WO2022237664A1 - 整平装置、整平机器人和整平装置的施工方法 - Google Patents

整平装置、整平机器人和整平装置的施工方法 Download PDF

Info

Publication number
WO2022237664A1
WO2022237664A1 PCT/CN2022/091345 CN2022091345W WO2022237664A1 WO 2022237664 A1 WO2022237664 A1 WO 2022237664A1 CN 2022091345 W CN2022091345 W CN 2022091345W WO 2022237664 A1 WO2022237664 A1 WO 2022237664A1
Authority
WO
WIPO (PCT)
Prior art keywords
construction
leveling
point
leveling device
mobile chassis
Prior art date
Application number
PCT/CN2022/091345
Other languages
English (en)
French (fr)
Inventor
肖翔伟
翁昌威
刘季
贺志武
Original Assignee
广东博智林机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东博智林机器人有限公司 filed Critical 广东博智林机器人有限公司
Publication of WO2022237664A1 publication Critical patent/WO2022237664A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/10Devices for levelling, e.g. templates or boards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present application relates to construction technology, for example, to a leveling device, a leveling robot and a construction method of the leveling device.
  • the leveling device in the related art usually has problems such as inaccurate movement path and low operation coverage due to the complex environment of the construction site when performing construction tasks, and also requires manual assistance, which is prone to problems caused by unreliable construction control. There are problems such as omissions or construction errors in construction operations, which affect the reliability of the construction of the leveling device.
  • the present application provides a leveling device, a leveling robot and a construction method of the leveling device, which can improve construction accuracy and efficiency.
  • an embodiment of the present application provides a leveling device, including: a mobile chassis; a leveling actuator; a main control module, arranged on the mobile chassis; the main control module includes a positioning unit and a control unit; the positioning unit is The satellite positioning unit is set for the real-time position of the satellite positioning leveling device and generates real-time position information, the positioning unit, the mobile chassis and the leveling actuator are respectively electrically connected to the control unit; the control unit is set to receive construction tasks, and the construction tasks include For the construction path, the control unit is set to control the movement of the mobile chassis according to the construction path and real-time position information, and is also set to control the working state of the leveling actuator when the mobile chassis moves to a predetermined position on the construction path.
  • an embodiment of the present application further provides a leveling robot, including the leveling device as described in the first aspect.
  • an embodiment of the present application also provides a construction method of a leveling device, the construction method is executed by the control unit as described in the first aspect, and the construction method includes: receiving a construction task; wherein, the construction task includes a construction path ; and according to the real-time position information generated by the construction path and the positioning unit, control the movement of the mobile chassis, and control the working state of the leveling actuator when the mobile chassis moves to the predetermined position of the construction path.
  • Fig. 1 is a schematic structural view of a leveling device provided in Embodiment 1 of the present application;
  • Fig. 2 is a schematic structural view of a leveling device under construction provided in Embodiment 1 of the present application;
  • Fig. 3 is a schematic structural view of a leveling device provided in Embodiment 1 of the present application in a non-construction state;
  • Fig. 4 is a flowchart of a construction method of a leveling device provided in Embodiment 2 of the present application;
  • Fig. 5 is a flow chart of a method for refining step 120 in Fig. 4;
  • FIG. 6 is a schematic structural diagram of a construction path provided in Embodiment 2 of the present application.
  • FIG 1 is a schematic structural view of a leveling device provided in Embodiment 1 of the present application. This embodiment is applicable to leveling concrete on a construction site, etc.
  • the leveling device includes: a mobile chassis 10, a leveling actuator 20 And the main control module 30.
  • the main control module 30 is arranged on the mobile chassis 10; the main control module 30 includes a positioning unit and a control unit (not shown in the figure); the positioning unit is a satellite positioning unit for the real-time position of the satellite positioning leveling device, and Generating real-time position information, the positioning unit, the mobile chassis 10 and the leveling actuator 20 are electrically connected to the control unit respectively; the control unit is set to receive construction tasks, and the construction tasks include construction paths, and the control unit is set to, according to the construction path and real-time position information, The movement of the mobile chassis 10 is controlled, and the working state of the leveling actuator 20 is controlled when the mobile chassis 10 moves to a predetermined position on the construction path.
  • the positioning unit is a satellite positioning unit for the real-time position of the satellite positioning leveling device, and Generating real-time position information, the positioning unit, the mobile chassis 10 and the leveling actuator 20 are electrically connected to the control unit respectively; the control unit is set to receive construction tasks, and the construction tasks include construction paths, and the control unit is set to
  • the leveling device when the leveling device needs to perform a construction task, the leveling device starts up, completes the self-inspection, and automatically switches to the lifting state.
  • the satellite positioning unit locates the real-time position of the leveling device through the satellite, and the control unit receives the construction task.
  • the construction task includes the construction path.
  • the control unit can compare the real-time position information with the starting point of the construction path, and automatically generate a path to control the mobile chassis. 10Move to the starting point of the construction path.
  • the satellite positioning unit performs satellite positioning on the position of the leveling device in real time, and the control unit determines that the leveling device deviates from the set path according to the satellite positioning data, that is, the real-time position information, and controls the mobile chassis 10 to correct the deviation.
  • the control unit controls the working state of the leveling actuator 20 according to the construction path and real-time position information, such as when the mobile chassis 10 moves to the starting point of the construction path, controls the leveling actuator 20 to be in the construction state, and controls the mobile chassis 10 During the movement from the starting point to the ending point of the construction path, the control unit controls the leveling actuator 20 to maintain the construction state, so that the leveling device can be reliably constructed.
  • the control unit determines that the mobile chassis 10 has moved to the end point of the construction path according to the real-time position information, that is, the satellite positioning data, it controls the leveling actuator 20 to switch to the non-construction state to end the construction.
  • the control unit can directly control the leveling device to carry out the construction of the specified path, which solves the problem of navigation difficulties in the complex environment of the construction site. Difficulty of work.
  • the control unit combines the real-time location information with the construction route, and accurately controls the construction route by comparing the real-time satellite positioning data with the construction route, improving the construction accuracy and efficiency.
  • the leveling device uses the satellite positioning unit to position the real-time position of the leveling device, and receives the construction tasks through the control unit.
  • the construction tasks include the construction path
  • the control unit controls the movement of the mobile chassis according to the construction path and real-time position information.
  • the control unit controls the working state of the leveling actuator according to the construction task and real-time position information.
  • satellite positioning data that is, real-time position information
  • the leveling device can be directly controlled to carry out the construction of the specified path, which solves the problem of navigation difficulties in the complex environment of the construction site.
  • the high-precision positioning information solves the problem of full-automatic and high-precision work of the leveling device. difficulty.
  • the control unit combines the real-time location information with the construction route, and accurately controls the construction route through the comparison of the real-time satellite positioning data and the construction route, improving the construction accuracy and efficiency.
  • the leveling actuator 20 includes a vibrating plate 21, a scraper 22, a vibrating motor 23 and an electric push rod, the vibrating motor 23 is arranged on the vibrating plate 21, and the electric push rod and the scraping The plate 22 is connected, and the vibrating motor 23 and the electric push rod are respectively connected with the control unit;
  • the control unit can control the vibration motor to drive the vibrating plate 21 to work according to the construction task and real-time position information, and the leveling device performs vibration through the vibrating plate 21 and the scraper 22. Pounding, scraping and equal work.
  • the leveling device further includes a connecting frame 50 , the leveling actuator 20 is hinged to the first end of the connecting frame 50 , and the second end of the connecting frame 50 is hinged to the main control module 30 .
  • Fig. 2 is a schematic structural view of a leveling device provided in Embodiment 1 of the present application in a construction state. With reference to Fig.
  • FIG. 3 is a schematic structural view of a leveling device provided in Embodiment 1 of the present application in a non-construction state. Referring to FIG. 3 , the leveling device is lifted, and the leveling device does not perform construction tasks at this time.
  • the above-mentioned leveling device further includes a laser receiver 40, the laser receiver 40 is arranged at both ends of the scraper 22, and is electrically connected to the control unit; the laser receiver 40 is configured to receive the elevation information of the scraper 22, And send the elevation information to the control unit.
  • the laser receiver 40 can receive the laser emitted by the laser transmitter, and the laser transmitter can be installed on the construction site, and the laser receiver 40 can determine the elevation information of the scraper 22 according to the received laser light, and send the elevation information to the control unit.
  • the control unit can control the electric push rod to adjust the height of both ends of the scraper 22 according to the elevation information, so that the heights of both ends of the scraper are the same to ensure that the scraper 22 can work reliably.
  • An embodiment of the present application also provides a leveling robot, the leveling robot includes the leveling device described in any embodiment of the present application, and has the corresponding beneficial effects of the leveling device described in any embodiment of the present application. This will not be repeated here.
  • Fig. 4 is a flow chart of a construction method of a leveling device provided in Embodiment 2 of the present application. This embodiment can be applied to aspects such as leveling the concrete on a construction site.
  • the construction method is controlled by any embodiment of the present application. Unit execution, including the following steps:
  • Step 110 receiving a construction task; wherein, the construction task includes a construction path.
  • the leveling device when the leveling device needs to perform a construction task, the leveling device starts up, completes the self-inspection, and automatically switches to the lifting state.
  • the control unit of the leveling device receives construction tasks, and there may be one or more construction paths in the construction tasks, and the control unit can control the leveling device to perform specific construction tasks according to the construction paths.
  • Step 120 Control the movement of the mobile chassis according to the real-time position information generated by the construction path and the positioning unit, and control the working state of the leveling actuator when the mobile chassis moves to a predetermined position on the construction path.
  • control unit can compare the real-time location information with the starting point of the construction path, and automatically generate a path to control the mobile chassis to move to the starting point of the construction path.
  • the satellite positioning unit performs satellite positioning on the position of the leveling device in real time, and the control unit determines that the leveling device deviates from the set path according to the satellite positioning data, that is, the real-time position information, and controls the mobile chassis to correct the deviation.
  • the control unit controls the working state of the leveling actuator according to the construction path and real-time position information. For example, when the mobile chassis moves to the starting point of the construction path, the leveling actuator is controlled to be in the construction state, and the mobile chassis is controlled by the construction path.
  • the control unit controls the leveling actuator to maintain the construction state, so that the leveling device can be reliably constructed.
  • the control unit determines that the mobile chassis has moved to the end point of the construction path according to the real-time position information, that is, the satellite positioning data
  • the control unit controls the leveling actuator to be in a lifted state to end the construction.
  • satellite positioning data that is, real-time position information
  • the control unit can directly control the leveling device to carry out the construction of the specified path, which solves the problem of navigation difficulties in the complex environment of the construction site. Difficulty of work.
  • the control unit combines the real-time location information with the construction route, and accurately controls the construction route by comparing the real-time satellite positioning data with the construction route, improving the construction accuracy and efficiency.
  • Fig. 5 is a flow chart of a method for refining step 120 in Fig. 4, and Fig. 6 is a structural schematic diagram of a construction route provided in Embodiment 2 of the present application, the construction route includes successively passing through the first point, the starting point, the ending point and Second point. As shown in Figure 5, control the working status of the leveling actuator, including:
  • Step 121 according to the construction path and real-time location information, control the mobile chassis to move to the first point of the construction path, and control the leveling actuator to descend after the leveling device reaches the first point.
  • A-D-B-C as shown in FIG. 6 represents the wall surface of a construction area
  • the path b ⁇ a is the driving path of the leveling device to complete the construction of this part.
  • the driving path will be longer than the actual construction part.
  • Figure 6 shows three paths ab, cd and ef
  • the path ab includes the first point b1, the starting point b2, the end point a2 and the second point a1 passed through in sequence
  • the path cd includes the first point d1, the starting point d2, the end point c2 and the second point c1
  • the route ef includes the first point f1, the starting point f2, the ending point e2 and the second point e1 which pass through in sequence.
  • the construction path is matched with the satellite positioning unit, and has corresponding satellite positioning coordinate data.
  • the control unit can control the mobile chassis to move from point a to point b according to the construction path and real-time location information, or move to point b by other paths, and then move from point b to point a.
  • the leveling device passes through the first point b1, the starting point b2, the ending point a2 and the second point a1 in sequence. After reaching the first point b1, the leveling actuator is controlled to descend, even if the leveling The device is in a pre-construction state, ready for construction.
  • the distance between the two can be positive, negative or 0, and the same is true for b1 and b2.
  • the distance between the two can be set according to the requirements of the construction process.
  • the lowering point of the leveling head that is, the first point b1 is reached before the construction start point, that is, the starting point b2, point b may coincide with the first point b1, and the lifting point of the leveling head, that is, the second point a1, is after the end point a2 Arrived, point a can coincide with the second point a1.
  • the control unit controls the working state of the leveling actuator to remain unchanged, that is, it does not It will trigger the switching of the working state to prevent false triggering. For example, by adding the current travel judgment, only when the travel direction is consistent with the direction of the leveling actuator, will the working effects of the first point b1 and the starting point b2 be triggered; or add odometer information for filtering.
  • Step 122 Control the mobile chassis to move from the first point to the starting point, and after the leveling device reaches the starting point, control the leveling actuator to switch to the construction state.
  • the control unit controls the mobile chassis to move from the first point b1 to the starting point b2. After the leveling device reaches the starting point b2, the control unit controls the leveling actuator to switch to the construction state. As shown in Figure 2, the leveling actuator is in the construction state, and the leveling device starts to scrape, vibrate, and carry out construction.
  • Step 123 Control the mobile chassis to move from the starting point to the ending point, and after the leveling device reaches the ending point, control the leveling actuator to switch to the non-construction state.
  • the leveling device during the movement of the mobile chassis from the starting point to the end point, the leveling device is in the construction state, that is, it is always under construction. After the leveling device reaches the end point, the control unit controls the leveling actuator to switch to the non-construction state , so that the leveling device can finish construction.
  • Step 124 control the mobile chassis to move from the end point to the second point, and control the leveling actuator to lift up after the leveling device reaches the second point.
  • the control unit controls the mobile chassis to move from the end point a2 to the second point a1.
  • the control unit controls the leveling actuator to switch to the lifting state.
  • the leveling actuator is in a non-construction state, and the leveling device is lifted to stop construction.
  • the leveling device can continue to advance to point a to complete the traveling path.
  • the mobile chassis is controlled to move from the end point of the completed construction path to the start point of another construction path.
  • the leveling device is controlled to perform the operation tasks of each construction path in sequence until the operation tasks of each construction path are completed.
  • the leveling device can perform the tasks of paths ab, cd, and ef in sequence.
  • the leveling device usually turns from point a in situ and moves forward to point c, and then moves from point c to point d to start the operation (The operation process of the path cd can refer to the path ab).
  • the operation sequence of each construction path can be set according to actual construction requirements, and is not limited here.
  • the construction method of the leveling device provided in this embodiment belongs to the same inventive concept as the leveling device provided in any embodiment of the present application, and has corresponding beneficial effects. Please refer to any embodiment of the application for detailed technical details not described in this embodiment. Supplied leveling device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

一种整平装置、整平机器人和整平装置的施工方法,该整平装置包括:移动底盘;整平执行机构;主控模块,设置在移动底盘上;主控模块包括定位单元和控制单元;定位单元为卫星定位单元,设置为供卫星定位整平装置的实时位置,定位单元、移动底盘和整平执行机构分别与控制单元电连接;控制单元设置为接收施工任务,施工任务包括施工路径,控制单元设置为根据施工路径与实时位置信息,控制移动底盘移动,且还设置为在移动底盘移动至施工路径的预定位置时,控制整平执行机构的工作状态。

Description

整平装置、整平机器人和整平装置的施工方法
本申请要求申请日为2021年5月14日、申请号为202110528628.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及建筑技术,例如涉及一种整平装置、整平机器人和整平装置的施工方法。
背景技术
随着科技的进步和发展,面向建筑工地的专业工程机器人也正在蓬勃发展。由于建筑工地现场环境恶劣,干扰因素多,建筑机器人实际应用中面临很大挑战。其中混凝土整平装置需要在捆扎好的钢筋、刚浇筑的混凝土上运动、施工,机器人真正的实现全自动工作还面临很大的挑战。
相关技术中的整平装置,通常在执行施工等作业任务时,由于工地环境复杂,存在运动路径不精确、作业覆盖率低等问题,并且还需要人工辅助,容易出现因施工控制不可靠而造成施工作业出现遗漏或施工错误等问题,影响整平装置施工的可靠性。
发明内容
本申请提供了一种整平装置、整平机器人和整平装置的施工方法,能够提高施工精度与效率。
第一方面,本申请一实施例提供了一种整平装置,包括:移动底盘;整平执行机构;主控模块,设置在移动底盘上;主控模块包括定位单元和控制单元;定位单元为卫星定位单元,设置为供卫星定位整平装置的实时位置,并生成实时位置信息,定位单元、移动底盘和整平执行机构分别与控制单元电连接;控制单元设置为接收施工任务,施工任务包括施工路径,控制单元设置为根据施工路径与实时位置信息,控制移动底盘移动,且还设置为在移动底盘移动至施工路径的预定位置时,控制整平执行机构的工作状态。
第二方面,本申请一实施例还提供了一种整平机器人,包括如第一方面所述的整平装置。
第三方面,本申请一实施例还提供了一种整平装置的施工方法,施工方法由如第一方面所述的控制单元执行,施工方法包括:接收施工任务;其中,施工任务包括施工路径;及根据施工路径与定位单元生成的实时位置信息,控制移动底盘移动,并在移动底盘移动至施工路径的预定位置时,控制整平执行机构的工作状态。
附图说明
图1是本申请实施例一提供的一种整平装置的结构示意图;
图2是本申请实施例一提供的一种整平装置处于施工状态的结构示意图;
图3是本申请实施例一提供的一种整平装置处于非施工状态的结构示意图;
图4是本申请实施例二提供的一种整平装置的施工方法的流程图;
图5是对图4中步骤120进行细化的方法流程图;
图6是本申请实施例二提供的一种施工路径的结构示意图。
具体实施方式
实施例一
图1是本申请实施例一提供的一种整平装置的结构示意图,本实施例可适用于对建筑工地的混凝土进行整平等方面,该整平装置包括:移动底盘10、整平执行机构20和主控模块30。
其中,主控模块30设置在移动底盘10上;主控模块30包括定位单元和控制单元(图中未示出);定位单元为卫星定位单元,用于卫星定位整平装置的实时位置,并生成实时位置信息,定位单元、移动底盘10和整平执行机构20分别与控制单元电连接;控制单元设置为接收施工任务,施工任务包括施工路径,控制单元设置为根据施工路径与实时位置信息,控制移动底盘10移动,在移动底盘10移动至施工路径的预定位置时,控制整平执行机构20的工作状态。
在一实施例中,当整平装置需要执行施工任务时,整平装置启动,完成自检,并自动切换至抬起状态。卫星定位单元通过卫星定位整平装置的实时位置,控制单元接收施工任务,施工任务包括施工路径,控制单元可将实时位置信息与施工路径的起始点进行比对,自动生成路径,以控制移动底盘10移动至施工路径的起始点。在移动底盘10移动过程中,卫星定位单元实时对整平装置的位 置进行卫星定位,控制单元根据卫星定位数据即实时位置信息,确定整平装置偏离设定路径时,控制移动底盘10进行纠偏。控制单元根据施工路径与实时位置信息,控制整平执行机构20的工作状态,如在移动底盘10移动至施工路径的起始点时,控制整平执行机构20为施工状态,并在控制移动底盘10由施工路径的起始点至结束点移动过程中,控制单元控制整平执行机构20保持施工状态,以使整平装置可靠地施工。
并且,控制单元根据实时位置信息即卫星定位数据,确定移动底盘10移动至施工路径的结束点后,控制整平执行机构20切换至非施工状态,以结束施工。通过卫星定位数据即实时位置信息,控制单元可直接控制整平装置进行指定路径的施工,解决了工地复杂环境下的导航困难问题,高精度的定位信息解决了整平装置全自动工作、高精度工作的难点。且控制单元将实时位置信息与施工路径结合,通过实时卫星定位数据与施工路径的比对,对施工路径进行准确的把控,提高施工精度与效率。
本实施例提供的整平装置,通过卫星定位单元卫星定位整平装置的实时位置,并通过控制单元接收施工任务,施工任务包括施工路径,控制单元根据施工路径与实时位置信息,控制移动底盘移动,在移动底盘移动至施工路径的预定位置时,控制单元根据施工任务与实时位置信息控制整平执行机构的工作状态。通过卫星定位数据即实时位置信息,可直接控制整平装置进行指定路径的施工,解决了工地复杂环境下的导航困难问题,高精度的定位信息解决了整平装置全自动工作、高精度工作的难点。并且,控制单元将实时位置信息与施工路径结合,通过实时卫星定位数据与施工路径的比对,对施工路径进行准确的把控,提高施工精度与效率。
继续参考图1,在一实施例中,整平执行机构20包括振捣板21、刮板22、振动电机23和电动推杆,振动电机23设置在振捣板21上,电动推杆与刮板22连接,振动电机23和电动推杆分别与控制单元连接;控制单元设置为通过振动电机23控制振捣板21的工作状态,并控制电动推杆调整刮板22的高度。
在一实施例中,在整平装置执行施工任务时,控制单元可根据施工任务与实时位置信息,控制振动电机带动振捣板21工作,整平装置通过振捣板21和刮板22执行振捣、刮平等工作。整平装置还包括连接架50,整平执行机构20与连接架50的第一端铰接,连接架50第二端与主控模块30铰接。图2是本申请实施例一提供的一种整平装置处于施工状态的结构示意图,参考图2,整平装置的振捣 板21和刮板22工作,整平装置处于施工状态。图3是本申请实施例一提供的一种整平装置处于非施工状态的结构示意图,参考图3,整平装置抬起,此时整平装置不执行施工任务。
在一实施例中,上述整平装置还包括激光接收器40,激光接收器40设置在刮板22的两端,与控制单元电连接;激光接收器40设置为接收刮板22的高程信息,并将高程信息发送至控制单元。
其中,激光接收器40可接收激光发射器发射的激光,激光发射器可设置在施工场地,激光接收器40可根据接收的激光确定刮板22的高程信息,并将高程信息发送至控制单元。控制单元可根据高程信息控制电动推杆调整刮板22两端的高度,以使得刮板两端的高度相同,保证刮板22能够可靠工作。
本申请一实施例还提供了一种整平机器人,该整平机器人包括如本申请任意实施例所述的整平装置,具备本申请任意实施例所述的整平装置相应的有益效果,在此不再赘述。
实施例二
图4是本申请实施例二提供的一种整平装置的施工方法的流程图,本实施例可适用于对建筑工地的混凝土进行整平等方面,该施工方法由本申请任意实施例所述的控制单元执行,包括如下步骤:
步骤110、接收施工任务;其中,施工任务包括施工路径。
在一实施例中,当整平装置需要执行施工任务时,整平装置启动,完成自检,并自动切换至抬起状态。整平装置的控制单元接收施工任务,施工任务中的施工路径可以是一条或多条,控制单元可根据施工路径控制整平装置执行具体的施工任务。
步骤120、根据施工路径与定位单元生成的实时位置信息,控制移动底盘移动,在移动底盘移动至施工路径的预定位置时,控制整平执行机构的工作状态。
其中,控制单元可将实时位置信息与施工路径的起始点进行比对,自动生成路径,以控制移动底盘移动至施工路径的起始点。在移动底盘移动过程中,卫星定位单元实时对整平装置的位置进行卫星定位,控制单元根据卫星定位数据即实时位置信息,确定整平装置偏离设定路径时,控制移动底盘进行纠偏。控制单元根据施工路径与实时位置信息,控制整平执行机构的工作状态,如在移动底盘移动至施工路径的起始点时,控制整平执行机构为施工状态,并在控 制移动底盘由施工路径的起始点至结束点移动过程中,控制单元控制整平执行机构保持施工状态,以使整平装置可靠地施工。并且,控制单元根据实时位置信息即卫星定位数据,确定移动底盘移动至施工路径的结束点后,控制整平执行机构为抬起状态,以结束施工。通过卫星定位数据即实时位置信息,控制单元可直接控制整平装置进行指定路径的施工,解决了工地复杂环境下的导航困难问题,高精度的定位信息解决了整平装置全自动工作、高精度工作的难点。且控制单元将实时位置信息与施工路径结合,通过实时卫星定位数据与施工路径的比对,对施工路径进行准确的把控,提高施工精度与效率。
图5是对图4中步骤120进行细化的方法流程图,图6是本申请实施例二提供的一种施工路径的结构示意图,施工路径包括依次经过第一点、起始点、结束点和第二点。如图5所示,控制整平执行机构的工作状态,包括:
步骤121、根据施工路径和实时位置信息,控制移动底盘移动至施工路径的第一点,整平装置到达第一点后,控制整平执行机构下降。
示例性地,如图6中所示A-D-B-C表示一个施工区域的墙面,路径b→a为整平装置完成该部分施工的行驶路径,一般地该行驶路径会长于实际施工部分。图6示出了三条路径ab、cd和ef,路径ab包括依次经过的第一点b1、起始点b2、结束点a2和第二点a1,路径cd包括依次经过的第一点d1、起始点d2、结束点c2和第二点c1,路径ef包括依次经过的第一点f1、起始点f2、结束点e2和第二点e1。施工路径与卫星定位单元匹配,具有对应的卫星定位坐标数据。以路径ab为例,控制单元可根据施工路径和实时位置信息,控制移动底盘由a点移动至b点,也可由其它路径向b点移动,再由b点向a点移动。由b点向a点移动过程中,整平装置依次经过第一点b1、起始点b2、结束点a2和第二点a1,到达第一点b1后,控制整平执行机构下降,即使整平装置为预备施工状态,以为施工做准备。
另外,值得注意的是,第二点a1、结束点a2之间并没有任何距离前后关系要求,两者之间距离可以为正、负或0,同样的b1、b2也是如此。两者的距离可以根据施工工艺的要求进行设定。在一实施例中,整平头下降点即第一点b1在施工开始点即起始点b2之前到达,b点可与第一点b1重合,整平头提起点即第二点a1在结束点a2之后到达,a点可与第二点a1重合。整平装置在施工前,若由结束点向起始点移动,则整平装置由结束点至起始点的运行过程中,并非作业结束,控制单元控制整平执行机构的工作状态不变,即不会触发工作状态的切换,防止误触发。例如加入当前行进判断,只有行进方向与整平执行机构方向一致 时,才会触发第一点b1、起始点b2的工作效果;或者添加里程计信息进行滤波。
步骤122、控制移动底盘由第一点移动至起始点,整平装置到达起始点后,控制整平执行机构切换至施工状态。
在一实施例中,以路径ab为例,控制单元控制移动底盘由第一点b1移动至起始点b2。整平装置到达起始点b2后,控制单元控制整平执行机构切换至施工状态。如图2所示,整平执行机构为施工状态,整平装置开始刮平、振捣,进行施工。
步骤123、控制移动底盘由起始点移动至结束点,整平装置到达结束点后,控制整平执行机构切换至非施工状态。
在一实施例中,移动底盘由起始点至结束点移动过程中,整平装置处于施工状态,即一直在施工,整平装置到达结束点后,控制单元控制整平执行机构切换至非施工状态,以使整平装置结束施工。
步骤124、控制移动底盘由结束点移动至第二点,整平装置到达第二点后,控制整平执行机构抬起。
在一实施例中,以路径ab为例,控制单元控制移动底盘由结束点a2移动至第二点a1。整平装置到达第二点a1后,控制单元控制整平执行机构切换至抬起状态。如图3所示,整平执行机构非施工状态,整平装置抬起,以不再施工。整平装置可继续行进至a点,完成该道行驶路径。
在一实施例中,施工路径为多条,当整平装置执行完一条施工路径的作业任务,控制移动底盘由完成作业的施工路径的结束点移动至另一条施工路径的起始点。控制整平装置依次执行每条施工路径的作业任务,直至每条施工路径的作业任务执行完成。如图6所示,整平装置可依次执行路径ab、cd、ef的作业任务,整平装置通常由a点原地转向并向前移动到c点,再从c点移动到d点开始作业(路径cd的作业过程可参照路径ab)。每条施工路径的作业顺序可根据实际施工需求设定,在此不做限定。
本实施例提供的整平装置的施工方法与本申请任意实施例提供的整平装置属于相同的发明构思,具备相应的有益效果,未在本实施例详尽的技术细节详见本申请任意实施例提供的整平装置。

Claims (10)

  1. 一种整平装置,包括:
    移动底盘;
    整平执行机构;
    主控模块,设置在所述移动底盘上;所述主控模块包括定位单元和控制单元;所述定位单元为卫星定位单元,设置为供卫星定位所述整平装置的实时位置,并生成实时位置信息,所述定位单元、所述移动底盘和所述整平执行机构分别与所述控制单元电连接;所述控制单元设置为接收施工任务,施工任务包括施工路径,所述控制单元设置为根据所述施工路径与所述实时位置信息,控制所述移动底盘移动,且还设置为在所述移动底盘移动至所述施工路径的预定位置时,控制所述整平执行机构的工作状态。
  2. 根据权利要求1所述的整平装置,其中,所述整平执行机构包括振捣板、刮板、振动电机和电动推杆,所述振动电机设置在所述振捣板上,所述电动推杆与所述刮板连接,所述振动电机和所述电动推杆分别与所述控制单元连接;所述控制单元设置为通过所述振动电机控制所述振捣板的工作状态,并控制所述电动推杆调整所述刮板的高度。
  3. 根据权利要求2所述的整平装置,还包括激光接收器,所述激光接收器设置在所述刮板的两端,与所述控制单元电连接;所述激光接收器设置为接收所述刮板的高程信息,并将所述高程信息发送至所述控制单元。
  4. 一种整平机器人,包括如权利要求1-3任一项所述的整平装置。
  5. 一种整平装置的施工方法,所述施工方法由如权利要求1-3任一所述的控制单元执行,所述施工方法包括:
    接收施工任务;其中,所述施工任务包括施工路径;及
    根据所述施工路径与定位单元生成的实时位置信息,控制移动底盘移动,并在所述移动底盘移动至所述施工路径的预定位置时,控制整平执行机构的工作状态。
  6. 根据权利要求5所述的整平装置的施工方法,其中,所述施工路径包括依次经过的第一点、起始点、结束点和第二点,所述控制整平执行机构的工作状态,包括:
    根据所述施工路径和所述实时位置信息,控制所述移动底盘移动至所述施工路径的第一点,且在所述整平装置到达所述第一点后,控制所述整平执行机构下降;
    控制所述移动底盘由所述第一点移动至所述起始点,且在所述整平装置到达所述起始点后,控制所述整平执行机构切换至施工状态;
    控制所述移动底盘由所述起始点移动至所述结束点,且在所述整平装置到达所述结束点后,控制所述整平执行机构切换至非施工状态;及
    控制所述移动底盘由所述结束点移动至所述第二点,且在所述整平装置到达所述第二点后,控制所述整平执行机构抬起。
  7. 根据权利要求6所述的整平装置的施工方法,其中,所述控制所述移动底盘移动至所述施工路径的第一点,包括:
    控制所述移动底盘移动至所述施工路径的第二点,并由所述第二点移动至所述第一点。
  8. 根据权利要求7所述的整平装置的施工方法,还包括:
    所述整平装置由所述结束点至所述起始点的运行过程中,控制所述整平执行机构的工作状态不变。
  9. 根据权利要求5所述的整平装置的施工方法,其中,所述施工路径为多条,所述控制整平执行机构的工作状态,包括:
    当所述整平装置执行完一条施工路径的作业任务时,控制所述移动底盘由完成作业的施工路径的结束点移动至另一条施工路径的起始点。
  10. 根据权利要求9所述的整平装置的施工方法,其中,所述控制整平执行机构的工作状态,包括:
    控制所述整平装置依次执行每条施工路径的作业任务,直至每条施工路径的作业任务执行完成。
PCT/CN2022/091345 2021-05-14 2022-05-07 整平装置、整平机器人和整平装置的施工方法 WO2022237664A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110528628.9 2021-05-14
CN202110528628.9A CN115341765A (zh) 2021-05-14 2021-05-14 一种整平装置、整平机器人和整平装置的施工方法

Publications (1)

Publication Number Publication Date
WO2022237664A1 true WO2022237664A1 (zh) 2022-11-17

Family

ID=83947326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091345 WO2022237664A1 (zh) 2021-05-14 2022-05-07 整平装置、整平机器人和整平装置的施工方法

Country Status (2)

Country Link
CN (1) CN115341765A (zh)
WO (1) WO2022237664A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9481964B1 (en) * 2015-08-25 2016-11-01 Caterpillar Paving Products Inc. System for communications between plant and machines
CN107390692A (zh) * 2017-07-31 2017-11-24 山东四维卓识信息技术有限公司 一种无人驾驶控制方法以及基于无人驾驶控制方法的土石方压实施工方法
CN110565964A (zh) * 2019-08-26 2019-12-13 广东博智林机器人有限公司 整平装置及具有其的整平机器人
JP2020060021A (ja) * 2018-10-09 2020-04-16 大成建設株式会社 自動均し作業ロボット
CN111321900A (zh) * 2020-03-04 2020-06-23 广东博智林机器人有限公司 一种整平抹平装置及整平抹平机器人
CN111677284A (zh) * 2020-06-16 2020-09-18 广东博智林机器人有限公司 一种布料机、建筑施工系统及其控制方法
CN112012081A (zh) * 2020-08-19 2020-12-01 广东博智林机器人有限公司 地面整平机
CN112162556A (zh) * 2020-09-25 2021-01-01 广东博智林机器人有限公司 导航方法、整平机器人、存储介质、处理器及导航系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201785694U (zh) * 2010-09-10 2011-04-06 张晓军 混凝土激光整平机
US9200415B2 (en) * 2013-11-19 2015-12-01 Caterpillar Paving Products Inc. Paving machine with automatically adjustable screed assembly
CN104929018B (zh) * 2015-07-15 2017-05-03 合肥工业大学 一种用于计算压路机施工次数的方法
CN107558716B (zh) * 2017-09-05 2020-04-28 上海捷舟工程机械有限公司 一种整平机头、激光混凝土整平机及其整平施工方法
CN109597404A (zh) * 2017-09-30 2019-04-09 徐工集团工程机械股份有限公司 压路机及其控制器、控制方法和系统
CN108442214B (zh) * 2018-03-22 2024-01-16 四川川交路桥有限责任公司 一种无人驾驶压路机
CN212535114U (zh) * 2020-05-26 2021-02-12 广东博智林机器人有限公司 一种整平设备及整平机器人

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9481964B1 (en) * 2015-08-25 2016-11-01 Caterpillar Paving Products Inc. System for communications between plant and machines
CN107390692A (zh) * 2017-07-31 2017-11-24 山东四维卓识信息技术有限公司 一种无人驾驶控制方法以及基于无人驾驶控制方法的土石方压实施工方法
JP2020060021A (ja) * 2018-10-09 2020-04-16 大成建設株式会社 自動均し作業ロボット
CN110565964A (zh) * 2019-08-26 2019-12-13 广东博智林机器人有限公司 整平装置及具有其的整平机器人
CN111321900A (zh) * 2020-03-04 2020-06-23 广东博智林机器人有限公司 一种整平抹平装置及整平抹平机器人
CN111677284A (zh) * 2020-06-16 2020-09-18 广东博智林机器人有限公司 一种布料机、建筑施工系统及其控制方法
CN112012081A (zh) * 2020-08-19 2020-12-01 广东博智林机器人有限公司 地面整平机
CN112162556A (zh) * 2020-09-25 2021-01-01 广东博智林机器人有限公司 导航方法、整平机器人、存储介质、处理器及导航系统

Also Published As

Publication number Publication date
CN115341765A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
JP6424238B2 (ja) 作業機械の操作システム
US7844379B2 (en) Intelligent boom control device
US20130103247A1 (en) Apparatus and Method for Controlling Work Trajectory of Construction Equipment
CA2765142C (en) Determination of routes for arranging automatic control of mobile mining machine
CN102629122B (zh) 一种大行程高速双重驱动纳米定位系统
CN104889986A (zh) 机器人控制装置
CN109467010B (zh) 用于借助起重机移动负载的方法
CN110054084B (zh) 一种多机械臂行吊系统及其控制方法和故障处理方法
JP6684442B2 (ja) 懸垂式クレーンの制御方法及び制御装置
JP5608074B2 (ja) レーザ加工システム及びその制御方法
SE1650806A1 (en) Improved arrangement and method for operating a hydraulically operated boom carrying a tool
CN110747933A (zh) 挖掘机自主移动作业控制方法和系统
WO2020049809A1 (ja) モーション制御装置、モーション制御方法、非一時的なコンピュータ可読媒体、及びモーション制御システム
WO2022237664A1 (zh) 整平装置、整平机器人和整平装置的施工方法
CN110716551A (zh) 移动机器人行驶策略确定方法、装置以及移动机器人
US20230325744A1 (en) Construction robot, construction robot system and method for controlling a construction robot system
CN102581429B (zh) 一种板材自动焊接设备和方法
CN103114727B (zh) 臂架末端的运动控制方法、装置、系统和多节臂架车辆
KR20160117930A (ko) 전동 그리퍼 시스템 및 이것의 제어 방법
JP2019185265A (ja) 動作計画装置
JP2019094665A (ja) 穿孔支援装置
CN202461897U (zh) 带有控制器的头尾式变位机组
CN111766854A (zh) 用于agv协同搬运的控制系统和控制方法
JP2001353676A (ja) ロボット装置
CN206848816U (zh) 基于毫米波雷达导航方法的惯性导引车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE