WO2018098701A1 - 一种波束合成方法及装置 - Google Patents

一种波束合成方法及装置 Download PDF

Info

Publication number
WO2018098701A1
WO2018098701A1 PCT/CN2016/108056 CN2016108056W WO2018098701A1 WO 2018098701 A1 WO2018098701 A1 WO 2018098701A1 CN 2016108056 W CN2016108056 W CN 2016108056W WO 2018098701 A1 WO2018098701 A1 WO 2018098701A1
Authority
WO
WIPO (PCT)
Prior art keywords
crs
terminal
pdcch
base station
beams
Prior art date
Application number
PCT/CN2016/108056
Other languages
English (en)
French (fr)
Inventor
高全中
严朝译
王琛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680091199.0A priority Critical patent/CN109997315B/zh
Priority to KR1020197016019A priority patent/KR20190073547A/ko
Priority to JP2019528886A priority patent/JP2020511801A/ja
Priority to PCT/CN2016/108056 priority patent/WO2018098701A1/zh
Priority to EP16923105.7A priority patent/EP3531575B1/en
Publication of WO2018098701A1 publication Critical patent/WO2018098701A1/zh
Priority to US16/423,180 priority patent/US10904892B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field, and in particular, to a beamforming method and apparatus.
  • Massive MIMO Massive Multiple-Input Multiple-Output
  • a base station uses a multi-antenna to generate a narrow beam that is aligned with each user through a beamforming technique, thereby improving user data channel transmission quality and improving cell coverage.
  • a physical downlink shared channel (PDSCH) of a cell is used to form a narrow beam by a beamforming technology for a user in a certain direction, thereby improving the quality of a user's data channel transmission.
  • the coverage of the PDSCH in this direction exceeds the coverage of the Cell-specific Reference Signal (CRS) wide beam.
  • CRS Cell-specific Reference Signal
  • the coverage capability of the PDCCH needs to be improved.
  • a current method is to obtain a better coverage than a CRS wide beam weight in a certain direction by adding a narrow beam weight to the PDCCH, thereby matching the scheduling requirements of the data channel of the user in the direction.
  • the coverage in a specific direction exceeds the coverage of the CRS wide beam.
  • the CRS signal will not be correctly estimated. Since the PDCCH channel demodulation must refer to the CRS for channel estimation, the channel quality of the CRS does not guarantee the demodulation threshold of the PDCCH in the region where the PDCCH coverage exceeds the CRS, and the demodulation performance of the PDCCH is lost, and the performance of the PDCCH beamforming is also Will fall.
  • the present invention provides a beamforming method and apparatus for solving the problem that the coverage in a specific direction exceeds the coverage of a CRS beam after the PDCCH is subjected to narrow beam weighting, thereby degrading the demodulation performance of the PDCCH.
  • a beamforming method which combines a narrow beam weight based on a CRS wide beam weight to obtain a composite beam, and performs beamforming processing on the PDCCH according to the weight of the combined beam, thereby improving the PDCCH in a specific direction.
  • the coverage of the PDCCH solves the problem that the coverage of the PDCCH in the specific direction exceeds the coverage of the CRS beam and the PDCCH and the CRS phase are inconsistent, resulting in degradation of the demodulation performance of the PDCCH.
  • the base station pre-generates N CRS narrow beams according to the weight of the CRS wide beam, and synthesizes each pre-generated CRS narrow beam with the CRS wide beam respectively to synthesize N CRS composite beams. And selecting a first one of the N CRS composite beams, performing beamforming processing on the PDCCH according to the weight of the first beam, forming a second beam, and transmitting the first beam and the second beam.
  • N is a positive integer.
  • N is a positive integer.
  • the PDCCH beam sent by the base station is the same as the coverage of the CRS beam.
  • the PDCCH demodulation can completely refer to the CRS for channel estimation, and improves the demodulation performance of the PDCCH.
  • a pre-generated CRS narrow beam is combined with the CRS wide beam to obtain a CRS composite beam, including: setting a power ratio of the one CRS narrow beam to the CRS wide beam, according to The power ratio sets a first linear factor and a second linear factor, and a weight of the one CRS narrow beam and a weight of the CRS wide beam according to the first linear factor and the second linear factor Performing a linear superposition, obtaining weights of the one CRS composite beam, and generating the one CRS composite beam according to weights of the one CRS composite beam.
  • the base station may select a first one of the N CRS composite beams by: determining, by the base station, a CRS narrow beam where each terminal to be scheduled is located, and forming a terminal and a CRS narrower Corresponding relationship of the beams, the base station selects at least one terminal to be scheduled
  • the terminal with the worst PDCCH signal quality is recorded as the first terminal, and the first CRS narrow beam corresponding to the first terminal is determined according to the corresponding relationship, and the first CRS narrow beam and the CRS wide beam synthesis are selected.
  • the CRS composite beam is the first beam. In this way, by increasing the coverage gain of the terminal with the worst PDCCH signal quality in the to-be-scheduled terminal in the first beam, the capacity of the overall service of the system can be improved.
  • the base station determines a target reference signal received power RSRP of the first terminal, and adjusts to synthesize the target CRS synthesis.
  • a power ratio of the first CRS narrow beam to the CRS wide beam when the beam is until the RSRP of the CRS composite beam of the first CRS narrow beam and the CRS wide beam combined by the first terminal is greater than or equal to The target RSRP.
  • the base station determines, by using the following manner, a correspondence between any one of the at least one terminal to be scheduled and a CRS narrow beam: calculating any one of the terminals in each of the CRS composite beams The signal strength is determined to have a correspondence between the CRS narrow beams of the CRS composite beams corresponding to the combined maximum signal strength of the any terminal.
  • the base station performs, for each terminal in the set of to-be-scheduled terminals, a channel response, and according to the channel response and the weight of each CRS composite beam, the computing terminal is in each of the The RSRP of the CRS composite beam obtains N RSRP values, selects the maximum of the N RSRP values, and determines that the terminal corresponds to the CRS narrow beam that synthesizes the CRS composite beam corresponding to the maximum value.
  • the base station may also select a first one of the N CRS composite beams by: the base station calculating a PDCCH occupation resource of the at least one terminal under each CRS composite beam, The CRS composite beam corresponding to the least PDCCH occupied resource is selected as the first beam.
  • the base station may also select a first one of the N CRS composite beams by: the base station calculating a PDCCH occupation resource of the at least one terminal under each CRS composite beam, The CRS composite beam corresponding to the least PDCCH occupied resource is selected as the first beam.
  • the base station traverses the N CRS composite beams, and each selected one CRS composite beam, calculates a first PDCCH occupied resource of all terminals in the to-be-scheduled terminal set under the selected CRS composite beam. And all the terminals in the set of terminals to be scheduled are in the CRS wide wave
  • the second PDCCH under the bundle occupies a difference of resources, and obtains N differences; the base station uses a CRS composite beam corresponding to a maximum value of the N differences as the first beam.
  • the base station when calculating, by the base station, the PDCCH occupied resources of the at least one terminal under any one of the CRS composite beams, the base station specifically calculates that each of the at least one terminal obtains the CRS synthesized beam. a beam gain, and calculating, according to the obtained beam gain, a PDCCH occupied resource of all the terminals in the at least one terminal under the any one of the CRS composite beams.
  • the base station reselects one CRS composite beam as the first beam in the N CRS composite beams according to a set period. In this way, the mobility of the terminal can be adapted, the tracking of the location of the terminal can be realized, and the first beam can be updated more accurately.
  • a beam synthesizing apparatus having a function of realizing the behavior of a base station in any of the possible embodiments of the first aspect and the first aspect described above.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • a base station in a third aspect, includes a transceiver, a processor, a memory, and the processor and the memory are connected by a bus system, and the processor is configured to execute code in the memory when the code When executed, the execution causes the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer storage medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect, any of the possible embodiments of the first aspect.
  • FIG. 1a is a schematic diagram of a cell beam coverage in the prior art
  • FIG. 1b is a second schematic diagram of cell beam coverage in the prior art
  • FIG. 2 is a schematic structural diagram of a system in an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a beamforming method in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of wide and narrow superimposed beam coverage of a CRS and a PDCCH according to an embodiment of the present application;
  • 5a to 5f are schematic diagrams of pre-generating a CRS narrow beam in the embodiment of the present application.
  • FIG. 6 is a schematic diagram of comparison before and after CRS and PDCCH beamforming in the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a beam synthesizing apparatus according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a base station in an embodiment of the present application.
  • the composite beam is obtained by superimposing the narrow beam weight on the basis of the CRS wide beam weight, and the PDCCH is beam-shaped according to the weight of the composite beam, thereby improving the coverage of the PDCCH in a specific direction.
  • the CRS of the cell adopts wide beam weighting.
  • the CRS wide beam in this application is based on the definition of CRS wide beam in the prior art.
  • the embodiments of the present application can be applied to a Long Term Evolution (LTE) system and a subsequent evolved system such as the 5th Generation mobile communication (5th Generation Mobile Communication) and the Universal Mobile Telecommunications System (UMTS).
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • the wireless communication system of the Global System for Mobile Communication (GSM) system can also be applied to other communication systems that need to implement beamforming.
  • GSM Global System for Mobile Communication
  • the network device to which the solution provided by the embodiment of the present application is applied is usually a base station in a wireless communication system.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, RRUs, and the like.
  • the names of devices with base station functions may vary in different systems, such as in LTE.
  • the evolved NodeB eNB or eNodeB
  • Node B Node B in the 3G (the 3rd generation) network.
  • the system architecture applied in the embodiment of the present application includes a base station 201 and a terminal 202.
  • the base station 201 is a device deployed in a radio access network to provide a wireless communication function for a terminal.
  • the base station 201 can include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the terminal 202 communicates with the base station 201 and accepts scheduling by the base station 201.
  • the embodiment of the present application is applied to the Massive MIMO application scenario, and the application scenario described in this embodiment is used to more clearly describe the technical solution of the embodiment of the present application, and does not constitute the technical solution provided by the embodiment of the present application.
  • the technical solutions provided by the embodiments of the present application are applicable to similar technical problems as the network architecture evolves and the new service scenario occurs.
  • the flow of the beamforming method is as follows.
  • Step 301 The base station synthesizes N CRS composite beams based on the CRS wide beam and the N CRS narrow beams.
  • N ⁇ 1, and N is a positive integer.
  • the base station pre-generates N CRS narrow beams according to the weight of the CRS wide beam of the cell.
  • the direction of each CRS narrow beam in the N CRS narrow beams is different.
  • the base station synthesizes each of the pre-generated CRS narrow beams with the CRS wide beam.
  • synthesizing any one of the CRS narrow beam and the CRS wide beam may be, but is not limited to, setting a power ratio of the CRS narrow beam to the CRS wide beam, and setting the first linear factor and the second linear factor according to the power ratio.
  • the weights of the CRS narrow beam and the weight of the CRS wide beam are linearly superposed to obtain the weight of the CRS combined beam, and the CRS combined beam is generated according to the weight of the CRS combined beam.
  • the pre-generated N CRS narrow beams have different directions, and the CRS narrow beams in different directions are linearly superimposed with the CRS wide beams respectively, and the combined beams in different directions can be obtained, and the power ratio of each CRS narrow beam and CRS wide beam superimposed is controlled.
  • the coverage of each composite beam can be controlled.
  • Step 302 The base station selects one CRS composite beam as the first beam among the N CRS composite beams, and performs beamforming processing on the PDCCH according to the weight of the first beam to form a second beam.
  • Weights include direction, intensity, and phase.
  • the prior art can compensate for the phase difference when the PDCCH is transmitted, the estimation and calculation of the phase difference are greatly affected by the channel conditions of the terminal, and it is difficult to accurately estimate, thereby causing the demodulation performance of the terminal PDCCH to be degraded. Can solve the above problem.
  • Step 303 The base station sends the first beam and the second beam.
  • the first beam may be selected among the N CRS composite beams by the following two methods.
  • the base station determines a correspondence between any one of the at least one terminal to be scheduled and the CRS narrow beam, and selects a first terminal (also referred to as a target terminal) with the worst PDCCH signal quality in the to-be-scheduled terminal, according to Corresponding relationship, determining a first CRS narrow beam corresponding to the first terminal (which may also be referred to as a target CRS narrow beam).
  • the service to be scheduled has service data to be sent.
  • the CRS composite beam of the target CRS narrow beam and the CRS wide beam synthesis is used as the target CRS composite beam.
  • the target reference signal received power (RSRP) of the target terminal may be determined according to the demodulation threshold of the PDCCH. Adjusting the power ratio of the target CRS narrow beam to the CRS wide beam when synthesizing the target CRS composite beam, until the RSRP of the target terminal in the target CRS composite beam is greater than or equal to the target RSRP, and adjusting the adjusted target CRS composite beam as the first beam. Due to the application scenario of Massive MIMO technology, the capacity and coverage of the PDSCH are greatly improved, and the terminal transmits through the PDSCH. The service data needs to be scheduled by the PDCCH.
  • the capacity of the PDSCH cannot be guaranteed.
  • the terminal with the worst PDCCH signal quality in the to-be-scheduled terminal is covered in the first beam.
  • Gain can be used to increase the capacity of the overall business of the system. Since beam superposition has less influence in other directions, it has little effect on terminal coverage that is not in the first beam.
  • each terminal in the set of to-be-scheduled terminals acquiring a channel response, calculating a RSRP of the terminal in each CRS composite beam according to the channel response and the weight of each CRS composite beam, and obtaining N RSRP values. And selecting a maximum value among the N RSRP values, and determining that the terminal has a correspondence relationship with the CRS narrow beam of the CRS composite beam corresponding to the maximum value.
  • Manner 2 Calculate the PDCCH occupied resources of the to-be-scheduled terminal in each CRS composite beam, and select the CRS composite beam corresponding to the least PDCCH occupied resource as the first beam.
  • the N CRS composite beams are sequentially traversed, and each CRS composite beam is selected, and all the terminals in the to-be-scheduled terminal are selected in the selected CRS composite beam, and all the terminals in the to-be-scheduled terminal are
  • the second PDCCH in the CRS wide beam occupies the difference of the resources, and obtains N difference values; the CRS composite beam corresponding to the maximum value among the N differences is used as the first beam. In this way, under the coverage of the first beam and the second beam, the first PDCCH occupied by all the terminals to be scheduled occupies the smallest resource.
  • the terminal As the terminal sends the service data through the PDSCH in the system, the terminal needs to be scheduled by the PDCCH, and the total number of PDCCHs in one cell is limited, and the application scenario of the Massive MIMO technology increases the number of terminals to be scheduled. By reducing the resources of the existing scheduled terminal occupying the PDCCH, the total number of scheduled terminals can be increased, thereby improving the PDCCH capacity of the system.
  • the first PDCCH occupies resources in the selected CRS composite beam, performing, for each terminal in the set of to-be-scheduled terminals, acquiring a channel response, and calculating the terminal according to the channel response a first RSRP of the CRS wide beam; calculating a second RSRP of the terminal at the selected CRS composite beam according to the channel response and according to the weight of the selected CRS composite beam; calculating the terminal according to the first RSRP and the second RSRP A beam gain obtained by the CRS composite beam; and calculating, according to the obtained beam gain, a first PDCCH occupied resource of all terminals in the set of to-be-scheduled terminals under the selected CRS composite beam.
  • the CRS composite beam is reselected in the N CRS composite beams according to the set period. a beam.
  • the selection method is the same as above.
  • each Transmission Time Interval (TTI) is updated once.
  • the solution provided by the embodiment of the present application is further described in detail below in conjunction with a specific application scenario.
  • the basic idea of the embodiment of the present application is as shown in FIG. 4 for the scenarios in which the CRS and the PDCCH coverage are limited as shown in FIG. 1 .
  • a CRS composite beam is formed by superimposing a narrow beam weight on a CRS wide beam weight, and the CRS composite beam coverage exceeds the CRS wide beam coverage in a specific direction as shown in FIG. range.
  • the PDCCH is weighted by the weight of the CRS composite beam, so that the PDCCH obtains the same coverage as the CRS, thereby improving the demodulation performance of the PDCCH by the terminal outside the original CRS and PDCCH coverage, and improving the coverage of the CRS and the PDCCH.
  • two methods for determining the CRS composite beam are designed. Different CRS composite beams are formed by CRS wide beam and narrow beam superposition of different directions CRS. According to the principle that the control channel element (CCE) is the smallest, the optimal CRS composite beam is selected, thereby reducing PDCCH resource consumption and improving the overall PDCCH capacity of the system. Alternatively, the optimal CRS combined beam is selected according to the principle that the terminal with the worst PDCCH signal quality obtains the PDCCH coverage gain.
  • the beam of the PDSCH is not shown in FIG.
  • a CRS narrow beam is pre-generated in each region, which is recorded as CRS-BF-1, CRS-BF-2, ... CRS-BF-6.
  • the generated six CRS composite beams are enhanced in each corresponding CRS composite beam in a corresponding specific direction.
  • the weights of the CRS wide beam and the weights of the six CRS narrow beams are W CRS , W narrow_1 , W narrow_2 , W narrow_3 , W narrow_4 , W narrow_5 , W narrow_6 , respectively .
  • the CRS composite beam of different directions is obtained by superimposing the CRS wide beam and the CRS narrow beam in different directions, and the coverage ratio of the CRS composite beam in the corresponding specific direction is controlled by controlling the power ratio of the CRS narrow beam and the CRS wide beam superposition.
  • the power scaling factor of the CRS narrow beam and the CRS wide beam is set to P ratio
  • the value of the P ratio ranges from 0 to 0.9. It can be seen that the larger the P ratio is, the larger the beam gain of the CRS composite beam in a specific direction is. The smaller the P ratio is, the smaller the beam gain of the composite beam in a specific direction is.
  • one CRS composite beam needs to be selected as the target CRS composite beam to be transmitted, and the PDCCH is beamformed by the weight of the target CRS composite beam.
  • the following two options are specifically described.
  • each terminal in the terminal set obtain a channel response by using the uplink SRS, calculate the RSRP of each CRS composite beam according to the pre-generated 6 CRS composite beam weights, and select the maximum value of the obtained RSRP. Recorded as RSRP_max. It is determined that the CRS narrow beam of the CRS composite beam corresponding to the combined maximum RSRP value of the terminal has a corresponding relationship.
  • the terminal with the worst PDCCH signal quality in the terminal with the service data and waiting for scheduling is used as the target terminal, and the narrow beam of the CRS corresponding to the target terminal is used as the target narrow beam.
  • the target RSRP_target of the target terminal receiving the RSRP may be determined, and the power ratio of the target CRS narrow beam to the CRS wide beam when synthesizing the target CRS composite beam is adjusted until the RSRP_max is greater than or equal to the RSRP_target.
  • the PDCCH is obtained with the same beam coverage range as the CRS, and the coverage is enhanced by the PDCCH narrow beam, and the demodulation performance of the target terminal to the PDCCH is improved.
  • the number of CCEs occupied by the system PDCCH is minimized, thereby Increase the capacity of the PDCCH.
  • FIG. 6 there are five terminals in the cell, which are denoted as UE1, UE2, UE3, UE4, and UE5.
  • UE1, UE2, and UE4 are at the cell edge
  • UE3 is at the cell center
  • UE5 is farthest from the cell.
  • the number of CCEs occupied by the UE1, the UE2, and the UE4 at the cell edge is 4, and the number of CCEs occupied by the UE3 located in the cell center is 2, and the UE5 is far away from the cell, and the occupied CCE is 8.
  • the CRS and the PDCCH are both weighted by the wide beam and the narrow beam
  • the narrow beam is aligned with the UE3 and the UE5, and the beam gain of the narrow beam is 3 dB
  • the number of CCEs occupied by the UE1, UE2, and UE4 at the cell edge is 4
  • the UE3 in the cell center obtains 3dB gain, and the number of occupied CCEs is 1.
  • the UE5 is far away from the cell, and the CCE occupied by the 3dB gain is 4.
  • the embodiment of the present application further provides a beam synthesizing apparatus 700, which can be used to perform the method shown in FIG.
  • the beam synthesizing device 700 includes:
  • the processing unit 701 is configured to synthesize N CRS composite beams based on the cell reference signal CRS wide beam and the N CRS narrow beams, where the N CRS narrow beams are pre-generated by the processing unit 701 according to the weight of the CRS wide beam, N ⁇ 1, N is a positive integer;
  • the processing unit 701 is further configured to: select a first one of the N CRS composite beams synthesized by the processing unit 701, perform beamforming processing on the physical downlink control channel PDCCH according to the weight of the first beam, to form a second beam;
  • the sending unit 702 is configured to send the first beam and the second beam.
  • processing unit 701 is configured to:
  • the CRS composite beam of the first CRS narrow beam and the CRS wide beam synthesis is selected as the first beam.
  • processing unit 701 is configured to:
  • processing unit 701 is configured to:
  • the base station calculates, by the at least one terminal, a PDCCH occupying resource under each CRS composite beam;
  • the base station selects the CRS composite beam corresponding to the least PDCCH occupation resource as the first beam.
  • processing unit 701 is configured to:
  • processing unit 701 is further configured to:
  • one CRS composite beam is reselected as the first beam among the N CRS composite beams.
  • the embodiment of the present application further provides a base station 800, which can be used to perform the method shown in FIG.
  • the base station 800 includes a transceiver 801, a processor 802, a memory 803, and a bus 804.
  • the processor 802 and the memory 803 are connected by a bus 804 system.
  • the processor 802 is configured to execute code in the memory 803 when the code is executed. This execution causes the processor to do the following:
  • N CRS composite beams based on the CRS wide beam and the N CRS narrow beams, wherein the N CRS narrow beams are pre-generated according to the weight of the CRS wide beam, N ⁇ 1, and N is a positive integer;
  • the first beam and the second beam are transmitted by the transceiver 801.
  • the processor 802 is configured to:
  • the CRS composite beam of the first CRS narrow beam and the CRS wide beam synthesis is selected as the first beam.
  • the processor 802 is configured to:
  • the processor 802 is configured to:
  • the base station calculates, by the at least one terminal, a PDCCH occupying resource under each CRS composite beam;
  • the base station selects the CRS composite beam corresponding to the least PDCCH occupation resource as the first beam.
  • the processor 802 is configured to:
  • processor 802 is further configured to:
  • one CRS composite beam is reselected as the first beam among the N CRS composite beams.
  • the processor 802 can be a central processing unit (English: central processing unit, abbreviated: CPU), a network processor (English: network processor, abbreviated: NP) or a combination of a CPU and an NP.
  • CPU central processing unit
  • NP network processor
  • Processor 802 can also further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (abbreviated as PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above PLD can be a complex programmable logic device (English: complex programmable logic device, abbreviation: CPLD), field-programmable gate array (English: field-programmable gate array, abbreviation: FPGA), general array logic (English: general array logic, abbreviation: GAL) or any combination thereof.
  • the memory 803 may include a volatile memory (English: volatile memory), such as a random access memory (English: random-access memory, abbreviation: RAM); the memory 803 may also include a non-volatile memory (English: non-volatile memory) ), for example, flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviated: HDD) or solid state drive (English: solid-state drive, abbreviation: SSD); the memory 803 may also include the above types of memory The combination.
  • a volatile memory English: volatile memory
  • RAM random access memory
  • non-volatile memory English: non-volatile memory
  • flash memory English: flash memory
  • hard disk English: hard disk drive, abbreviated: HDD
  • SSD solid state drive
  • the apparatus provided in FIG. 7 can be used to implement the method shown in FIG.
  • the processing unit 701 in FIG. 7 can be implemented by the processor 802 in FIG. 8, and the sending unit 702 can be implemented by the transceiver 801 in FIG.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the device is implemented in a flow chart or Multiple processes and/or block diagrams The functions specified in one or more boxes.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

一种波束合成方法及装置,用以提高PDCCH在特定方向的覆盖范围,并提高PDCCH解调性能。该方法为:基站基于小区参考信号CRS宽波束和N个CRS窄波束,合成N个CRS合成波束,选择所述N个CRS合成波束中的第一波束,按照所述第一波束的权值对物理下行控制信道PDCCH进行波束赋形处理,形成第二波束,发送所述第一波束和所述第二波束。

Description

一种波束合成方法及装置 技术领域
本申请涉及领域,特别涉及一种波束合成方法及装置。
背景技术
大规模多入多出(Massive Multiple-Input Multiple-Output,Massive MIMO)能够使得系统容量随着天线数目的增多而显著提高,所以Massive MIMO是获得高容量收益的一种非常重要的技术。在Massive MIMO系统中,在数据信道上,基站通过波束赋形技术使用多天线生成对准各用户的窄波束,从而提高用户的数据信道传输质量,提高小区覆盖。
如图1a所示,在Massive MIMO系统中,小区的信道物理下行共享信道(Physical Downlink Shared Channel,PDSCH)通过波束赋形技术对准某个方向的用户生成窄波束,提高用户的数据信道传输质量,但是,PDSCH在该方向上覆盖范围超过小区特定参考信号(Cell-specific Reference Signal,CRS)宽波束的覆盖范围。由于用户在PDSCH上进行的数据传输需要通过PDCCH上承载的调度信令进行调度,为了保证在CRS宽波束覆盖之外的用户能够得到正常的调度,需要提升PDCCH的覆盖能力。如图1b所示,目前一种方法是通过对PDCCH加窄波束权值,在某个方向得到比CRS宽波束加权更好的覆盖,从而匹配该方向用户的数据信道的调度需要。
在图2所示的波束覆盖方式中,PDCCH进行窄波束加权后,虽然与PDSCH的窄波束覆盖匹配,但是在特定方向的覆盖范围却超过CRS宽波束的覆盖范围。在PDCCH覆盖范围超过CRS的区域,CRS信号将不能得到正确估计。由于PDCCH信道解调必须参考CRS进行信道估计,因此在PDCCH覆盖范围超过CRS的区域,CRS的信道质量并不能保证PDCCH的解调门限,损失了PDCCH的解调性能,PDCCH波束赋形的性能也会下降。
发明内容
本申请提供一种波束合成方法及装置,用以解决在PDCCH进行窄波束加权后在特定方向的覆盖范围超过CRS波束的覆盖范围,从而造成PDCCH的解调性能下降的问题。
一方面,提供一种波束合成方法,通过在CRS宽波束权值的基础上叠加窄波束权值,得到合成波束,按照合成波束的权值对PDCCH进行波束赋形处理,提升了PDCCH在特定方向的覆盖范围,解决了PDCCH在该特定方向的覆盖范围超过CRS波束的覆盖范围且PDCCH与CRS相位不一致而造成PDCCH的解调性能下降的问题。
在一个可能的设计中,基站根据CRS宽波束的权值,预生成N个CRS窄波束,将预生成的每一个CRS窄波束分别与所述CRS宽波束进行合成,共合成N个CRS合成波束,选择所述N个CRS合成波束中的第一波束,按照所述第一波束的权值对PDCCH进行波束赋形处理,形成第二波束,发送所述第一波束和所述第二波束。其中,N≥1,N为正整数。这样,避免了PDCCH的覆盖区域超过CRS的覆盖区域,基站发送的PDCCH波束与CRS波束的覆盖相同,PDCCH解调可以完全参考CRS进行信道估计,提高了PDCCH的解调性能。
在一个可能的设计中,将预生成的一个CRS窄波束与所述CRS宽波束进行合成,得到一个CRS合成波束,包括:设置所述一个CRS窄波束与所述CRS宽波束的功率比例,根据所述功率比例设定第一线性因子和第二线性因子,根据所述第一线性因子和所述第二线性因子,对所述一个CRS窄波束的权值和所述CRS宽波束的权值作线性叠加,获得所述一个CRS合成波束的权值,根据所述一个CRS合成波束的权值生成所述一个CRS合成波束。
在一个可能的设计中,所述基站可通过以下方式选择所述N个CRS合成波束中的第一波束:所述基站确定待调度的每一个终端位于的CRS窄波束,并形成终端与CRS窄波束的对应关系,所述基站选择待调度的至少一个终端 中PDCCH信号质量最差终端,记为第一终端,并根据所述对应关系,确定所述第一终端对应的第一CRS窄波束,选择所述第一CRS窄波束与所述CRS宽波束合成的CRS合成波束为所述第一波束。这样,通过提升待调度终端中PDCCH信号质量最差的终端在第一波束内得到覆盖增益,就可以起到提升系统的整体业务的容量目的。
在一个可能的设计中,根据所述对应关系确定所述第一终端对应的第一CRS窄波束之后,基站确定所述第一终端的目标参考信号接收功率RSRP,调整在合成所述目标CRS合成波束时所述第一CRS窄波束与所述CRS宽波束的功率比例,直到所述第一终端在所述第一CRS窄波束与所述CRS宽波束合成的CRS合成波束的RSRP大于或等于所述目标RSRP。
在一个可能的设计中,所述基站通过以下方式确定待调度的至少一个终端中的任一终端与CRS窄波束之间的对应关系:计算所述任一终端在所述每一个CRS合成波束的信号强度,确定所述任一终端与合成最大信号强度对应的CRS合成波束的CRS窄波束之间具有对应关系。
在一个可能的设计中,所述基站针对待调度终端集合中的每一个终端执行以下操作:获取信道响应,根据所述信道响应以及每一个CRS合成波束的权值,计算终端在所述每一个CRS合成波束的RSRP,得到N个RSRP值,选择所述N个RSRP值中的最大值,确定终端对应于合成所述最大值对应的CRS合成波束的CRS窄波束。
在一个可能的设计中,所述基站还可以通过以下方式选择所述N个CRS合成波束中的第一波束:所述基站计算所述至少一个终端在每一个CRS合成波束下的PDCCH占用资源,选择最少的PDCCH占用资源所对应的CRS合成波束为所述第一波束。这样,可以通过降低已有被调度终端占用PDCCH的资源,就可以提高总体被调度的终端数目,从而提升系统的PDCCH容量。
在一个可能的设计中,所述基站遍历所述N个CRS合成波束,每选定一个CRS合成波束,计算待调度终端集合中的全部终端在选定的CRS合成波束下的第一PDCCH占用资源与待调度终端集合中的全部终端在所述CRS宽波 束下的第二PDCCH占用资源的差值,获得N个差值;所述基站将所述N个差值中的最大值所对应的CRS合成波束作为所述第一波束。
在一个可能的设计中,所述基站在计算所述至少一个终端在任一个CRS合成波束下的PDCCH占用资源时,具体地计算所述至少一个终端中每一终端在所述任一个CRS合成波束获得的波束增益,并根据获得的所述波束增益,计算所述至少一个终端中的全部终端在所述任一个CRS合成波束下的PDCCH占用资源。
在一个可能的设计中,所述基站按照设定周期,在所述N个CRS合成波束中重新选择一个CRS合成波束作为所述第一波束。这样,能够适应终端的移动性,实现对终端位置的跟踪,更准确的更新第一波束。
第二方面,提供一种波束合成装置,该波束合成装置具有实现上述第一方面和第一方面的任一种可能的实施方式中基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第三方面,提供一种基站,该基站包括收发器,处理器,存储器,所述处理器以及存储器之间通过总线系统相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,该执行使得处理器执行第一方面或第一方面的任一可能的实施方式中的方法。
第四方面,提供了一种计算机存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面、第一方面的任一可能的实施方式中的方法的指令。
附图说明
图1a为现有技术中小区波束覆盖示意图之一;
图1b为现有技术中小区波束覆盖示意图之二;
图2为本申请实施例中系统架构示意图;
图3为本申请实施例中波束合成方法的流程示意图;
图4为本申请实施例中CRS和PDCCH的宽、窄叠加波束覆盖示意图;
图5a~图5f为本申请实施例中预生成CRS窄波束的示意图;
图6为本申请实施例中CRS和PDCCH波束赋形前后对比示意图;
图7为本申请实施例中波束合成装置的结构示意图;
图8为本申请实施例中基站结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请实施例中,通过在CRS宽波束权值的基础上叠加窄波束权值,得到合成波束,按照合成波束的权值对PDCCH进行波束赋形处理,提升了PDCCH在特定方向的覆盖范围,解决了PDCCH在该特定方向的覆盖范围超过CRS波束的覆盖范围且PDCCH与CRS相位不一致而造成PDCCH的解调性能下降的问题。
现有网络中,为了保证小区公共控制信道的覆盖范围足够宽,小区的CRS采用宽波束加权。本申请中的CRS宽波束基于现有技术中CRS宽波束的定义。
本申请实施例可以应用于长期演进(Long Term Evolution,LTE)系统以及后续的演进系统如5G(the 5th Generation mobile communication,第五代移动通信)、通用移动通信系统(Universal Mobile Telecommunications System,UMTS)、全球移动通信系统(Global System for Mobile Communication,GSM)等制式的无线通信系统,也可以应用于其他需要实现波束合成的通信系统。
本申请实施例所提供的方案应用的网络设备通常为无线通信系统中的基站。基站可以包括各种形式的宏基站、微基站、中继站、接入点或RRU等。在采用不同系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE 网络中,称为演进的节点B(evolved NodeB,eNB或eNodeB),在3G(the 3rd Generation,第三代)网络中,称为节点B(Node B)等。
如图2所示,本申请实施例应用的系统架构中包括基站201和终端202;基站201是一种部署在无线接入网中用以为终端提供无线通信功能的装置。基站201可以包括各种形式的宏基站,微基站,中继站,接入点等等。终端202与基站201进行通信、接受基站201调度。
可选的,本申请实施例应用于Massive MIMO应用场景,本申请实施例描述的应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序。
下面将结合附图对本申请实施例提供的波束合成方法及装置做详细说明。
参阅图3所示,本申请实施例中,波束合成方法的流程如下所述。
步骤301、基站基于CRS宽波束和N个CRS窄波束,合成N个CRS合成波束。N≥1,N为正整数。
具体地,基站在合成N个CRS合成波束之前,根据小区CRS宽波束的权值,预生成N个CRS窄波束。可选的,N个CRS窄波束中的每个CRS窄波束的方向均不相同。
基站将预生成的每一个CRS窄波束分别与CRS宽波束进行合成。具体地,将任意一个CRS窄波束与CRS宽波束进行合成可以但不限于按照以下方式:设置CRS窄波束与CRS宽波束的功率比例,根据功率比例设定第一线性因子和第二线性因子,根据第一线性因子和第二线性因子,对CRS窄波束的权值和CRS宽波束的权值作线性叠加,获得CRS合成波束的权值,根据CRS合成波束的权值生成CRS合成波束。
预生成的N个CRS窄波束的方向均不同,不同方向的CRS窄波束分别与CRS宽波束作线性叠加,可以得到不同方向的合成波束,通过控制各个CRS窄波束和CRS宽波束叠加的功率比例可以控制各个合成波束的覆盖范围。
步骤302、基站在N个CRS合成波束中选择一个CRS合成波束作为第一波束,按照第一波束的权值对PDCCH进行波束赋形处理,形成第二波束。
权值包括方向、强度和相位。PDCCH信道的第二波束与CRS的第一波束在发送时,由于PDCCH的权值与CRS合成波束的权值相同,使得终端接收到PDCCH的相位与CRS的相位是一致的,提高了PDCCH的解调性能。避免了PDCCH的相位与CRS的相位不一致时,使用CRS的相位来估计PDCCH的相位,造成PDCCH解调时产生相位差。虽然现有技术在PDCCH发送时可以对这个相位差可以进行补偿,但是由于这个相位差的估计和计算受到终端的信道条件影响较大,难以精确估计,从而造成终端PDCCH解调性能下降,本申请可以解决上述问题。
步骤303、基站发送第一波束和第二波束。
具体地,可以但不限于通过以下两种方式在N个CRS合成波束中选择第一波束。
方式一、基站确定待调度的至少一个终端中的任一终端与CRS窄波束之间的对应关系,选择待调度终端中PDCCH信号质量最差的第一终端(也可以称为目标终端),根据对应关系,确定第一终端对应的第一CRS窄波束(也可以称为目标CRS窄波束)。其中,待调度终端有业务数据需要发送。
将目标CRS窄波束与CRS宽波束合成的CRS合成波束作为目标CRS合成波束。也可以在确定第一CRS窄波束之后,根据PDCCH的解调门限,确定目标终端的目标参考信号接收功率(Reference Signal Received Power,RSRP)。调整在合成目标CRS合成波束时目标CRS窄波束与CRS宽波束的功率比例,直到目标终端在目标CRS合成波束的RSRP大于或等于目标RSRP,将调整后的目标CRS合成波束作为第一波束。由于在Massive MIMO技术的应用场景,PDSCH的容量和覆盖得到了很大的提升,终端通过PDSCH发送 业务数据,大都需要通过PDCCH进行调度,如果PDCCH不能对应提升覆盖,PDSCH的容量提升就不能得到保证,方式一中,通过提升待调度终端中PDCCH信号质量最差的终端在第一波束内得到覆盖增益,就可以起到提升系统的整体业务的容量目的。由于波束叠加在其他方向影响较小,因此对不在第一波束内的终端覆盖的影响不大。
一种可能的实施方式中,基站在确定待调度的至少一个终端中的任一终端与CRS窄波束之间的对应关系时,计算所述任一终端在所述每一个CRS合成波束的信号强度,确定所述任一终端与合成最大信号强度对应的CRS合成波束的CRS窄波束之间具有对应关系。
具体地,针对待调度终端集合中的每一个终端执行以下操作:获取信道响应,根据信道响应以及每一个CRS合成波束的权值,计算终端在每一个CRS合成波束的RSRP,得到N个RSRP值,选择N个RSRP值中的最大值,确定终端与合成该最大值对应的CRS合成波束的CRS窄波束具有对应关系。
一种可能的实施方式中,在确定待调度终端集合中的终端与CRS窄波束之间的对应关系时,针对待调度终端集合中的每一个终端执行以下操作:通过计算终端的波达角DOA(Direction Of Arrival),选取方向角与波达角最接近的窄波束作为与终端具有对应关系的CRS窄波束。
方式二、计算待调度终端在每一个CRS合成波束下的PDCCH占用资源,选择最少的PDCCH占用资源所对应的CRS合成波束为第一波束。
具体地,依次遍历N个CRS合成波束,每选定一个CRS合成波束,计算待调度终端中的全部终端在选定的CRS合成波束下的第一PDCCH占用资源与待调度终端中的全部终端在CRS宽波束下的第二PDCCH占用资源的差值,获得N个差值;将N个差值中的最大值所对应的CRS合成波束作为第一波束。这样,在第一波束和第二波束的覆盖下,全部待调度的终端占用的第一PDCCH占用资源最小。由于系统中终端通过PDSCH发送业务数据,大都需要通过PDCCH进行调度终端,而一个小区中的PDCCH总数是有限的,并且Massive MIMO技术的应用场景,待调度的终端数目大量增加,方式二中, 通过降低已有被调度终端占用PDCCH的资源,就可以提高总体被调度的终端数目,从而提升系统的PDCCH容量。
其中,在计算待调度终端中的全部终端在选定的CRS合成波束下的第一PDCCH占用资源时,针对待调度终端集合中的每一个终端执行:获取信道响应,根据信道响应,计算终端在CRS宽波束的第一RSRP;根据信道响应以及根据选定的CRS合成波束的权值,计算终端在选定的CRS合成波束的第二RSRP;根据第一RSRP和第二RSRP计算终端在选定的CRS合成波束获得的波束增益;根据获得的波束增益,计算待调度终端集合中的全部终端在选定的CRS合成波束下的第一PDCCH占用资源。
由于终端具有移动性,因此终端与CRS窄波束之间的对应关系也不是固定的,可选的,本申请实施例按照设定周期,在N个CRS合成波束中重新选择一个CRS合成波束作为第一波束。选择方式与上述方法相同。可选的,每个传输时间间隔(Transmission Time Interval,TTI)更新一次。
下面结合具体的应用场景对本申请实施例提供的方案作进一步详细的说明。以Massive MIMO应用场景为例,针对如图1所示的CRS和PDCCH覆盖范围受限的场景,本申请实施例的基本思想如图4所示。针对CRS和PDCCH覆盖范围之外的终端,通过在CRS宽波束权值上叠加窄波束权值,形成CRS合成波束,CRS合成波束覆盖范围在如图4所示的特定方向超过CRS宽波束的覆盖范围。并且,用CRS合成波束的权值对PDCCH加权,使得PDCCH获得与CRS相同的覆盖范围,从而提高原来CRS和PDCCH覆盖范围之外的终端对PDCCH的解调性能,提高CRS和PDCCH的覆盖范围。进一步的,在提高CRS和PDCCH的覆盖范围的基础上,设计两种确定CRS合成波束的方式。通过CRS宽波束与不同方向CRS窄波束叠加形成不同CRS合成波束。按照消耗控制信道元素(Control Channel Element,CCE)最小的原则,选择最优的CRS合成波束,从而减少PDCCH资源消耗,提升系统整体的PDCCH容量。或者,按照使PDCCH信号质量最差的终端得到PDCCH覆盖增益的原则,选择最优的CRS合成波束。
为方便显示,图4中未显示PDSCH的波束。
具体地,如图5a~图5f所示,假设CRS宽波束的覆盖范围角度为120°,将CRS宽波束的覆盖范围角度以均分方式分为N个区域的覆盖范围,例如,N=6,在每个区域内预生成一个CRS窄波束,分别记为CRS-BF-1、CRS-BF-2……CRS-BF-6。将CRS宽波束分别与6个方向的窄波束叠加后,生成的6个CRS合成波束,每个CRS合成波束在对应的特定方向上覆盖得到增强。
假设CRS宽波束的权值与6个CRS窄波束的权值分别为WCRS,Wnarrow_1,Wnarrow_2,Wnarrow_3,Wnarrow_4,Wnarrow_5,Wnarrow_6。通过CRS宽波束与不同方向CRS窄波束叠加得到不同方向的CRS合成波束,通过控制CRS窄波束和CRS宽波束叠加的功率比例来控制CRS合成波束在对应的特定方向上覆盖范围的大小。设置CRS窄波束与CRS宽波束的功率比例因子为Pratio,CRS合成波束的权值为:Wsurplus=(1-Pratio)*WCRS+Pratio*Wnarrow_i。Pratio的取值范围为0~0.9,可见,Pratio越大,CRS合成波束在特定方向上的波束增益越大,Pratio越小合成波束在特定方向上的波束增益越小。
在预生成6个不同方向上的CRS合成波束之后,需要选择一个CRS合成波束作为目标CRS合成波束来发送,并通过目标CRS合成波束的权值对PDCCH进行波束赋形。以下具体介绍两种选择方式。
第一种:
1、选择等待调度队列中的所有终端作为备选的终端集合。
2、针对终端集合中的每一个终端,通过上行SRS获得信道响应,根据预生成的6个CRS合成波束权值,计算终端在每一个CRS合成波束的RSRP,选择获得的RSRP中的最大值,记为RSRP_max。确定终端与合成最大RSRP值对应的CRS合成波束的CRS窄波束具有对应关系。
3、在备选的终端集合中,选择有业务数据并且等待调度的终端中PDCCH信号质量最差的终端作为目标终端,将目标终端对应的CRS窄波束作为目标窄波束。
4、根据PDCCH的解调门限可以确定目标终端接收RSRP的目标RSRP_target,调整在合成目标CRS合成波束时目标CRS窄波束与CRS宽波束的功率比例,直到RSRP_max大于或等于RSRP_target。
这就保证PDCCH信号质量最差的终端在选择的目标CRS合成波束内覆盖不受限。
5、用目标CRS合成波束权值对PDCCH加权。
使得PDCCH获得与CRS相同的波束覆盖范围,并且通过PDCCH窄波束得到覆盖范围的增强,提高目标终端对PDCCH的解调性能。
在每个TTI,重复执行上述2~5,实现终端位置的跟踪。
第二种:
1)、按一定的顺序,逐个选择CRS合成波束。
2)、每选定一个CRS合成波束,对待调度终端集合中的每一个终端执行:通过上行SRS获得信道响应,根据这个CRS合成波束权值,计算终端在这个CRS合成波束的RSRP_com;根据信道响应,计算终端在CRS宽波束的RSRP_wide;计算终端在CRS合成波束中的波束增益BF_gain=RSRP_com-RSRP_wide。
按此方式,获得待调度终端集合中每个终端在对应的CRS合成波束中的波束增益BF_gain。
3)、对待调度终端集合中的每一个终端执行:计算终端采用PDCCH宽波束加权的初始CCE聚集级别CCE_aggLev_init,计算获得波束增益后的调整CCE聚集级别CCE_aggLev_adj,计算节省的CCE数目:CCE_aggLev_init-CCE_aggLev_adj;
4)、计算待调度集合中的所有终端在波束增益后所节省CCE的数目总和;
5)、重复步骤2)~4),直到遍历完所有的CRS合成波束。
6)、选择节省CCE的数目总和中最大值对应的CRS合成波束作为目标CRS合成波束。
通过上述步骤1)~6),使得系统PDCCH占用的CCE数目最少,从而提 升PDCCH的容量。
下面通过举例说明,如图6所示,示出了CRS和PDCCH波束赋形前后对PDCCH容量的影响。
图6中,小区中有5个终端,记为UE1、UE2、UE3、UE4和UE5。UE1、UE2、UE4在小区边缘,UE3在小区中心,UE5离小区最远。
当CRS和PDCCH都采用宽波束加权时,位于小区边缘的UE1、UE2、UE4共占用的CCE数为4,位于小区中心的UE3占用的CCE数为2,UE5远离小区,占用的CCE为8,PDCCH实际消耗的CCE数目为3*4+2+8=22;
当CRS和PDCCH都采用宽波束叠加窄波束加权时,如果窄波束对准UE3和UE5方向,假设窄波束的波束增益为3dB,则位于小区边缘的UE1、UE2、UE4共占用的CCE数为4;位于小区中心UE3获得3dB增益,占用的CCE数为1;UE5远离小区,获得3dB增益后占用的CCE为4。PDCCH实际消耗的CCE数目为3*4+1+4=17。可见,采用CRS和PDCCH宽波束叠加窄波束时,PDCCH的CCE使用减少了22-17/22=22.7%,从而提升了PDCCH的容量。
基于与图3所示的波束合成方法的同一发明构思,如图7所示,本申请实施例还提供了一种波束合成装置700,该波束合成装置700可用于执行图3所示的方法,该波束合成装置700包括:
处理单元701,用于基于小区参考信号CRS宽波束和N个CRS窄波束,合成N个CRS合成波束,其中,N个CRS窄波束是处理单元701根据CRS宽波束的权值预生成的,N≥1,N为正整数;
处理单元701,还用于选择处理单元701合成的N个CRS合成波束中的第一波束,按照第一波束的权值对物理下行控制信道PDCCH进行波束赋形处理,形成第二波束;
发送单元702,用于发送第一波束和第二波束。
可选的,处理单元701用于:
确定待调度的至少一个终端中的任一终端与CRS窄波束之间的对应关 系;
选择至少一个终端中PDCCH信号质量最差的第一终端,并根据对应关系,确定第一终端对应的第一CRS窄波束;
选择第一CRS窄波束与CRS宽波束合成的CRS合成波束为第一波束。
可选的,处理单元701用于:
计算任一终端在每一个CRS合成波束的信号强度,确定任一终端与合成最大信号强度对应的CRS合成波束的CRS窄波束之间具有对应关系。
可选的,处理单元701用于:
基站计算至少一个终端在每一个CRS合成波束下的PDCCH占用资源;
基站选择最少的PDCCH占用资源所对应的CRS合成波束为第一波束。
可选的,处理单元701用于:
计算至少一个终端中每一终端在任一个CRS合成波束获得的波束增益;
根据获得的波束增益,计算至少一个终端中的全部终端在任一个CRS合成波束下的PDCCH占用资源。
可选的,处理单元701还用于:
按照设定周期,在N个CRS合成波束中重新选择一个CRS合成波束作为第一波束。
基于与图3所示的波束合成方法同一发明构思,参阅图8所示,本申请实施例还提供了一种基站800,该基站800可用于执行图3所示的方法。其中,基站800包括收发器801、处理器802、存储器803和总线804,处理器802以及存储器803之间通过总线804系统相连,处理器802用于执行存储器803中的代码,当代码被执行时,该执行使得处理器执行以下操作:
基于小区参考信号CRS宽波束和N个CRS窄波束,合成N个CRS合成波束,其中,N个CRS窄波束是根据CRS宽波束的权值预生成的,N≥1,N为正整数;
选择合成的N个CRS合成波束中的第一波束,按照第一波束的权值对物理下行控制信道PDCCH进行波束赋形处理,形成第二波束;
通过收发器801发送第一波束和第二波束。
可选的,处理器802用于:
确定待调度的至少一个终端中的任一终端与CRS窄波束之间的对应关系;
选择至少一个终端中PDCCH信号质量最差的第一终端,并根据对应关系,确定第一终端对应的第一CRS窄波束;
选择第一CRS窄波束与CRS宽波束合成的CRS合成波束为第一波束。
可选的,处理器802用于:
计算任一终端在每一个CRS合成波束的信号强度,确定任一终端与合成最大信号强度对应的CRS合成波束的CRS窄波束之间具有对应关系。
可选的,处理器802用于:
基站计算至少一个终端在每一个CRS合成波束下的PDCCH占用资源;
基站选择最少的PDCCH占用资源所对应的CRS合成波束为第一波束。
可选的,处理器802用于:
计算至少一个终端中每一终端在任一个CRS合成波束获得的波束增益;
根据获得的波束增益,计算至少一个终端中的全部终端在任一个CRS合成波束下的PDCCH占用资源。
可选的,处理器802还用于:
按照设定周期,在N个CRS合成波束中重新选择一个CRS合成波束作为第一波束。
处理器802可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。
处理器802还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写: FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任意组合。
存储器803可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器803也可以包括非易失性存储器(英文:non-volatile memory),例如快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);存储器803还可以包括上述种类的存储器的组合。
需要说明的是,图7提供的装置,可用于实现图3所示的方法。一个具体的实现方式中,图7中的处理单元701可以用图8中的处理器802实现,发送单元702可以由图8中的收发器801实现。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或 多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种波束合成方法,其特征在于,包括:
    基站基于小区参考信号CRS宽波束和N个CRS窄波束,合成N个CRS合成波束,其中,所述N个CRS窄波束是根据所述CRS宽波束的权值预生成的,N≥1,N为正整数;
    所述基站选择所述N个CRS合成波束中的第一波束,按照所述第一波束的权值对物理下行控制信道PDCCH进行波束赋形处理,形成第二波束;
    所述基站发送所述第一波束和所述第二波束。
  2. 如权利要求1所述的方法,其特征在于,所述基站选择所述N个CRS合成波束中的第一波束,包括:
    所述基站确定待调度的至少一个终端中的任一终端与CRS窄波束之间的对应关系;
    所述基站选择所述至少一个终端中PDCCH信号质量最差的第一终端,并根据所述对应关系,确定所述第一终端对应的第一CRS窄波束;
    所述基站选择所述第一CRS窄波束与所述CRS宽波束合成的CRS合成波束为所述第一波束。
  3. 如权利要求2所述的方法,其特征在于,所述基站确定待调度的至少一个终端中的任一终端与CRS窄波束之间的对应关系,包括:
    计算所述任一终端在所述每一个CRS合成波束的信号强度,确定所述任一终端与合成最大信号强度对应的CRS合成波束的CRS窄波束之间具有对应关系。
  4. 如权利要求1所述的方法,其特征在于,所述基站选择所述N个CRS合成波束中的第一波束,包括:
    所述基站计算所述至少一个终端在每一个CRS合成波束下的PDCCH占用资源;
    所述基站选择最少的PDCCH占用资源所对应的CRS合成波束为所述第 一波束。
  5. 权利要求4所述的方法,其特征在于,所述基站计算所述至少一个终端在任一个CRS合成波束下的PDCCH占用资源,包括:
    计算所述至少一个终端中每一终端在所述任一个CRS合成波束获得的波束增益;
    所述基站根据获得的所述波束增益,计算所述至少一个终端中的全部终端在所述任一个CRS合成波束下的PDCCH占用资源。
  6. 如权利要求1-5任一项所述的方法,其特征在于,还包括:
    所述基站按照设定周期,在所述N个CRS合成波束中重新选择一个CRS合成波束作为所述第一波束。
  7. 一种波束合成装置,其特征在于,包括:
    处理单元,用于基于小区参考信号CRS宽波束和N个CRS窄波束,合成N个CRS合成波束,其中,所述N个CRS窄波束是所述处理单元根据所述CRS宽波束的权值预生成的,N≥1,N为正整数;
    所述处理单元,还用于选择所述N个CRS合成波束中的第一波束,按照所述第一波束的权值对物理下行控制信道PDCCH进行波束赋形处理,形成第二波束;
    发送单元,用于发送所述第一波束和所述第二波束。
  8. 如权利要求7所述的装置,其特征在于,所述处理单元用于:
    确定待调度的至少一个终端中的任一终端与CRS窄波束之间的对应关系;
    选择所述至少一个终端中PDCCH信号质量最差的第一终端,并根据所述对应关系,确定所述第一终端对应的第一CRS窄波束;
    选择所述第一CRS窄波束与所述CRS宽波束合成的CRS合成波束为所述第一波束。
  9. 如权利要求8所述的装置,其特征在于,所述处理单元用于:
    计算所述任一终端在所述每一个CRS合成波束的信号强度,确定所述任 一终端与合成最大信号强度对应的CRS合成波束的CRS窄波束之间具有对应关系。
  10. 如权利要求7所述的装置,其特征在于,所述处理单元用于:
    所述基站计算所述至少一个终端在每一个CRS合成波束下的PDCCH占用资源;
    所述基站选择最少的PDCCH占用资源所对应的CRS合成波束为所述第一波束。
  11. 权利要求10所述的装置,其特征在于,所述处理单元用于:
    计算所述至少一个终端中每一终端在所述任一个CRS合成波束获得的波束增益;
    根据获得的所述波束增益,计算所述至少一个终端中的全部终端在所述任一个CRS合成波束下的PDCCH占用资源。
  12. 如权利要求7-11任一项所述的装置,其特征在于,所述处理单元还用于:
    按照设定周期,在所述N个CRS合成波束中重新选择一个CRS合成波束作为所述第一波束。
  13. 一种波束合成装置,其特征在于,包括收发器、处理器、存储器和总线,收发器、处理器、存储器均与总线连接,其中,所述存储器中存储一组程序,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,该执行使得处理器执行如权利要求1-6任一项所述的方法。
PCT/CN2016/108056 2016-11-30 2016-11-30 一种波束合成方法及装置 WO2018098701A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680091199.0A CN109997315B (zh) 2016-11-30 2016-11-30 一种波束合成方法及装置
KR1020197016019A KR20190073547A (ko) 2016-11-30 2016-11-30 빔 형성 방법 및 장치
JP2019528886A JP2020511801A (ja) 2016-11-30 2016-11-30 ビームフォーミング方法および装置
PCT/CN2016/108056 WO2018098701A1 (zh) 2016-11-30 2016-11-30 一种波束合成方法及装置
EP16923105.7A EP3531575B1 (en) 2016-11-30 2016-11-30 Method and device for beamforming
US16/423,180 US10904892B2 (en) 2016-11-30 2019-05-28 Beamforming method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/108056 WO2018098701A1 (zh) 2016-11-30 2016-11-30 一种波束合成方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/423,180 Continuation US10904892B2 (en) 2016-11-30 2019-05-28 Beamforming method and apparatus

Publications (1)

Publication Number Publication Date
WO2018098701A1 true WO2018098701A1 (zh) 2018-06-07

Family

ID=62242036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108056 WO2018098701A1 (zh) 2016-11-30 2016-11-30 一种波束合成方法及装置

Country Status (6)

Country Link
US (1) US10904892B2 (zh)
EP (1) EP3531575B1 (zh)
JP (1) JP2020511801A (zh)
KR (1) KR20190073547A (zh)
CN (1) CN109997315B (zh)
WO (1) WO2018098701A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110089185A (zh) * 2016-12-20 2019-08-02 Oppo广东移动通信有限公司 用于传输数据的方法、终端设备和网络设备
WO2020187166A1 (zh) * 2019-03-15 2020-09-24 华为技术有限公司 用于获取波束权值的方法和装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10313070B2 (en) * 2016-11-03 2019-06-04 Futurewei Technologies, Inc. Fast millimeter-wave cell acquisition
WO2018164617A1 (en) * 2017-03-10 2018-09-13 Telefonaktiebolaget Lm Ericsson (Publ) Managing transmission of a cell-specific reference signal
EP3609088A1 (en) * 2018-08-06 2020-02-12 Intel Corporation Techniques for analog beamforming
US10652062B2 (en) * 2018-09-20 2020-05-12 Nokia Technologies Oy Configurable waveform for beyond 52.6GHz
US11646783B2 (en) * 2018-09-24 2023-05-09 Nxp Usa, Inc. Optimal beamforming in millimeter-wave cellular networks using a single composite random access preamble
KR20210088705A (ko) * 2018-11-16 2021-07-14 후아웨이 테크놀러지 컴퍼니 리미티드 통신 방법 및 장치
CN113315555B (zh) * 2020-02-27 2022-05-13 华为技术有限公司 一种波束赋形方法以及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101779387A (zh) * 2007-08-15 2010-07-14 高通股份有限公司 用于无线通信系统中的控制信息的波束成形的方法和装置
CN104885377A (zh) * 2012-12-21 2015-09-02 三星电子株式会社 在无线通信系统中通过波束成形发送和接收控制信道的方法和装置
CN105940616A (zh) * 2014-01-28 2016-09-14 三星电子株式会社 多天线通信系统的多级波束成形
CN105991175A (zh) * 2015-01-29 2016-10-05 电信科学技术研究院 一种导频信号的发送、接收处理方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9084238B2 (en) * 2011-09-12 2015-07-14 Blackberry Limited Searching space and operation for enhanced PDCCH in LTE systems
US10431888B2 (en) 2012-07-31 2019-10-01 Samsung Electronics Co., Ltd. Communication method and device using beamforming in wireless communication system
CN104412638B (zh) 2013-08-20 2019-09-03 华为技术有限公司 通信方法及装置
US9806926B2 (en) * 2013-11-04 2017-10-31 Samsung Electronics Co., Ltd. Multistage beamforming of multiple-antenna communication system
CN103825664B (zh) 2014-02-21 2016-05-18 电信科学技术研究院 信道状态信息测量方法和装置、以及信号传输方法和装置
CN105207705A (zh) * 2014-06-23 2015-12-30 北京三星通信技术研究有限公司 有源天线系统中的参考信号收发方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101779387A (zh) * 2007-08-15 2010-07-14 高通股份有限公司 用于无线通信系统中的控制信息的波束成形的方法和装置
CN104885377A (zh) * 2012-12-21 2015-09-02 三星电子株式会社 在无线通信系统中通过波束成形发送和接收控制信道的方法和装置
CN105940616A (zh) * 2014-01-28 2016-09-14 三星电子株式会社 多天线通信系统的多级波束成形
CN105991175A (zh) * 2015-01-29 2016-10-05 电信科学技术研究院 一种导频信号的发送、接收处理方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3531575A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110089185A (zh) * 2016-12-20 2019-08-02 Oppo广东移动通信有限公司 用于传输数据的方法、终端设备和网络设备
CN110089185B (zh) * 2016-12-20 2020-10-27 Oppo广东移动通信有限公司 用于传输数据的方法、终端设备和网络设备
WO2020187166A1 (zh) * 2019-03-15 2020-09-24 华为技术有限公司 用于获取波束权值的方法和装置
US11824615B2 (en) 2019-03-15 2023-11-21 Huawei Technologies Co., Ltd. Beam weight obtaining method and apparatus

Also Published As

Publication number Publication date
US10904892B2 (en) 2021-01-26
EP3531575A4 (en) 2019-09-18
US20190281607A1 (en) 2019-09-12
EP3531575A1 (en) 2019-08-28
CN109997315B (zh) 2021-02-09
KR20190073547A (ko) 2019-06-26
CN109997315A (zh) 2019-07-09
JP2020511801A (ja) 2020-04-16
EP3531575B1 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
WO2018098701A1 (zh) 一种波束合成方法及装置
US10985829B2 (en) Beam management systems and methods
WO2021022952A1 (zh) 信号传输的方法与装置
WO2019080119A1 (zh) 一种广播波束域调整方法及装置
WO2011088018A2 (en) A ue initiated frequency partitioning based comp scheme for downlink cellular communications
WO2017167503A1 (en) Dynamic time division duplex interference mitigation in a wireless network
WO2018095305A1 (zh) 一种波束训练方法及装置
KR20200105895A (ko) 빔 선택 우선 순위
CN107395332B (zh) 一种cqi确定方法、用户设备和基站
CA3066297A1 (en) Signal processing method and apparatus
CN113424459A (zh) 用于设备通信的波束管理方法和装置
TWI508608B (zh) 處理無線通訊系統中波束成形回傳的方法及其通訊裝置
CN114342283A (zh) 参考信号的发射受限传输
WO2014055761A2 (en) Adaptive channel estimation for coordinated multipoint cellular communication
JP2017536058A (ja) セル間に干渉が存在する場合のネットワーク支援型パラメータ推定
US11323160B2 (en) Link adaptation correction for low latency MU-MIMO
JP2019503121A (ja) 共通セルネットワークにおけるマルチアンテナ伝送方法、及び基地局
WO2018040858A1 (zh) 波束选择方法及装置
CN116615893A (zh) 下行链路mu-mimo传送中的码本和pmi覆写
CN110268740B (zh) 一种波束避让方法及基站
CN115053464B (zh) 多个传输点下的波束选择
US20230379021A1 (en) System and methods for configurable eirp restriction
US20130083738A1 (en) Method and apparatus for modifying resource allocation
WO2021062614A1 (en) Method and network device for beam vector selection
WO2024087120A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528886

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197016019

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016923105

Country of ref document: EP

Effective date: 20190523