the processing module 510 performs a first operation when the size of the total frequency domain resources used by the first downlink transmission exceeds the predetermined value, including: when the first downlink transmission is a second number and the size of the total frequency domain resources used by the second number of the first downlink transmissions exceeds the predetermined value, performing at least one of the following: not requiring the terminal to demodulate the first downlink transmission; skipping demodulation of the first downlink transmission; the terminal determining whether to demodulate the first downlink transmission; confirming that the random access process corresponding to the first downlink transmission has failed; wherein the second number of the first downlink transmissions includes an initial transmission and/or repeated transmission of the first downlink transmission.
  • the second operation includes at least one of the following: abandoning the first uplink transmission; abandoning the first uplink transmission when the time between the last time unit of the second downlink transmission and the first time unit of the first uplink transmission is less than a second time threshold; performing the first uplink transmission when the time between the last time unit of the second downlink transmission and the first time unit of the first uplink transmission is not less than a second time threshold; determining that the random access process corresponding to the first uplink transmission has failed; wherein the first uplink transmission is an uplink transmission scheduled by the second downlink transmission.
  • determining that the random access process corresponding to the first uplink transmission has failed includes: when the first uplink transmission is a third number and the third number of first uplink transmissions are scheduled by a third number of second downlink transmissions received continuously, determining that the random access process corresponding to the first uplink transmission has failed; wherein the third number of second downlink transmissions includes an initial transmission and/or repeated transmission of the second downlink transmission.
  • the processing module 510 processes the target transmission according to the bandwidth capability, including: processing the target transmission according to the bandwidth capability and first information; wherein the first information includes at least one of the following: whether the terminal sends terminal capability information; whether the terminal sends second information, the second information includes terminal identification information or terminal early identification information, the terminal identification information or terminal early identification information is used to indicate to the network side device that the type of the terminal at least includes that the bandwidth capability of the terminal is the predetermined value; whether the terminal is configured with an independent initial bandwidth part BWP, the initial BWP includes an initial uplink BWP and/or an initial downlink BWP; carrier information carrying third information, the third information includes the terminal capability information and/or the second information.
  • the first information includes at least one of the following: whether the terminal sends terminal capability information; whether the terminal sends second information, the second information includes terminal identification information or terminal early identification information, the terminal identification information or terminal early identification information is used to indicate to the network side device that the type of the terminal at least includes that the bandwidth capability of the terminal is the predetermined
  • the processing module 510 processes the target transmission according to the bandwidth capability and the first information, including: when the first information includes at least one of the terminal capability information sent by the terminal, the second information, the carrier information carrying the second information, and the terminal being configured with an independent initial BWP, performing at least one of the following: expecting the size of the total frequency domain resources of the target transmission to not exceed the predetermined value; when the size of the total frequency domain resources used by the first downlink transmission exceeds the predetermined value, demodulating the first downlink transmission, and expecting to receive the time from the last time unit of the first downlink transmission to the first time unit of the second uplink transmission.
  • the time between time units is not less than a first time threshold; when the first downlink transmission is the first retransmission and the total frequency domain resource size used by the first downlink transmission exceeds the predetermined value, it is determined that the random access process has failed; when the total frequency domain resource size used by the first uplink transmission exceeds the predetermined value, the time between the last time unit where the first downlink transmission is expected to be received and the first time unit where the first uplink transmission is expected to be received is not less than a second time threshold; when the first uplink transmission is the uplink transmission scheduled for the first retransmission and the total frequency domain resource size used by the first uplink transmission exceeds the predetermined value, it is determined that the random access process has failed.
  • the first time threshold is determined based on a first reference time and the time required for the terminal to process downlink transmission on a first designated frequency domain resource
  • the first designated frequency domain resource is determined based on the resource difference between the total frequency domain resources used for the first downlink transmission and the predetermined value.
  • the first time threshold Tmin is determined by the following formula: Among them, T1 is the first reference time, N1 is the total frequency domain resources used for the first downlink transmission, M is the predetermined value, and NT,1 is the duration of N1 time units corresponding to the processing time of the PDSCH of the terminal processing capability 1 when an additional physical downlink shared channel PDSCH demodulation reference signal DM-RS is configured.
  • the second time threshold is determined based on a second reference time and the preparation time required for the terminal to prepare for uplink transmission on a second designated frequency domain resource
  • the second designated frequency domain resource is determined based on the resource difference between the frequency domain resource used for the first uplink transmission and the predetermined value.
  • the second time threshold T'min is determined by the following formula: Among them, T2 is the second reference time, N2 is the total frequency domain resource value used for the first uplink transmission, M is the predetermined value, and NT,2 is the duration of N2 time units corresponding to the PUSCH processing time of the terminal processing capability 1 when the additional physical uplink shared channel PUSCH DM-RS is configured.
  • the terminal capability information includes at least one of the following: a maximum supported bandwidth capability is 20 MHz; a maximum supported baseband bandwidth capability is 5 MHz.
  • the independent initial BWP includes at least one of the following: a maximum bandwidth of the independent initial BWP does not exceed 20 MHz; a maximum bandwidth of the independent initial BWP does not exceed 5 MHz.
  • the second information is carried and sent by message MSG 1 and/or MSG 3.
  • the MSG 1 carries shared second information
  • the MSG 3 carries shared or specific second information.
  • the first downlink transmission includes an initial transmission and/or retransmission of MSG 2
  • the first uplink transmission includes first feedback information and/or an initial transmission or retransmission of MSG 3
  • the MSG 3 is scheduled by MSG 2 or a target DCI
  • the first feedback information corresponds to MSG 4
  • the first downlink transmission is an initial transmission and/or retransmission of MSG B
  • the first uplink transmission includes MSG A
  • the second feedback information corresponds to the MSG B
  • the first uplink transmission includes a PUSCH based on authorization configuration and/or a PUSCH based on random access.
  • the communication device 500 in the embodiment of the present application can be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
  • the electronic device can be a terminal, or it can be other devices other than a terminal.
  • the terminal can include but is not limited to the types of terminals 11 listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
  • the communication device provided in the embodiment of the present application can implement the various processes implemented by the method embodiments of Figures 2 to 4 and achieve the same technical effects. To avoid repetition, they will not be described here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the steps of the method described in method embodiments 200-400.
  • This terminal embodiment corresponds to the above-mentioned terminal side method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to the terminal embodiment and can achieve the same technical effect.
  • Figure 6 is a schematic diagram of the hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 600 includes but is not limited to: a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, a display unit 606, a user input unit 607, an interface unit 608, a memory 609, and at least some of the components of a processor 610.
  • the terminal 600 may also include a power source (such as a battery) for supplying power to each component, and the power source may be logically connected to the processor 610 through a power management system, so as to implement functions such as managing charging, discharging, and power consumption management through the power management system.
  • a power source such as a battery
  • the terminal structure shown in FIG6 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
  • the input unit 604 may include a graphics processing unit (GPU) 6041 and a microphone 6042, and the graphics processor 6041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the display unit 606 may include a display panel 6061, and the display panel 6061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 607 includes a touch panel 6071 and at least one of other input devices 6072.
  • the touch panel 6071 is also called a touch screen.
  • the touch panel 6071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 6072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
  • the RF unit 601 after receiving downlink data from the network side device, can transmit the data to the processor 610 for processing; in addition, the RF unit 601 can send uplink data to the network side device.
  • the RF unit 601 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 609 can be used to store software programs or instructions and various data.
  • the memory 609 can mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area can store an operating system,
  • the memory 609 may include an application or instruction required for one less function (such as a sound playback function, an image playback function, etc.).
  • the memory 609 may include a volatile memory or a non-volatile memory, or the memory 609 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 609 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 610 may include one or more processing units; optionally, the processor 610 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 610.
  • the processor 610 is used to process the target transmission according to the bandwidth capability; wherein the bandwidth capability of the terminal is a predetermined value, the predetermined value is less than or equal to 5 MHz, and the target transmission includes a first downlink transmission and/or a first uplink transmission.
  • the processor 610 processes the target transmission according to the bandwidth capability, including at least one of the following: expecting that the size of the total frequency domain resources used by the first downlink transmission does not exceed the predetermined value; not expecting the size of the total frequency domain resources used by the first downlink transmission to exceed the predetermined value; performing a first operation when the size of the total frequency domain resources used by the first downlink transmission exceeds the predetermined value; expecting that the size of the total frequency domain resources configured or scheduled for the first uplink transmission does not exceed the predetermined value; not expecting the size of the total frequency domain resources configured or scheduled for the first uplink transmission to exceed the predetermined value; and the terminal performing a second operation when the size of the total frequency domain resources configured or scheduled for the first uplink transmission exceeds the predetermined value.
  • the processor 610 when the size of the total frequency domain resources used by the first downlink transmission exceeds the predetermined value, performs a first operation, including: when the size of the total frequency domain resources used by the first downlink transmission exceeds the predetermined value, demodulating the first downlink transmission, and performing at least one of the following: expecting that the time between the last time unit of the first downlink transmission and the first time unit of the second uplink transmission is not less than a first time threshold; not expecting that the time after the last time unit of the first downlink transmission is less than the first time threshold of the first time unit of the second uplink transmission; abandoning the second uplink transmission when the time between the last time unit of the first downlink transmission and the first time unit of the second uplink transmission is less than the first time threshold; performing the second uplink transmission when the time between the last time unit of the first downlink transmission and the first time unit of the second uplink transmission is not less than the first time threshold; When the time between the last time unit where the first downlink transmission is located and the first time unit where the second
  • the random access process corresponding to the first downlink transmission has failed, including: when there are a first number of first downlink transmissions and the time between the last time unit where the first number of first downlink transmissions is located and the first time unit where the second uplink transmission is located is less than the first time threshold, it is determined that the random access process corresponding to the first downlink transmission has failed; wherein the first number of the first downlink transmissions includes initial transmission and/or repeated transmission of the first downlink transmission.
  • the processor 610 performs a first operation when the size of the total frequency domain resources used by the first downlink transmission exceeds the predetermined value, including: when the first downlink transmission is a second number and the size of the total frequency domain resources used by the second number of the first downlink transmissions exceeds the predetermined value, performing at least one of the following: not requiring the terminal to demodulate the first downlink transmission; skipping demodulation of the first downlink transmission; the terminal determining whether to demodulate the first downlink transmission; confirming that the random access process corresponding to the first downlink transmission has failed; wherein the second number of the first downlink transmissions includes an initial transmission and/or repeated transmission of the first downlink transmission.
  • the second operation includes at least one of the following: abandoning the first uplink transmission; abandoning the first uplink transmission when the time between the last time unit of the second downlink transmission and the first time unit of the first uplink transmission is less than a second time threshold; performing the first uplink transmission when the time between the last time unit of the second downlink transmission and the first time unit of the first uplink transmission is not less than a second time threshold; determining that the random access process corresponding to the first uplink transmission has failed; wherein the first uplink transmission is an uplink transmission scheduled by the second downlink transmission.
  • determining that the random access process corresponding to the first uplink transmission has failed includes: when the first uplink transmission is a third number and the third number of first uplink transmissions are scheduled by a third number of second downlink transmissions received continuously, determining that the random access process corresponding to the first uplink transmission has failed; wherein the third number of second downlink transmissions includes an initial transmission and/or repeated transmission of the second downlink transmission.
  • the processor 610 processes the target transmission according to the bandwidth capability, including: processing the target transmission according to the bandwidth capability and first information; wherein the first information includes at least one of the following: whether the terminal sends terminal capability information; whether the terminal sends second information, the second information includes terminal identification information or terminal early identification information, the terminal identification information or terminal early identification information is used to indicate to the network side device that the type of the terminal at least includes that the bandwidth capability of the terminal is the predetermined value; whether the terminal is configured with an independent initial bandwidth part BWP, the initial BWP includes an initial uplink BWP and/or an initial downlink BWP; carrier information carrying third information, the third information includes the terminal capability information and/or the second information.
  • the first information includes at least one of the following: whether the terminal sends terminal capability information; whether the terminal sends second information, the second information includes terminal identification information or terminal early identification information, the terminal identification information or terminal early identification information is used to indicate to the network side device that the type of the terminal at least includes that the bandwidth capability of the terminal is the predetermined value
  • the processor 610 processes the target transmission according to the bandwidth capability and the first information, including: when the first information includes the terminal sending the terminal capability information, the second information, the bearer first In the case of at least one of the carrier information of the second information and the terminal being configured with an independent initial BWP, at least one of the following is performed: expecting the size of the total frequency domain resources of the target transmission to be no more than the predetermined value; in the case where the size of the total frequency domain resources used by the first downlink transmission exceeds the predetermined value, demodulating the first downlink transmission, and expecting that the time between the last time unit where the first downlink transmission is located and the first time unit where the second uplink transmission is located is not less than a first time threshold; in the case where the first downlink transmission is the first retransmission and the size of the total frequency domain resources used by the first downlink transmission exceeds the predetermined value, determining that the random access process has failed; in the case where the size of the total frequency domain resources used by the first uplink transmission exceeds the predetermined value,
  • the first time threshold is determined based on a first reference time and the time required for the terminal to process downlink transmission on a first designated frequency domain resource
  • the first designated frequency domain resource is determined based on the resource difference between the total frequency domain resources used for the first downlink transmission and the predetermined value.
  • the first time threshold Tmin is determined by the following formula: Among them, T1 is the first reference time, N1 is the total frequency domain resources used for the first downlink transmission, M is the predetermined value, and NT,1 is the duration of N1 time units corresponding to the processing time of the PDSCH of the terminal processing capability 1 when an additional physical downlink shared channel PDSCH demodulation reference signal DM-RS is configured.
  • the second time threshold is determined based on a second reference time and the preparation time required for the terminal to prepare for uplink transmission on a second designated frequency domain resource
  • the second designated frequency domain resource is determined based on the resource difference between the frequency domain resource used for the first uplink transmission and the predetermined value.
  • the second time threshold T'min is determined by the following formula: Among them, T2 is the second reference time, N2 is the total frequency domain resource value used for the first uplink transmission, M is the predetermined value, and NT,2 is the duration of N2 time units corresponding to the PUSCH processing time of the terminal processing capability 1 when the additional physical uplink shared channel PUSCH DM-RS is configured.
  • the terminal capability information includes at least one of the following: a maximum supported bandwidth capability is 20 MHz; a maximum supported baseband bandwidth capability is 5 MHz.
  • the independent initial BWP includes at least one of the following: a maximum bandwidth of the independent initial BWP does not exceed 20 MHz; a maximum bandwidth of the independent initial BWP does not exceed 5 MHz.
  • the second information is carried and sent by message MSG 1 and/or MSG 3.
  • the MSG 1 carries shared second information
  • the MSG 3 carries shared or specific second information.
  • the first downlink transmission includes an initial transmission and/or retransmission of MSG 2
  • the first uplink transmission includes first feedback information and/or an initial transmission or retransmission of MSG 3
  • the MSG 3 is scheduled by MSG 2 or the target DCI
  • the first feedback information corresponds to MSG 4
  • the first downlink transmission is an initial transmission and/or retransmission of MSG B
  • the first uplink transmission includes MSG A and/or second feedback information
  • the second feedback information corresponds to MSG B
  • the first uplink transmission includes a PUSCH based on authorization configuration and/or a PUSCH based on random access.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the various processes of the above-mentioned method embodiments 200-400 are implemented and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run network-side device programs or instructions to implement the various processes of the above-mentioned method embodiments 200-400, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • An embodiment of the present application also provides a computer program product, which includes a processor, a memory, and a program or instruction stored in the memory and executable on the processor.
  • a computer program product which includes a processor, a memory, and a program or instruction stored in the memory and executable on the processor.
  • the embodiment of the present application also provides a communication system, including: a terminal and a network side device, wherein the terminal can be used to execute each process in the method embodiments 200-400 as described above, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法、装置及终端,属于无线通信领域,本申请实施例的通信方法包括:终端根据带宽能力对目标传输进行处理;其中,所述终端的带宽能力为预定值,所述预定值小于或等于5MHz,所述目标传输包括第一下行传输和/或第一上行传输。

Description

通信方法、装置及终端
交叉引用
本申请要求在2022年11月03日提交中国专利局、申请号为2022113724862、发明名称为“通信方法、装置及终端”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请属于无线通信技术领域,具体涉及一种通信方法、装置及终端。
背景技术
随着通信技术的发展,新空口(New Radio,NR)系统中引入了一种新类型的终端装置——能力降低的(Reduced Capability,RedCap)终端,其具有比普通终端更窄的带宽能力或者更少的接收天线数,如R18中公开了RedCap终端在频率范围1(Frequency Range 1,FR1)上具有的最大的带宽能力只有5MHz等,而这会导致RedCap终端具有更低的终端能力。
在此情况下,对于如随机接入、小数据传输(Small Data Transmission,SDT)等通信过程而言,RedCap终端如何实现通信行为,仍是本领域亟需解决的技术问题。
发明内容
本申请实施例提供一种通信方法、装置及终端,能够确保RedCap终端实现正常的通信过程,进而确保通信质量。
第一方面,提供了一种通信方法,终端根据带宽能力对目标传输进行处理;其中,所述终端的带宽能力为预定值,所述预定值小于或等于5MHz,所述目标传输包括第一下行传输和/或第一上行传输。
第二方面,提供了一种通信装置,包括:处理模块,用于根据带宽能力对目标传输进行处理;其中,终端的带宽能力为预定值,所述预定值小于或等于5MHz,所述目标传输包括第一下行传输和/或第一上行传输。
第三方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤。
第五方面,提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如 第一方面所述的方法的步骤。
第六方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第七方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤。
第八方面,提供了一种计算机程序产品/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤。
在本申请实施例中,终端通过根据自身的带宽能力对目标传输进行处理,放宽了对网络侧调度/配置的限制,能够确保终端实现正常的通信过程,进而确保通信质量。
附图说明
图1是本申请一示例性实施例提供的无线通信系统的结构示意图;
图2是本申请一示例性实施例提供的通信方法的流程示意图之一;
图3是本申请一示例性实施例提供的通信方法的流程示意图之二;
图4是本申请一示例性实施例提供的通信方法的流程示意图之三;
图5是本申请一示例性实施例提供的通信装置的结构示意图;
图6是本申请一示例性实施例提供的终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络” 常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(Augmented Reality,AR)/虚拟现实(Virtual Reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(Personal Computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点(Access Point,AS)或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B(Node B,NB)、演进节点B(Evolved Node B,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点(Home Node B,HNB)、家用演进型B节点(Home evolved Node B)、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的技术方案进行详细地说明。
如图2所示,为本申请一示例性实施例提供的通信方法200的流程示意图,该方法可以但不限于由终端执行,具体可由安装于终端中的硬件和/或软件执行。本实施例中,所述方法200至少可以包括如下步骤。
S210,终端根据带宽能力对目标传输进行处理。
其中,所述终端的带宽能力(或称作基带带宽)可以理解为所述终端处理信号的能力或基带处理数据能力。对此在本实施例中,所述终端的带宽能力为预定值,所述预定值小于或等于5MHz,如5MHz、4MHz等,即本实施例中提及的终端为RedCap终端,如R18 中的RedCap终端等。
需要注意的是,在所述终端的带宽能力为5MHz时,该5MHz的带宽能力也可以理解为:对于15KHz的子载波间隔(Subcarrier Spacing,SCS),频域资源是25或28或27个物理资源块(Physical Resource Block,PRB);对于30KHz的SCS,频域资源是11或12或13或14个PRB。
所述目标传输包括第一下行传输和/或第一上行传输。本实施例中,根据通信过程的不同,所述第一下行传输和所述第一上行传输可以是相互独立的,也可以是所述第一上行传输由所述第一下行传输调度,在此不做限制。当然,本实施例中所述的第一下行传输、第一上行传输可以是初传,也可以是重传。
例如,在四步随机接入过程中,所述第一下行传输可以包括初传和/或重传的消息2(message 2,MSG 2),所述第一上行传输可以包括第一反馈信息和/或初传或重传的MSG 3,所述MSG 3由MSG 2或目标下行控制信息(Downlink Control Information,DCI)调度。
可选的,所述目标DCI可以为由临时小区无线网络临时标识(Temporary Cell Radio Network Temporary Identifier,TC-RNTI)或小区(Cell,C)-RNTI加扰的DCI等,在此不做限制。可选的,在通过目标DCI调度MSG 3时,所述目标DCI中的频域资源分配(Frequency Domain Resource Allocation,FDRA)字段可指示MSG 3(如重传的MSG 3)时的频域总资源不超过预定值。
所述第一反馈信息与MSG 4对应,如所述第一反馈信息是由MSG 4调度的混合自动重传请求应答(Hybrid Automatic Repeat Request Acknowledgement,HARQ-ACK)的反馈信息等。
又例如,在两步随机接入过程中,所述第一下行传输可以为初传和/或重传的MSG B,所述第一上行传输包括MSG A和/或第二反馈信息。所述第二反馈信息与所述MSG B对应,如所述第二反馈信息是由MSG B调度的HARQ-ACK的反馈信息等。
在小数据传输过程中,所述第一上行传输包括基于授权配置(Configured Grant,CG)的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)和/或基于随机接入(Random Access,RA)的PUSCH。
本实施例中,终端通过根据自身的带宽能力对目标传输进行处理,放宽了对网络侧调度/配置的限制,如允许目标传输所使用的频域资源超过或不超过终端的带宽能力,能够确保终端实现正常的通信过程,进而确保通信质量。
如图3所示,为本申请一示例性实施例提供的通信方法300的流程示意图,该方法可以但不限于由终端执行,具体可由安装于终端中的硬件和/或软件执行。本实施例中,所述方法300至少可以包括如下步骤。
S310,终端根据带宽能力对目标传输进行处理。
其中,所述终端的带宽能力为预定值,所述预定值小于或等于5MHz,所述目标传输 包括第一下行传输和/或第一上行传输。
可以理解,S310的实现过程除了可参照方法实施例200中的相关描述之外,作为一种可能的实现方式,所述终端根据带宽能力对所述目标传输进行处理时的处理方式包括以下方式1-方式6中的至少一项。
方式1,期待所述第一下行传输所使用的频域总资源的大小不超过所述预定值。
其中,该方式1以及后续实施例中提及的“期待”可以理解为:网络侧设备不能保证是否下行传输所使用的频域资源、为上行传输调度或配置的频域总资源不超过预定值。
例如,对于方式1,在所述终端期待所述第一下行传输所使用的频域总资源的大小不超过所述预定值的情况下,网络侧设备可以使用超过预定值的频域资源进行所述第一下行传输的传输,也可以使用不超过预定值的频域资源进行所述第一下行传输的传输,即,对于方式1,网络侧设备不能保证使用不超过预定值的频域资源进行所述第一下行传输的传输。
方式2,不期待所述第一下行传输所使用的频域总资源的大小超过所述预定值。
其中,该方式2以及后续实施例中提及的“不期待”可以理解为:网络侧设备保证下行传输所使用的频域资源、为上行传输调度或配置的频域总资源不超过预定值。
例如,对于方式2,在所述终端不期待所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,网络侧设备不可以使用超过预定值的频域资源进行所述第一下行传输的传输,即,对于方式2,网络侧设备保证使用不超过预定值的频域资源进行所述第一下行传输的传输。
方式3,在所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,执行第一操作。
对于方式3可以理解为:所述终端根据第一下行传输所使用的频域总资源与所述终端的带宽能力对第一下行传输进行处理,基于此,下面结合不同的实现方式对方式3的实现过程进行说明,内容如下。
第一种实现方式
在所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,所述终端解调所述第一下行传输,以及执行以下(11)-(15)中的至少一项。
(11)期待所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间不小于第一时间阈值。
其中,本申请上下问中提及的“时间单元”可以是符号、时隙、子时隙等,在此不做限制。
另外,所述第二上行传输是由所述第一下行传输调度的上行传输。
(12)不期待第二上行传输所在的第一个时间单元在所述第一下行传输所在的最后一个时间单元之后的时间小于第一时间阈值。
(13)在所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时 间单元之间的时间小于第一时间阈值的情况下,放弃所述第二上行传输。
(14)在所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间不小于第一时间阈值的情况下,进行所述第二上行传输。
(15)在所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间小于第一时间阈值的情况下,确定所述第一下行传输对应的随机接入过程失败。
可选的,对于前述(15)中所述的在所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间小于第一时间阈值的情况下,确定所述第一下行传输对应的随机接入过程失败这一终端行为还可以包括:如果所述第一下行传输为第一数量个、且所述第一数量个第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间小于第一时间阈值的情况下,确定所述第一下行传输对应的随机接入过程失败。
其中,所述第一数量个所述第一下行传输中包括所述第一下行传输的初始传输和/或重复传输。例如,在所述第一数量为1时,所述第一下行传输为初始传输,在所述第一数量为大于1的整数时,所述第一下行传输包括初始传输和至少一个重复传输。
本实施例中,所述第一数量可以由协议预定或网络配置实现,在此不做限制。
进一步,作为一种可能的实现方式,本实施例中提及的所述第一时间阈值可以理解为终端处理完第一下行传输以及准备第二上行传输所需要的最小时间能力。在本实施例中,所述第一时间阈值可以由协议约定或高层配置实现,也可以根据第一基准时间和所述终端处理第一指定频域资源上的下行传输所需的时间确定,所述第一指定频域资源是根据所述第一下行传输所使用的频域总资源与所述预定值之间的资源差确定。例如,在所述第一下行传输所使用的频域总资源为N1MHz,预定值为5MHz,那么,所述第一指定频域资源为(N1-5)MHz,所述第一时间阈值根据所述第一基准时间和所述终端处理(N1-5)MHz的频域资源所需要的处理时间确定。
基于此,所述第一时间阈值Tmin可以表示为如下下公式(1)所示。
其中,T1为所述第一基准时间,其可以由协议预定。例如,在所述第一下行传输为随机接入响应(Random Access Response,RAR,也即MSG 2)时,T1=NT,1+NT,2+0.5毫秒;在所述第一下行传输为MSG 4或MSG B的初传或重传时,T1=NT,1+0.5毫秒,N1为所述第一下行传输所使用的频域总资源,M为所述预定值,NT,1为当配置了附加物理下行共享信道(Physical Downlink Shared Channel,PDSCH)解调参考信号(DeModulation-Reference Signal,DM-RS)时与终端处理能力1的PDSCH的处理时间相对应的N1个时间单元的 持续时间,NT,2为当配置附加物理上行共享信道PUSCH DM-RS时与终端处理能力1的PUSCH处理时间相对应的N2个时间单元的持续时间。
需要注意的是,通过考虑第一下行传输所使用的频域资源与所述终端带宽能力(预定值)之间的资源差,放松了通信过程中对基带带宽能力有限的终端(即RedCap)的处理时间的要求(如第一时间阈值大于R18中的其他终端处理时间的最小要求),放宽了对网络侧调度/配置频域资源的限制,使得所有终端类型可以共享第一下行传输的资源分配,并确保对基带带宽能力有限的终端行为的可行性和可靠性。
第二种实现方式
在所述第一下行传输为第二数量个、且所述第二数量个所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,执行以下(21)-(24)中的至少一项。其中,所述第二数量个所述第一下行传输中包括所述第一下行传输的初始传输和/或重复传输,例如,在所述第二数量为1时,所述第一下行传输为初始传输,在所述第二数量为大于1的整数时,所述第一下行传输包括初始传输和至少一个重复传输。本实施例中,所述第二数量可以由协议预定或网络配置实现,在此不做限制。
(21)不要求所述终端解调所述第一下行传输。其中,对于(21)可以理解为所述终端可以解调或不解调所述第一下行传输。
(22)跳过(或忽略)所述第一下行传输的解调。
(23)所述终端确定是否解调所述第一下行传输。
其中,例如,所述终端可以根据实现信息确定是否解调,所述终端的实现信息可以是终端在出厂时预设在终端内部的第一下行传输的解调信息(如解调或不解调),也可以是终端发起的通信过程信息等,在此不做限制。
例如,在所述终端的实现信息是终端在出厂时预设在终端内部的第一下行传输的解调信息时,该预设在终端内部的第一下行传输的解调信息可以是在出现第一下行传输所使用的频域资源总量大于所述预定值这一情况时,终端按照预设的第一下行传输的解调信息对第一下行传输进行解调或不解调,在此不做限制。
又例如,在所述终端自身的实现信息为所述终端发起的通信过程时,所述终端发起的通信过程可以是随机接入过程等。一种实现方式中,假设所述终端发起的通信过程是随机接入过程,那么,所述终端在发起随机接入过程、且随机接入过程中的第一下行传输所使用的频域总资源超过预定值的情况下,终端解调所述第一下行传输。
(24)确认与所述第一下行传输对应的随机接入过程失败。
对于前述方式1-方式3中提及的对第一下行传输的处理行为,一方面,放宽了对网络侧设备调度/配置的限制(如允许所述第一下行传输所使用的频域资源超过终端的带宽能力(如5MHz),允许调度上行传输的时间不满足R18中定义的终端处理时间的最小要 求),且避免了对非RedCap终端的影响(如仅限制RedCap的下行频域资源不超过预定值);另一方面,降低了基带带宽能力有限终端的处理的复杂度(如允许该终端放弃解调第一下行传输等),或相对于R18中定义的终端处理时间的最小要求,前述实现方式中通过第一时间阈值的设置,进一步放松了对基带带宽能力有限的终端处理时间的要求,从网络侧和终端侧两方面,提高了整个通信网络的灵活性。
方式4,期待为所述第一上行传输所配置或调度的频域总资源的大小不超过所述预定值。
方式5,不期待为所述第一上行传输所配置或调度的频域总资源的大小超过所述预定值。
对于方式4和方式5,可参照前述方式1、方式2中的相关描述,在此不再赘述。
方式6,在为所述第一上行传输所配置或调度的频域总资源的大小超过所述预定值的情况下,所述终端执行第二操作。
对于方式6可以理解为:所述终端根据第一上行传输所使用的频域总资源与所述终端的带宽能力对第一上行传输进行处理,基于此,下面对方式6的实现过程进行说明,内容如下。
在为所述第一上行传输所配置或调度的频域总资源的大小超过所述预定值的情况下,所述终端执行以下(31)-(34)中的至少一项。其中,所述第一上行传输是由所述第二下行传输调度的上行传输。
(31)放弃所述第一上行传输。
(32)在第二下行传输所在的最后一个时间单元到所述第一上行传输在的第一个时间单元之间的时间小于第二时间阈值的情况下,放弃所述第一上行传输。
(33)在第二下行传输所在的最后一个时间单元到所述第一上行传输在的第一个时间单元之间的时间不小于第二时间阈值的情况下,进行所述第一上行传输。
(34)确定与所述第一上行传输对应的随机接入过程失败。可选的,确定与所述第一上行传输对应的随机接入过程失败,包括:在所述第一上行传输为第三数量个、且所述第三数量个第一上行传输由连续接收到的第三数量个第二下行传输调度的情况下,确定与所述第一上行传输对应的随机接入过程失败;其中,所述第三数量个第二下行传输包括所述第二下行传输的初始传输和/或重复传输。例如,在所述第三数量为1时,所述第二下行传输为初始传输,在所述第三数量为大于1的整数时,所述第二下行传输包括初始传输和至少一个重复传输。本实施例中,所述第三数量可以由协议预定或网络配置实现,在此不做限制。
进一步,与前述第一时间阈值类似,本实施例中提及的第二时间阈值也可以理解为终端处理完第二下行传输以及准备第一上行传输所需要的最小时间能力。在本实施例中,所述第二时间阈值可以由协议约定或网络侧配置实现,也可以根据第二基准时间和所述终端 准备传输第二指定频域资源上的上行传输所需的准备时间确定,所述第二指定频域资源是根据所述第一上行传输所使用的频域资源与所述预定值之间的资源差确定。例如,在所述第一上行传输所使用的频域总资源为N2MHz,预定值为5MHz,那么,所述第二指定频域资源为(N2-5)MHz,所述第二时间阈值根据所述第二基准时间和所述终端传输(N2-5)MHz的频域资源上的上行传输所需要的准备时间确定。
基于此,在一种实现方式中,所述第二时间阈值T’min可以标识为如下公式(2)所示。
其中,T2为所述第二基准时间,其可以由协议预定。例如,在所述第一上行传输由RAR(即第二下行传输)调度时,T2=NT,1+NT,2+0.5毫秒;在所述第一上行传输是由TC-RNTI加扰携带上行授权(UL grant)的DCI(即第二下行传输)调度时,T1=NT,2毫秒,N2为所述第一上行传输所使用的频域总资源值,M为所述预定值,NT,1为当配置了附加物理下行共享信道PDSCH解调参考信号DM-RS时与终端处理能力1的PDSCH的处理时间相对应的N1个时间单元的持续时间,NT,2为当配置附加物理上行共享信道PUSCH DM-RS时与终端处理能力1的PUSCH处理时间相对应的N2个时间单元的持续时间。
需要注意的是,通过考虑第一上行传输所使用的频域资源与所述终端带宽能力(预定值)之间的资源差,放松了通信过程中对基带带宽能力有限的终端处理时间的要求(如第二时间阈值大于R18中的终端处理时间的最小要求),放宽了对网络侧调度/配置频域资源的限制,并确保对基带带宽能力有限的终端行为的可行靠性和可靠性。
对于前述方式4-方式6中提及的对第一上行传输的处理行为,一方面,放宽了对网络侧设备调度/配置的限制(如允许所述第一上行传输所使用的频域员超过终端的带宽能力(如5MHz),允许调度上行传输的时间不满足R18中定义的终端处理时间的最小要求),避免了对非RedCap终端的影响(如仅限制RedCap的上行频域资源不超过预定值);另一方面,降低了基带带宽能力有限终端的处理的复杂度,(如允许该终端放弃传输第一上行传输等),或者相对于R18中定义的终端处理时间的最小要求,前述实现方式中通过第二时间阈值的设置,进一步放松了对终端处理时间的要求。从网络侧和终端侧两方面,提高了整个通信网络的灵活性。
需要注意的,对于前述方式1-方式6中提及的第一上行传输、第一下行传输、第二上行传输、第二上行传输,在实际通信过程中,所述第一上行传输与所述第二上行传输可以相同或不同,所述第一下行传输与所述第二下行传输也可以相同或不同,在此不做限制。
如图4所示,为本申请一示例性实施例提供的通信方法400的流程示意图,该方法可以但不限于由终端执行,具体可由安装于终端中的硬件和/或软件执行。本实施例中,所述 方法400至少可以包括如下步骤。
S410,终端根据带宽能力对目标传输进行处理。
其中,所述终端的带宽能力为预定值,所述预定值小于或等于5MHz,所述目标传输包括第一下行传输和/或第一上行传输。
可以理解,S410的实现过程除了可参照方法实施例200和/或300中的相关描述之外,作为一种可能的实现方式,如图4所示,所述终端根据带宽能力对所述目标传输进行处理时,可以包括S411:终端根据所述带宽能力和第一信息对所述目标传输进行处理。
其中,所述第一信息包括以下(41)-(44)中的至少一项。
(41)所述终端是否发送终端能力信息。
其中,所述终端能力信息包括终端最大支持带宽能力是20MHz,和/或,终端最大支持的基带带宽能力是5MHz。此外,一种实现方式中,所述终端能力信息还可以包括R17中定义的RedCap终端所有(或必要)的能力信息、R18中定义的RedCap终端所有(或必要)的能力信息等,在此不做限制。
(42)所述终端是否发送第二信息,所述第二信息包括终端识别的信息或终端早期识别的信息,所述终端识别的信息或终端早期识别的信息用于向网络侧设备指示所述终端的类型至少包括所述终端的带宽能力为所述预定值。一种实现方式中,所述终端早期识别信息可以包括R17中定义的RedCap终端早期识别信息、和/或R18中定义的RedCap终端早期识别信息等。
一种实现方式中,对于随机接入过程,所述第二信息可以由MSG 1和/或MSG 3携带发送。例如,可以由所述MSG 1携带共享的第二信息(如R17中定义的RedCap终端早期识别信息),和/或,所述MSG 3携带共享的或特定的第二信息(如R18中定义的RedCap终端早期识别信息)。基于此,本实施例中通过R18 RedCap重用R17 RedCap的携带终端早期识别信息的MSG 1资源,避免了对物理随机接入信道(Physical Random Access Channel,PRACH)/MSG 1资源的进一步分割,确保了通信过程的可靠性。
(43)所述终端是否被配置了独立(或单独)的初始带宽部分(Bandwidth part,BWP),所述初始BWP包括初始上行(Up-Link,UL)BWP和/或初始下行(Down Link,DL)BWP。本实施例中,所述独立的初始BWP包括以下至少一项:独立的初始BWP的最大带宽不超过20MHz;独立的初始BWP的最大带宽不超过5MHz。
一种实现方式中,对于同时支持Rel 17 RedCap终端和Rel 18 RedCap终端的小区,如果网络侧设备为Rel-17 RedCap终端配置了独立初始BWP,该独立初始BWP的最大带宽可以为20MHz,Rel-18 RedCap终端可以与Rel-17 RedCap终端共享相同的独立初始DL/UL BWP;否则Rel-18 RedCap终端和Rel-17 RedCap终端共享非(non)-RedCap终端相同的初始BWP。
而,对于仅支持Rel-18 RedCap终端和non-RedCap终端的小区,网络侧设备可以沿用相关协议中为R17 RedCap终端配置的独立初始BWP的机制,为Rel-18 RedCap终端配 置一个独立的初始BWP,但是因为此时小区中不存在Rel-17 RedCap终端,所以网络侧设备为R18 RedCap终端配置的独立的初始BWP的最大带宽可以为预定值,如5MHz。
(44)承载第三信息的载体信息,所述第三信息包括所述终端能力信息和/或所述第二信息。其中,所述载体信息也可以称为早期指示(early indication)或RedCap指示。本实施例中,承载第三信息的载体信息是用于指示第三信息是在MSG 1还是MSG 3中发送。
需要注意的是,以前述终端早期识别信息的发送为例,其可以是在网络侧设备启用了终端早期识别指示的情况下由终端发送,也可以由终端自主发送,在此不做限制。
基于此,所述终端在根据所述带宽能力和第一信息对所述目标传输进行处理时,如果所述第一信息包括所述终端发送了所述终端能力信息、所述第二信息、所述承载第二信息的载体信息、所述终端被配置了独立的初始BWP中的至少一项的情况下,所述终端执行以下(51)-(55)中的至少一项。
(51)期待所述目标传输的频域总资源的大小不超过所述预定值。
(52)在所述第一下行传输所使用的频域总资源大小超过所述预定值的情况下,解调所述第一下行传输,以及期待接收所述第一下行传输所在的最后一个时间单元到所述第二上行传输所在的第一个时间单元之间的时间不小于第一时间阈值。
(53)在所述第一下行传输为第一次重传、且所述第一下行传输所使用的频域总资源大小超过所述预定值的情况下,确定随机接入过程失败。
(54)在所述第一上行传输所使用的频域总资源大小超过所述预定值的情况下,期待接收所述第一下行传输所在的最后一个时间单元到所述第一上行传输所在的第一个时间单元之间的时间不小于第二时间阈值。
(55)在所述第一上行传输为第一次重传调度的上行传输、且所述第一上行传输所使用的频域总资源大小超过所述预定值的情况下,确定随机接入过程失败。
可以理解,关于(51)-(55)的实现过程可参照前述方法实施例200-300中相关描述,并达到相同或相应的技术效果,在此不再赘述。
基于前述方法实施例200-400的描述,下面结合示例1-示例3对本申请提供的通信方法进行进一步介绍,内容如下。需要说明的是,本实施例中的提及的R17 RedCap终端的带宽能力为20MHz,R18 RedCap终端的带宽能力为5MHz。
示例1
以四步随机接入过程为例,假设终端(R18 RedCap终端)的带宽能力为5MHz,网络侧设备启用了MSG 1的终端早期指示,相应的,终端向网络侧设备发送MSG 1进行随机接入,所述MSG 1中携带有第二信息(即终端早期识别的信息),那么,所述终端可以执行以下至少一项:
期待RAR PDSCH所使用的频域总资源在5MHz以内;换言之,如果网络侧设备正确接收到终端发送的MSG 1,则网络侧设备应确保所述终端的RAR的频域总资源不超过 5MHz。
如果MSG 1的终端早期指示是共享R17 RedCap的指示,则R17 RedCap和R18 RedCap对应的RAR的频域总资源不超过5MHz。
如果MSG 1的终端早期指示是R18 RedCap的指示(为18 RedCap指示新引入的),则R18 RedCap对应的RAR的频域总资源不超过5MHz,R17 RedCap的RAR的频域总资源可以超过5MHz。
或者,如果终端接收到RAR PDSCH、且RAR PDSCH所使用的频域总资源超过5MHz(即允许RAR PDSCH所使用的频域总资源超过5MHz),那么,所述终端期待RAR PDSCH所在时隙的最后一个符号到RAR调度的MSG 3传输所在的第一个符号之间的时间间隔不小于终端处理完RAR PDSCH以及准备MSG 3传输所需要的最小时间能力,即第一时间阈值Tmin,如毫秒或毫秒,N1为RAR PDSCH所使用的频域总资源。
示例2
以四步随机接入过程为例,假设终端(R18 RedCap终端)的带宽能力为5MHz,网络侧设备没有启用MSG 1的终端早期指示(MSG 1的RedCap indication没有使能(enable))。基于此,如果终端向网络侧设备发送MSG 1进行随机接入,即网络侧设备基于接收到的MSG 1知道小区内有终端发起随机接入过程,那么:根据网络侧设备的实现,网络侧设备发送的RAR PDSCH所使用的频域总资源可以不超过5MHz,也可以超过5MHz。其中,在网络侧设备发送的RAR PDSCH所使用的频域总资源超过5MHz的情况下,所述终端可以执行以下至少一项:
如果RAR PDSCH所在时隙的最后一个符号到RAR调度的MSG 3传输所在的第一个符号之间的时间间隔不小于R18终端处理完RAR PDSCH以及准备MSG 3传输所需要的最小时间能力Tmin(即小于第一时间阈值),则终端解调完MSG 2后发送MSG 3;否则终端放弃传输MSG 3或者终端放弃MSG 2的解调。
或者,所述终端放弃MSG 2的解调。
示例3
以四步随机接入过程为例,假设终端(如R18 RedCap终端)的带宽能力为5MHz,那么,对于MSG 4,所述终端可以总是期待调度的MSG 4的频域资源在5MHz以内,或,所述终端总是期待调度的MSG 4的频域资源在20MHz以内。
但是,如果为所述终端在MSG 3中引入/定义了第二信息(如R18 RedCap终端的早期识别的信息),即为R18 RedCap终端分配了一个不同于R17 RedCap终端的逻辑信道标识(Logical Channel Identity,LCID),那么,终端总是期待调度的MSG 4的频域资源 在5MHz以内;否则终端期待调度的MSG 4的频域资源在20MHz以内。
基于此,当网络侧设备调度的MSG 4的频域总资源超出5MHz,那么,终端可以执行以下任一项:
期待MSG 4 PDSCH所在时隙的最后一个符号到携带对MSG 4进行HARQ-ACK反馈的PUCCH传输所在的第一个符号之间的时间间隔不小于R18终端处理完MSG 4 PDSCH以及准备PUCCH传输所需要的最小时间能力,即第一时间阈值。
如果MSG 4 PDSCH所在时隙的最后一个符号到携带对MSG 4进行HARQ-ACK反馈的PUCCH传输所在的第一个符号之间的时间间隔不小于R18终端处理完MSG 4 PDSCH以及准备PUCCH传输所需要的最小时间能力Tmin,则终端解调完MSG 4后发送携带HARQ-ACK的PUCCH;否则终端放弃传输PUCCH或者终端放弃MSG 4的解调,终端放弃传输PUCCH或者终端放弃MSG 4的解调。
示例4
以四步随机接入过程为例,假设终端(如R18 RedCap终端)的带宽能力为5MHz,网络侧设备启用了MSG 1的终端早期指示,那么,终端向网络侧设备发送MSG 1(MSG 1中携带有R17 RedCap终端早期识别信息或者是R18 RedCap终端早期识别信息)进行随机接入并接收到了MSG 2,Rel-18 RedCap终端的行为包括:Rel-18 RedCap终端期待在RAR中UL grant调度的MSG 3的初传和/或携带UL grant的、且由TC-RNTI加扰的DCI格式(format)0_0调度的MSG 3重传的FDRA字段指示的频域资源在5MHz以内。
否则,如果网络侧设备未启用MSG 1的终端早期指示,那么,终端向网络侧设备发送MSG 1进行随机接入并接收到了MSG 2,那么,Rel-18 RedCap终端的行为包括允许RAR UL grant和/或携带UL grant的由TC-RNTI加扰的DCI format 0_0调度的MSG 3的FDRA字段指示的频域资源超过5MHz,当Rel-18 RedCap终端收到的MSG 3的频域资源超过5MHz时,Rel-18 RedCap终端放弃MSG 3的传输。
可以理解,对于MSG 3,传输块(Transport Block Size,TBS)在大多数情况下是56比特或72比特,所需资源不会超过5MHz。因此,确保MSG 3PUSCH的资源分配在5MHz以内,在网络侧(Network,NW)方面并没有很大的限制。
示例5
以四步随机接入过程为例,假设终端(如R18 RedCap终端)的带宽能力为5MHz,网络侧设备没有启用MSG 1的终端早期指示,那么对于MSG 2和MSG 3,其所使用的频域总资源都可以超出5MHz,而对于MSG 4,因为R17 RedCap indication在MSG 3中是必须发送的,所以MSG 4的频域资源不可以超出5MHz。
基于此,当网络侧没有启用MSG 1的终端早期指示,而基于接收到的MSG 1知道小区内有终端发起了随机接入过程时,对于MSG 2,如果RAR PDSCH的调度频域资源超过5MHz,那么,R18 RedCap终端行为至少包括如(a)-(b)中的一项。
(a)如果RAR PDSCH所在时隙的最后一个符号到RAR调度的MSG 3传输所在的 第一个符号之间的时间间隔不小于终端处理完RAR PDSCH以及准备MSG 3传输所需要的最小时间能力Tmin(即第一时间阈值),则终端解调完MSG 2后发送MSG 3;否则终端放弃传输MSG 3或者终端放弃MSG 2的解调。
(b)终端放弃MSG 2的解调。
对于MSG 3,允许RAR UL grant和/或携带UL grant的由TC-RNTI加扰的DCI format 0_0调度的MSG 3的FDRA字段指示的频域资源超过5MHz,当Rel-18 RedCap终端收到的MSG 3的频域资源超过5MHz时,Rel-18 RedCap终端放弃MSG 3的传输。
对于MSG 4,终端总是期待调度的MSG 4的频域资源在5MHz以内。
本申请实施例提供的通信方法200-400,执行主体可以为通信装置。本申请实施例中以通信装置执行通信方法为例,说明本申请实施例提供的通信装置。
如图5所示,为本申请一示例性实施例提供的通信装置500的结构示意图,该装置500包括处理模块510,用于根据带宽能力对目标传输进行处理;其中,终端的带宽能力为预定值,所述预定值小于或等于5MHz,所述目标传输包括第一下行传输和/或第一上行传输。
可选的,所述装置500还包括传输模块,用于进行所述目标传输。
可选的,所述处理模块510根据带宽能力对所述目标传输进行处理,包括以下至少一项:期待所述第一下行传输所使用的频域总资源的大小不超过所述预定值;不期待所述第一下行传输所使用的频域总资源的大小超过所述预定值;在所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,执行第一操作;期待为所述第一上行传输所配置或调度的频域总资源的大小不超过所述预定值;不期待为所述第一上行传输所配置或调度的频域总资源的大小超过所述预定值;在为所述第一上行传输所配置或调度的频域总资源的大小超过所述预定值的情况下,所述终端执行第二操作。
可选的,所述处理模块510在所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,执行第一操作,包括:在所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,解调所述第一下行传输,以及执行以下至少一项:期待所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间不小于第一时间阈值;不期待第二上行传输所在的第一个时间单元在所述第一下行传输所在的最后一个时间单元之后的时间小于第一时间阈值;在所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间小于第一时间阈值的情况下,放弃所述第二上行传输;在所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间不小于第一时间阈值的情况下,进行所述第二上行传输;在所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间小于第一时间阈值的情况下,确定所述第一下行传输对应的随机接入过程失败;其中,所述第二上行传输是由所述第一下行传输调度的上行传输。
可选的,在所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个 时间单元之间的时间小于第一时间阈值的情况下,确定所述第一下行传输对应的随机接入过程失败,包括:在所述第一下行传输为第一数量个、且所述第一数量个第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间小于第一时间阈值的情况下,确定所述第一下行传输对应的随机接入过程失败;其中,所述第一数量个所述第一下行传输中包括所述第一下行传输的初始传输和/或重复传输。
可选的,所述处理模块510在所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,执行第一操作,包括:在所述第一下行传输为第二数量个、且所述第二数量个所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,执行以下至少一项:不要求所述终端解调所述第一下行传输;跳过所述第一下行传输的解调;所述终端确定是否解调所述第一下行传输;确认与所述第一下行传输对应的随机接入过程失败;其中,所述第二数量个所述第一下行传输中包括所述第一下行传输的初始传输和/或重复传输。
可选的,所述第二操作包括以下至少一项:放弃所述第一上行传输;在第二下行传输所在的最后一个时间单元到所述第一上行传输在的第一个时间单元之间的时间小于第二时间阈值的情况下,放弃所述第一上行传输;在第二下行传输所在的最后一个时间单元到所述第一上行传输在的第一个时间单元之间的时间不小于第二时间阈值的情况下,进行所述第一上行传输;确定与所述第一上行传输对应的随机接入过程失败;其中,所述第一上行传输是由所述第二下行传输调度的上行传输。
可选的,确定与所述第一上行传输对应的随机接入过程失败,包括:在所述第一上行传输为第三数量个、且所述第三数量个第一上行传输由连续接收到的第三数量个第二下行传输调度的情况下,确定与所述第一上行传输对应的随机接入过程失败;其中,所述第三数量个第二下行传输包括所述第二下行传输的初始传输和/或重复传输。
可选的,所述处理模块510根据带宽能力对所述目标传输进行处理,包括:根据所述带宽能力和第一信息对所述目标传输进行处理;其中,所述第一信息包括以下至少一项:所述终端是否发送终端能力信息;所述终端是否发送第二信息,所述第二信息包括终端识别的信息或终端早期识别的信息,所述终端识别的信息或终端早期识别的信息用于向网络侧设备指示所述终端的类型至少包括所述终端的带宽能力为所述预定值;所述终端是否被配置了独立的初始带宽部分BWP,所述初始BWP包括初始上行BWP和/或初始下行BWP;承载第三信息的载体信息,所述第三信息包括所述终端能力信息和/或所述第二信息。
可选的,所述处理模块510根据所述带宽能力和第一信息对所述目标传输进行处理,包括:在所述第一信息包括所述终端发送了所述终端能力信息、所述第二信息、所述承载第二信息的载体信息、所述终端被配置了独立的初始BWP中的至少一项的情况下,执行以下至少一项:期待所述目标传输的频域总资源的大小不超过所述预定值;在所述第一下行传输所使用的频域总资源大小超过所述预定值的情况下,解调所述第一下行传输,以及期待接收所述第一下行传输所在的最后一个时间单元到所述第二上行传输所在的第一个 时间单元之间的时间不小于第一时间阈值;在所述第一下行传输为第一次重传、且所述第一下行传输所使用的频域总资源大小超过所述预定值的情况下,确定随机接入过程失败;在所述第一上行传输所使用的频域总资源大小超过所述预定值的情况下,期待接收所述第一下行传输所在的最后一个时间单元到所述第一上行传输所在的第一个时间单元之间的时间不小于第二时间阈值;在所述第一上行传输为第一次重传调度的上行传输、且所述第一上行传输所使用的频域总资源大小超过所述预定值的情况下,确定随机接入过程失败。
可选的,所述第一时间阈值根据第一基准时间和所述终端处理第一指定频域资源上的下行传输所需的时间确定,所述第一指定频域资源是根据所述第一下行传输所使用的频域总资源与所述预定值之间的资源差确定。
可选的,所述第一时间阈值Tmin通过以下公式确定:其中,T1为所述第一基准时间,N1为所述第一下行传输所使用的频域总资源,M为所述预定值,NT,1为当配置了附加物理下行共享信道PDSCH解调参考信号DM-RS时与终端处理能力1的PDSCH的处理时间相对应的N1个时间单元的持续时间。
可选的,所述第二时间阈值根据第二基准时间和所述终端准备传输第二指定频域资源上的上行传输所需的准备时间确定,所述第二指定频域资源是根据所述第一上行传输所使用的频域资源与所述预定值之间的资源差确定。
可选的,所述第二时间阈值T’min通过以下公式确定:其中,T2为所述第二基准时间,N2为所述第一上行传输所使用的频域总资源值,M为所述预定值,NT,2为当配置附加物理上行共享信道PUSCH DM-RS时与终端处理能力1的PUSCH处理时间相对应的N2个时间单元的持续时间。
可选的,所述终端能力信息包括以下至少一项:最大支持带宽能力是20MHz;最大支持的基带带宽能力是5MHz。
可选的,所述独立的初始BWP包括以下至少一项:独立的初始BWP的最大带宽不超过20MHz;独立的初始BWP的最大带宽不超过5MHz。
可选的,所述第二信息由消息MSG 1和/或MSG 3携带发送。
可选的,所述MSG 1携带共享的第二信息,和/或,所述MSG 3携带共享的或特定的第二信息。
可选的,以下至少一项被满足:在四步随机接入过程中,所述第一下行传输包括初传和/或重传的MSG 2,所述第一上行传输包括第一反馈信息和/或初传或重传的MSG 3,所述MSG 3由MSG 2或目标DCI调度,所述第一反馈信息与MSG 4对应;在两步随机接入过程中,所述第一下行传输为初传和/或重传的MSG B,所述第一上行传输包括MSG A 和/或第二反馈信息,所述第二反馈信息与所述MSG B对应;在小数据传输过程中,所述第一上行传输包括基于授权配置的PUSCH和/或基于随机接入的PUSCH。
本申请实施例中的通信装置500可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的通信装置能够实现图2至图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如方法实施例200-400中所述的方法的步骤。该终端实施例是与上述终端侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图6为实现本申请实施例的一种终端的硬件结构示意图。
该终端600包括但不限于:射频单元601、网络模块602、音频输出单元603、输入单元604、传感器605、显示单元606、用户输入单元607、接口单元608、存储器609、以及处理器610等中的至少部分部件。
本领域技术人员可以理解,终端600还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图6中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元604可以包括图形处理器(Graphics Processing Unit,GPU)6041和麦克风6042,图形处理器6041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元606可包括显示面板6061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板6061。用户输入单元607包括触控面板6071以及其他输入设备6072中的至少一种。触控面板6071,也称为触摸屏。触控面板6071可包括触摸检测装置和触摸控制器两个部分。其他输入设备6072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元601接收来自网络侧设备的下行数据后,可以传输给处理器610进行处理;另外,射频单元601可以向网络侧设备发送上行数据。通常,射频单元601包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器609可用于存储软件程序或指令以及各种数据。存储器609可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至 少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器609可以包括易失性存储器或非易失性存储器,或者,存储器609可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器609包括但不限于这些和任意其它适合类型的存储器。
处理器610可包括一个或多个处理单元;可选的,处理器610集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
其中,处理器610,用于根据带宽能力对目标传输进行处理;其中,所述终端的带宽能力为预定值,所述预定值小于或等于5MHz,所述目标传输包括第一下行传输和/或第一上行传输。
可选的,所述处理器610根据带宽能力对所述目标传输进行处理,包括以下至少一项:期待所述第一下行传输所使用的频域总资源的大小不超过所述预定值;不期待所述第一下行传输所使用的频域总资源的大小超过所述预定值;在所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,执行第一操作;期待为所述第一上行传输所配置或调度的频域总资源的大小不超过所述预定值;不期待为所述第一上行传输所配置或调度的频域总资源的大小超过所述预定值;在为所述第一上行传输所配置或调度的频域总资源的大小超过所述预定值的情况下,所述终端执行第二操作。
可选的,所述处理器610在所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,执行第一操作,包括:在所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,解调所述第一下行传输,以及执行以下至少一项:期待所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间不小于第一时间阈值;不期待第二上行传输所在的第一个时间单元在所述第一下行传输所在的最后一个时间单元之后的时间小于第一时间阈值;在所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间小于第一时间阈值的情况下,放弃所述第二上行传输;在所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间不小于第一时间阈值的情况下,进行所述第二上行传输; 在所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间小于第一时间阈值的情况下,确定所述第一下行传输对应的随机接入过程失败;其中,所述第二上行传输是由所述第一下行传输调度的上行传输。
可选的,在所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间小于第一时间阈值的情况下,确定所述第一下行传输对应的随机接入过程失败,包括:在所述第一下行传输为第一数量个、且所述第一数量个第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间小于第一时间阈值的情况下,确定所述第一下行传输对应的随机接入过程失败;其中,所述第一数量个所述第一下行传输中包括所述第一下行传输的初始传输和/或重复传输。
可选的,所述处理器610在所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,执行第一操作,包括:在所述第一下行传输为第二数量个、且所述第二数量个所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,执行以下至少一项:不要求所述终端解调所述第一下行传输;跳过所述第一下行传输的解调;所述终端确定是否解调所述第一下行传输;确认与所述第一下行传输对应的随机接入过程失败;其中,所述第二数量个所述第一下行传输中包括所述第一下行传输的初始传输和/或重复传输。
可选的,所述第二操作包括以下至少一项:放弃所述第一上行传输;在第二下行传输所在的最后一个时间单元到所述第一上行传输在的第一个时间单元之间的时间小于第二时间阈值的情况下,放弃所述第一上行传输;在第二下行传输所在的最后一个时间单元到所述第一上行传输在的第一个时间单元之间的时间不小于第二时间阈值的情况下,进行所述第一上行传输;确定与所述第一上行传输对应的随机接入过程失败;其中,所述第一上行传输是由所述第二下行传输调度的上行传输。
可选的,确定与所述第一上行传输对应的随机接入过程失败,包括:在所述第一上行传输为第三数量个、且所述第三数量个第一上行传输由连续接收到的第三数量个第二下行传输调度的情况下,确定与所述第一上行传输对应的随机接入过程失败;其中,所述第三数量个第二下行传输包括所述第二下行传输的初始传输和/或重复传输。
可选的,所述处理器610根据带宽能力对所述目标传输进行处理,包括:根据所述带宽能力和第一信息对所述目标传输进行处理;其中,所述第一信息包括以下至少一项:所述终端是否发送终端能力信息;所述终端是否发送第二信息,所述第二信息包括终端识别的信息或终端早期识别的信息,所述终端识别的信息或终端早期识别的信息用于向网络侧设备指示所述终端的类型至少包括所述终端的带宽能力为所述预定值;所述终端是否被配置了独立的初始带宽部分BWP,所述初始BWP包括初始上行BWP和/或初始下行BWP;承载第三信息的载体信息,所述第三信息包括所述终端能力信息和/或所述第二信息。
可选的,所述处理器610根据所述带宽能力和第一信息对所述目标传输进行处理,包括:在所述第一信息包括所述终端发送了所述终端能力信息、所述第二信息、所述承载第 二信息的载体信息、所述终端被配置了独立的初始BWP中的至少一项的情况下,执行以下至少一项:期待所述目标传输的频域总资源的大小不超过所述预定值;在所述第一下行传输所使用的频域总资源大小超过所述预定值的情况下,解调所述第一下行传输,以及期待接收所述第一下行传输所在的最后一个时间单元到所述第二上行传输所在的第一个时间单元之间的时间不小于第一时间阈值;在所述第一下行传输为第一次重传、且所述第一下行传输所使用的频域总资源大小超过所述预定值的情况下,确定随机接入过程失败;在所述第一上行传输所使用的频域总资源大小超过所述预定值的情况下,期待接收所述第一下行传输所在的最后一个时间单元到所述第一上行传输所在的第一个时间单元之间的时间不小于第二时间阈值;在所述第一上行传输为第一次重传调度的上行传输、且所述第一上行传输所使用的频域总资源大小超过所述预定值的情况下,确定随机接入过程失败。
可选的,所述第一时间阈值根据第一基准时间和所述终端处理第一指定频域资源上的下行传输所需的时间确定,所述第一指定频域资源是根据所述第一下行传输所使用的频域总资源与所述预定值之间的资源差确定。
可选的,所述第一时间阈值Tmin通过以下公式确定:其中,T1为所述第一基准时间,N1为所述第一下行传输所使用的频域总资源,M为所述预定值,NT,1为当配置了附加物理下行共享信道PDSCH解调参考信号DM-RS时与终端处理能力1的PDSCH的处理时间相对应的N1个时间单元的持续时间。
可选的,所述第二时间阈值根据第二基准时间和所述终端准备传输第二指定频域资源上的上行传输所需的准备时间确定,所述第二指定频域资源是根据所述第一上行传输所使用的频域资源与所述预定值之间的资源差确定。
可选的,所述第二时间阈值T’min通过以下公式确定:其中,T2为所述第二基准时间,N2为所述第一上行传输所使用的频域总资源值,M为所述预定值,NT,2为当配置附加物理上行共享信道PUSCH DM-RS时与终端处理能力1的PUSCH处理时间相对应的N2个时间单元的持续时间。
可选的,所述终端能力信息包括以下至少一项:最大支持带宽能力是20MHz;最大支持的基带带宽能力是5MHz。
可选的,所述独立的初始BWP包括以下至少一项:独立的初始BWP的最大带宽不超过20MHz;独立的初始BWP的最大带宽不超过5MHz。
可选的,所述第二信息由消息MSG 1和/或MSG 3携带发送。
可选的,所述MSG 1携带共享的第二信息,和/或,所述MSG 3携带共享的或特定的第二信息。
可选的,以下至少一项被满足:在四步随机接入过程中,所述第一下行传输包括初传和/或重传的MSG 2,所述第一上行传输包括第一反馈信息和/或初传或重传的MSG 3,所述MSG 3由MSG 2或目标DCI调度,所述第一反馈信息与MSG 4对应;在两步随机接入过程中,所述第一下行传输为初传和/或重传的MSG B,所述第一上行传输包括MSG A和/或第二反馈信息,所述第二反馈信息与所述MSG B对应;在小数据传输过程中,所述第一上行传输包括基于授权配置的PUSCH和/或基于随机接入的PUSCH。
可以理解,本实施例提供的前述各实现方式具有与方法实施例200-400中提及的各实现方式相同或相应的特征,因此,本实施例中各实现过程可参照前述方法实施例200-400中的相关描述,并达到相同或相应的技术效果,为避免重复,在此不再追溯。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述方法实施例200-400的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述方法实施例200-400的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时,实现上述方法实施例200-400的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如上所述方法实施例200-400中的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某 些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (38)

  1. 一种通信方法,包括:
    终端根据带宽能力对目标传输进行处理;
    其中,所述终端的带宽能力为预定值,所述预定值小于或等于5MHz,所述目标传输包括第一下行传输和/或第一上行传输。
  2. 如权利要求1所述的方法,其中,所述终端根据带宽能力对所述目标传输进行处理,包括以下至少一项:
    期待所述第一下行传输所使用的频域总资源的大小不超过所述预定值;
    不期待所述第一下行传输所使用的频域总资源的大小超过所述预定值;
    在所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,执行第一操作;
    期待为所述第一上行传输所配置或调度的频域总资源的大小不超过所述预定值;
    不期待为所述第一上行传输所配置或调度的频域总资源的大小超过所述预定值;
    在为所述第一上行传输所配置或调度的频域总资源的大小超过所述预定值的情况下,所述终端执行第二操作。
  3. 如权利要求2所述的方法,其中,在所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,执行第一操作,包括:
    在所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,所述终端解调所述第一下行传输,以及执行以下至少一项:
    期待所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间不小于第一时间阈值;
    不期待第二上行传输所在的第一个时间单元在所述第一下行传输所在的最后一个时间单元之后的时间小于第一时间阈值;
    在所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间小于第一时间阈值的情况下,放弃所述第二上行传输;
    在所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间不小于第一时间阈值的情况下,进行所述第二上行传输;
    在所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间小于第一时间阈值的情况下,确定所述第一下行传输对应的随机接入过程失败;
    其中,所述第二上行传输是由所述第一下行传输调度的上行传输。
  4. 如权利要求3所述的方法,其中,在所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间小于第一时间阈值的情况下,确定所述第一下行传输对应的随机接入过程失败,包括:
    在所述第一下行传输为第一数量个、且所述第一数量个第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间小于第一时间阈值的情况下,确定所述第一下行传输对应的随机接入过程失败;
    其中,所述第一数量个所述第一下行传输中包括所述第一下行传输的初始传输和/或重复传输。
  5. 如权利要求2所述的方法,其中,在所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,执行第一操作,包括:
    在所述第一下行传输为第二数量个、且所述第二数量个所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,执行以下至少一项:
    不要求所述终端解调所述第一下行传输;
    跳过所述第一下行传输的解调;
    所述终端确定是否解调所述第一下行传输;
    确认与所述第一下行传输对应的随机接入过程失败;
    其中,所述第二数量个所述第一下行传输中包括所述第一下行传输的初始传输和/或重复传输。
  6. 如权利要求2所述的方法,其中,所述第二操作,包括以下至少一项:
    放弃所述第一上行传输;
    在第二下行传输所在的最后一个时间单元到所述第一上行传输在的第一个时间单元之间的时间小于第二时间阈值的情况下,放弃所述第一上行传输;
    在第二下行传输所在的最后一个时间单元到所述第一上行传输在的第一个时间单元之间的时间不小于第二时间阈值的情况下,进行所述第一上行传输;
    确定与所述第一上行传输对应的随机接入过程失败;
    其中,所述第一上行传输是由所述第二下行传输调度的上行传输。
  7. 如权利要求6所述的方法,其中,确定与所述第一上行传输对应的随机接入过程失败,包括:
    在所述第一上行传输为第三数量个、且所述第三数量个第一上行传输由连续接收到的第三数量个第二下行传输调度的情况下,确定与所述第一上行传输对应的随机接入过程失败;
    其中,所述第三数量个第二下行传输包括所述第二下行传输的初始传输和/或重复传输。
  8. 如权利要求1-7中任一项所述的方法,其中,所述终端根据带宽能力对所述目标传输进行处理,包括:
    所述终端根据所述带宽能力和第一信息对所述目标传输进行处理;
    其中,所述第一信息包括以下至少一项:
    所述终端是否发送终端能力信息;
    所述终端是否发送第二信息,所述第二信息包括终端识别的信息或终端早期识别的信息,所述终端识别的信息或终端早期识别的信息用于向网络侧设备指示所述终端的类型至少包括所述终端的带宽能力为所述预定值;
    所述终端是否被配置了独立的初始带宽部分BWP,所述初始BWP包括初始上行BWP和/或初始下行BWP;
    承载第三信息的载体信息,所述第三信息包括所述终端能力信息和/或所述第二信息。
  9. 如权利要求8所述的方法,其中,所述终端根据所述带宽能力和第一信息对所述目标传输进行处理,包括:
    在所述第一信息包括所述终端发送了所述终端能力信息、所述第二信息、所述承载第二信息的载体信息、所述终端被配置了独立的初始BWP中的至少一项的情况下,执行以下至少一项:
    期待所述目标传输的频域总资源的大小不超过所述预定值;
    在所述第一下行传输所使用的频域总资源大小超过所述预定值的情况下,解调所述第一下行传输,以及期待接收所述第一下行传输所在的最后一个时间单元到所述第二上行传输所在的第一个时间单元之间的时间不小于第一时间阈值;
    在所述第一下行传输为第一次重传、且所述第一下行传输所使用的频域总资源大小超过所述预定值的情况下,确定随机接入过程失败;
    在所述第一上行传输所使用的频域总资源大小超过所述预定值的情况下,期待接收所述第一下行传输所在的最后一个时间单元到所述第一上行传输所在的第一个时间单元之间的时间不小于第二时间阈值;
    在所述第一上行传输为第一次重传调度的上行传输、且所述第一上行传输所使用的频域总资源大小超过所述预定值的情况下,确定随机接入过程失败。
  10. 如权利要求3、4或9中任一项所述的方法,其中,所述第一时间阈值根据第一基准时间和所述终端处理第一指定频域资源上的下行传输所需的时间确定,所述第一指定频域资源是根据所述第一下行传输所使用的频域总资源与所述预定值之间的资源差确定。
  11. 如权利要求10所述的方法,其中,所述第一时间阈值Tmin通过以下公式确定:
    其中,T1为所述第一基准时间,N1为所述第一下行传输所使用的频域总资源,M为所述预定值,NT,1为当配置了附加物理下行共享信道PDSCH解调参考信号DM-RS时与终端处理能力1的PDSCH的处理时间相对应的N1个时间单元的持续时间。
  12. 如权利要求6或9所述的方法,其中,所述第二时间阈值根据第二基准时间和所述终端准备传输第二指定频域资源上的上行传输所需的准备时间确定,所述第二指定频域资源是根据所述第一上行传输所使用的频域资源与所述预定值之间的资源差确定。
  13. 如权利要求12所述的方法,其中,所述第二时间阈值T’min通过以下公式确定:
    其中,T2为所述第二基准时间,N2为所述第一上行传输所使用的频域总资源值,M为所述预定值,NT,2为当配置附加物理上行共享信道PUSCH DM-RS时与终端处理能力1的PUSCH处理时间相对应的N2个时间单元的持续时间。
  14. 如权利要求6-13中任一项所述的方法,其中,所述终端能力信息包括以下至少一项:
    最大支持带宽能力是20MHz;
    最大支持的基带带宽能力是5MHz。
  15. 如权利要求8或9所述的方法,其中,所述独立的初始BWP包括以下至少一项:
    独立的初始BWP的最大带宽不超过20MHz;
    独立的初始BWP的最大带宽不超过5MHz。
  16. 如权利要求8或9所述的方法,其中,所述第二信息由消息MSG 1和/或MSG 3携带发送。
  17. 如权利要求16所述的方法,其中,所述MSG 1携带共享的第二信息,和/或,所述MSG 3携带共享的或特定的第二信息。
  18. 如权利要求2-17中任一项所述的方法,其中,以下至少一项被满足:
    在四步随机接入过程中,所述第一下行传输包括初传和/或重传的MSG 2,所述第一上行传输包括第一反馈信息和/或初传或重传的MSG 3,所述MSG 3由MSG 2或目标DCI调度,所述第一反馈信息与MSG 4对应;
    在两步随机接入过程中,所述第一下行传输为初传和/或重传的MSG B,所述第一上行传输包括MSG A和/或第二反馈信息,所述第二反馈信息与所述MSG B对应;
    在小数据传输过程中,所述第一上行传输包括基于授权配置的PUSCH和/或基于随机接入的PUSCH。
  19. 一种通信装置,包括:
    处理模块,用于根据带宽能力对目标传输进行处理;
    其中,终端的带宽能力为预定值,所述预定值小于或等于5MHz,所述目标传输包括第一下行传输和/或第一上行传输。
  20. 如权利要求19所述的装置,其中,所述处理模块根据带宽能力对所述目标传输进行处理,包括以下至少一项:
    期待所述第一下行传输所使用的频域总资源的大小不超过所述预定值;
    不期待所述第一下行传输所使用的频域总资源的大小超过所述预定值;
    在所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,执行第一操作;
    期待为所述第一上行传输所配置或调度的频域总资源的大小不超过所述预定值;
    不期待为所述第一上行传输所配置或调度的频域总资源的大小超过所述预定值;
    在为所述第一上行传输所配置或调度的频域总资源的大小超过所述预定值的情况下,所述终端执行第二操作。
  21. 如权利要求20所述的装置,其中,所述处理模块在所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,执行第一操作,包括:
    在所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,解调所述第一下行传输,以及执行以下至少一项:
    期待所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间不小于第一时间阈值;
    不期待第二上行传输所在的第一个时间单元在所述第一下行传输所在的最后一个时间单元之后的时间小于第一时间阈值;
    在所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间小于第一时间阈值的情况下,放弃所述第二上行传输;
    在所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间不小于第一时间阈值的情况下,进行所述第二上行传输;
    在所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间小于第一时间阈值的情况下,确定所述第一下行传输对应的随机接入过程失败;
    其中,所述第二上行传输是由所述第一下行传输调度的上行传输。
  22. 如权利要求21所述的装置,其中,在所述第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间小于第一时间阈值的情况下,确定所述第一下行传输对应的随机接入过程失败,包括:
    在所述第一下行传输为第一数量个、且所述第一数量个第一下行传输所在的最后一个时间单元到第二上行传输所在的第一个时间单元之间的时间小于第一时间阈值的情况下,确定所述第一下行传输对应的随机接入过程失败;
    其中,所述第一数量个所述第一下行传输中包括所述第一下行传输的初始传输和/或重复传输。
  23. 如权利要求20所述的装置,其中,所述处理模块在所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,执行第一操作,包括:
    在所述第一下行传输为第二数量个、且所述第二数量个所述第一下行传输所使用的频域总资源的大小超过所述预定值的情况下,执行以下至少一项:
    不要求所述终端解调所述第一下行传输;
    跳过所述第一下行传输的解调;
    所述终端确定是否解调所述第一下行传输;
    确认与所述第一下行传输对应的随机接入过程失败;
    其中,所述第二数量个所述第一下行传输中包括所述第一下行传输的初始传输和/或重复传输。
  24. 如权利要求20所述的装置,其中,所述第二操作,包括以下至少一项:
    放弃所述第一上行传输;
    在第二下行传输所在的最后一个时间单元到所述第一上行传输在的第一个时间单元之间的时间小于第二时间阈值的情况下,放弃所述第一上行传输;
    在第二下行传输所在的最后一个时间单元到所述第一上行传输在的第一个时间单元之间的时间不小于第二时间阈值的情况下,进行所述第一上行传输;
    确定与所述第一上行传输对应的随机接入过程失败;
    其中,所述第一上行传输是由所述第二下行传输调度的上行传输。
  25. 如权利要求24所述的装置,其中,确定与所述第一上行传输对应的随机接入过程失败,包括:
    在所述第一上行传输为第三数量个、且所述第三数量个第一上行传输由连续接收到的第三数量个第二下行传输调度的情况下,确定与所述第一上行传输对应的随机接入过程失败;
    其中,所述第三数量个第二下行传输包括所述第二下行传输的初始传输和/或重复传输。
  26. 如权利要求21或22所述的装置,其中,所述处理模块根据带宽能力对所述目标传输进行处理,包括:
    根据所述带宽能力和第一信息对所述目标传输进行处理;
    其中,所述第一信息包括以下至少一项:
    所述终端是否发送终端能力信息;
    所述终端是否发送第二信息,所述第二信息包括终端识别的信息或终端早期识别的信息,所述终端识别的信息或终端早期识别的信息用于向网络侧设备指示所述终端的类型至少包括所述终端的带宽能力为所述预定值;
    所述终端是否被配置了独立的初始带宽部分BWP,所述初始BWP包括初始上行BWP和/或初始下行BWP;
    承载第三信息的载体信息,所述第三信息包括所述终端能力信息和/或所述第二信息。
  27. 如权利要求26所述的装置,其中,所述处理模块根据所述带宽能力和第一信息对所述目标传输进行处理,包括:
    在所述第一信息包括所述终端发送了所述终端能力信息、所述第二信息、所述承载第二信息的载体信息、所述终端被配置了独立的初始BWP中的至少一项的情况下,执行以下至少一项:
    期待所述目标传输的频域总资源的大小不超过所述预定值;
    在所述第一下行传输所使用的频域总资源大小超过所述预定值的情况下,解调所述第一下行传输,以及期待接收所述第一下行传输所在的最后一个时间单元到所述第二上行传输所在的第一个时间单元之间的时间不小于第一时间阈值;
    在所述第一下行传输为第一次重传、且所述第一下行传输所使用的频域总资源大小超过所述预定值的情况下,确定随机接入过程失败;
    在所述第一上行传输所使用的频域总资源大小超过所述预定值的情况下,期待接收所述第一下行传输所在的最后一个时间单元到所述第一上行传输所在的第一个时间单元之间的时间不小于第二时间阈值;
    在所述第一上行传输为第一次重传调度的上行传输、且所述第一上行传输所使用的频域总资源大小超过所述预定值的情况下,确定随机接入过程失败。
  28. 如权利要求21、22或27中任一项所述的装置,其中,所述第一时间阈值根据第一基准时间和所述终端处理第一指定频域资源上的下行传输所需的时间确定,所述第一指定频域资源是根据所述第一下行传输所使用的频域总资源与所述预定值之间的资源差确定。
  29. 如权利要求28所述的装置,其中,所述第一时间阈值Tmin通过以下公式确定:
    其中,T1为所述第一基准时间,N1为所述第一下行传输所使用的频域总资源,M为所述预定值,NT,1为当配置了附加物理下行共享信道PDSCH解调参考信号DM-RS时与终端处理能力1的PDSCH的处理时间相对应的N1个时间单元的持续时间。
  30. 如权利要求24或27所述的装置,其中,所述第二时间阈值根据第二基准时间和所述终端准备传输第二指定频域资源上的上行传输所需的准备时间确定,所述第二指定频域资源是根据所述第一上行传输所使用的频域资源与所述预定值之间的资源差确定。
  31. 如权利要求30所述的装置,其中,所述第二时间阈值T’min通过以下公式确定:
    其中,T2为所述第二基准时间,N2为所述第一上行传输所使用的频域总资源值,M为所述预定值,NT,2为当配置附加物理上行共享信道PUSCH DM-RS时与终端处理能力1的PUSCH处理时间相对应的N2个时间单元的持续时间。
  32. 如权利要求24-31中任一项所述的装置,其中,所述终端能力信息包括以下至少一项:
    最大支持带宽能力是20MHz;
    最大支持的基带带宽能力是5MHz。
  33. 如权利要求26或27所述的装置,其中,所述独立的初始BWP包括以下至少一 项:
    独立的初始BWP的最大带宽不超过20MHz;
    独立的初始BWP的最大带宽不超过5MHz。
  34. 如权利要求26或27所述的装置,其中,所述第二信息由消息MSG 1和/或MSG 3携带发送。
  35. 如权利要求34所述的装置,其中,所述MSG1携带共享的第二信息,和/或,所述MSG 3携带共享的或特定的第二信息。
  36. 如权利要求20-35中任一项所述的装置,其中,以下至少一项被满足:
    在四步随机接入过程中,所述第一下行传输包括初传和/或重传的MSG 2,所述第一上行传输包括第一反馈信息和/或初传或重传的MSG 3,所述MSG 3由MSG 2或目标DCI调度,所述第一反馈信息与MSG 4对应;
    在两步随机接入过程中,所述第一下行传输为初传和/或重传的MSG B,所述第一上行传输包括MSG A和/或第二反馈信息,所述第二反馈信息与所述MSG B对应;
    在小数据传输过程中,所述第一上行传输包括基于授权配置的PUSCH和/或基于随机接入的PUSCH。
  37. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至18任一项所述的方法的步骤。
  38. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-18任一项所述的方法的步骤。
PCT/CN2023/128585 2022-11-03 2023-10-31 通信方法、装置及终端 WO2024094011A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211372486.2A CN117998456A (zh) 2022-11-03 2022-11-03 通信方法、装置及终端
CN202211372486.2 2022-11-03

Publications (1)

Publication Number Publication Date
WO2024094011A1 true WO2024094011A1 (zh) 2024-05-10

Family

ID=90900358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128585 WO2024094011A1 (zh) 2022-11-03 2023-10-31 通信方法、装置及终端

Country Status (2)

Country Link
CN (1) CN117998456A (zh)
WO (1) WO2024094011A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676957A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 一种切换方法及装置
WO2022028359A1 (zh) * 2020-08-07 2022-02-10 华为技术有限公司 一种无线接入的方法以及装置
WO2022126637A1 (zh) * 2020-12-18 2022-06-23 Oppo广东移动通信有限公司 资源确定方法、终端设备和网络设备
CN115209535A (zh) * 2021-04-09 2022-10-18 华为技术有限公司 一种上行信道的发送方法、接收方法及通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676957A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 一种切换方法及装置
WO2022028359A1 (zh) * 2020-08-07 2022-02-10 华为技术有限公司 一种无线接入的方法以及装置
WO2022126637A1 (zh) * 2020-12-18 2022-06-23 Oppo广东移动通信有限公司 资源确定方法、终端设备和网络设备
CN115209535A (zh) * 2021-04-09 2022-10-18 华为技术有限公司 一种上行信道的发送方法、接收方法及通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NORDIC SEMICONDUCTOR ASA: "On further complexity reduction of NR UE", 3GPP DRAFT; R1-2210196, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20221010 - 20221019, 30 September 2022 (2022-09-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052259662 *

Also Published As

Publication number Publication date
CN117998456A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
WO2022063167A1 (zh) 信息确定方法、信息发送方法、装置和设备
CN114363986A (zh) Pucch重复传输次数确定方法、装置及终端
WO2022199544A1 (zh) 上行传输方法、装置及用户设备
CN114390657B (zh) 功率确定方法、装置、终端及可读存储介质
JP2023535781A (ja) 補助情報を伝送する方法、端末機器とネットワーク機器
WO2023125912A1 (zh) 上行传输的跳频、指示方法、装置、终端及网络侧设备
CN113939036A (zh) 信道监听、传输方法、终端及网络侧设备
WO2024094011A1 (zh) 通信方法、装置及终端
CN113973270B (zh) 消息发送、消息接收方法、装置及通信设备
CN113890698A (zh) 旁链路传输方法、传输装置和通信设备
US20240107618A1 (en) Information transmission method and apparatus, and storage medium
WO2024067306A1 (zh) 能力指示方法、装置、终端及介质
WO2024078616A1 (zh) 下行传输的方法、终端及网络侧设备
US20230308222A1 (en) Configuration method and apparatus for control channel, and communications device
WO2023083304A1 (zh) 随机接入的方法、终端及网络侧设备
US20240080135A1 (en) Pusch repetition method and device
WO2023202632A1 (zh) 资源分配方法、设备及可读存储介质
WO2023143532A1 (zh) 资源选择方法及装置、终端
WO2023202513A1 (zh) 冲突处理方法、终端及网络侧设备
WO2023169363A1 (zh) 上行对象发送方法、装置、通信设备、系统及存储介质
EP4301068A1 (en) Method and device for indicating scs of initial downlink bwp
WO2023011532A1 (zh) 波束应用时间的确定方法、终端及网络侧设备
US20240057000A1 (en) Synchronization resource configuration method and apparatus, user equipment, and storage medium
WO2024027747A1 (zh) 数据传输处理方法、装置、终端及网络侧设备
WO2023061344A1 (zh) 信号传输方法、装置和终端设备