WO2021026898A1 - 功率确定方法、装置及设备 - Google Patents

功率确定方法、装置及设备 Download PDF

Info

Publication number
WO2021026898A1
WO2021026898A1 PCT/CN2019/100829 CN2019100829W WO2021026898A1 WO 2021026898 A1 WO2021026898 A1 WO 2021026898A1 CN 2019100829 W CN2019100829 W CN 2019100829W WO 2021026898 A1 WO2021026898 A1 WO 2021026898A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
tpmi
precoding matrix
sri
transmission
Prior art date
Application number
PCT/CN2019/100829
Other languages
English (en)
French (fr)
Inventor
陈文洪
史志华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980054876.5A priority Critical patent/CN112673680B/zh
Priority to PCT/CN2019/100829 priority patent/WO2021026898A1/zh
Publication of WO2021026898A1 publication Critical patent/WO2021026898A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC

Definitions

  • the present invention relates to the field of communication technology, and in particular to a power determination method, device and equipment.
  • the terminal device Before the terminal device sends uplink data to the network device, the terminal device needs to determine the actual uplink transmission power, and transmit the uplink data according to the actual transmission power.
  • the maximum transmission power and expected transmission power of the terminal device are usually determined first, and the minimum of the maximum transmission power and the expected transmission power of the terminal device is determined as the initial transmission power.
  • the maximum transmission power is usually calculated according to a preset formula, so that the maximum transmission power of the terminal device is usually a fixed value. Since the maximum transmission power of the terminal device is a fixed value, when calculating the actual transmission power of the terminal device, the determined initial transmission power needs to be processed according to whether the terminal device supports full power transmission to obtain the actual transmission power.
  • the initial transmission power is determined as the actual transmission power; if the terminal device does not support full power transmission under the current transmission scheme and port configuration, the initial transmission power is determined The transmission power is multiplied by the preset attenuation coefficient to obtain the actual transmission power.
  • the initial transmission power may not reach the maximum transmission power supported by the terminal device under the current transmission scheme and port configuration, that is, the terminal device can transmit uplink data according to the initial transmission power, but through
  • the actual transmission power calculated by the above method is less than the initial transmission power, so that the actual transmission power of the terminal device is small, resulting in poor uplink transmission performance.
  • the embodiments of the present application provide a power determination method, device, and equipment, which improve uplink transmission performance.
  • an embodiment of the present application provides a power determination method, including:
  • an embodiment of the present application provides a power determination device, including a processing module, wherein:
  • the processing module is configured to obtain at least one of a transmission rank indicator TRI, a transmission precoding matrix indicator TPMI, or a sounding reference signal resource indicator SRI;
  • the processing module is configured to determine the maximum transmission power of the physical uplink shared channel PUSCH of the terminal device according to at least one of TRI, transmission TPMI or SRI.
  • an embodiment of the present application provides a power determination device, including a memory and a processor, and the processor executes program instructions in the memory to implement the power determination method described in the first aspect.
  • an embodiment of the present application provides a storage medium, where the storage medium is used to store a computer program, and the computer program is used to implement the power determination method described in the first aspect when the computer program is executed by a computer or a processor.
  • embodiments of the present application provide a computer program product, the computer program product including instructions, when the instructions are executed, cause a computer to execute the power determination method described in the first aspect.
  • the embodiments of the present application provide a system on a chip or a system chip, the system on a chip or a system chip may be applied to a terminal device, and the system on a chip or a system chip includes: at least one communication interface, at least one processing The communication interface, the memory, and the processor are interconnected by a bus, and the processor executes the instructions stored in the memory so that the terminal device can execute the power determination method as described in the first aspect.
  • the terminal device obtains at least one of TRI, TPMI, or SRI, and determines the maximum transmission power of the PUSCH of the terminal device according to at least one of TRI, TPMI, or SRI.
  • the maximum transmission power determined by the above method is related to whether the terminal device supports full power transmission. Therefore, according to the maximum When the transmission power determines the actual transmission power of the PUSCH of the terminal device, there is no need to perform power reduction, and the actual transmission power of the terminal device is increased, thereby improving the uplink transmission performance.
  • FIG. 1 is a schematic diagram of a communication system architecture to which an embodiment of this application is applicable;
  • FIG. 2 is a schematic flowchart of a power determination method provided by an embodiment of this application.
  • FIG. 3 is a schematic flowchart of another power determination method provided by an embodiment of this application.
  • FIG. 4 is a schematic flowchart of a method for determining a maximum transmit power adjustment value provided by an embodiment of the application
  • FIG. 5 is a schematic flowchart of another method for determining a maximum transmit power adjustment value provided by an embodiment of the application
  • FIG. 6 is a schematic structural diagram of a power determination device provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of another power determination device provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of the hardware structure of the power determination device provided by this application.
  • the technical solution shown in this application can be applied to the fifth generation mobile communication technology (The 5th Generation mobile communication technology, referred to as 5G) system, and can also be applied to the long term evolution (LTE) system, for example, in the LTE communication system
  • LTE long term evolution
  • V2X vehicle to all
  • D2D device to device
  • MTC machine type communication
  • UMTS universal mobile telecommunications system
  • GSM global system for mobile communication
  • GSM global system for mobile communication
  • EDGE global system for mobile communication
  • GSM EDGE radio access network GSM EDGE radio access network
  • the technical solution shown in this application can also be applied to other communication systems, such as the evolved communication system of the 5G system, which is not limited in this application.
  • Terminal equipment a device with wireless transceiver function. Terminal devices can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; they can also be deployed on water (such as ships); they can also be deployed in the air (such as airplanes, balloons, and satellites).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, an industrial Wireless terminals in control (industrial control), vehicle-mounted terminal equipment, wireless terminals in self-driving (self-driving), wireless terminal equipment in remote medical (remote medical), wireless terminal equipment in smart grid (smart grid), Wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, wearable terminal equipment, etc.
  • the terminal equipment involved in the embodiments of the present application may also be referred to as a terminal, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station , Remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal device can also be fixed or mobile.
  • Network equipment It is a device with wireless transceiver function. Including but not limited to: Evolutional Node B (eNB or eNodeB) in long term evolution (LTE), base station (gNodeB or gNB) or transceiving point (gNodeB or gNB) in new radio (NR) transmission receiving point/transmission reception poin, TRP), the base station in the subsequent evolution system, the access node in the wireless fidelity (wireless fidelity, WiFi) system, the wireless relay node, the wireless backhaul node, etc.
  • the base station can be: a macro base station, a micro base station, a pico base station, a small station, a relay station, or a balloon station, etc.
  • the base station can contain one or more co-site or non-co-site TRPs.
  • the network equipment may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device can also be a server, a wearable device, or a vehicle-mounted device.
  • the following description takes the network device as a base station as an example.
  • the multiple network devices may be base stations of the same type, or base stations of different types.
  • the base station can communicate with the terminal, and it can also communicate with the terminal through a relay station.
  • the terminal can communicate with multiple base stations of different technologies.
  • the terminal can communicate with a base station that supports an LTE network, or can communicate with a base station that supports a 5G network, and can also support dual connections with a base station of an LTE network and a base station of a 5G network. , It can also support dual connections with 5G network base stations, etc.
  • Precoding matrix refers to the matrix used by the terminal device when precoding the data signal to be sent.
  • the precoding matrix may be a matrix with M rows and N columns, M is a positive integer greater than or equal to 1, and N is a positive integer greater than or equal to 1. Among them, N is the same as the number of layers corresponding to the current transmission of the terminal device. M is the same as the number of PUSCH antenna ports configured for the terminal device.
  • a row in the precoding matrix may also be referred to as one port of the precoding matrix, and the number of ports of the precoding matrix is M. If the elements in a row of the precoding matrix are all zeros, the row in the precoding matrix can also be called the zero port in the precoding matrix.
  • the precoding matrix The row in can also be referred to as a non-zero port in the precoding matrix.
  • FIG. 1 is a schematic diagram of a communication system architecture to which an embodiment of this application is applicable. Please refer to FIG. 1, which includes a network device 101 and a terminal device 102. The network device 101 and the terminal device 102 can communicate with each other.
  • FIG. 1 only illustrates a communication system architecture by way of example.
  • the embodiments of the present application may also be applied to other communication system architectures.
  • other communication system architectures may include more network devices and/or more terminal devices.
  • the communication system architecture applicable to the embodiments of this application is not specifically limited.
  • the terminal device may first obtain the transmit rank indicator (TRI), transmit precoding matrix indicator (TPMI) or sounding reference signal resources Indicate at least one of the (sounding reference signal resource indicator, SRI), and determine the maximum transmit power of the physical downlink control channel (PUSCH) of the terminal device according to at least one of TRI, TPMI, or SRI. Since at least one of TRI, TPMI, or SRI can reflect whether the terminal device can transmit at full power, the maximum transmission power determined by the above method is related to whether the terminal device supports full power transmission. Therefore, the terminal device is determined according to the maximum transmission power When the actual transmission power of the PUSCH is not required to be reduced, the actual transmission power of the terminal device is increased, and the uplink transmission performance is improved.
  • TRI transmit rank indicator
  • TPMI transmit precoding matrix indicator
  • SRI sounding reference signal resources
  • PUSCH physical downlink control channel
  • FIG. 2 is a schematic flowchart of a power determination method provided by an embodiment of the application.
  • the execution subject in Figure 2 may be a terminal device. See Figure 2.
  • the method can include:
  • TRI is used to indicate the size of the rank
  • the size of the rank refers to the number of layers corresponding to the current transmission of the terminal device.
  • the number of layers supported by the terminal device may include layer 1, layer 2, layer 3, and layer 4.
  • the number of layers corresponding to the current transmission of the terminal device may be one of the layers supported by the terminal device.
  • the current transmission corresponding to the terminal device The number of layers can be 2 layers.
  • the TPMI is used to indicate the precoding matrix, and the TPMI and the precoding matrix may have a one-to-one correspondence.
  • the SRI is used to indicate SRS resources.
  • the SRI may indicate one SRS resource in a preset SRS resource set.
  • the terminal device can obtain at least one of TRI, TPMI, or SRI in the following manner: the terminal device can receive downlink control information (DCI) sent by the network device, and obtain at least one of TRI, TPMI, or SRI in the DCI .
  • DCI downlink control information
  • TRI, TPMI or SRI can be preset.
  • S202 Determine the maximum transmission power of the PUSCH of the terminal device according to at least one of TRI, TPMI or SRI.
  • the maximum transmit power of the PUSCH of the terminal device can be determined in the following manner: according to at least one of TRI, TPMI or SRI, the maximum transmit power adjustment value of the terminal device is determined, and the preset transmit power of the terminal device and the maximum transmit power of the terminal device are determined
  • the power adjustment value determines the maximum transmission power of the PUSCH of the terminal device.
  • the preset transmission power is the maximum transmission power determined according to the power level of the terminal device. For example, when the power level of the terminal device is 3, the preset transmit power is 23 dBm. When the power level of the terminal device is 2, the preset transmit power is 26 dBm.
  • the difference between the preset transmission power and the maximum transmission power adjustment value may be determined as the maximum transmission power of the PUSCH of the terminal device.
  • the terminal device may determine the actual transmission power of the PUSCH of the terminal device according to the maximum transmission power.
  • the actual transmit power refers to the actual transmit power on each non-zero power PUSCH antenna port of the terminal device.
  • the actual transmission power of the PUSCH of the terminal equipment can be determined in the following way: the minimum of the maximum transmission power of the terminal equipment PUSCH and the expected transmission power is determined as the actual total transmission power, and the actual total transmission power is evenly allocated to each non-zero power On the PUSCH antenna port, the actual transmission power on each non-zero power PUSCH antenna port is obtained.
  • the actual total transmission power can be expressed in units of dBm.
  • the non-zero power PUSCH antenna port refers to the antenna port that actually transmits uplink data
  • the zero power PUSCH port refers to the antenna port that does not transmit uplink data
  • the non-zero power PUSCH antenna port corresponds to the non-zero port in the precoding matrix.
  • the ratio of the linear value of the actual total transmission power to the number of non-zero-power PUSCH antenna ports may be used as the actual transmission power of each non-zero-power PUSCH antenna port.
  • the value of the transmission power when the unit of the transmission power is dBm, the value of the transmission power can be referred to as an index value, and when the unit of the transmission power is w (watts), the value of the transmission power can be referred to as a line value.
  • the actual total transmission power of the PUSCH of the terminal equipment P PUSCH, b, f, c (i, j, q d , l) can be expressed by the following formula:
  • the maximum transmission power of the PUSCH of the terminal device is: P CMAX,f,c (i)-k.
  • P CMAX, f, c (i) is the preset transmission power, and the preset transmission power may also be referred to as the preset maximum transmission power.
  • k is the maximum transmit power adjustment value.
  • the expected transmit power is as follows:
  • i is the index of a PUSCH transmission
  • c is the serving cell ID
  • f is the carrier ID
  • b is the Bandwidth Part ID
  • j is the open-loop power control parameter index
  • is the subcarrier spacing configuration
  • l is the closed-loop power Control the process.
  • PO_PUSCH, b, f, c (j) refers to the target power
  • ⁇ b, f, c (j) refers to the path loss factor
  • It is the PUSCH transmission bandwidth on the activated BWPb of carrier f in the serving cell c.
  • q d is the index of the reference signal used for path loss measurement, used to obtain the path loss value PL b,f,c (q d ), which is also an open-loop power control parameter; f b,f,c (i,l ) Is the closed-loop power control adjustment factor.
  • the terminal device may also determine the power headroom of the PUSCH according to the maximum transmission power, and send the power headroom to the network device.
  • the power headroom PH type1,b,f,c (i,j,q d ,l) can be as follows:
  • Other parameters are obtained according to the power control parameters of the PUSCH, which are the same as the calculation method of the expected transmission power, and will not be repeated here.
  • the power headroom PH type1,b,f,c (i,j,q d ,l) can be as follows:
  • PM, f, c (i) is the maximum transmission power obtained according to at least one of the preset SRI, the preset TPMI, and the preset TRI.
  • the preset TRI may indicate single-layer transmission or full-rank transmission;
  • the preset TPMI may be a TPMI with all ports being non-zero ports;
  • the SRI indicated by the preset SRI takes a value of 0.
  • the actual total transmission power of the terminal device is determined to be: 20dBm multiplied by If the reduction factor is less than 1, the actual transmission power obtained is less than 20 dBm, for example, the actual transmission power may be 17 dBm.
  • the determined maximum transmission power adjustment value is 3dBm
  • the determined actual transmission power is 20dBm (no further power reduction is required). It can be seen from the above that the actual transmission power of the terminal device can be improved by the method shown in this application.
  • the support for full power transmission shown in this application means that the terminal device can use the preset transmission power P CMAX,f,c (i) to transmit uplink data.
  • the terminal device obtains at least one of TRI, TPMI, or SRI, and determines the maximum transmission power of the PUSCH of the terminal device according to at least one of TRI, TPMI, or SRI.
  • the maximum transmission power determined by the above method is related to whether the terminal device supports full power transmission. Therefore, according to the maximum When the transmission power determines the actual transmission power of the PUSCH of the terminal device, there is no need to perform power reduction, and the actual transmission power of the terminal device is increased, thereby improving the uplink transmission performance.
  • FIG. 3 is a schematic flowchart of another power determination method provided by an embodiment of the application. See Figure 3.
  • the method can include:
  • the network device sends DCI to the terminal device.
  • DCI includes at least one of TRI, TPMI, or SRI.
  • the terminal device obtains at least one of TRI, TPMI, or SRI in the DCI.
  • the terminal device determines the maximum transmit power adjustment value of the terminal device according to at least one of TRI, TPMI or SRI.
  • the maximum transmit power adjustment value of the terminal device can be denoted as k.
  • the terminal device determines the maximum transmission power according to the preset transmission power of the terminal device and the maximum transmission power adjustment value of the terminal device.
  • the preset transmission power is P CMAX,f,c (i)
  • the maximum transmission power is P CMAX,f,c (i)-k.
  • the terminal device determines the minimum value of the maximum transmission power and the expected transmission power as the actual total transmission power.
  • the expected transmission power is determined according to a preset formula.
  • the expected transmit power is as follows:
  • the terminal device determines the actual transmission power of each non-zero power PUSCH antenna port according to the actual total transmission power and the number of non-zero power PUSCH antenna ports.
  • the actual transmission power of the non-zero power PUSCH antenna port is among them Is the linear value of P PUSCH, b, f, c (i, j, q d , l).
  • the terminal device may obtain at least one of TRI, TPMI, or SRI in the received DCI, and determine the maximum transmission power of the PUSCH of the terminal device according to at least one of TRI, TPMI, or SRI. .
  • the maximum transmission power determined by the above method is related to whether the terminal device supports full power transmission. Therefore, according to the maximum When the transmission power determines the actual transmission power of the PUSCH of the terminal device, there is no need to perform power reduction, and the actual transmission power of the terminal device is increased, thereby improving the uplink transmission performance.
  • the following describes the manner of determining the maximum transmit power adjustment value according to at least one of TRI, TPMI, or SRI.
  • the first method Determine the maximum transmit power adjustment value according to the SRI.
  • the terminal device can determine the maximum transmit power adjustment value according to the SRI, so that the terminal device can quickly determine the maximum transmit power adjustment value.
  • the terminal device can transmit uplink data at full power without power reduction, so that the uplink transmission power is higher, the uplink coverage is larger, and the uplink transmission performance is higher.
  • the second method Determine the maximum transmit power adjustment value according to TRI.
  • the maximum transmit power adjustment value of the terminal device is 0.
  • the rank indicated by the TRI is equal to the number of PUSCH antenna ports configured for the terminal device.
  • the maximum transmit power adjustment value of the terminal device is 0.
  • the rank indicated by the TRI is less than the number of PUSCH antenna ports configured for the terminal device, or less than the number of SRS ports included in the SRS resource indicated by the SRI, it may be determined that the terminal
  • the maximum transmit power adjustment value of the device is greater than 0.
  • the maximum transmission power adjustment value can also be determined according to other parameters, and the present invention is not limited to this.
  • the third method Determine the maximum transmit power adjustment value according to TRI and TPMI.
  • the rank indicated by the TRI is equal to the number of PUSCH antenna ports configured for the terminal device, or the precoding matrix indicated by TPMI or TPMI belongs to the precoding matrix information set that supports full power transmission .
  • the maximum transmit power adjustment value of the terminal device is 0. If the rank indicated by the TRI is less than the number of PUSCH antenna ports configured for the terminal device, and the precoding matrix indicated by TPMI or TPMI does not belong to the precoding matrix information set that supports full power transmission, it may be determined that the terminal The maximum transmit power adjustment value of the device is greater than 0.
  • the rank indicated by the TRI is equal to the number of SRS ports included in the SRS resource indicated by the SRI, or the precoding matrix indicated by TPMI or TPMI belongs to precoding matrix information that supports full power transmission
  • the maximum transmit power adjustment value of the terminal device is 0. If the rank indicated by the TRI is less than the number of SRS ports included in the SRS resource indicated by the SRI, and the precoding matrix indicated by TPMI or TPMI does not belong to the precoding matrix information set that supports full power transmission, it may be determined that the The maximum transmit power adjustment value of the terminal device is greater than zero.
  • the fourth method Determine the maximum transmit power adjustment value according to SRI and TRI.
  • the maximum transmit power adjustment value of the terminal device is 0 (dB).
  • the maximum transmit power adjustment value of the terminal device is 0 (dB).
  • the rank indicated by TRI is equal to the number of PUSCH antenna ports configured for the terminal device
  • the rank indicated by TRI is equal to the number of SRS ports included in the SRS resource indicated by SRI respectively means that the terminal device can transmit at full rank, that is, the terminal device Can transmit at full power.
  • the terminal device can first determine whether the number of SRS ports included in the SRS resource indicated by the SRI is 1, if not, then determine whether the terminal device can be fully powered according to the rank indicated by the TRI For transmission, when it is determined that the terminal device can transmit at full power, the maximum transmission power adjustment value of the terminal device is determined to be 0 dB. In this way, the terminal device can determine the maximum transmission power adjustment value according to the SRI and TRI, so that the terminal device can quickly determine the maximum transmission power adjustment value. When the maximum power adjustment value is 0dB, the terminal device can transmit uplink data at full power without power reduction, so that the uplink transmission power is higher, the uplink coverage is larger, and the uplink transmission performance is higher.
  • the fifth method Determine the maximum transmit power adjustment value according to SRI and TPMI.
  • the precoding matrix indicated by the TPMI or TPMI belongs to the precoding matrix information set that supports full power transmission, it is determined that the maximum transmission power adjustment value of the terminal device is 0 dB.
  • the precoding matrix information set supporting full power transmission includes at least one TPMI supporting full power transmission, or at least one precoding matrix supporting full power transmission.
  • the TPMI that supports full power transmission means that after the TPMI indicates the precoding matrix to precode the uplink digital signal, the uplink digital signal can be transmitted at full power.
  • the precoding matrix supporting full power transmission means that after the uplink digital signal is precoded through the precoding matrix, the uplink digital signal can be transmitted at full power.
  • the set of precoding matrix information supporting full power transmission may be reported by the terminal device to the network device in advance.
  • the terminal device may determine the TPMI or precoding matrix supporting full power transmission according to the maximum transmission power supported by each radio frequency channel. For example, if all radio frequency channels of the terminal device support full power transmission, the terminal device may determine that the precoding matrix information set includes all supported TPMIs or all precoding matrices that may be indicated by the TPMI.
  • the terminal device may send the precoding matrix information set to the network device through the UE capability information.
  • the precoding matrix information set in the following description all refer to the precoding matrix information set that supports full power transmission.
  • the terminal device can indicate which TPMI can support full power transmission in the UE capability information by means of a bitmap, and each bit corresponds to a TPMI.
  • the bit corresponding to the TPMI is 1.
  • the bit corresponding to the TPMI is 0.
  • the TPMI here may include part or all of the TPMI that may be indicated in the DCI. Based on the bitmap, the TPMI set that supports full power transmission can be determined.
  • the terminal device can indicate which precoding matrix can support full power transmission in the UE capability information by means of bitmaps.
  • Each bit corresponds to a precoding matrix.
  • the precoding matrix When the precoding matrix supports full power transmission, the precoding matrix corresponds to The bit of is 1, when the precoding matrix does not support full power transmission, the bit corresponding to the precoding matrix is 0.
  • the precoding matrix here includes part or all of the precoding matrixes that may be indicated by the TPMI. Based on the bitmap, a set of precoding matrices supporting full power transmission can be determined.
  • the precoding matrix information set may include precoding matrix information corresponding to multiple numbers of different ports (or numbers of transmission layers, or ranks) supported by the terminal device.
  • the precoding matrix information set may include precoding matrix information (TPMI or precoding matrix) corresponding to 2 ports and precoding matrix information corresponding to 4 ports ( TPMI or precoding matrix).
  • the terminal device can first determine whether the number of SRS ports included in the SRS resource indicated by the SRI is 1, if not, then determine whether the terminal device can transmit at full power according to TPMI. When it is determined that the terminal device supports full power transmission, it is determined that the maximum transmit power adjustment value of the terminal device is 0 dB. In this way, the terminal device can determine and obtain the maximum transmission power adjustment value according to the SRI and TPMI, so that the terminal device can quickly determine and obtain the maximum transmission power adjustment value. When the maximum power adjustment value is 0, the terminal device can send uplink data at full power without power reduction, so that the uplink transmission power is higher, the uplink coverage is larger, and the uplink transmission performance is higher.
  • the sixth method Determine the maximum transmit power adjustment value according to SRI and TPMI.
  • the number of non-zero ports in the precoding matrix indicated by TPMI determine the maximum transmit power adjustment value of the PUSCH of the terminal device.
  • the first port number is: the number of SRS ports contained in the SRS resource indicated by SRI, or the number of ports of the precoding matrix indicated by TPMI, or the maximum number of uplink transmission ports supported by the terminal device, or the number of terminal devices in one SRS The maximum number of SRS ports supported in the resource.
  • precoding matrix information set in this manner can refer to the description in the fifth manner, and details are not described herein again.
  • the terminal device can first determine whether the number of SRS ports included in the SRS resource indicated by the SRI is 1, and if not, then determine whether the precoding matrix indicated by the TPMI or TPMI is a support The precoding matrix information set for full power transmission. If not, the power adjustment value is determined according to the number of non-zero ports and the number of first ports in the precoding matrix indicated by TPMI, so as to achieve attenuation of the maximum transmission power. It can prevent the calculated actual transmission power of the terminal device from exceeding the maximum transmission power of the terminal device, and also avoid unnecessary attenuation of the actual transmission power of the terminal device, increase the actual transmission power of the terminal device, and thereby improve the uplink transmission performance.
  • the seventh method Determine the maximum transmit power adjustment value according to the SRI.
  • the maximum transmission power adjustment value of the terminal device is determined according to the number of SRS ports and the first correspondence relationship.
  • the first correspondence relationship is the number of SRS ports and the maximum transmission power Correspondence between adjustment values.
  • the first corresponding relationship may be preset, and when the number of SRS ports is different, the corresponding maximum transmit power adjustment value is also different.
  • the maximum transmission power adjustment value is not necessarily determined directly through the SRS port, but different formulas can be used to obtain the maximum transmission power adjustment value under different SRS port numbers.
  • the maximum transmit power adjustment value is
  • the maximum transmission power adjustment value of the terminal device can be quickly determined according to the number of SRS ports and the first correspondence.
  • the eighth method Determine the maximum transmit power adjustment value according to SRI and TPMI.
  • the first correspondence relationship is the correspondence relationship between the number of SRS ports and the maximum transmission power adjustment value.
  • the first correspondence may be: when the number of SRS ports is 2, the maximum transmit power adjustment value is 3 dBm. Or, the first correspondence may be: when the number of SRS ports is 4, if half of the ports in the precoding matrix indicated by TPMI are non-zero ports, the power adjustment value is 3dBm, and if the precoding matrix indicated by TPMI If one of the ports is a non-zero port, the power adjustment value is 6dBm.
  • the terminal device can first determine whether the number of SRS ports included in the SRS resource indicated by the SRI is 1, and if not, then determine whether the precoding matrix indicated by the TPMI or TPMI is a support The set of precoding matrix information for full power transmission. If not, the maximum transmission power adjustment value of the terminal device is determined according to the number of SRS ports and the first correspondence relationship, so as to achieve attenuation of the maximum transmission power, so that not only can the calculation be avoided The actual transmission power of the terminal device exceeds the maximum transmission power of the terminal device, which can also avoid unnecessary attenuation of the actual transmission power of the terminal device, increase the actual transmission power of the terminal device, and thereby improve the uplink transmission performance.
  • the ninth method Determine the maximum transmit power adjustment value according to TPMI.
  • the second correspondence relationship is the correspondence relationship between the TPMI and the maximum transmit power adjustment value, or the second correspondence relationship is the precoding matrix indicated by the TPMI and Correspondence between the maximum transmission power adjustment values; where the second correspondence is determined according to a set of precoding matrix information supporting full power transmission.
  • the maximum transmission power adjustment value of the PUSCH of the terminal device is determined according to the TPMI and the second correspondence.
  • the number of SRS ports included in the SRS resource indicated by the SRI is greater than 1, and the precoding matrix indicated by TPMI or TPMI does not belong to the precoding matrix information set that supports full power transmission, according to the TPMI and the second correspondence, Determine the maximum transmit power adjustment value of the PUSCH of the terminal device.
  • the terminal device may determine the second correspondence in advance according to the number of non-zero ports in the precoding matrix corresponding to the precoding matrix information set; wherein, the precoding matrix corresponding to the precoding matrix information set includes: the precoding matrix information set includes Or the precoding matrix indicated by the TPMI included in the precoding matrix information set.
  • the second correspondence determined according to different sets of precoding matrix information is different. Different sets of precoding matrix information refer to different TPMIs included in the set of precoding matrix information, or different precoding matrices included.
  • the second correspondence relationship corresponding to several different precoding matrix information sets is introduced, which may include the following cases (in the following cases, the precoding matrix refers to the possible TPMI Indicated precoding matrix):
  • k is the maximum transmit power adjustment value
  • N is the number of non-zero ports in the precoding matrix indicated by the current TPMI
  • T is the number of ports of the precoding matrix indicated by the current TPMI.
  • the precoding matrix indicated by the current TPMI is:
  • the precoding matrix indicated by the current TPMI is:
  • the first set of precoding matrices includes precoding matrices in which half of the ports in the precoding matrix that may be indicated by different TPMIs are non-zero ports, for example Wait.
  • N is the number of non-zero ports in the precoding matrix indicated by the current TPMI
  • T is the number of ports of the precoding matrix indicated by the current TPMI.
  • the precoding matrix indicated by the current TPMI is:
  • the maximum transmit power adjustment value determined according to the current TPMI and the second corresponding relationship is 3dB, or,
  • the precoding matrix information set includes part of the precoding matrix in the first precoding matrix set, and the precoding matrix indicated by the current TPMI does not belong to the precoding matrix information set that supports full power transmission .
  • N is the number of non-zero ports in the precoding matrix indicated by the current TPMI
  • T is the number of ports of the precoding matrix indicated by the current TPMI.
  • the second precoding matrix set includes a precoding matrix with only one port being a non-zero port among the precoding matrices that may be indicated by different TPMIs, for example Wait.
  • N is the number of non-zero ports in the precoding matrix indicated by the current TPMI
  • T is the number of ports of the precoding matrix indicated by the current TPMI.
  • the precoding matrix information set includes the information in the second precoding matrix set
  • the above method is also applicable to the case where the precoding matrix information set includes at least one TPMI, and the specific method is similar to the above method, and will not be described in detail here.
  • the terminal device can first determine whether the number of ports of the SRS resource indicated by the SRI is 1, and if not, then determine whether the precoding matrix indicated by the TPMI or TPMI supports full power transmission. If not, determine the maximum transmit power adjustment value of the terminal device according to the number of SRS ports and the second correspondence relationship. Since the precoding matrix information set actually reflects the different radio configuration of the terminal (that is, the maximum transmit power that each radio channel can support), the above method can be used to determine the maximum power of each radio channel of the terminal corresponding to the precoding matrix information set. The maximum power adjustment value corresponding to each TPMI, so that the terminal device can reach the maximum power of each radio frequency channel when using the precoding matrix corresponding to the corresponding TPMI for uplink transmission. In turn, the uplink transmission performance is improved.
  • FIG. 4 is a schematic flowchart of a method for determining a maximum transmit power adjustment value provided by an embodiment of the application.
  • the maximum transmit power adjustment value of the terminal device is determined according to SRI, TRI, and TPMI.
  • the method may include:
  • the terminal device obtains SRI, TRI and TPMI.
  • SRI, TRI, and TPMI can be obtained from the received DCI.
  • S402 The terminal device judges whether the number of SRS ports included in the SRS resource indicated by the SRI is 1.
  • the terminal device judges whether the rank indicated by the TRI is equal to the number of PUSCH antenna ports configured for the terminal device.
  • S404 The terminal device judges whether the TPMI or the precoding matrix indicated by the TPMI belongs to the precoding matrix information set.
  • the terminal device determines the maximum transmit power adjustment value of the terminal device according to the number of non-zero ports in the precoding matrix indicated by the TPMI and the number of the first port.
  • the terminal device determines that the maximum transmit power adjustment value of the terminal device is 0 dB.
  • the terminal device sequentially determines whether SRI, TRI, and TPMI meet the conditions for full power transmission of the terminal device. If one of them meets the condition for full power transmission of the terminal device , The maximum transmit power adjustment value is determined to be 0, and the terminal device can transmit uplink data at full power without power reduction, so that the uplink transmission power is higher, the uplink coverage is larger, and the uplink transmission performance is higher. .
  • the terminal device determines the maximum transmission power adjustment value of the terminal device according to the number of SRS ports and the first corresponding relationship, so as to achieve attenuation of the maximum transmission power In this way, not only can the actual transmission power of the terminal device be prevented from exceeding the maximum transmission power of the terminal device, but also the unnecessary attenuation of the actual transmission power of the terminal device can be avoided, the actual transmission power of the terminal device can be increased, and the uplink transmission performance can be improved.
  • FIG. 5 is a schematic flowchart of another method for determining a maximum transmit power adjustment value provided by an embodiment of the application.
  • the maximum transmit power adjustment value of the terminal device is determined according to SRI and TPMI.
  • the method may include:
  • S501 The terminal device determines a set of precoding matrix information.
  • the terminal device can determine the TPMI or precoding matrix that supports full power transmission, and determine the precoding matrix information set according to the TPMI or precoding matrix that supports full power transmission.
  • the precoding matrix information set includes at least one TPMI that supports full power transmission. Or precoding matrix.
  • S502 The terminal device sends the precoding matrix information set to the network device.
  • the terminal device may send the precoding matrix information set to the network device through the UE capability information.
  • S503 The terminal device determines the second correspondence relationship according to the precoding matrix information set.
  • the terminal device determines to obtain the second correspondence relationship, it can store the second correspondence relationship in the preset storage space.
  • the terminal device needs to use the second correspondence relationship, obtain the second correspondence relationship in the preset storage space. Two correspondences are sufficient. In other words, there is no need to perform S501-S503 each time before determining the maximum transmission power adjustment value.
  • S504 The network device sends DCI to the terminal device.
  • DCI includes SRI and TPMI.
  • the terminal device obtains the SRI and TPMI in the DCI.
  • SRI and TPMI can be obtained from the received DCI.
  • S506 The terminal device judges whether the number of SRS ports included in the SRS resource indicated by the SRI is 1.
  • S507 The terminal device judges whether the TPMI or the precoding matrix indicated by the TPMI belongs to the precoding matrix information set.
  • the terminal device determines the maximum transmit power adjustment value of the terminal device according to the TPMI and the second correspondence.
  • the second correspondence is the correspondence between the precoding matrix indicated by the TPMI and the maximum transmission power adjustment value.
  • the terminal device determines that the maximum transmit power adjustment value of the terminal device is 0dB.
  • the terminal device may first determine the precoding matrix information set, and determine the second correspondence relationship according to the precoding matrix information set. After the terminal equipment SRI and TPMI, the terminal equipment sequentially determines whether the SRI and TPMI meet the terminal equipment full power transmission conditions. If one of them meets the terminal equipment full power transmission conditions, the maximum transmission power adjustment value is determined to be 0, and then the terminal equipment The uplink data can be sent at full power without power reduction, so that the uplink transmission power is higher, the uplink coverage is larger, and the uplink transmission performance is higher.
  • the terminal device determines the maximum transmit power adjustment value of the terminal device according to the TPMI and the second corresponding relationship, because the precoding matrix information set actually reflects the different radio frequencies of the terminal Configuration (that is, the maximum transmit power that each radio frequency channel can support), through the above method, the maximum power adjustment value corresponding to each TPMI can be determined according to the maximum power of each radio frequency channel of the terminal corresponding to the precoding matrix information set, so that the terminal equipment When the precoding matrix corresponding to the corresponding TPMI is used for uplink transmission, the maximum power of each radio frequency channel can be reached, thereby improving the uplink transmission performance.
  • FIG. 6 is a schematic structural diagram of a power determination device provided by an embodiment of the application.
  • the power determination device 10 may include a processing module 11, where:
  • the processing module is configured to obtain at least one of a transmission rank indicator TRI, a transmission precoding matrix indicator TPMI, or a sounding reference signal resource indicator SRI;
  • the processing module is used to determine the maximum transmission power of the physical uplink shared channel PUSCH of the terminal equipment according to at least one of TRI, transmission TPMI or SRI.
  • the power determination device provided in the embodiment of the present application can execute the technical solutions shown in the foregoing method embodiments, and its implementation principles and beneficial effects are similar, and details are not described herein again.
  • processing module 11 is specifically configured to:
  • the maximum transmission power is determined according to the preset transmission power of the terminal device and the maximum transmission power adjustment value of the terminal device.
  • the preset transmission power is determined according to the power level of the terminal device.
  • the maximum transmit power adjustment value of the terminal device is 0.
  • the The maximum transmit power adjustment value of the terminal device is 0; or,
  • the maximum transmit power adjustment value of the terminal device Is 0.
  • the number of SRS ports included in the SRS resource indicated by the SRI is greater than 1, and the TPMI or the precoding matrix indicated by the TPMI belongs to a precoding matrix information set that supports full power transmission At this time, the maximum transmit power adjustment value of the terminal device is 0.
  • processing module 11 is specifically configured to:
  • the TPMI or the precoding matrix indicated by the TPMI does not belong to the precoding matrix information set that supports full power transmission, according to the precoding indicated by the TPMI
  • the number of non-zero ports and the number of first ports in the coding matrix determine the maximum transmission power adjustment value of the terminal device
  • the first port number is: the number of SRS ports included in the SRS resource indicated by the SRI, or the number of ports of the precoding matrix indicated by the TPMI, or the maximum uplink transmission port number supported by the terminal device Number, or the maximum number of SRS ports supported by the terminal device in one SRS resource.
  • processing module 11 is specifically configured to:
  • the power adjustment value of the terminal device is: 10*log 2 (M/N);
  • the N is the number of non-zero ports in the precoding matrix indicated by the TPMI
  • the M is the number of the first ports.
  • processing module 11 is specifically configured to:
  • the maximum transmit power adjustment value of the terminal device is determined according to the number of SRS ports and a first correspondence, and the first correspondence is Correspondence between the number of SRS ports and the maximum transmit power adjustment value.
  • processing module 11 is specifically configured to:
  • the second correspondence relationship is the correspondence relationship between the TPMI and the maximum transmission power adjustment value, or the second correspondence relationship Is the correspondence between the precoding matrix indicated by the TPMI and the maximum transmit power adjustment value;
  • the second corresponding relationship is determined according to a set of precoding matrix information supporting full power transmission.
  • the processing module 11 is further configured to: before the processing module 11 determines the maximum transmit power adjustment value of the terminal device according to the TPMI and the second correspondence, according to the The number of non-zero ports in the precoding matrix corresponding to the precoding matrix information set determines the second correspondence; wherein, the precoding matrix corresponding to the precoding matrix information set includes: the precoding matrix information set The included precoding matrix, or the precoding matrix indicated by the TPMI included in the precoding matrix information set.
  • the second correspondence determined according to different sets of precoding matrix information is different.
  • FIG. 7 is a schematic structural diagram of another power determination device provided by an embodiment of the application.
  • the power determination device 10 may include a transceiver module 12, where:
  • the transceiver module 12 is configured to report the set of precoding matrix information supporting full power transmission to a network device through user equipment UE capability information.
  • the precoding matrix information set includes at least one TPMI supporting full power transmission, or at least one precoding matrix supporting full power transmission.
  • the processing module 11 is further configured to determine the terminal according to at least one of sending rank indicator TRI, sending precoding matrix indicator TPMI, or sounding reference signal resource indicator SRI. Before the maximum transmit power of the PUSCH of the device, the TRI, the TPMI and the SRI are acquired from the downlink control information DCI for scheduling the PUSCH.
  • processing module 11 is further configured to:
  • the actual transmission power of the PUSCH of the terminal device is determined according to the maximum transmission power.
  • processing module 11 is specifically configured to:
  • Determining the minimum value of the maximum transmission power and the expected transmission power as the actual total transmission power, and the expected transmission power is determined according to a preset formula
  • the actual total transmission power is evenly distributed to each non-zero power PUSCH antenna port to obtain the actual transmission power of each non-zero power PUSCH antenna port.
  • processing module 11 is further configured to:
  • the power headroom of the PUSCH of the terminal device is determined according to the maximum transmission power.
  • the TRI, the TPMI, and the SRI are acquired during the DCI scheduling of the PUSCH; and/or ,
  • the TRI is a preset TRI
  • the TPMI is a preset TPMI
  • the SRI is a preset SRI.
  • the power determination device provided in the embodiment of the present application can execute the technical solutions shown in the foregoing method embodiments, and its implementation principles and beneficial effects are similar, and details are not described herein again.
  • FIG. 8 is a schematic diagram of the hardware structure of the power determination device provided by this application.
  • the power determining device 20 includes: a memory 21 and a processor 22, where the memory 21 and the processor 22 communicate; for example, the memory 21 and the processor 22 communicate through a communication bus 23, and the memory 21 uses
  • the processor 22 executes the computer program to implement the power determination method shown in the foregoing embodiment.
  • the power determination device may further include a transmitter and/or a receiver.
  • the foregoing processor may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), application specific integrated circuits (ASICs) )Wait.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in this application can be directly executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • An embodiment of the present application provides a storage medium, where the storage medium is used to store a computer program, and when the computer program is executed by a computer or a processor, it is used to implement the foregoing power determination apparatus and method.
  • An embodiment of the present application provides a computer program product.
  • the computer program product includes instructions that, when executed, cause a computer to execute the above-mentioned power determination device and method.
  • the embodiment of the application provides a system on a chip or a system chip, the system on a chip or a system chip may be applied to a terminal device, the system on a chip or the system chip includes: at least one communication interface, at least one processor, and at least one The memory, the communication interface, the memory, and the processor are interconnected by a bus, and the processor executes the instructions stored in the memory so that the terminal device can execute the above-mentioned power determination apparatus and method.
  • All or part of the steps in the foregoing method embodiments can be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a readable memory.
  • the program executes the steps of the above-mentioned method embodiments; and the aforementioned memory (storage medium) includes: read-only memory (ROM), RAM, flash memory, hard disk, solid state hard disk, magnetic tape (magnetic tape), floppy disk (floppy disk), optical disc (optical disc) and any combination thereof.
  • These computer program instructions can be provided to the processing unit of a general-purpose computer, a special-purpose computer, an embedded processor, or other programmable data processing equipment to generate a machine, so that the instructions executed by the processing unit of the computer or other programmable data processing equipment are generated for use It is a device that realizes the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.
  • the term “including” and its variations may refer to non-limiting inclusion; the term “or” and its variations may refer to “and/or”.
  • the terms “first”, “second”, etc. in the present application are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequence.
  • “plurality” means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects are in an "or” relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种功率确定方法、装置及设备,该方法包括:获取发送秩指示TRI、发送预编码矩阵指示TPMI或探测参考信号资源指示SRI中的至少一个;根据TRI、发送TPMI或SRI中的至少一个,确定终端设备的物理上行共享信道PUSCH的最大发送功率。提高了上行传输性能。

Description

功率确定方法、装置及设备 技术领域
本发明涉及通信技术领域,尤其涉及一种功率确定方法、装置及设备。
背景技术
终端设备在向网络设备发送上行数据之前,终端设备需要先确定上行的实际发送功率,并根据实际发送功率传输上行数据。
在相关技术中,通常先确定终端设备的最大发送功率和期望发送功率,并将终端设备的最大发送功率和与期望发送功率中的最小值确定为初始发送功率。其中,通常根据预设的公式计算最大发送功率,使得终端设备的最大发送功率通常为定值。由于终端设备的最大发送功率为定值,因此,在计算终端设备的实际发送功率时,需要根据终端设备是否支持满功率发送对确定得到的初始发送功率进行处理,以得到实际发送功率。例如,如果在当前传输方案和端口配置下终端设备支持满功率发送,则将初始发送功率确定为实际发送功率;如果在当前传输方案和端口配置下终端设备不支持满功率发送时,则将初始发送功率乘以预设衰减系数,得到实际发送功率。
然而,在终端设备不支持满功率传输时,初始发送功率可能没有达到终端设备在当前传输方案和端口配置下支持的最大发送功率,即,终端设备可以按照初始发送功率发送上行数据,但是,通过上述方法计算得到的实际发送功率小于初始发送功率,使得终端设备的实际发送功率较小,导致上行传输性能较差。
发明内容
本申请实施例提供一种功率确定方法、装置及设备,提高了上行传输性能。
第一方面,本申请实施例提供一种功率确定方法,包括:
获取发送秩指示TRI、发送预编码矩阵指示TPMI或探测参考信号资源指示SRI中的至少一个;
根据TRI、发送TPMI或SRI中的至少一个,确定终端设备的物理上行共享信道PUSCH的最大发送功率。
第二方面,本申请实施例提供一种功率确定装置,包括处理模块,其中,
所述处理模块用于,获取发送秩指示TRI、发送预编码矩阵指示TPMI或探测参考信号资源指示SRI中的至少一个;
所述处理模块用于,根据TRI、发送TPMI或SRI中的至少一个,确定终端设备的物理上行共享信道PUSCH的最大发送功率。
第三方面,本申请实施例提供一种功率确定装置,包括存储器和处理器,所述处理器执行所述存储器中的程序指令,用于实现第一方面所述的功率确定方法。
第四方面,本申请实施例提供一种存储介质,所述存储介质用于存储计算机程序,所述计算机程序被计算机或处理器执行时用于实现第一方面所述的功率确定方法。
第五方面,本申请实施例提供一种计算机程序产品,所述计算机程序产品包括指令,当所述指令 被执行时,使得计算机执行上述第一方面所述的功率确定方法。
第六方面,本申请实施例提供一种芯片上系统或系统芯片,所述芯片上系统或系统芯片可应用于终端设备,所述芯片上系统或系统芯片包括:至少一个通信接口,至少一个处理器,至少一个存储器,所述通信接口、存储器和处理器通过总线互联,所述处理器通过执行所述存储器中存储的指令,使得所述终端设备可执行如第一方面所述功率确定方法。
本申请实施例提供的功率确定方法、装置及设备,终端设备获取TRI、TPMI或SRI中的至少一个,并根据TRI、TPMI或SRI中的至少一个确定终端设备的PUSCH的最大发送功率。在上述过程中,由于TRI、TPMI或SRI中的至少一个可以反映终端设备是否可以全功率发送,使得通过上述方法确定得到的最大发送功率与终端设备是否支持全功率发送相关,因此,根据该最大发送功率确定终端设备的PUSCH的实际发送功率时,无需进行功率缩减,提高终端设备的实际发送功率,进而提高上行传输性能。
附图说明
图1为本申请实施例适用的通信系统架构的一种示意图;
图2为本申请实施例提供的一种功率确定方法的流程示意图;
图3为本申请实施例提供的另一种功率确定方法的流程示意图;
图4为本申请实施例提供的一种确定最大发送功率调整值方法的流程示意图;
图5为本申请实施例提供的另一种确定最大发送功率调整值方法的流程示意图;
图6为本申请实施例提供的一种功率确定装置的结构示意图;
图7为本申请实施例提供的另一种功率确定装置的结构示意图;
图8为本申请提供的功率确定装置的硬件结构示意图。
具体实施方式
为了便于理解,首先,对本申请所涉及的概念进行说明。
本申请所示的技术方案可以应用于第五代移动通信技术(The 5th Generation mobile communication technology,简称5G)系统,也可以应用于长期演进(long term evolution,LTE)系统,例如,LTE通信系统中的车辆到所有(vehicle to X,V2X)系统、设备到设备(device to device,D2D)系统、机器型通信(machine type communication,MTC)系统等,还可以应用于通用移动通信系统(universal mobile telecommunications system,UMTS)陆地无线接入网(UMTS terrestrial radio access network,UTRAN)系统,或者全球移动通信系统(global system for mobile communication,GSM)/增强型数据速率GSM演进(enhanced data rate for GSM evolution,EDGE)系统的无线接入网(GSM EDGE radio accessnetwork,GERAN)架构。本申请所示的技术方案还可以应用于其它通信系统,例如5G系统的演进通信系统等,本申请对此不作限定。
终端设备:是一种具有无线收发功能的设备。终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,简称VR)终端设备、增强现实(augmented reality,简称AR)终端设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical) 中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备、可穿戴终端设备等。本申请实施例所涉及的终端设备还可以称为终端、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端设备也可以是固定的或者移动的。
网络设备:是一种具有无线收发功能的设备。包括但不限于:长期演进(long term evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),新空口技术(new radio,NR)中的基站(gNodeB或gNB)或收发点(transmission receiving point/transmission reception poin,TRP),后续演进系统中的基站,无线保真(wireless fidelity,WiFi)系统中的接入节点,无线中继节点,无线回传节点等。基站可以是:宏基站,微基站,微微基站,小站,中继站,或,气球站等。多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。基站可以包含一个或多个共站或非共站的TRP。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。网络设备还可以是服务器,可穿戴设备,或车载设备等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端进行通信,也可以通过中继站与终端进行通信。终端可以与不同技术的多个基站进行通信,例如,终端可以与支持LTE网络的基站通信,也可以与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接,还可以支持与5G网络的基站的双连接等。
预编码矩阵:是指终端设备对待发送的数据信号进行预编码时所使用的矩阵。预编码矩阵可以为M行、N列的矩阵,M为大于或等于1的正整数,N为大于或等于1的正整数。其中,N与终端设备当前传输对应的层数相同。M与为终端设备配置的PUSCH天线端口的数量相同。预编码矩阵中的一行还可以称为预编码矩阵的一个端口,预编码矩阵的端口的数量为M。若预编码矩阵中某一行的元素全部为零,则预编码矩阵中的该行还可以称为预编码矩阵中的零端口,若预编码矩阵中某一行中存在非零元素,则预编码矩阵中的该行还可以称为预编码矩阵中的非零端口。例如,假设预编码矩阵为
Figure PCTCN2019100829-appb-000001
由于预编码矩阵中的第一行和第二行中均包括非零元素,因此,该预编码矩阵的非零端口的数量为2。由于该预编码矩阵的第三行和第四行中的元素均为零,因此,该预编码矩阵的零端口的数量为2。由该预编码矩阵的列数N=2可知,终端设备当前传输所选择的层数为2。由该预编码矩阵的行数M=4可知,为终端设备配置的PUSCH天线端口的数量为4。
下面,结合图1,对本申请中的通信方法所适用的场景进行说明。
图1为本申请实施例适用的通信系统架构的一种示意图。请参见图1,包括网络设备101和终端设备102。网络设备101和终端设备102之间可以相互通信。
图1只是以示例的形式示意一种通信系统架构,本申请实施例还可以适用于其它通信系统架构,例如,其它通信系统架构中可能包括更多个网络设备和/或更多个终端设备。岁本申请实施例所适用的通信系统架构不作具体限定。
在本申请中,在终端设备向网络设备发送上行数据之前,终端设备可以先获取发送秩指示(transmit rank indicator,TRI)、发送预编码矩阵指示(transmit precoding matrix indicator,TPMI)或探测参考信号资源指示(sounding reference signal resource indicator,SRI)中的至少一个,并根据TRI、TPMI或 SRI中的至少一个确定终端设备的物理上行共享信道(physical downlink control channel,PUSCH)的最大发送功率。由于TRI、TPMI或SRI中的至少一个可以反映终端设备是否可以全功率发送,使得通过上述方法确定得到的最大发送功率与终端设备是否支持全功率发送相关,因此,根据该最大发送功率确定终端设备的PUSCH的实际发送功率时,无需进行功率缩减,提高终端设备的实际发送功率,进而提高上行传输性能。
下面,通过具体实施例对本申请所示的技术方案进行详细说明。需要说明的是,下面几个实施例可以相互独立存在,也可以相互结合,对于相同或相似的内容,在不同的实施例中不再重复说明。
图2为本申请实施例提供的一种功率确定方法的流程示意图。图2中的执行主体可以为终端设备。请参见图2,该方法可以包括:
S201、获取TRI、TPMI或SRI中的至少一个。
TRI用于指示秩的大小,秩的大小是指终端设备当前传输对应的层数。例如,终端设备支持的层数可以包括1层、2层、3层和4层,终端设备当前传输对应的层数可以为终端设备支持的层数中的一种,例如,终端设备当前传输对应的层数可以为2层。
TPMI用于指示预编码矩阵,TPMI与预编码矩阵可以具有一一对应关系。
SRI用于指示SRS资源,例如,SRI可以指示预设的SRS资源集合中的一个SRS资源。
终端设备可以通过如下方式获取TRI、TPMI或SRI中的至少一个:终端设备可以接收网络设备发送的下行控制信息(downlink control information,DCI),并在DCI中获取TRI、TPMI或SRI中的至少一个。或者,TRI、TPMI或SRI可以为预设的。
S202、根据TRI、TPMI或SRI中的至少一个,确定终端设备的PUSCH的最大发送功率。
可以通过如下方式确定终端设备的PUSCH的最大发送功率:根据TRI、TPMI或SRI中的至少一个,确定终端设备的最大发送功率调整值,并根据终端设备的预设发送功率和终端设备的最大发送功率调整值,确定终端设备的PUSCH的最大发送功率。其中,预设发送功率为根据终端设备的功率等级确定的最大发送功率。例如,当终端设备的功率等级为3时,则预设发送功率为23dBm。当终端设备的功率等级为2时,预设发送功率为26dBm。可以将预设发送功率和最大发送功率调整值的差值确定为终端设备的PUSCH的最大发送功率。
可选的,终端设备可以根据最大发送功率确定终端设备的PUSCH的实际发送功率。实际发送功率是指终端设备的每个非零功率的PUSCH天线端口上的实际发送功率。
可以通过如下方式确定终端设备的PUSCH的实际发送功率:将终端设备PUSCH的最大发送功率与期望发送功率中的最小值确定为实际发送总功率,将实际发送总功率平均分配到每个非零功率的PUSCH天线端口上,得到每个非零功率的PUSCH天线端口上的实际发送功率。这里,实际发送总功率可以采用dBm为单位表示。非零功率的PUSCH天线端口是指实际传输上行数据的天线端口,零功率的PUSCH端口是指不传输上行数据的天线端口,非零功率的PUSCH天线端口与预编码矩阵中的非零端口对应。可以将实际发送总功率的线性值与非零功率的PUSCH天线端口的数量的比值,作为每个非零功率的PUSCH天线端口的实际发送功率。在本申请实施例中,当发送功率的单位为dBm时,发送功率的值可以称为指数值,当发送功率的单位为w(瓦)时,发送功率的值可以称为线行值。
可选的,终端设备的PUSCH的实际发送总功率P PUSCH,b,f,c(i,j,q d,l)可以通过如下公式表示:
Figure PCTCN2019100829-appb-000002
其中,终端设备的PUSCH的最大发送功率为:P CMAX,f,c(i)-k。P CMAX,f,c(i)为预设发送功率,该预设发送功率还可以称为预设的最大发送功率。k为最大发送功率调整值。期望发送功率如下:
Figure PCTCN2019100829-appb-000003
i是一次PUSCH传输的索引,c是指服务小区标识,f是指载波标识,b是指带宽部分Bandwidth Part标识,j是开环功率控制参数索引,μ是子载波间隔配置,l是闭环功率控制进程。P O_PUSCH,b,f,c(j)是指目标功率,α b,f,c(j)是指路损因子,
Figure PCTCN2019100829-appb-000004
是在服务小区c载波f的激活BWPb上的PUSCH传输带宽。q d是用于进行路损测量的参考信号的索引,用于得到路损值PL b,f,c(q d),也是一个开环功率控制参数;f b,f,c(i,l)是闭环功率控制调整因子。
终端设备还可以根据所述最大发送功率确定PUSCH的功率余量,并向网络设备发送功率余量。
例如,假设终端设备上报的功率余量是基于实际传输的PUSCH,则功率余量PH type1,b,f,c(i,j,q d,l)可以如下所示:
Figure PCTCN2019100829-appb-000005
其中,P M,f,c(i)为所述PUSCH的最大发送功率,根据调度所述PUSCH的DCI中的TRI、TPMI和SRI中的至少一个确定,即,P M,f,c(i)=P CMAX,f,c(i)-k。其他参数根据所述PUSCH的功率控制参数得到,与所述期望发送功率计算方法相同,此处不再赘述。
例如,假设终端设备上报的功率余量是基于虚拟的PUSCH传输,则功率余量PH type1,b,f,c(i,j,q d,l)可以如下所示:
P M,f,c(i)-{P O_PUSCH,b,f,c(j)+α b,f,c(j)·PL b,f,c(q d)+f b,f,c(i,l)}
其中,P M,f,c(i)为根据预设的SRI、预设的TPMI和预设的TRI中的至少一个得到的最大发送功率。例如,预设的TRI可以指示单层传输或者满秩传输;预设的TPMI可以为所有端口都为非零端口的TPMI;预设的SRI指示的SRI取值为0。
例如,假设预设发送功率为23dBm,假设期望发送功率为20dBm,则在终端设备不支持满功率发送时,按照现有技术的方法,确定得到的终端设备的实际发送总功率为:20dBm乘以小于1的缩减系数,则得到的实际发送功率小于20dBm,例如,实际发送功率可能为17dBm。按照本申请的方法,假设确定得到的最大发送功率调整值为3dBm,则终端设备的最大发送功率为23-3=20dBm,确定得到的实际发送功率20dBm(不需要进一步进行功率缩减)。由上可知,通过本申请所示的方法,可以提高终端设备的实际传输功率。
本申请所示的支持满功率传输是指,终端设备可以采用预设发送功率P CMAX,f,c(i)发送上行数据。
本申请实施例提供的功率确定方法,终端设备获取TRI、TPMI或SRI中的至少一个,并根据TRI、TPMI或SRI中的至少一个确定终端设备的PUSCH的最大发送功率。在上述过程中,由于TRI、TPMI或SRI中的至少一个可以反映终端设备是否可以全功率发送,使得通过上述方法确定得到的最大发送功率与终端设备是否支持全功率发送相关,因此,根据该最大发送功率确定终端设备的PUSCH的实际发送功率时,无需进行功率缩减,提高终端设备的实际发送功率,进而提高上行传输性能。
在上述任意一个实施例的基础上,下面,结合图3对功率确定方法进行说明。
图3为本申请实施例提供的另一种功率确定方法的流程示意图。请参见图3,该方法可以包括:
S301、网络设备向终端设备发送DCI。
其中,DCI中包括TRI、TPMI或SRI中的至少一种。
S302、终端设备在DCI中获取TRI、TPMI或SRI中的至少一种。
S303、终端设备根据TRI、TPMI或SRI中的至少一种,确定终端设备的最大发送功率调整值。
例如,终端设备的最大发送功率调整值可以记为k。
S304、终端设备根据终端设备的预设发送功率和终端设备的最大发送功率调整值,确定最大发送功率。
例如,假设预设发送功率为P CMAX,f,c(i),则最大发送功率为P CMAX,f,c(i)-k。
需要说明的是,S303-S304的执行过程可以参见S301的执行过程,此处不再进行赘述。
S305、终端设备将最大发送功率与期望发送功率中的最小值确定为实际发送总功率。
其中,期望发送功率为根据预设公式确定得到的。
例如,期望发送功率如下所示:
Figure PCTCN2019100829-appb-000006
则实际发送总功率P PUSCH,b,f,c(i,j,q d,l)如下所示:(以dBm为单位)
Figure PCTCN2019100829-appb-000007
S306、终端设备根据实际发送总功率、以及非零功率的PUSCH天线端口的数量,确定每个非零功率的PUSCH天线端口的实际发送功率。
例如,假设非零功率的PUSCH天线端口的数量为N,则非零功率的PUSCH天线端口的实际发送功率为
Figure PCTCN2019100829-appb-000008
其中
Figure PCTCN2019100829-appb-000009
为P PUSCH,b,f,c(i,j,q d,l)的线性值。
在图3所示的实施例中,终端设备可以在接收到的DCI中获取TRI、TPMI或SRI中的至少一个,根据TRI、TPMI或SRI中的至少一个,确定终端设备的PUSCH的最大发送功率。在上述过程中,由于TRI、TPMI或SRI中的至少一个可以反映终端设备是否可以全功率发送,使得通过上述方法确定得到的最大发送功率与终端设备是否支持全功率发送相关,因此,根据该最大发送功率确定终端设备的PUSCH的实际发送功率时,无需进行功率缩减,提高终端设备的实际发送功率,进而提高上行传输性能。
在上述任意实施例的基础上,下面,介绍根据TRI、TPMI或SRI中的至少一个确定最大发送功率调整值的方式。
第一种方式:根据SRI,确定最大发送功率调整值。
在SRI指示的探测参考信号SRS资源包括的SRS端口的数量为1时,确定终端设备的最大发送功率调整值为0(dB)。
在该种方式中,终端设备根据SRI即可确定得到最大发送功率调整值,使得终端设备可以快速确定得到最大发送功率调整值。在最大功率调整值为0dB时,终端设备可以满功率进行上行数据的发送,不需要进行功率缩减,使得上行发送功率较高,使得上行覆盖范围较大,进而使得上行传输性能较高。
第二种方式:根据TRI,确定最大发送功率调整值。
如果所述TRI指示的秩等于为所述终端设备配置的PUSCH天线端口的数量,所述终端设备的最大发送功率调整值为0。或者,在所述TRI指示的秩等于所述SRI指示的SRS资源包括的SRS端口的数量,所述终端设备的最大发送功率调整值为0。
在一种实施方式中,如果所述TRI指示的秩小于为所述终端设备配置的PUSCH天线端口的数量,或者小于所述SRI指示的SRS资源包括的SRS端口的数量,则可以确定所述终端设备的最大发送功率调整值大于0。此时,也可以根据其他参数确定最大发送功率调整值,本发明不限于此。
第三种方式:根据TRI和TPMI,确定最大发送功率调整值。
在一种实施方式中,如果所述TRI指示的秩等于为所述终端设备配置的PUSCH天线端口的数量, 或者,TPMI或者TPMI指示的预编码矩阵属于支持满功率发送的预编码矩阵信息集合时,所述终端设备的最大发送功率调整值为0。如果所述TRI指示的秩小于为所述终端设备配置的PUSCH天线端口的数量,且TPMI或者TPMI指示的预编码矩阵不属于支持满功率发送的预编码矩阵信息集合时,则可以确定所述终端设备的最大发送功率调整值大于0。
在另一种实施方式中,如果所述TRI指示的秩等于所述SRI指示的SRS资源包括的SRS端口的数量,或者,TPMI或者TPMI指示的预编码矩阵属于支持满功率发送的预编码矩阵信息集合时,所述终端设备的最大发送功率调整值为0。如果所述TRI指示的秩小于所述SRI指示的SRS资源包括的SRS端口的数量,且TPMI或者TPMI指示的预编码矩阵不属于支持满功率发送的预编码矩阵信息集合时,则可以确定所述终端设备的最大发送功率调整值大于0。
第四种方式:根据SRI和TRI,确定最大发送功率调整值。
在SRI指示的SRS资源包括的SRS端口的数量大于1,且TRI指示的秩等于为终端设备配置的PUSCH天线端口的数量时,确定终端设备的最大发送功率调整值为0(dB)。
或者,
在SRI指示的SRS资源包括的SRS端口的数量大于1,且TRI指示的秩等于所述SRS端口的数量时,确定终端设备的最大发送功率调整值为0(dB)。
其中,TRI指示的秩等于为终端设备配置的PUSCH天线端口的数量、以及TRI指示的秩等于SRI指示的SRS资源包括的SRS端口的数量分别是指,终端设备可以满秩传输,即,终端设备可以满功率传输。
在该种方式中,终端设备在获取得到SRI和TRI之后,可以先判断SRI指示的SRS资源包括的SRS端口的数量是否为1,若否,再根据TRI指示的秩判断终端设备是否可以满功率传输,在确定终端设备可以满功率传输时,确定终端设备的最大发送功率调整值为0dB。这样,终端设备根据SRI和TRI即可确定得到最大发送功率调整值,使得终端设备可以快速确定得到最大发送功率调整值。在最大功率调整值为0dB时,终端设备可以满功率进行上行数据的发送,不需要进行功率缩减,使得上行发送功率较高,使得上行覆盖范围较大,进而使得上行传输性能较高。
第五种方式:根据SRI和TPMI,确定最大发送功率调整值。
在SRI指示的SRS资源包括的SRS端口的数量大于1,且TPMI或者TPMI指示的预编码矩阵属于支持满功率发送的预编码矩阵信息集合时,确定终端设备的最大发送功率调整值为0dB。
支持满功率发送的预编码矩阵信息集合包括至少一个支持满功率发送的TPMI,或者至少一个支持满功率发送的预编码矩阵。支持满功率发送的TPMI是指,通过该TPMI指示预编码矩阵对上行的数字信号进行预编码之后,可以对上行数字信号进行满功率传输。支持满功率发送的预编码矩阵是指,通过该预编码矩阵对上行的数字信号进行预编码之后,可以对上行数字信号进行满功率传输。
所述支持满功率发送的预编码矩阵信息集合可以为终端设备预先上报给网络设备的,例如,终端设备可以根据每个射频通道支持的最大发送功率确定支持满功率发送的TPMI或者预编码矩阵。例如,如果终端设备的所有射频通道都支持满功率发送,则终端设备可以确定预编码矩阵信息集合中包括所有支持的TPMI或者所有TPMI可能指示的预编码矩阵。终端设备可以通过UE能力信息向网络设备发送所述预编码矩阵信息集合。以下描述中的预编码矩阵信息集合均指所述支持满功率发送的预编码矩阵信息集合。
例如,终端设备可以在UE能力信息中通过位图(bitmap)的方式指示哪些TPMI可以支持满功率发送,每个比特对应一个TPMI,当TPMI支持满功率发送时,则该TPMI对应的比特为1,当TPMI 不支持满功率发送时,则该TPMI对应的比特为0。这里的TPMI可以包含DCI中可能指示的部分或全部TPMI。基于该bitmap就可以确定支持满功率发送的TPMI集合。
例如,终端设备可以在UE能力信息中通过bitmap的方式指示哪些预编码矩阵可以支持满功率发送,每个比特对应一个预编码矩阵,当预编码矩阵支持满功率发送时,则该预编码矩阵对应的比特为1,当预编码矩阵不支持满功率发送时,则该预编码矩阵对应的比特为0。这里的预编码矩阵包含TPMI可能指示的预编码矩阵中的部分或全部预编码矩阵。基于该bitmap就可以确定支持满功率发送的预编码矩阵集合。
可选的,预编码矩阵信息集合中可以包括终端设备支持的多个不同端口数(或者传输层数,或者秩)对应的预编码矩阵信息。例如,假设终端设备当前可以支持最多4个端口的PUSCH传输,则预编码矩阵信息集合中可以包括2端口对应的预编码矩阵信息(TPMI或者预编码矩阵)和4端口对应的预编码矩阵信息(TPMI或者预编码矩阵)。
在该种方式中,终端设备在获取得到SRI和TPMI之后,可以先判断SRI指示的SRS资源包括的SRS端口的数量是否为1,若否,再根据TPMI判断终端设备是否可以满功率传输,在确定终端设备支持满功率传输时,确定终端设备的最大发送功率调整值为0dB。这样,终端设备根据SRI和TPMI即可确定得到最大发送功率调整值,使得终端设备可以快速确定得到最大发送功率调整值。在最大功率调整值为0时,终端设备可以满功率进行上行数据的发送,不需要进行功率缩减,使得上行发送功率较高,使得上行覆盖范围较大,进而使得上行传输性能较高。
第六种方式:根据SRI和TPMI,确定最大发送功率调整值。
在SRI指示的SRS资源包括的SRS端口的数量大于1,TPMI或TPMI指示的预编码矩阵不属于支持满功率发送的预编码矩阵信息集合时,根据TPMI指示的预编码矩阵中的非零端口的数量和第一端口数量,确定终端设备的PUSCH的最大发送功率调整值。其中,第一端口数量为:SRI指示的SRS资源包含的SRS端口的数量,或TPMI指示的预编码矩阵的端口的数量,或终端设备支持的最大上行传输端口的数量,或终端设备在一个SRS资源内支持的最大SRS端口数量。
需要说明的是,该种方式中的预编码矩阵信息集合可以参见第五种方式中的描述,此处不再进行赘述。
可选的,可以根据如下公式确定功率调整值k:k=10*log 2(M/N),其中,N为TPMI指示的预编码矩阵中的非零端口的数量,M为第一端口数量。
在该种方式中,终端设备在获取得到SRI和TPMI之后,可以先判断SRI指示的SRS资源包括的SRS端口的数量是否为1,若否,再判断TPMI或TPMI指示的预编码矩阵是否属于支持满功率发送的预编码矩阵信息集合,若否,则根据TPMI指示的预编码矩阵中的非零端口的数量和第一端口数量确定功率调整值,进而实现对最大发送功率进行衰减,这样,不但可以避免计算得到的终端设备的实际发送功率超过终端设备的最大发送功率,还可以避免对终端设备的实际发送功率进行不必要的衰减,提高终端设备的实际发送功率,进而提高上行传输性能。
第七种方式:根据SRI,确定最大发送功率调整值。
在SRI指示的SRS资源包括的SRS端口的数量大于1时,根据SRS端口的数量和第一对应关系,确定终端设备的最大发送功率调整值,第一对应关系为SRS端口的数量与最大发送功率调整值之间的对应关系。
可以预先设置第一对应关系,当SRS端口的数量不同时,对应的最大发送功率调整值也不同。其中,所述最大发送功率调整值不一定是通过所述SRS端口直接确定的,而是可以在不同的SRS端口数 量下,采用不同的公式来得到所述最大发送功率调整值。
例如,第一对应关系可以为:在SRS端口的数量为2时,最大发送功率调整值为k=10*log 2(M/N),其中,N为TPMI指示的预编码矩阵中的非零端口的数量,M为所述SRS端口的数量。在SRS端口的数量为4时,最大发送功率调整值为
Figure PCTCN2019100829-appb-000010
在该种方式中,在SRI指示的SRS资源包括的SRS端口的数量大于1时,根据SRS端口的数量和第一对应关系可以快速确定得到确定终端设备的最大发送功率调整值。
第八种方式:根据SRI和TPMI,确定最大发送功率调整值。
在SRI指示的SRS资源包括的SRS端口的数量大于1,且TPMI或TPMI指示的预编码矩阵不属于支持满功率发送的预编码矩阵信息集合时,根据SRS端口的数量和第一对应关系,确定终端设备的最大发送功率调整值,第一对应关系为SRS端口的数量与最大发送功率调整值之间的对应关系。
例如,第一对应关系可以为:在SRS端口的数量为2时,最大发送功率调整值为3dBm。或者,第一对应关系可以为:在SRS端口的数量为4时,若TPMI指示的预编码矩阵的端口中存在一半端口为非零端口,则功率调整值为3dBm,若TPMI指示的预编码矩阵的端口中的一个端口为非零端口,则功率调整值为6dBm。
在该种方式中,终端设备在获取得到SRI和TPMI之后,可以先判断SRI指示的SRS资源包括的SRS端口的数量是否为1,若否,再判断TPMI或TPMI指示的预编码矩阵是否属于支持满功率发送的预编码矩阵信息集合,若否,则根据SRS端口的数量和第一对应关系确定终端设备的最大发送功率调整值,进而实现对最大发送功率进行衰减,这样,不但可以避免计算得到的终端设备的实际发送功率超过终端设备的最大发送功率,还可以避免对终端设备的实际发送功率进行不必要的衰减,提高终端设备的实际发送功率,进而提高上行传输性能。
第九种方式:根据TPMI,确定最大发送功率调整值。
根据TPMI和第二对应关系,确定终端设备的最大发送功率调整值,第二对应关系为TPMI与最大发送功率调整值之间的对应关系,或者,第二对应关系为TPMI指示的预编码矩阵与最大发送功率调整值之间的对应关系;其中,第二对应关系为根据支持满功率发送的预编码矩阵信息集合确定得到的。
可选的,可以是在TPMI或TPMI指示的预编码矩阵不属于支持满功率发送的预编码矩阵信息集合时,根据TPMI和第二对应关系,确定终端设备的PUSCH的最大发送功率调整值。或者,可以是在SRI指示的SRS资源包括的SRS端口的数量大于1,且TPMI或TPMI指示的预编码矩阵不属于支持满功率发送的预编码矩阵信息集合时,根据TPMI和第二对应关系,确定终端设备的PUSCH的最大发送功率调整值。
终端设备可以预先根据预编码矩阵信息集合对应的预编码矩阵中的非零端口的数量,确定第二对应关系;其中,预编码矩阵信息集合对应的预编码矩阵包括:预编码矩阵信息集合中包括的预编码矩阵,或者预编码矩阵信息集合包含的TPMI指示的预编码矩阵。根据不同的预编码矩阵信息集合确定得到的第二对应关系不同。不同的预编码矩阵信息集合是指预编码矩阵信息集合中包括的TPMI不同,或者包括的预编码矩阵不同。
下面以预编码矩阵信息集合包含至少一个预编码矩阵为例,介绍几种不同预编码矩阵信息集合对应的第二对应关系,可以包括如下情况(在以下情况中,预编码矩阵指所述TPMI可能指示的预编码矩阵):
情况1、在所述预编码矩阵信息集合包含的任一预编码矩阵的全部端口均为非零端口,且当前TPMI指示的预编码矩阵不属于支持满功率发送的所述预编码矩阵信息集合时,第二对应关系为: k=10*log 2(T/N)。
其中,k为最大发送功率调整值,N为当前TPMI指示的预编码矩阵中的非零端口的数量,T为当前TPMI指示的预编码矩阵的端口的数量。
例如,假设当前TPMI指示的预编码矩阵为:
Figure PCTCN2019100829-appb-000011
该预编码矩阵的非零端口的数量N=2,端口数量T=4,则根据当前TPMI和第二对应关系确定得到的最大发送功率调整值为:
Figure PCTCN2019100829-appb-000012
例如,假设当前TPMI指示的预编码矩阵为:
Figure PCTCN2019100829-appb-000013
该预编码矩阵的非零端口的数量N=1,端口数量T=4,则根据当前TPMI和第二对应关系确定得到的最大发送功率调整值为:
Figure PCTCN2019100829-appb-000014
Figure PCTCN2019100829-appb-000015
情况2、在所述预编码矩阵信息集合包含第一预编码矩阵集合中的全部预编码矩阵,且当前TPMI指示的预编码矩阵不属于支持满功率发送的所述预编码矩阵信息集合时,第二对应关系为:k=3dB,或者,k=10*log 2(T/N)-3dB。
其中,所述第一预编码矩阵集合包含不同TPMI可能指示的预编码矩阵中一半端口为非零端口的预编码矩阵,例如
Figure PCTCN2019100829-appb-000016
等。N为当前TPMI指示的预编码矩阵中的非零端口的数量,T为当前TPMI指示的预编码矩阵的端口的数量。
例如,假设当前TPMI指示的预编码矩阵为:
Figure PCTCN2019100829-appb-000017
该预编码矩阵的非零端口的数量N=1,端口数量T=4,则根据当前TPMI和第二对应关系确定得到的最大发送功率调整值为3dB,或者,
Figure PCTCN2019100829-appb-000018
情况3、在所述预编码矩阵信息集合包含所述第一预编码矩阵集合中的部分预编码矩阵,且当前TPMI指示的预编码矩阵不属于支持满功率发送的所述预编码矩阵信息集合时,则对于部分TPMI,所述第二对应关系为:k=3dB或者k=10*log 2(T/N)-3dB;对于另一部分TPMI,所述第二对应关系为:k=6dB或者k=10*log 2(T/N)。
其中,N为当前TPMI指示的预编码矩阵中的非零端口的数量,T为当前TPMI指示的预编码矩阵的端口的数量。
例如,假设所述预编码矩阵信息集合包含
Figure PCTCN2019100829-appb-000019
且当前TPMI指示的预编码矩阵(不包含在所 述预编码矩阵信息集合中)为:
Figure PCTCN2019100829-appb-000020
该预编码矩阵的非零端口的数量N=2,端口数量T=4,则根据TPMI和第二对应关系确定得到的最大发送功率调整值为
Figure PCTCN2019100829-appb-000021
如果当前TPMI指示的预编码矩阵(不包含在所述预编码矩阵信息集合中)为:
Figure PCTCN2019100829-appb-000022
该预编码矩阵的非零端口的数量N=1,端口数量T=4,则根据TPMI和第二对应关系确定得到的最大发送功率调整值为
Figure PCTCN2019100829-appb-000023
情况5、所述预编码矩阵信息集合包含第二预编码矩阵集合中的一部分预编码矩阵,且当前TPMI指示的预编码矩阵不属于支持满功率发送的所述预编码矩阵信息集合时,第二对应关系为:k=3dB,或者,k=10*log 2(T/N)-3dB。
其中,所述第二预编码矩阵集合包含不同TPMI可能指示的预编码矩阵中只有一个端口为非零端口的预编码矩阵,例如
Figure PCTCN2019100829-appb-000024
等。N为当前TPMI指示的预编码矩阵中的非零端口的数量,T为当前TPMI指示的预编码矩阵的端口的数量。
例如,假设所述预编码矩阵信息集合包含第二预编码矩阵集合中的
Figure PCTCN2019100829-appb-000025
当前TPMI指示的预编码矩阵为:
Figure PCTCN2019100829-appb-000026
则该预编码矩阵的非零端口的数量N=1,端口数量T=4,则根据TPMI和第二对应关系确定得到的最大发送功率调整值为
Figure PCTCN2019100829-appb-000027
以上方法同样适用于所述预编码矩阵信息集合包含至少一个TPMI的情况,具体方法与上述方法类似,这里不再详述。
在该种方式中,终端设备在获取得到SRI和TPMI之后,可以先判断SRI指示的SRS资源的端口数是否为1,若否,再判断TPMI或TPMI指示的预编码矩阵是否属于支持满功率发送的预编码矩阵信息集合,若否,则根据SRS端口的数量和第二对应关系确定终端设备的最大发送功率调整值。由于预编码矩阵信息集合实际反映了终端不同的射频配置(即每个射频通道能够支持的最大发送功率),通过上述方法可以根据预编码矩阵信息集合对应的终端每个射频通道的最大功率,确定每个TPMI对应的最大功率调整值,从而终端设备在采用相应TPMI对应的预编码矩阵进行上行传输时,能够达到每个 射频通道的最大功率。进而提高上行传输性能。
需要说明的是,上述第一种方式至第九种方式可以单独存在,也可以相互结合。
下面,结合图4,以第一种方式、第四种方式、第五种方式和第六种方式的结合为例,对确定最大发送功率调整值的过程进行说明。
图4为本申请实施例提供的一种确定最大发送功率调整值方法的流程示意图。在图4所示的实施例中,根据SRI、TRI和TPMI确定终端设备的最大发送功率调整值。请参见图4,该方法可以包括:
S401、终端设备获取SRI、TRI和TPMI。
可选的,可以在接收到的DCI中获取SRI、TRI和TPMI。
S402、终端设备判断SRI指示的SRS资源包括的SRS端口的数量是否为1。
若是,则执行S406。
若否,则执行S403。
S403、终端设备判断TRI指示的秩是否等于为终端设备配置的PUSCH天线端口的数量。
若是,则执行S406。
若否,则执行S404。
需要说明的是,在S403中,还可以判断TRI指示的秩是否等于SRI指示的SRS资源包括的SRS端口的数量。
S404、终端设备判断TPMI或者TPMI指示的预编码矩阵是否属于预编码矩阵信息集合。
若是,则执行S406。
若否,则执行S405。
S405、终端设备根据所述TPMI指示的预编码矩阵中的非零端口的数量和第一端口数量,确定终端设备的最大发送功率调整值。
需要说明的是,S405的执行过程可以参见第六种方式,此处不再进行赘述。
S406、终端设备确定终端设备的最大发送功率调整值为0dB。
在图4所示的实施例中,终端设备在SRI、TRI和TPMI之后,终端设备依次判断SRI、TRI和TPMI是否满足终端设备满功率传输的条件,若其中一个满足终端设备满功率传输的条件,则确定最大发送功率调整值为0,进而终端设备可以满功率进行上行数据的发送,不需要进行功率缩减,使得上行发送功率较高,使得上行覆盖范围较大,进而使得上行传输性能较高。在SRI、TRI和TPMI均不满足终端设备满功率传输的条件时,则终端设备根据SRS端口的数量和第一对应关系,确定终端设备的最大发送功率调整值,进而实现对最大发送功率进行衰减,这样,不但可以避免终端设备的实际发送功率超过终端设备的最大发送功率,还可以避免对终端设备的实际发送功率进行不必要的衰减,提高终端设备的实际发送功率,进而提高上行传输性能。
下面,结合图5,以第一种方式、第五种方式和第九种方式的结合为例,对确定最大发送功率调整值的过程进行说明。
图5为本申请实施例提供的另一种确定最大发送功率调整值方法的流程示意图。在图4所示的实施例中,根据SRI和TPMI确定终端设备的最大发送功率调整值。请参见图5,该方法可以包括:
S501、终端设备确定预编码矩阵信息集合。
终端设备可以确定其支持满功率传输的TPMI或预编码矩阵,并根据其支持满功率传输的TPMI或预编码矩阵确定预编码矩阵信息集合,预编码矩阵信息集合包括至少一个支持满功率传输的TPMI或预编码矩阵。
S502、终端设备向网络设备发送预编码矩阵信息集合。
终端设备可以通过UE能力信息向网络设备发送预编码矩阵信息集合。
S503、终端设备根据预编码矩阵信息集合,确定第二对应关系。
需要说明的是,S503的执行过程可以参见上述第九种方式,此处不再进行赘述。
在实际应用过程中,终端设备在确定得到第二对应关系之后,可以在预设存储空间存储第二对应关系,相应的,当终端设备需要使用第二对应关系时,在预设存储空间获取第二对应关系即可。换句话说,无需在每次确定最大发送功率调整值之前执行S501-S503。
S504、网络设备向终端设备发送DCI。
其中,DCI中包括SRI和TPMI。
S505、终端设备在DCI中获取SRI和TPMI。
可选的,可以在接收到的DCI中获取SRI和TPMI。
S506、终端设备判断SRI指示的SRS资源包括的SRS端口的数量是否为1。
若是,则执行S509。
若否,则执行S507。
S507、终端设备判断TPMI或者TPMI指示的预编码矩阵是否属于预编码矩阵信息集合。
若是,则执行S509。
若否,则执行S508。
S508、终端设备根据TPMI和第二对应关系,确定终端设备的最大发送功率调整值。
其中,第二对应关系为TPMI指示的预编码矩阵与最大发送功率调整值之间的对应关系。
需要说明的是,S508的执行过程可以参见第九种方式,此处不再进行赘述。
S509、终端设备确定终端设备的最大发送功率调整值为0dB。
在图5所示的实施例中,终端设备可以先确定预编码矩阵信息集合,以及根据预编码矩阵信息集合确定第二对应关系。终端设备在SRI和TPMI之后,终端设备依次判断SRI和TPMI是否满足终端设备满功率传输的条件,若其中一个满足终端设备满功率传输的条件,则确定最大发送功率调整值为0,进而终端设备可以满功率进行上行数据的发送,不需要进行功率缩减,使得上行发送功率较高,使得上行覆盖范围较大,进而使得上行传输性能较高。在SRI和TPMI均不满足终端设备满功率传输的条件时,则终端设备根据TPMI和第二对应关系,确定终端设备的最大发送功率调整值,由于预编码矩阵信息集合实际反映了终端不同的射频配置(即每个射频通道能够支持的最大发送功率),通过上述方法可以根据预编码矩阵信息集合对应的终端每个射频通道的最大功率,确定每个TPMI对应的最大功率调整值,从而终端设备在采用相应TPMI对应的预编码矩阵进行上行传输时,能够达到每个射频通道的最大功率,进而提高上行传输性能。
需要说明的是,图4和图5只是以示例的形式示意对上述九种方式的结合,当然,在实际应用过程中,还可以通过其它方式对上述九种方式中的任意多种方式进行结合,本申请实施例对此不作具体限定。
图6为本申请实施例提供的一种功率确定装置的结构示意图。请参见图6,该功率确定装置10可以包括处理模块11,其中,
所述处理模块用于,获取发送秩指示TRI、发送预编码矩阵指示TPMI或探测参考信号资源指示SRI中的至少一个;
所述处理模块用于,根据TRI、发送TPMI或SRI中的至少一个,确定终端设备的物理上行共享 信道PUSCH的最大发送功率。
本申请实施例提供的功率确定装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
在一种可能的实施方式中,所述处理模块11具体用于:
根据所述TRI、所述TPMI或所述SRI中的至少一个,确定所述终端设备的最大发送功率调整值;
根据所述终端设备的预设发送功率和所述终端设备的最大发送功率调整值,确定所述最大发送功率。
在一种可能的实施方式中,所述预设发送功率为根据所述终端设备的功率等级确定的。
在一种可能的实施方式中,若所述SRI指示的探测参考信号SRS资源包括的SRS端口的数量为1,则所述终端设备的最大发送功率调整值为0。
在一种可能的实施方式中,在所述SRI指示的SRS资源包括的SRS端口的数量大于1,且所述TRI指示的秩等于为所述终端设备配置的PUSCH天线端口的数量时,所述终端设备的最大发送功率调整值为0;或者,
在所述SRI指示的SRS资源包括的SRS端口的数量大于1,且所述TRI指示的秩等于所述SRI指示的SRS资源包括的SRS端口的数量时,所述终端设备的最大发送功率调整值为0。
在一种可能的实施方式中,在所述SRI指示的SRS资源包括的SRS端口的数量大于1,且所述TPMI或者所述TPMI指示的预编码矩阵属于支持满功率发送的预编码矩阵信息集合时,则所述终端设备的最大发送功率调整值为0。
在一种可能的实施方式中,所述处理模块11具体用于:
在所述SRI指示的SRS资源包括的SRS端口的数量大于1,所述TPMI或所述TPMI指示的预编码矩阵不属于支持满功率发送的预编码矩阵信息集合时,根据所述TPMI指示的预编码矩阵中的非零端口的数量和第一端口数量,确定所述终端设备的最大发送功率调整值;
其中,所述第一端口数量为:所述SRI指示的SRS资源包含的SRS端口的数量,或所述TPMI指示的预编码矩阵的端口的数量,或所述终端设备支持的最大上行传输端口的数量,或所述终端设备在一个SRS资源内支持的最大SRS端口数量。
在一种可能的实施方式中,所述处理模块11具体用于:
根据所述TPMI指示的预编码矩阵中的非零端口的数量和第一端口数量,确定所述终端设备的功率调整值为:10*log 2(M/N);
其中,所述N为所述TPMI指示的预编码矩阵中的非零端口的数量,所述M为所述第一端口数量。
在一种可能的实施方式中,所述处理模块11具体用于:
在所述SRI指示的SRS资源包括的SRS端口的数量大于1时,根据所述SRS端口的数量和第一对应关系,确定所述终端设备的最大发送功率调整值,所述第一对应关系为SRS端口的数量与最大发送功率调整值之间的对应关系。
在一种可能的实施方式中,所述处理模块11具体用于:
根据所述TPMI和第二对应关系,确定所述终端设备的最大发送功率调整值,所述第二对应关系为TPMI与最大发送功率调整值之间的对应关系,或者,所述第二对应关系为TPMI指示的预编码矩阵与最大发送功率调整值之间的对应关系;
其中,所述第二对应关系为根据支持满功率发送的预编码矩阵信息集合确定得到的。
在一种可能的实施方式中,所述处理模块11还用于,在所述处理模块11根据所述TPMI和第二 对应关系,确定所述终端设备的最大发送功率调整值之前,根据所述预编码矩阵信息集合对应的预编码矩阵中的非零端口的数量,确定所述第二对应关系;其中,所述预编码矩阵信息集合对应的预编码矩阵包括:所述预编码矩阵信息集合中包括的预编码矩阵,或者所述预编码矩阵信息集合包含的TPMI指示的预编码矩阵。
在一种可能的实施方式中,根据不同的预编码矩阵信息集合确定得到的第二对应关系不同。
图7为本申请实施例提供的另一种功率确定装置的结构示意图。在图6所示实施例的基础上,请参见图7,该功率确定装置10可以包括收发模块12,其中,
所述收发模块12用于,通过用户设备UE能力信息向网络设备上报所述支持满功率发送的预编码矩阵信息集合。
在一种可能的实施方式中,所述预编码矩阵信息集合包括至少一个支持满功率发送的TPMI,或者至少一个支持满功率发送的预编码矩阵。
在一种可能的实施方式中,所述处理模块11还用于,在所述处理模块11根据发送秩指示TRI、发送预编码矩阵指示TPMI或探测参考信号资源指示SRI中的至少一个,确定终端设备的PUSCH的最大发送功率之前,在调度所述PUSCH的下行控制信息DCI中获取所述TRI、所述TPMI和所述SRI。
在一种可能的实施方式中,所述处理模块11还用于:
根据所述最大发送功率确定所述终端设备的PUSCH的实际发送功率。
在一种可能的实施方式中,所述处理模块11具体用于:
将所述最大发送功率与期望发送功率中的最小值确定为实际发送总功率,所述期望发送功率为根据预设公式确定得到的;
将所述实际发送总功率平均分配到每个非零功率的PUSCH天线端口上,得到每个非零功率的PUSCH天线端口上的实际发送功率。
在一种可能的实施方式中,所述处理模块11还用于:
根据所述最大发送功率确定所述终端设备的PUSCH的功率余量。
在一种可能的实施方式中,若所述功率余量为根据实际的PUSCH传输确定的,则所述TRI、所述TPMI和所述SRI为在调度所述PUSCH的DCI获取的;和/或,
若所述功率余量为根据虚拟的PUSCH传输确定的,则所述TRI为预设的TRI、所述TPMI为预设的TPMI,所述SRI为预设的SRI。
本申请实施例提供的功率确定装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图8为本申请提供的功率确定装置的硬件结构示意图。请参见图8,该功率确定装置20包括:存储器21和处理器22,其中,存储器21和处理器22通信;示例性的,存储器21和处理器22通过通信总线23通信,所述存储器21用于存储计算机程序,所述处理器22执行所述计算机程序实现上述实施例所示的功率确定方法。
可选的,功率确定装置还可以包括发送器和/或接收器。
可选的,上述处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤(图2-图5实施例中的步骤)可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例提供一种存储介质,所述存储介质用于存储计算机程序,所述计算机程序被计算机或处理器执行时用于实现上述功率确定装置方法。
本申请实施例提供一种计算机程序产品,所述计算机程序产品包括指令,当所述指令被执行时,使得计算机执行上述功率确定装置方法。
本申请实施例提供一种芯片上系统或系统芯片,所述芯片上系统或系统芯片可应用于终端设备,所述芯片上系统或系统芯片包括:至少一个通信接口,至少一个处理器,至少一个存储器,所述通信接口、存储器和处理器通过总线互联,所述处理器通过执行所述存储器中存储的指令,使得所述终端设备可执行上述功率确定装置方法。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(read-only memory,ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(magnetic tape)、软盘(floppy disk)、光盘(optical disc)及其任意组合。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理单元以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理单元执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
在本申请中,术语“包括”及其变形可以指非限制性的包括;术语“或”及其变形可以指“和/或”。本本申请中术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。本申请中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。

Claims (40)

  1. 一种功率确定方法,其特征在于,包括:
    获取发送秩指示TRI、发送预编码矩阵指示TPMI或探测参考信号资源指示SRI中的至少一个;
    根据TRI、发送TPMI或SRI中的至少一个,确定终端设备的物理上行共享信道PUSCH的最大发送功率。
  2. 根据权利要求1所述的方法,其特征在于,所述根据TRI、TPMI或SRI中的至少一个,确定终端设备的PUSCH的最大发送功率,包括:
    根据所述TRI、所述TPMI或所述SRI中的至少一个,确定所述终端设备的最大发送功率调整值;
    根据所述终端设备的预设发送功率和所述终端设备的最大发送功率调整值,确定所述最大发送功率。
  3. 根据权利要求2所述的方法,其特征在于,所述预设发送功率为根据所述终端设备的功率等级确定的。
  4. 根据权利要求2或3所述的方法,其特征在于,若所述SRI指示的探测参考信号SRS资源包括的SRS端口的数量为1,则所述终端设备的最大发送功率调整值为0。
  5. 根据权利要求2或3所述的方法,其特征在于,
    在所述TRI指示的秩等于为所述终端设备配置的PUSCH天线端口的数量时,所述终端设备的最大发送功率调整值为0;或者,
    在所述TRI指示的秩等于所述SRI指示的SRS资源包括的SRS端口的数量时,所述终端设备的最大发送功率调整值为0;或者,
    在所述SRI指示的SRS资源包括的SRS端口的数量大于1,且所述TRI指示的秩等于为所述终端设备配置的PUSCH天线端口的数量时,所述终端设备的最大发送功率调整值为0;或者,
    在所述SRI指示的SRS资源包括的SRS端口的数量大于1,且所述TRI指示的秩等于所述SRI指示的SRS资源包括的SRS端口的数量时,所述终端设备的最大发送功率调整值为0。
  6. 根据权利要求2或3所述的方法,其特征在于,在所述SRI指示的SRS资源包括的SRS端口的数量大于1,且所述TPMI或者所述TPMI指示的预编码矩阵属于支持满功率发送的预编码矩阵信息集合时,则所述终端设备的最大发送功率调整值为0。
  7. 根据权利要求2或3所述的方法,其特征在于,所述根据所述TRI、所述TPMI或所述SRI中的至少一个,确定所述终端设备的最大发送功率调整值,包括:
    在所述SRI指示的SRS资源包括的SRS端口的数量大于1,所述TPMI或所述TPMI指示的预编码矩阵不属于支持满功率发送的预编码矩阵信息集合时,根据所述TPMI指示的预编码矩阵中的非零端口的数量和第一端口数量,确定所述终端设备的最大发送功率调整值;
    其中,所述第一端口数量为:所述SRI指示的SRS资源包含的SRS端口的数量,或所述TPMI指示的预编码矩阵的端口的数量,或所述终端设备支持的最大上行传输端口的数量,或所述终端设备在一个SRS资源内支持的最大SRS端口数量。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述TPMI指示的预编码矩阵中的非零端口的数量和第一端口数量,确定所述终端设备的最大发送功率调整值,包括:
    根据所述TPMI指示的预编码矩阵中的非零端口的数量和第一端口数量,确定所述终端设备的功率调整值为:10*log 2(M/N);
    其中,所述N为所述TPMI指示的预编码矩阵中的非零端口的数量,所述M为所述第一端口数量。
  9. 根据权利要求2或3所述的方法,其特征在于,所述根据所述TRI、所述TPMI或所述SRI中的至少一个,确定所述终端设备的最大发送功率调整值,包括:
    在所述SRI指示的SRS资源包括的SRS端口的数量大于1时,根据所述SRS端口的数量和第一对应关系,确定所述终端设备的最大发送功率调整值,所述第一对应关系为SRS端口的数量与最大发送功率调整值之间的对应关系。
  10. 根据权利要求2或3所述的方法,其特征在于,所述根据所述TRI、所述TPMI或所述SRI中的至少一个,确定所述终端设备的最大发送功率调整值,包括:
    根据所述TPMI和第二对应关系,确定所述终端设备的最大发送功率调整值,所述第二对应关系为TPMI与最大发送功率调整值之间的对应关系,或者,所述第二对应关系为TPMI指示的预编码矩阵与最大发送功率调整值之间的对应关系;
    其中,所述第二对应关系为根据支持满功率发送的预编码矩阵信息集合确定得到的。
  11. 根据权利要求10所述的方法,其特征在于,根据所述TPMI和第二对应关系,确定所述终端设备的最大发送功率调整值之前,还包括:
    根据所述预编码矩阵信息集合对应的预编码矩阵中的非零端口的数量,确定所述第二对应关系;其中,所述预编码矩阵信息集合对应的预编码矩阵包括:所述预编码矩阵信息集合中包括的预编码矩阵,或者所述预编码矩阵信息集合包含的TPMI指示的预编码矩阵。
  12. 根据权利要求10或11所述的方法,其特征在于,根据不同的预编码矩阵信息集合确定得到的第二对应关系不同。
  13. 根据权利要求6、7、10中任一项所述的方法,其特征在于,所述方法还包括:
    通过用户设备UE能力信息向网络设备上报所述支持满功率发送的预编码矩阵信息集合。
  14. 根据权利要求6、7、10-13中任一项所述的方法,其特征在于,所述预编码矩阵信息集合包括至少一个支持满功率发送的TPMI,或者至少一个支持满功率发送的预编码矩阵。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,根据发送秩指示TRI、发送预编码矩阵指示TPMI或探测参考信号资源指示SRI中的至少一个,确定终端设备的PUSCH的最大发送功率之前,还包括:
    在调度所述PUSCH的下行控制信息DCI中获取所述TRI、所述TPMI和所述SRI。
  16. 根据权利要求1-15任一项所述的方法,其特征在于,所述方法还包括:
    根据所述最大发送功率确定所述终端设备的PUSCH的实际发送功率。
  17. 根据权利要求16所述的方法,其特征在于,所述根据所述最大发送功率确定所述终端设备的PUSCH的实际发送功率,包括:
    将所述最大发送功率与期望发送功率中的最小值确定为实际发送总功率,所述期望发送功率为根据预设公式确定得到的;
    将所述实际发送总功率平均分配到每个非零功率的PUSCH天线端口上,得到每个非零功率的PUSCH天线端口上的实际发送功率。
  18. 根据权利要求1-13任一项所述的方法,其特征在于,所述方法还包括:
    根据所述最大发送功率确定所述终端设备的PUSCH的功率余量。
  19. 根据权利要求18所述的方法,其特征在于,
    若所述功率余量为根据实际的PUSCH传输确定的,则所述TRI、所述TPMI和所述SRI为在调度所述PUSCH的DCI获取的;和/或,
    若所述功率余量为根据虚拟的PUSCH传输确定的,则所述TRI为预设的TRI、所述TPMI为预设的TPMI,所述SRI为预设的SRI。
  20. 一种功率确定装置,其特征在于,包括处理模块,其中,
    所述处理模块用于,获取发送秩指示TRI、发送预编码矩阵指示TPMI或探测参考信号资源指示 SRI中的至少一个;
    所述处理模块用于,根据TRI、发送TPMI或SRI中的至少一个,确定终端设备的物理上行共享信道PUSCH的最大发送功率。
  21. 根据权利要求20所述的装置,其特征在于,所述处理模块具体用于:
    根据所述TRI、所述TPMI或所述SRI中的至少一个,确定所述终端设备的最大发送功率调整值;
    根据所述终端设备的预设发送功率和所述终端设备的最大发送功率调整值,确定所述最大发送功率。
  22. 根据权利要求21所述的装置,其特征在于,所述预设发送功率为根据所述终端设备的功率等级确定的。
  23. 根据权利要求21或22所述的装置,其特征在于,若所述SRI指示的探测参考信号SRS资源包括的SRS端口的数量为1,则所述终端设备的最大发送功率调整值为0。
  24. 根据权利要求21或22所述的装置,其特征在于,
    在所述TRI指示的秩等于为所述终端设备配置的PUSCH天线端口的数量时,所述终端设备的最大发送功率调整值为0;或者,
    在所述TRI指示的秩等于所述SRI指示的SRS资源包括的SRS端口的数量时,所述终端设备的最大发送功率调整值为0;或者,
    在所述SRI指示的SRS资源包括的SRS端口的数量大于1,且所述TRI指示的秩等于为所述终端设备配置的PUSCH天线端口的数量时,所述终端设备的最大发送功率调整值为0;或者,
    在所述SRI指示的SRS资源包括的SRS端口的数量大于1,且所述TRI指示的秩等于所述SRI指示的SRS资源包括的SRS端口的数量时,所述终端设备的最大发送功率调整值为0。
  25. 根据权利要求21或22所述的装置,其特征在于,
    在所述SRI指示的SRS资源包括的SRS端口的数量大于1,且所述TPMI或者所述TPMI指示的预编码矩阵属于支持满功率发送的预编码矩阵信息集合时,则所述终端设备的最大发送功率调整值为0。
  26. 根据权利要求21或22所述的装置,其特征在于,所述处理模块具体用于:
    在所述SRI指示的SRS资源包括的SRS端口的数量大于1,所述TPMI或所述TPMI指示的预编码矩阵不属于支持满功率发送的预编码矩阵信息集合时,根据所述TPMI指示的预编码矩阵中的非零端口的数量和第一端口数量,确定所述终端设备的最大发送功率调整值;
    其中,所述第一端口数量为:所述SRI指示的SRS资源包含的SRS端口的数量,或所述TPMI指示的预编码矩阵的端口的数量,或所述终端设备支持的最大上行传输端口的数量,或所述终端设备在一个SRS资源内支持的最大SRS端口数量。
  27. 根据权利要求26所述的装置,其特征在于,所述处理模块具体用于:
    根据所述TPMI指示的预编码矩阵中的非零端口的数量和第一端口数量,确定所述终端设备的功率调整值为:10*log 2(M/N);
    其中,所述N为所述TPMI指示的预编码矩阵中的非零端口的数量,所述M为所述第一端口数量。
  28. 根据权利要求21或22所述的装置,其特征在于,所述处理模块具体用于:
    在所述SRI指示的SRS资源包括的SRS端口的数量大于1时,根据所述SRS端口的数量和第一对应关系,确定所述终端设备的最大发送功率调整值,所述第一对应关系为SRS端口的数量与最大发送功率调整值之间的对应关系。
  29. 根据权利要求21或22所述的装置,其特征在于,所述处理模块具体用于:
    根据所述TPMI和第二对应关系,确定所述终端设备的最大发送功率调整值,所述第二对应关系为TPMI与最大发送功率调整值之间的对应关系,或者,所述第二对应关系为TPMI指示的预编码矩阵 与最大发送功率调整值之间的对应关系;
    其中,所述第二对应关系为根据支持满功率发送的预编码矩阵信息集合确定得到的。
  30. 根据权利要求29所述的装置,其特征在于,
    所述处理模块还用于,在所述处理模块根据所述TPMI和第二对应关系,确定所述终端设备的最大发送功率调整值之前,根据所述预编码矩阵信息集合对应的预编码矩阵中的非零端口的数量,确定所述第二对应关系;其中,所述预编码矩阵信息集合对应的预编码矩阵包括:所述预编码矩阵信息集合中包括的预编码矩阵,或者所述预编码矩阵信息集合包含的TPMI指示的预编码矩阵。
  31. 根据权利要求29或30所述的装置,其特征在于,根据不同的预编码矩阵信息集合确定得到的第二对应关系不同。
  32. 根据权利要求22-31任一项所述的装置,其特征在于,所述装置还包括收发模块,其中,
    所述收发模块用于,通过用户设备UE能力信息向网络设备上报所述支持满功率发送的预编码矩阵信息集合。
  33. 根据权利要求25、26、29-32中任一项所述的装置,其特征在于,所述预编码矩阵信息集合包括至少一个支持满功率发送的TPMI,或者至少一个支持满功率发送的预编码矩阵。
  34. 根据权利要求20-33任一项所述的装置,其特征在于,
    所述处理模块还用于,在所述处理模块根据发送秩指示TRI、发送预编码矩阵指示TPMI或探测参考信号资源指示SRI中的至少一个,确定终端设备的PUSCH的最大发送功率之前,在调度所述PUSCH的下行控制信息DCI中获取所述TRI、所述TPMI和所述SRI。
  35. 根据权利要求20-34任一项所述的装置,其特征在于,所述处理模块还用于:
    根据所述最大发送功率确定所述终端设备的PUSCH的实际发送功率。
  36. 根据权利要求35所述的装置,其特征在于,所述处理模块具体用于:
    将所述最大发送功率与期望发送功率中的最小值确定为实际发送总功率,所述期望发送功率为根据预设公式确定得到的;
    将所述实际发送总功率平均分配到每个非零功率的PUSCH天线端口上,得到每个非零功率的PUSCH天线端口上的实际发送功率。
  37. 根据权利要求20-32任一项所述的装置,其特征在于,所述处理模块还用于:
    根据所述最大发送功率确定所述终端设备的PUSCH的功率余量。
  38. 根据权利要求37所述的装置,其特征在于,
    若所述功率余量为根据实际的PUSCH传输确定的,则所述TRI、所述TPMI和所述SRI为在调度所述PUSCH的DCI获取的;和/或,
    若所述功率余量为根据虚拟的PUSCH传输确定的,则所述TRI为预设的TRI、所述TPMI为预设的TPMI,所述SRI为预设的SRI。
  39. 一种功率确定装置,其特征在于,包括存储器和处理器,所述处理器执行所述存储器中的程序指令,用于实现权利要求1-19任一项所述的功率确定方法。
  40. 一种存储介质,其特征在于,所述存储介质用于存储计算机程序,所述计算机程序被计算机或处理器执行时用于实现权利要求1-19任一项所述的功率确定方法。
PCT/CN2019/100829 2019-08-15 2019-08-15 功率确定方法、装置及设备 WO2021026898A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980054876.5A CN112673680B (zh) 2019-08-15 2019-08-15 功率确定方法、装置及设备
PCT/CN2019/100829 WO2021026898A1 (zh) 2019-08-15 2019-08-15 功率确定方法、装置及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/100829 WO2021026898A1 (zh) 2019-08-15 2019-08-15 功率确定方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2021026898A1 true WO2021026898A1 (zh) 2021-02-18

Family

ID=74570410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100829 WO2021026898A1 (zh) 2019-08-15 2019-08-15 功率确定方法、装置及设备

Country Status (2)

Country Link
CN (1) CN112673680B (zh)
WO (1) WO2021026898A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115333584A (zh) * 2021-05-10 2022-11-11 维沃移动通信有限公司 预编码矩阵的指示方法、终端及网络侧设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803362A (zh) * 2017-11-17 2019-05-24 中兴通讯股份有限公司 功率控制方法、ue、基站、参数配置方法和控制方法
CN110035484A (zh) * 2018-01-12 2019-07-19 中兴通讯股份有限公司 一种功率控制方法、第一通信节点和第二通信节点

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10749584B2 (en) * 2016-12-22 2020-08-18 Samsung Electronics Co., Ltd. Uplink MIMO codebook for advanced wireless communication systems
CN108631836B (zh) * 2017-03-24 2021-07-16 华为技术有限公司 数据传输方法和装置
CN114826486B (zh) * 2017-06-16 2023-08-29 大唐移动通信设备有限公司 一种发送下行控制信息dci的方法及装置
US20180368083A1 (en) * 2017-06-16 2018-12-20 Mediatek Inc. Method And Apparatus For Uplink Transmissions In Mobile Communications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803362A (zh) * 2017-11-17 2019-05-24 中兴通讯股份有限公司 功率控制方法、ue、基站、参数配置方法和控制方法
CN110035484A (zh) * 2018-01-12 2019-07-19 中兴通讯股份有限公司 一种功率控制方法、第一通信节点和第二通信节点

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Remaining issues on non-codebook based UL transmission", 3GPP DRAFT; R1-1806277, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Busan, Korea; 20180521 - 20180525, 20 May 2018 (2018-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051441484 *
VIVO: "Feature lead summary on Full TX Power UL transmission", 3GPP DRAFT; R1-1905637 SUMMARY ON MIMO 7 2 8 4 FULL TX POWER UL TRANSMISSION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 8 April 2019 (2019-04-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051707697 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115333584A (zh) * 2021-05-10 2022-11-11 维沃移动通信有限公司 预编码矩阵的指示方法、终端及网络侧设备
CN115333584B (zh) * 2021-05-10 2024-02-20 维沃移动通信有限公司 预编码矩阵的指示方法、终端及网络侧设备

Also Published As

Publication number Publication date
CN112673680A (zh) 2021-04-16
CN112673680B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2021190577A1 (zh) 传输方法、装置、设备及存储介质
WO2018202083A1 (zh) 功率余量的上报方法和装置
EP3787359A1 (en) Beam training method, apparatus, and system
WO2018098701A1 (zh) 一种波束合成方法及装置
JP7259066B2 (ja) 電力制御方法および電力制御装置
CN108632973B (zh) 用于在通信系统中控制功率的方法和设备
WO2022042257A1 (zh) 一种功率配置方法及装置
US11540329B2 (en) Information transmission method, terminal device, and network device
WO2018059248A1 (zh) 上行信号发送功率的处理方法及装置、基站、终端
US20230156684A1 (en) Power Obtaining Method and Apparatus and Node Device
WO2022011555A1 (zh) 用于确定上行传输参数的方法和终端设备
WO2021026898A1 (zh) 功率确定方法、装置及设备
WO2022067802A1 (zh) 探测参考信号配置方法与装置、终端和网络设备
WO2020156412A1 (zh) 一种上行信号发送方法、接收方法、装置及系统
CN115276737B (zh) 通信方法、装置、终端和存储介质
WO2018127100A1 (zh) 上行功率控制的方法和通信设备
WO2020143805A1 (zh) 一种通信方法及装置
WO2019157997A1 (zh) 通信方法和装置
WO2023060449A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022067823A1 (zh) 一种上行功率控制方法及设备
CN114747260B (zh) 上行发射功率控制方法及装置
WO2020192360A1 (zh) 通信方法及装置
WO2023202530A1 (zh) 一种功率确定方法、装置、芯片及模组设备
WO2023115341A1 (zh) 无线通信的方法、终端设备及网络设备
WO2023226928A1 (zh) 一种功率控制方法以及中继设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941205

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19941205

Country of ref document: EP

Kind code of ref document: A1