WO2022237443A1 - 无人机配送的方法及装置 - Google Patents

无人机配送的方法及装置 Download PDF

Info

Publication number
WO2022237443A1
WO2022237443A1 PCT/CN2022/086639 CN2022086639W WO2022237443A1 WO 2022237443 A1 WO2022237443 A1 WO 2022237443A1 CN 2022086639 W CN2022086639 W CN 2022086639W WO 2022237443 A1 WO2022237443 A1 WO 2022237443A1
Authority
WO
WIPO (PCT)
Prior art keywords
delivery
order
information
drone
processed
Prior art date
Application number
PCT/CN2022/086639
Other languages
English (en)
French (fr)
Inventor
黄金鑫
张邦彦
张继伟
眭泽智
寻其锋
Original Assignee
北京三快在线科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京三快在线科技有限公司 filed Critical 北京三快在线科技有限公司
Publication of WO2022237443A1 publication Critical patent/WO2022237443A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping

Definitions

  • This specification relates to the field of logistics distribution, in particular to a method and device for drone distribution.
  • UAVs are often used in delivery fields such as takeaway and express delivery.
  • UAVs are generally configured to stand by in the delivery station.
  • the drone will deliver the delivery corresponding to the order to the delivery location, and then the drone will return to the delivery station and wait for the next delivery.
  • the staff of the delivery station can replace the batteries of the returned drones to ensure that the drones can continue to deliver.
  • replacing the battery of the drone is generally based on the experience of the staff, that is, manually judging whether the battery needs to be replaced.
  • the delivery station is relatively busy, there are a large number of drones returning to the delivery station and a large number of drones flying away from the delivery station all the time, so the pressure of manual battery replacement is greater, so it is inevitable that there will be mistakes in battery replacement. , For example, forgetting to replace the battery for the drone, or repeatedly replacing the battery for the drone, resulting in low delivery efficiency of the drone.
  • This manual provides a drone delivery method and device to partially solve the above problems.
  • This specification provides a delivery method for drones, including: obtaining order information of orders to be processed; determining a route for executing a delivery task corresponding to the order to be processed according to the order information of the order to be processed, and the route includes The starting point delivery station and the destination delivery station; according to the delivery information in the order information, the route and the attribute information of the UAV, determine the operating conditions for executing the delivery task; battery information, determine whether there is a drone that meets the operating conditions; if so, determine the target drone from the drones that meet the operating conditions, and assign the pending order to the target unmanned aerial vehicle, so that the target unmanned aerial vehicle performs the delivery task; if not, select the target unmanned aerial vehicle that performs the delivery task from the unmanned aerial vehicles in the delivery station of the starting point, and perform the delivery task on the target
  • the drone performs battery replacement, and when it is determined that the battery replacement of the target drone is completed, the order to be processed is assigned to the target drone, so that the target drone performs the delivery task.
  • determining the route for executing the delivery task corresponding to the order to be processed specifically includes: determining the pick-up of the order to be processed according to the order information of the order to be processed location and delivery location; according to the pick-up location of the pending order, determine the origin delivery station of the pending order; according to the delivery location of the pending order, determine the destination delivery station of the pending order; The route of the order to be processed is determined according to the origin delivery station, delivery location, and destination delivery station of the order to be processed.
  • determining the operating conditions for executing the delivery task according to the delivery information in the order information, the route, and the attribute information of the drone specifically includes: according to the delivery information in the order information, Determining the weight of the delivery contained in the order to be processed, and the attribute information of the container required to store the delivery contained in the order to be processed; according to the weight of the delivery contained in the order to be processed, storing the Processing the attribute information of the delivery box included in the order, the attribute information of the drone, and the route, and determining the operating conditions for executing the delivery task, wherein the attribute information includes at least weight information.
  • the attribute information of the container storing the delivery included in the order to be processed, the attribute information of the drone, and the route determine to execute the delivery
  • the operating conditions of the task specifically include: according to the route, determine the navigation path for the UAV to perform the delivery task; The voyage distance; according to the attribute information of the drone and the voyage path, determine the first energy consumption information; according to the weight of the distribution contained in the order to be processed, the container for storing the distribution contained in the order to be processed Determine the second energy consumption information based on the attribute information and the voyage distance; determine the operating conditions for executing the delivery task according to the first energy consumption information and the second energy consumption information.
  • determining the operating conditions for executing the delivery task may include: determining the total energy consumption according to the first energy consumption information and the second energy consumption information
  • Energy consumption information determine the operating conditions for executing the delivery task according to the total energy consumption information and redundancy parameters.
  • the attribute information of the container storing the delivery included in the order to be processed, the attribute information of the drone, and the route determine to execute the delivery
  • the operating conditions of the task specifically include: according to the route, determine the flight path for the UAV to perform the delivery task and the environmental information of the flight path; Determine the third energy consumption information for executing the delivery task according to the attribute information of the delivery box contained in the order to be processed, the attribute information of the UAV, and the flight path; according to the environmental information and redundancy of the flight path For at least one of the parameters, update the third energy consumption information; determine the operating conditions for executing the delivery task according to the updated third energy consumption information.
  • determining the target drone from the drones that meet the operating conditions specifically includes any of the following: from the drones that meet the operating conditions, determine the battery that performs the delivery task.
  • UAVs whose remaining power is higher than the preset power threshold are used as the target UAV; according to the preset reward rules, from the UAVs that meet the operating conditions, select the reward value higher than the preset reward
  • the unmanned aerial vehicle of the threshold value is used as the target unmanned aerial vehicle;
  • the unmanned aerial vehicle with the highest battery power is determined as the target unmanned aerial vehicle;
  • the current battery information of each UAV in the operating condition is used to determine the UAV with the lowest battery power as the target UAV.
  • selecting the target UAV to perform the delivery task from the UAVs in the delivery station at the starting point specifically includes: delivering from the starting point according to the current battery information of the drones in the delivery station at the starting point.
  • the unmanned aerial vehicle with the lowest battery power is selected as the target unmanned aerial vehicle for performing the delivery task.
  • the UAV distribution device includes: an acquisition module, used to acquire order information of an order to be processed; a first determination module, used to determine and execute the order corresponding to the order to be processed according to the order information of the order to be processed;
  • the route of the delivery task the route includes the starting point of the delivery station and the destination of the delivery station;
  • the second determination module is used to determine the execution route according to the delivery information in the order information, the route and the attribute information of the drone.
  • the operating conditions of the delivery task is used to judge whether there is an unmanned aerial vehicle that meets the operating conditions according to the battery information of the drones in the delivery station at the starting point, and if so, from the unmanned aerial vehicles that meet the operating conditions Determine the target UAV in the man-machine, and assign the order to be processed to the target UAV, so that the target UAV can perform the delivery task; Select the target drone to perform the delivery task from the drones, and replace the battery of the target drone, and when it is determined that the battery replacement of the target drone is completed, assign the pending order to the target drone.
  • the target UAV so that the target UAV performs the delivery task.
  • This specification provides a computer-readable storage medium, the storage medium stores a computer program, and when the computer program is executed by a processor, the above drone delivery method is realized.
  • This specification provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the processor executes the program, the above drone delivery method is realized. .
  • the above-mentioned at least one technical solution adopted in this manual can achieve the following beneficial effects: by determining the operating conditions for executing the delivery task corresponding to the order to be processed based on the order information of the order to be processed and the attribute information of the drone, and according to the obtained
  • the battery information of each drone in the distribution station at the starting point and the operating conditions for performing the delivery task determine the target drone used to perform the delivery task and whether the target drone needs to replace the battery, avoiding artificial Mistakes caused by the replacement of the battery of the man-machine have improved the delivery efficiency of the drone.
  • Fig. 1 is a schematic flow chart of the drone distribution method provided in this manual
  • Figure 2 is a schematic diagram of the drone delivery scene provided in this manual
  • Figure 3 is a schematic diagram of the route for carrying out delivery tasks provided in this manual
  • Figure 4 is a schematic diagram of the route for performing delivery tasks provided in this manual
  • Figure 5A is a schematic diagram of the battery replacement process provided in this manual.
  • FIG. 5B is a schematic diagram of the battery exchange interface provided in this manual.
  • Figure 6 is a schematic diagram of the drone distribution device provided in this specification.
  • FIG. 7 is a schematic diagram of an electronic device corresponding to FIG. 1 provided in this specification.
  • using drones to perform delivery tasks has the characteristics of short delivery time and fast energy consumption.
  • the UAV uses the electric energy provided by the battery as an energy source, and the battery has the characteristics of slow replenishment of electric energy. Therefore, when the battery power of the drone is exhausted, the battery of the drone is generally not charged directly, but the replaced battery is charged after the battery of the drone is replaced.
  • This method can keep the UAV in the state of performing tasks as much as possible, reduce the charging waiting time of the UAV, and improve the distribution efficiency of the distribution platform.
  • the number of batteries configured in the delivery station is usually greater than the number of drones configured in the delivery station.
  • the staff may need to replace the batteries of multiple drones at the same time, which is prone to battery replacement errors, such as forgetting to replace the batteries for the drones, or repeatedly replacing the batteries for the drones. Replace the battery, etc.
  • the drone is forgotten to replace the battery, it may cause the drone to be unable to perform the delivery task, and the staff needs to investigate the reason why the drone cannot perform the delivery task, resulting in a waste of time.
  • the UAV may also need to make a forced landing due to low battery power in the middle of performing the delivery task, resulting in the failure of the delivery task execution.
  • the replaced battery may be a fully charged battery. Charging a fully charged battery will not only occupy the charging position for charging the battery, but may also affect the performance of the battery.
  • the work of the delivery station Personnel will replace the drone's battery.
  • the remaining battery power when the UAV returns to the delivery station is related to the energy consumption corresponding to the delivery task performed by the UAV before returning to the delivery station. Therefore, the remaining battery power of each UAV when returning to the delivery station is not consistent. No matter how much power is left in the battery when the drone returns to the distribution station, the staff will replace the battery of the drone and charge the replaced battery, which may cause the battery to be replaced when there is still a lot of power left. charging situation.
  • the distribution station needs to frequently replace the battery of the drone and charge the battery frequently. It is not only time-consuming and labor-intensive to replace the battery every time the drone returns to the delivery station, but also charging too frequently will have a certain impact on battery performance such as battery life and battery discharge rate.
  • Figure 1 is a schematic flow chart of the drone distribution method provided in this manual, which specifically includes the following steps:
  • the server of the distribution platform usually receives the pending orders, and assigns the pending orders to the UAVs of the corresponding distribution stations to perform tasks, so that the UAVs perform the distribution tasks corresponding to the pending orders. Therefore, the drone delivery method provided in this specification can be executed by the server of the delivery platform, and the server receives the order to be processed to perform subsequent steps.
  • the server can determine whether the UAV will be replaced based on the remaining power of each UAV in the delivery station and the energy consumption required to execute the delivery task corresponding to the order to be processed. Which drone is assigned to the pending order, and whether the drone needs to replace the battery, so that the drone can perform the delivery task corresponding to the pending order. Improve the efficiency of drone delivery.
  • the delivery platform usually configures several delivery stations, so that the drone can start from a delivery station, deliver the goods to the delivery location corresponding to the order, and then return to the delivery station to complete the delivery task. In each delivery station, there are usually multiple drones.
  • the server of the distribution platform can receive the pending order sent by the user, and perform subsequent steps according to the pending order. as shown in picture 2.
  • Figure 2 is a schematic diagram of the drone delivery scene provided in this manual, where the black circles A and C are delivery stations, and the black circle B is the delivery location of the order to be processed.
  • the dotted arrow indicates the navigation direction of the UAV when it performs the delivery task, that is, the UAV starts from the starting point of delivery station A, transports the container loaded with the delivery to the delivery location B, and then returns to the destination delivery station C.
  • the server may receive order information of orders to be processed sent by each user. Then, for each order to be processed, the distance between the pick-up location corresponding to the order to be processed and each delivery station is determined, and the starting point delivery station of the order to be processed is selected according to the determined distance. For example, select the delivery station closest to the pickup location as the origin delivery station. Afterwards, the delivery capacity is dispatched according to the origin delivery station, so as to deliver the deliverables included in the order to be processed from the pick-up location to the origin delivery station.
  • the server can obtain the battery information of each drone in the starting point delivery station, so as to deliver each drone in the station based on the obtained starting point of the route.
  • the battery information determines the drone used to perform the delivery task corresponding to the order to be processed.
  • the battery information includes at least battery power information.
  • the power information can be the current battery power of the drone, or information that can determine the current battery power of the drone, such as an icon of the remaining battery power, etc.
  • the expression of the specific power information can be set according to needs. This specification does not limit this.
  • the starting point and the end point of the route are delivery stations.
  • the delivery station as the starting point and the delivery station as the end point may be the same delivery station, or different delivery stations.
  • S102 According to the order information of the order to be processed, determine the route for executing the delivery task corresponding to the order to be processed.
  • the route of the delivery task corresponding to the order to be processed is one of the factors affecting the energy consumption of executing the delivery task corresponding to the order to be processed. Therefore, the server can also determine the route for executing the delivery task corresponding to the order to be processed according to the order information of the order to be processed.
  • the server may determine, according to the order information of the order to be processed, the starting point of the delivery station and the delivery location of the delivery task corresponding to the order to be processed. After determining the delivery location of the order to be processed, the server may determine the destination delivery station of the delivery task corresponding to the order to be processed according to the delivery location of the order to be processed and the locations of each delivery station. For example, the destination delivery station of the delivery task corresponding to the order to be processed can be determined according to the distance between each delivery station and the delivery location. Finally, according to the starting delivery station, delivery location, and destination delivery station of the delivery task corresponding to the order to be processed, the route for the drone to execute the delivery task corresponding to the order to be processed can be determined. As shown in Figure 3.
  • Fig. 3 is a schematic diagram of the route for performing delivery tasks provided in this manual.
  • the black dot A0 represents the pick-up location of the pending order
  • the black dot B represents the delivery location of the pending order
  • the black circle A represents the starting delivery station of the delivery task corresponding to the pending order
  • the black circle C Represents the terminal delivery station of the delivery task corresponding to the pending order.
  • the delivery capacity of the pending order can be delivered from the pick-up location A0 to the delivery station A at the starting point
  • the delivery items included in the order to be processed can be delivered from the delivery station A to the delivery location B by the drone.
  • the drone Return to the terminal delivery station C. In this way, from the starting point delivery station A to the delivery location B, and then from the delivery location B to the final delivery station C, it is the route for the UAV to perform the delivery task corresponding to the order to be processed.
  • the server can also plan the flight speed, flight altitude, flight time, etc. of the UAV when flying along the route, so as to more accurately determine the Energy consumption of delivery tasks.
  • S104 Determine the operating conditions for executing the delivery task according to the delivery information in the order information, the route, and the attribute information of the drone.
  • the server can determine the operating conditions for executing the delivery task corresponding to the order to be processed according to the delivery information in the order information, the route and attribute information of the drone including at least battery information, etc.
  • the server may determine, according to the order information of the order to be processed, the weight of the delivery included in the order to be processed, and the attribute information of the container storing the delivery included in the order to be processed.
  • the attribute information of the cargo box includes at least the weight of the cargo box, and may also include the volume, size, shape and other information of the cargo box.
  • the volume and weight of the container storing the delivery contained in the order to be processed, the attribute information of the drone itself, and the route determined in step S102 determine The energy consumption required to execute the distribution task, and determine the operating conditions for executing the distribution task according to the determined energy consumption.
  • the attribute information of the UAV includes at least the weight of the UAV, and may also include information such as the volume, size, and shape of the UAV.
  • the server may first determine the energy consumption of each stage of the delivery task, Then, the running condition of the distribution task is determined based on the determined energy consumption.
  • the server may determine the flight path for the UAV to perform the delivery task according to the route determined in step S102, and determine the first energy consumption information according to the attribute information of the UAV and the flight path.
  • the navigation path is the path that the UAV needs to navigate to complete the delivery task corresponding to the order to be processed.
  • the server can determine the first energy consumption information according to the weight of the UAV itself, the volume of the UAV itself, the flight speed of the UAV planned in step S102, the flight height of the UAV, etc., and the determined first energy consumption information It characterizes the electric energy consumed by the weight of the UAV on the navigation path.
  • the server can determine the voyage distance of the delivery items contained in the order to be processed in the flight path, and store the delivery items included in the order to be processed according to the weight of the delivery items included in the order to be processed.
  • the second energy consumption information is determined based on the weight and volume of the cargo box of the delivered goods and the determined voyage distance.
  • the second energy consumption information represents the electric energy consumed by the weight and volume of the delivery corresponding to the order to be processed and the container storing the delivery during the voyage.
  • the volume of the cargo box can mainly determine the windward area when the UAV performs the delivery task.
  • the power required to execute the delivery task can be determined, then it can be determined that the operating condition for executing the delivery task is that the battery power of the drone is higher than the determined execution The power required for the delivery task.
  • the operating condition may also be that the energy corresponding to the battery power of the drone is higher than the determined energy consumption corresponding to performing the delivery task.
  • the specific content of the operating conditions can be set as required, which is not limited in this specification.
  • the server can determine the drone used to perform the delivery task according to the battery information of each drone in the delivery station at the starting point of the route.
  • the server may first determine the current battery power of each drone in the starting point delivery station according to the battery information of each drone in the starting point delivery station of the route. Then, the current battery power of each UAV in the distribution station at the starting point can be compared with the power required to perform the delivery task. Among the unmanned aerial vehicles whose electric power is higher than that required to perform the delivery task, the unmanned aerial vehicle used to perform the delivery task is determined. When there is no unmanned aerial vehicle whose current battery power is higher than that required to perform the delivery task, determine the unmanned aerial vehicle used to perform the delivery task from among the unmanned aerial vehicles in the distribution station at the starting point, and check the determined unmanned machine battery to be replaced.
  • S108 Determine a target drone from the drones that meet the operating conditions, and assign the order to be processed to the target drone, so that the target drone performs the delivery task.
  • the server can determine the UAV used to perform the delivery task from the UAVs that meet the operating conditions .
  • the server can randomly determine a certain drone from among the drones that meet the operating conditions, that is, from the drones whose current battery power is higher than the power required to perform the delivery task, as the The target drone that executes the delivery task, and assigns the pending order to the target drone, so that the drone performs the delivery task.
  • the server can select the current UAV from the UAVs that meet the operating conditions when determining the target UAV.
  • the drone with the highest battery power is the target drone.
  • the server can also select the UAV with the lowest current battery power from the UAVs that meet the operating conditions. machine as the target UAV. That is, from among the unmanned aerial vehicles satisfying the operation condition, the unmanned aerial vehicle whose current battery power is closest to the power corresponding to the operation condition is selected. In other words, choose the UAV whose current battery power is the closest to the power consumption required to perform the delivery task.
  • the server can also sort the drones that meet the operating conditions according to the current battery information of the drones in the order of battery power from high to low, and sort the drones that meet the operating conditions according to the determined order.
  • a target drone is determined among the drones. For example, according to sorting, determine the drone with the highest current battery level as the target drone, or determine the drone with the lowest current battery level as the target drone, or choose one of the last 10% of the sorted drones UAV as the target drone, or any drone in the top 10% of the sorted drones as the target drone.
  • the specific rules for determining the target UAV according to the ranking can be set according to needs, and this specification does not limit it.
  • S110 Select the target drone to perform the delivery task from the drones in the delivery station at the starting point of the route, and replace the battery of the target drone. When it is determined that the battery replacement of the target drone is completed, Allocating the pending order to the target drone.
  • the server can determine the target drone used to perform the delivery task from among the drones in the delivery station at the starting point, and replace the battery of the target drone.
  • the server may randomly determine a certain drone from among the drones in the distribution station at the starting point as the target drone for performing the delivery task.
  • the automatic battery replacement equipment can replace the battery of the target UAV.
  • the server can receive the self-inspection information returned by the target UAV, and determine whether the battery of the target UAV has been replaced in place according to the self-inspection information, and determine whether the target UAV has been replaced according to the battery information carried in the self-inspection information. Whether the current battery power of the human-machine meets the operating conditions for executing the delivery task.
  • the self-inspection information is sent to the server after the drone performs battery replacement.
  • the server can assign the pending order to the target UAV, so that the UAV The machine performs the delivery task.
  • the above-mentioned step of replacing the battery of the target drone can be specifically performed by an automatic battery replacement device, and the automatic battery replacement device can receive the battery replacement information sent by the server to replace the battery of the target drone.
  • the UAV in this manual can start after being powered on, then after the battery of the UAV is replaced by the automatic battery replacement device, the UAV can start and perform a self-inspection, and send a message to the server according to the self-inspection result. Send self-test information so that the server performs subsequent steps based on the self-test information.
  • the drones may need to wait for a period of time before starting from the delivery station to perform delivery tasks. While the UAV is waiting in the power-on state, it may lead to an increase in the energy consumption of the UAV. Therefore, in order to save power, after the UAV returns to the delivery station, it can control itself to switch to the standby state, and maintain this standby state until it receives the order information of the pending order sent by the server. In this standby state, the drone allows the battery to power only the motherboard to maintain communication with the server. After receiving the order information of the pending order sent by the server, the drone controls itself to switch to a normal state, even if the battery supplies power to each circuit, so that the drone can perform the delivery task corresponding to the pending order.
  • the drone when the server determines that the battery of the drone needs to be replaced, the drone can be started after the battery is replaced, and a self-test is performed, and after the self-test result is returned to the server, the control itself switches to a standby state and waits for the server to Assignments.
  • the server is assigned to the UAV delivery task, the UAV is switched from the standby state to the normal state by the main board of the UAV.
  • a motherboard battery can be installed inside the UAV only to provide power for the motherboard.
  • each The HMI can be in a dormant state where only the mainboard battery supplies power to the mainboard, and communicate with the server through the mainboard.
  • a start button can also be provided outside the drone. After the drone returns to the delivery station, the drone can be powered off. In this power-off state, all circuits in the drone, including the motherboard, are not powered. After the battery of the drone has been replaced by the automatic battery replacement device, the mechanical arm in the automatic battery replacement device can operate the start button of the drone to start the drone. After the UAV is turned on, it performs a self-inspection and sends the self-inspection information to the server. Certainly, after each UAV returns to the distribution station, it can enter the automatic battery replacement device, and the automatic power replacement device only needs to operate the start button of the target UAV determined in step S108 to start it.
  • the self-inspection information it can be determined whether the battery of the drone is replaced in place. It can be realized by various methods such as determining whether the buckle is in place through the pressure sensor, and determining whether the resistance of the battery part of the drone is too large. Of course, since it is a relatively mature technology in this field to determine whether the UAV battery is replaced in place according to the self-inspection information, this manual will not go into details on how to determine it.
  • the order information of the order to be processed is obtained, and the operating conditions for executing the delivery task corresponding to the order to be processed are determined based on the order information, and each UAV in the station is delivered according to the obtained starting point
  • the battery information and the operating conditions for performing the delivery task are used to determine the target UAV for performing the delivery task.
  • This method determines the target UAV and whether the target UAV needs to replace the battery based on the current battery information of each UAV in the distribution station at the starting point and the operating conditions of the delivery task, avoiding the need to replace the battery of the UAV based on human experience. The mistake of replacing the battery caused by the replacement of the battery improves the delivery efficiency of the drone.
  • the destination delivery station of the order to be processed can also be determined according to the number of drones in each delivery station, the number of fully charged batteries, and the number of free charging positions.
  • the terminal delivery station can also be determined according to the environmental information.
  • the environment information may include wind force, wind direction, temperature, weather, air pressure and so on.
  • step S102 the delivery corresponding to the order to be processed is sent to the starting point of the delivery station of the order to be processed only with the delivery capacity, and the delivery included in the order to be processed is delivered to the delivery location by the drone and then returned
  • the terminal delivery station is used as an example to illustrate, but in practical applications, there are also delivery capacity to deliver the delivery corresponding to the order to be processed to the starting delivery station, and the drones at the starting delivery station will deliver the items contained in the pending order
  • the goods are delivered to the terminal delivery station, and then the delivery items contained in the order to be processed are delivered from the terminal delivery station to the delivery location by the corresponding delivery capacity, etc., as shown in FIG. 4 .
  • Figure 4 is a schematic diagram of the route for performing delivery tasks provided in this manual, where the black dot A0 represents the pick-up location of the pending order, the black dot B represents the delivery location of the pending order, and the black circle A represents the delivery location of the pending order.
  • the delivery capacity included in the pending order is delivered from the terminal delivery station C to the delivery location B, and the delivery task corresponding to the pending order is completed. Then, the route from the starting point delivery station A to the final point delivery station C is the route when the UAV performs the delivery task.
  • the UAV can also start from the delivery station at the starting point, go to the pick-up location of the order to be processed to pick up the goods, deliver the delivery items included in the order to the delivery location, and then return to the delivery station at the end point.
  • Different distribution strategies will result in different stages included in the determined route, but the steps of determining the route based on the order information and determining the energy consumption information based on the route are consistent.
  • the delivery strategy to be adopted and the specific stages included in the determined route can be set according to needs, and this specification does not limit this.
  • the energy consumption of drones performing delivery tasks is greatly affected by environmental factors. For example, assuming that they are all flying against the wind, the energy consumption corresponding to the delivery task performed by the UAV in the third-level wind is obviously lower than the energy consumption corresponding to the delivery task performed by the UAV in the fifth-level wind. Therefore, in step S104, in order to more accurately determine the operating conditions for executing the delivery task corresponding to the order to be processed, the UAV can also determine the environmental information of the flight path according to the route determined in step S102.
  • the third energy consumption information is updated according to the environmental information of the navigation route, and the operating conditions for executing the delivery task are determined according to the updated third energy consumption information.
  • the environment information may be the same as the environment information used when determining the terminal delivery station of the route in step S102.
  • the server can also determine the weight of the current battery of the drone according to the current battery information of the drone, and then determine the energy consumption information corresponding to the battery weight of the drone , and update the first energy consumption information and the third energy consumption information.
  • the battery information may include the weight of the battery.
  • the specific content and form of the battery information may be set as required, and this specification does not limit it.
  • the aforementioned updating of the energy consumption information based on the environmental information may be implemented through a fitting function.
  • a number of delivery tasks performed by UAVs in history are obtained, and for each delivery task, the order information, route information, environmental information and actual energy consumption corresponding to the delivery task are determined, and the estimated energy consumption is determined based on the order information and route information. consumption, and establish a fitting function based on the estimated energy consumption, actual energy consumption and environmental information. Therefore, after the third energy consumption information is determined, the server may update the third energy consumption information according to the fitting function and the environment information.
  • the fitting function can be specifically set, which is not limited in this specification.
  • Models can also be used to update energy consumption information based on environmental information. Specifically, a number of delivery tasks performed by UAVs in history are obtained, and for each delivery task, the order information, route information, environmental information and actual energy consumption corresponding to the delivery task are determined, and the estimated energy consumption is determined based on the order information and route information. Consumption, the estimated energy consumption and environmental information are used as training samples, the prediction results of the training samples are obtained through the prediction model, and the actual energy consumption is used as the sample label. In this way, the prediction model is trained with the training goal of minimizing the difference between the prediction results of each training sample and the corresponding sample labels.
  • the charging efficiency can be maintained at a relatively high level. For example, assuming that 20% to 80% of the full charge is the battery high efficiency range.
  • the power threshold can also be preset at 20%.
  • the server determines the target UAV, it can determine the UAV whose remaining battery power after performing the delivery task is higher than the preset power threshold value from among the UAVs that meet the operating conditions. target drone.
  • the specific value of the power threshold can be set according to needs, and this specification does not limit it.
  • the starting point delivery station can also be distributed according to the maximum load among the performance parameters of each UAV in the starting point delivery station, the delivery contained in the order to be processed and the weight of the container storing the delivery.
  • the drones in the station are screened.
  • the server can also determine the target UAV according to the reinforcement learning algorithm.
  • the server can determine the order characteristics of the order to be processed, the route characteristics of the route, the attribute characteristics of the drones, and the battery power characteristics of the drones that meet the operating conditions in the delivery station at the starting point. Then, through the reinforcement learning algorithm, based on the above characteristics and the remaining battery power of the UAV after the delivery task is performed, the rewards for each UAV that meets the operating conditions in the delivery station at the starting point to perform the delivery task can be determined. Among them, different rewards are set for the remaining battery power of different drones after performing delivery tasks.
  • the remaining battery power when the remaining battery power is high, in order to ensure battery utilization and avoid the impact of excessive charging and discharging on battery performance, it can be set when the remaining battery power is higher than the first threshold, such as 50% of the full charge. , the higher the remaining battery power, the higher the reward value.
  • the remaining battery power when the remaining battery power is low, in order to ensure the utilization rate of the battery and charge the battery in the high-efficiency range as much as possible, it can be set that when the remaining battery power is higher than the second threshold and lower than the first threshold, for example, higher than the full
  • the charging capacity is 20% and lower than 50% of the full charging capacity, the closer the remaining battery power is to the second threshold, the higher the reward value. If the remaining power of the battery is lower than the second threshold, the reward value is negative and so on.
  • the UAV corresponding to the maximum reward value is used as the target UAV.
  • a reward threshold can also be set, and a template UAV for performing the delivery task is randomly determined from among the UAVs whose corresponding reward values are higher than the reward threshold.
  • the first threshold is higher than the second threshold, but the specific values of the first threshold and the second threshold, as well as the specific values of each reward value, etc., can be set according to needs, and this specification does not limit this.
  • the server can determine the UAV with the lowest battery power according to the current battery information of each UAV in the delivery station at the starting point, as the target for executing the delivery task drone.
  • the drones in this manual are also Scheduling tasks, ie, flying from one delivery station to another, can be performed to relieve the pressure on the delivery station. Based on the operating pressure of each delivery station, the current battery information of the UAV, etc., the terminal delivery station for the UAV to perform the scheduling task can be determined, and the route of the scheduling task can be determined. Wherein, the manner of determining the running condition of the scheduling task may be the same as that of determining the running condition of the delivery task.
  • the energy consumption required by each type of UAV to perform the delivery task can be determined, and then determined Each type of unmanned aerial vehicle performs the corresponding operating conditions of the delivery task. And after determining the corresponding operating conditions of each type of UAV in the distribution station at the starting point, the number of UAVs of each type and the weight of the delivery items contained in the order to be processed are combined to determine the UAV used to execute the order to be processed. machine.
  • the operating condition of the A-type drone is that the current battery power is higher than 80% of the full charge
  • the B-type drone is that the current battery power is higher than 50% of the full charge
  • the C-type drone The operating condition is that the current battery power is higher than 30% of the full charge.
  • the machine performs the delivery task.
  • how to determine the target drone for executing the order to be processed in combination with the model of the drone can also be set according to needs, which is not limited in this manual.
  • the redundant parameter ⁇ can also be introduced when determining the operating conditions of the UAV to perform the delivery task, so as to ensure that when the UAV performs the delivery task, when unexpected events cause the UAV to have excess energy consumption , The remaining battery power of the drone can also make the drone return to the delivery station smoothly.
  • the value range of parameter ⁇ can be (1, 1.5) and so on. Therefore, when determining the operating condition, the total energy consumption information with redundancy can be determined according to ⁇ times the sum of the first energy consumption information and the second energy consumption information, and the operating condition can be determined according to the total energy consumption information.
  • the specific value of the parameter ⁇ can be set as required in practical applications. It only needs to be logical, and this specification does not limit it.
  • the staff can also replace the battery of the target drone.
  • the staff in the distribution station can be equipped with a terminal, and when the target drone needs to replace the battery, the server can send a prompt message to the staff. This prompt message is used to remind the staff that a drone with a certain number in a certain area needs to replace the battery.
  • the staff receives the prompt information
  • the battery of the target drone is replaced according to the prompt information.
  • the drone starts by itself or the staff presses the start button to start the drone. The drone performs self-inspection and sends self-inspection information to the server.
  • the server After the server determines that the self-test of the drone has passed, it can send a confirmation request to the staff to prompt the staff to confirm that the replacement of the battery of the drone is completed. After the staff confirms the confirmation request, a confirmation message is sent to the server. In this way, the situation of mistaken battery replacement can be avoided.
  • the drone can receive the order information sent by the server, and execute the delivery task.
  • Figure 5A is a schematic diagram of the battery replacement process provided in this manual, including:
  • S200 The server sends prompt information to the terminal of the staff member to prompt the staff member to replace the battery of the drone according to the prompt information in the terminal interface. As shown in Figure 5B.
  • Fig. 5B is a schematic diagram of the battery replacement interface provided in this manual.
  • Area A and Area B are the areas where the drones are parked after returning to the delivery station
  • No. 01, No. 02, and No. 03 are the parking positions of the drones in Areas A and B respectively.
  • a drone numbered 001 is parked at location 01 in area A
  • a drone numbered 002 is parked at location 02 in area A
  • a drone numbered 003 is parked at location 03 in area A
  • a drone numbered 003 is parked at location B in area B.
  • the UAV numbered 011 is parked at position 01 in Area B
  • the UAV numbered 012 is parked at No. 02 position in Area B
  • the confirmation button below is white to indicate that the button is unavailable; the button is gray to indicate that the button is available. When the button is available, the staff can send a confirmation message to the server through the confirmation button.
  • the drone performs a self-check.
  • the drone can be started by itself, or the staff can operate the start button on the outside of the drone to start the drone. After the UAV is started, it can perform a self-inspection to determine the self-inspection result.
  • the UAV sends self-inspection information to the server. After the UAV self-inspection is completed, the UAV can send self-inspection information to the server according to the self-inspection result.
  • the self-inspection information may include at least the current battery information of the drone, and may also include information that can be used to determine whether the current battery of the drone has been replaced properly.
  • the server sends a confirmation request to the terminal of the staff member. After determining that the self-inspection of the UAV is successful according to the self-inspection information in step S204, the server can send a confirmation request to the staff's terminal, and the confirmation request can be used to change the confirmation button in Figure 5B from an unavailable state to an available state .
  • step S208 The staff's terminal sends confirmation information to the server.
  • the confirmation button in FIG. 5B can be changed from an unavailable state to an available state according to the confirmation request, that is, the button can be changed from white to gray. Then the staff can send confirmation information to the server through the confirmation button.
  • the server sends a pending order to the drone. After receiving the confirmation information sent by the staff's terminal, the server can send the order to be processed to the UAV, so that the UAV can perform the delivery task corresponding to the order to be processed.
  • this specification also provides a corresponding drone delivery device, as shown in FIG. 6 .
  • Fig. 6 is a schematic diagram of the UAV delivery device provided in this specification, which specifically includes: an acquisition module 300 for acquiring order information of an order to be processed; a first determination module 302 for determining according to the order information of the order to be processed Execute the route of the delivery task corresponding to the order to be processed, the route includes a starting point delivery station and a destination delivery station; the second determination module 304 is configured to, according to the delivery information in the order information, the route and unmanned The attribute information of the machine determines the operating conditions for executing the delivery task; the delivery module 306 is used to judge whether there is an unmanned aerial vehicle that meets the operating conditions according to the battery information of each drone in the delivery station at the starting point, and if so, Then determine the target drone from the drones that meet the operating conditions, and assign the pending order to the target drone, so that the target drone can perform the delivery task, if not , then select the target drone to perform the delivery task from the drones in the delivery station at the starting point, and replace the battery of the target
  • the first determination module 302 is specifically configured to: determine the pick-up location and delivery location of the pending order according to the order information of the pending order; location, determine the origin delivery station of the order to be processed; determine the destination delivery station of the order to be processed according to the delivery location of the order to be processed; determine the delivery station, delivery location, The terminal distribution station determines the route of the order to be processed.
  • the second determining module 304 is specifically configured to: determine the weight of the delivery included in the order to be processed according to the delivery information in the order information, and store the delivery included in the order to be processed according to the weight of the delivery contained in the order to be processed, the attribute information of the container storing the delivery contained in the order to be processed, the attribute information of the drone, and the route , to determine the running conditions for executing the delivery task.
  • the attribute information includes at least weight information.
  • the second determining module 304 is specifically configured to: determine, according to the flight route, the flight route for the drone to perform the delivery task; determine the delivery items contained in the order to be processed according to the order information The voyage distance occupied in the voyage path; according to the attribute information of the drone and the voyage path, determine the first energy consumption information; according to the weight of the distribution contained in the order to be processed, store the pending Determine the second energy consumption information based on the attribute information of the delivery container contained in the order and the voyage distance; determine the operating conditions for executing the delivery task according to the first energy consumption information and the second energy consumption information .
  • determining the operating conditions for executing the delivery task may include: determining the total energy consumption according to the first energy consumption information and the second energy consumption information
  • Energy consumption information determine the operating conditions for executing the delivery task according to the total energy consumption information and redundancy parameters.
  • the second determining module 304 is specifically configured to: according to the route, determine the navigation path for the drone to perform the delivery task and the environmental information of the navigation path; The weight of the delivery, the attribute information of the container storing the delivery contained in the order to be processed, the attribute information of the drone, and the flight path, determine the third energy consumption information for performing the delivery task; according to the Updating the third energy consumption information based on at least one of the environment information and redundant parameters of the navigation path; and determining the operating conditions for executing the distribution task according to the updated third energy consumption information.
  • the delivery module 306 is specifically configured to: determine, from among the drones that meet the operating conditions, the drone whose remaining battery power is higher than a preset power threshold after performing the delivery task as the drone. target drone.
  • the delivery module 306 is specifically configured to: select the drone with the lowest battery power from among the drones according to the current battery information of the drones in the distribution station at the starting point as the drone that performs the delivery task. target drone.
  • the delivery module 306 is specifically configured to: determine the drone with the highest battery power as the target drone according to the current battery information of each drone that meets the operating conditions; The current battery information of each UAV in the operating condition, and the UAV with the lowest battery power is determined as the target UAV.
  • This specification also provides a computer-readable storage medium, which stores a computer program, and the computer program can be used to execute the drone delivery method provided in FIG. 1 above.
  • the driverless device includes a processor 701 , an internal bus 702 , a network interface 703 , a memory 704 and a non-volatile memory 705 , and of course it may also include hardware required by other services.
  • the processor 701 reads the corresponding computer program from the non-volatile memory 705 into the memory 704 and then runs it, so as to realize the drone delivery method described in FIG. 1 above.
  • the improvement of a technology can be clearly distinguished as an improvement in hardware (for example, improvements in circuit structures such as diodes, transistors, and switches) or improvements in software (improvement in method flow).
  • improvements in circuit structures such as diodes, transistors, and switches
  • improvements in software improvement in method flow
  • the improvement of many current method flows can be regarded as the direct improvement of the hardware circuit structure.
  • Designers almost always get the corresponding hardware circuit structure by programming the improved method flow into the hardware circuit. Therefore, it cannot be said that the improvement of a method flow cannot be realized by hardware physical modules.
  • a programmable logic device Programmable Logic Device, PLD
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • HDL Hardware Description Language
  • ABEL Advanced Boolean Expression Language
  • AHDL Altera Hardware Description Language
  • HDCal JHDL
  • Lava Lava
  • Lola MyHDL
  • PALASM RHDL
  • VHDL Very-High-Speed Integrated Circuit Hardware Description Language
  • Verilog Verilog
  • the controller may be implemented in any suitable way, for example the controller may take the form of a microprocessor or processor and a computer readable medium storing computer readable program code (such as software or firmware) executable by the (micro)processor , logic gates, switches, application specific integrated circuits (Application Specific Integrated Circuit, ASIC), programmable logic controllers and embedded microcontrollers, examples of controllers include but are not limited to the following microcontrollers: ARC 625D, Atmel AT91SAM, Microchip PIC18F26K20 and Silicone Labs C8051F320, the memory controller can also be implemented as part of the control logic of the memory.
  • controller in addition to realizing the controller in a purely computer-readable program code mode, it is entirely possible to make the controller use logic gates, switches, application-specific integrated circuits, programmable logic controllers, and embedded The same function can be realized in the form of a microcontroller or the like. Therefore, such a controller can be regarded as a hardware component, and the devices included in it for realizing various functions can also be regarded as structures within the hardware component. Or even, means for realizing various functions can be regarded as a structure within both a software module realizing a method and a hardware component.
  • a typical implementing device is a computer.
  • the computer may be, for example, a personal computer, a laptop computer, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device, or Combinations of any of these devices.
  • the embodiments of the present invention may be provided as methods, systems, or computer program products. Accordingly, the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • Memory may include non-permanent storage in computer-readable media, in the form of random access memory (RAM) and/or nonvolatile memory such as read-only memory (ROM) or flash RAM.
  • RAM random access memory
  • ROM read-only memory
  • Memory is an example of computer readable media.
  • Computer-readable media including both permanent and non-permanent, removable and non-removable media, can be implemented by any method or technology for storage of information.
  • Information may be computer readable instructions, data structures, modules of a program, or other data.
  • Examples of storage media for computers include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, compact disc read-only memory (CD-ROM), digital versatile disc (DVD) or other optical storage, magnetic cartridge Magnetic tape, tape disk storage or other magnetic storage device, or any other non-transmission medium, that can be used to store information that can be accessed by a computing device.
  • computer-readable media excludes transitory computer-readable media, such as modulated data signals and carrier waves.
  • program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • the present description may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
  • program modules may be located in both local and remote computer storage media including storage devices.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Navigation (AREA)

Abstract

本说明书公开了用于无人机配送的方法及装置。根据所述方法的一个示例,在获取待处理订单的订单信息之后,可基于该订单信息确定执行所述待处理订单对应的配送任务的航线,并基于所述订单信息中的配送物信息、所述航线以及起点配送站内各无人机的属性信息,确定执行该待处理订单对应的配送任务的运行条件,并根据所述起点配送站内各无人机的电池信息和执行该配送任务的运行条件,确定用于执行该配送任务的目标无人机,以及将订单分配给该目标无人机,使该目标无人机执行配送任务。

Description

无人机配送的方法及装置 技术领域
本说明书涉及物流配送领域,尤其涉及一种无人机配送的方法及装置。
背景技术
随着技术的进步以及无人驾驶技术的成熟,无人机在配送领域已经成功实现了应用。例如,无人机常被应用于外卖、快递等配送领域。在采用无人机执行配送任务的场景中,无人机一般配置在配送站中待命。当有需要配送的订单时,由无人机将订单对应的配送物运送至送货地点,之后无人机返回配送站,等待下一次配送。该配送站的工作人员,可对返回的无人机进行电池的更换,以保证无人机可以持续进行配送。
但是,对无人机更换电池一般是基于工作人员的经验进行的,也就是人工判断是否需要更换电池。当配送站较为繁忙时,时时刻刻都有大量的无人机返回配送站以及有大量的无人机从配送站飞走,则人工更换电池的压力较大,因而难免出现更换电池失误的情况,如,忘记为无人机更换电池,或重复为无人机更换电池,导致无人机配送效率较低。
发明内容
本说明书提供一种无人机配送方法及装置,以部分的解决上述问题。
本说明书提供了一种无人机配送方法,包括:获取待处理订单的订单信息;根据所述待处理订单的订单信息,确定执行所述待处理订单对应的配送任务的航线,所述航线包括起点配送站和终点配送站;根据所述订单信息中的配送物信息、所述航线以及无人机的属性信息,确定执行所述配送任务的运行条件;根据所述起点配送站内各无人机的电池信息,判断是否存在满足所述运行条件的无人机;若是,则从满足所述运行条件的无人机中,确定目标无人机,并将所述待处理订单分配给所述目标无人机,以使所述目标无人机执行所述配送任务;若否,则从所述起点配送站内各无人机中选择执行所述配送任务的目标无人机,并对所述目标无人机进行电池更换,当确定所述目标无人机电池更换完成时,将所述待处理订单分配给所述目标无人机,以使所述目标无人机执行所述配送任务。
可选地,根据所述待处理订单的订单信息,确定执行所述待处理订单对应的配送任务的航线,具体包括:根据所述待处理订单的订单信息,确定所述待处理订单的取货地点和送货地点;根据所述待处理订单的取货地点,确定所述待处理订单的起点配送站;根据所述待处理订单的送货地点,确定所述待处理订单的终点配送站;根据所述待处理 订单的起点配送站、送货地点、终点配送站,确定所述待处理订单的航线。
可选地,根据所述订单信息中的配送物信息、所述航线以及无人机的属性信息,确定执行所述配送任务的运行条件,具体包括:根据所述订单信息中的配送物信息,确定所述待处理订单包含的配送物的重量,以及存放所述待处理订单包含的配送物所需的货箱的属性信息;根据所述待处理订单包含的配送物的重量、存放所述待处理订单包含的配送物的货箱的属性信息、无人机的属性信息以及所述航线,确定执行所述配送任务的运行条件,其中,所述属性信息至少包括重量信息。
可选地,根据所述待处理订单包含的配送物的重量、存放所述待处理订单包含的配送物的货箱的属性信息、无人机的属性信息以及所述航线,确定执行所述配送任务的运行条件,具体包括:根据所述航线,确定无人机执行所述配送任务的航行路径;根据所述订单信息,确定所述待处理订单包含的配送物在所述航行路径中所占的航行路程;根据无人机的属性信息和所述航行路径,确定第一能耗信息;根据所述待处理订单包含的配送物的重量、存放所述待处理订单包含的配送物的货箱的属性信息和所述航行路程,确定第二能耗信息;根据所述第一能耗信息和所述第二能耗信息,确定执行所述配送任务的运行条件。其中,根据所述第一能耗信息和所述第二能耗信息,确定执行所述配送任务的运行条件,可包括:根据所述第一能耗信息和所述第二能耗信息确定总能耗信息;根据所述总能耗信息和冗余参数确定执行所述配送任务的运行条件。
可选地,根据所述待处理订单包含的配送物的重量、存放所述待处理订单包含的配送物的货箱的属性信息、无人机的属性信息以及所述航线,确定执行所述配送任务的运行条件,具体包括:根据所述航线,确定无人机执行所述配送任务的航行路径以及所述航行路径的环境信息;根据所述待处理订单包含的配送物的重量、存放所述待处理订单包含的配送物的货箱的属性信息、无人机的属性信息以及所述航行路径,确定执行所述配送任务的第三能耗信息;根据所述航行路径的环境信息和冗余参数中的至少一个,更新所述第三能耗信息;根据更新后的第三能耗信息,确定执行所述配送任务的运行条件。
可选地,从满足所述运行条件的无人机中,确定目标无人机,具体包括以下任一:从满足所述运行条件的各无人机中,确定执行所述配送任务后的电池剩余电量高于预设的电量阈值的无人机作为所述目标无人机;根据预设的奖励规则,从满足所述运行条件的各无人机中,选择奖励值高于预设的奖励阈值的无人机作为所述目标无人机;根据满足所述运行条件的各无人机当前的电池信息,确定电池电量最高的无人机,作为所述目标无人机;根据满足所述运行条件的各无人机当前的电池信息,确定电池电量最低的无人机,作为所述目标无人机。
可选地,从所述起点配送站内各无人机中选择执行所述配送任务的目标无人机,具 体包括:根据所述起点配送站内各无人机当前的电池信息,从所述起点配送站内各无人机中,选择电量最低的无人机,作为执行所述配送任务的目标无人机。
本说明书提供的无人机配送装置,包括:获取模块,用于获取待处理订单的订单信息;第一确定模块,用于根据所述待处理订单的订单信息,确定执行所述待处理订单对应的配送任务的航线,所述航线包括起点配送站和终点配送站;第二确定模块,用于根据所述订单信息中的配送物信息、所述航线以及无人机的属性信息,确定执行所述配送任务的运行条件;配送模块,用于根据所述起点配送站内各无人机的电池信息,判断是否存在满足所述运行条件的无人机,若是,则从满足所述运行条件的无人机中确定目标无人机,并将所述待处理订单分配给所述目标无人机,以使所述目标无人机执行所述配送任务,若否,则从所述起点配送站内各无人机中选择执行所述配送任务的目标无人机,并对所述目标无人机进行电池更换,当确定所述目标无人机电池更换完成时,将所述待处理订单分配给所述目标无人机,以使所述目标无人机执行所述配送任务。
本说明书提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述无人机配送方法。
本说明书提供了一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现上述无人机配送方法。
本说明书采用的上述至少一个技术方案能够达到以下有益效果:通过基于待处理订单的订单信息以及无人机的属性信息,确定执行该待处理订单对应的配送任务的运行条件,并根据获取到的起点配送站内各无人机的电池信息和执行该配送任务的运行条件,确定用于执行该配送任务的目标无人机、以及该目标无人机是否需要更换电池,避免了根据人为经验对无人机的电池进行更换导致的失误,提高了无人机的配送效率。
附图说明
此处所说明的附图用来提供对本说明书的进一步理解,构成本说明书的一部分,本说明书的示意性实施例及其说明用于解释本说明书,并不构成对本说明书的不当限定。在附图中:
图1为本说明书中提供的无人机配送方法的流程示意图;
图2为本说明书提供的无人机配送场景的示意图;
图3为本说明书提供的执行配送任务的航线的示意图;
图4为本说明书提供的执行配送任务的航线的示意图;
图5A为本说明书提供的换电流程示意图;
图5B为本说明书提供的换电界面示意图;
图6为本说明书提供的无人机配送装置示意图;
图7为本说明书提供的对应于图1的电子设备示意图。
具体实施方式
为使本说明书的目的、技术方案和优点更加清楚,下面将结合本说明书具体实施例及相应的附图对本说明书技术方案进行清楚、完整地描述。所描述的实施例仅是本说明书一部分实施例,而不是全部的实施例。基于本说明书中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本说明书保护的范围。
相较于使用其他无人驾驶设备执行配送任务来说,使用无人机执行配送任务具有配送时间短、但能量消耗的速度快的特点。并且,通常无人机采用电池提供的电能作为能源,而电池又存在电能补充慢的特点。因此当无人机的电池电量耗尽时,一般不会直接对无人机的电池进行充电,而是对无人机进行电池更换后,对更换下来的电池充电。这种方式可以尽量使无人机处于执行任务的状态,减少无人机的充电等待时间,提高配送平台的配送效率。
另外,为了保证在对无人机更换电池时,配送站有足够多充好电的电池,通常配送站配置的电池数量大于该配送站配置的无人机的数量。但是,当配送平台的配送任务较多时,工作人员可能需要同时对多个无人机进行更换电池操作,这就容易出现更换电池失误,如忘记为无人机更换电池,或重复为无人机更换电池等。当忘记为无人机更换电池时,可能会导致该无人机无法执行配送任务,并需要工作人员对该无人机无法执行配送任务的原因进行排查,造成时间上的浪费。若该无人机可从配送站出发执行该配送任务,则该无人机还可能在执行该配送任务的中途因电池电量过低需要迫降,导致该配送任务执行失败。而当重复为无人机更换电池时,更换下来的电池可能为满电量的电池,为满电量的电池进行充电,不仅会占用为电池充电的充电位,还可能会对电池的性能造成影响。
进一步地,为了保证无人机飞行安全,防止无人机在执行配送任务时电池电量不足,一般在该无人机执行完配送任务返回配送站,等待下一次执行配送任务时,配送站的工作人员会对该无人机的电池进行更换。但是,无人机返回配送站时的电池剩余电量,与无人机返回配送站前执行的配送任务对应的能耗相关,因此,各无人机返回配送站时的电池剩余电量并不一致。无论无人机返回配送站时的电池剩余电量有多少,工作人员都会对该无人机更换电池,并对更换下来的电池进行充电,导致可能出现电池还剩余较多电量就被更换下来并进行充电的情况。于是,配送站需要频繁进行无人机的电池更换, 以及频繁对电池充电。每次无人机返回配送站都进行电池更换不仅费时费力,而且过于频繁的充电对电池的使用寿命、电池放电率等电池性能会造成一定影响。
以下结合附图,详细说明本说明书各实施例提供的技术方案。
图1为本说明书中提供的无人机配送方法的流程示意图,具体包括以下步骤:
S100:获取待处理订单的订单信息。
在无人机配送领域,通常由配送平台的服务器接收待处理订单,并将待处理订单分配给对应配送站的待执行任务的无人机,使无人机执行待处理订单对应的配送任务。因此本说明书提供的无人机配送的方法,可由配送平台的服务器执行,并由该服务器接收待处理订单以执行后续步骤。
为了避免通过工作人员的经验判断无人机是否需要更换电池,本说明书中,该服务器可基于配送站内各无人机的剩余电量和执行待处理订单对应的配送任务所需的能耗,判断将该待处理订单分配给哪个无人机,以及该无人机是否需要更换电池,进而使该无人机执行该待处理订单对应的配送任务。提高了无人机配送的效率。
配送平台通常会配置若干配送站,使无人机能够从一个配送站出发,到订单对应的送货地点送货,之后再返回配送站,完成配送任务。而在每个配送站中,通常也会配置多台无人机。该配送平台的服务器可接收用户发送的待处理订单,并根据该待处理订单执行后续步骤。如图2所示。
图2为本说明书提供的无人机配送场景的示意图,其中,黑色圆圈A、C为配送站,黑色圆点B为该待处理订单的送货地点。虚线箭头表示无人机执行配送任务时的航行方向,即无人机从起点配送站A出发,将装载有配送物的货箱运送至送货地点B后返回终点配送站C。
具体的,首先,该服务器可接收各用户发送的待处理订单的订单信息。然后,针对每个待处理订单,确定该待处理订单对应的取货地点与各配送站的距离,根据确定出的距离选择该待处理订单的起点配送站。例如,选择距离该取货地点最近的配送站作为起点配送站。之后,根据该起点配送站调度配送运力,以将该待处理订单包含的配送物从取货地点送至起点配送站。最后,当该待处理订单包含的配送物送至该起点配送站后,该服务器可获取该起点配送站内的各无人机的电池信息,以基于获取到的航线的起点配送站内各无人机的电池信息确定用于执行该待处理订单对应的配送任务的无人机。其中,电池信息至少包括电池的电量信息。当然,电量信息可为无人机当前电池的电量,也可为可确定出无人机当前电池的电量的信息、例如电池剩余电量图示等,具体电量信息的表达方式可根据需要进行设置,本说明书对此不做限制。
为了方便描述,后续仅以一个待处理订单,以及确定该待处理订单的起点配送站内的各无人机的电池信息进行说明。
在本说明书中,确定出的无人机的航线中,该航线的起点以及终点都是配送站。当然,作为起点的配送站和作为终点的配送站可以是同一个配送站,或者是不同的配送站。
S102:根据所述待处理订单的订单信息,确定执行所述待处理订单对应的配送任务的航线。
待处理订单对应的配送任务的航线,是影响执行该待处理订单对应的配送任务的能耗的因素之一。因此,该服务器还可根据该待处理订单的订单信息,确定执行该待处理订单对应的配送任务的航线。
该服务器可根据该待处理订单的订单信息,确定该待处理订单对应的配送任务的起点配送站和送货地点。在确定出该待处理订单的送货地点后,该服务器可根据该待处理订单的送货地点以及各配送站的位置,确定该待处理订单对应的配送任务的终点配送站。例如,可根据各配送站与该送货地点的距离,确定该待处理订单对应的配送任务的终点配送站。最后,根据该待处理订单对应的配送任务的起点配送站、送货地点、终点配送站,即可确定无人机执行该待处理订单对应的配送任务的航线。如图3所示。
图3为本说明书提供的执行配送任务的航线的示意图。其中,黑色圆点A0代表该待处理订单的取货地点,黑色圆点B代表该待处理订单的送货地点,黑色圆圈A代表该待处理订单对应的配送任务的起点配送站,黑色圆圈C代表该待处理订单对应的配送任务的终点配送站。则可由配送运力将待处理订单包含的配送物从取货地点A0送至起点配送站A处,由无人机将待处理订单包含的配送物由起点配送站A送至送货地点B处后返回终点配送站C。这样,从起点配送站A到送货地点B,再由送货地点B到终点配送站C,为无人机执行该待处理订单对应的配送任务的航线。
由于无人机是通过飞行执行配送任务的,无人机的飞行高度、飞行速度等也会对无人机执行该待处理订单对应的配送任务的能耗产生影响。于是,在确定执行该配送任务的航线时,该服务器还可对该无人机沿该航线飞行时的飞行速度、飞行高度、飞行时间等进行规划,以更准确地确定该无人机执行该配送任务的能耗。
S104:根据所述订单信息中的配送物信息、所述航线以及无人机的属性信息,确定执行所述配送任务的运行条件。
需要确定出无人机执行待处理订单对应的配送任务的能耗,根据该能耗确定运行条件,才能基于该运行条件和起点配送站内各无人机的电池信息,确定用于执行该配送任务的目标无人机。因此,该服务器可根据该订单信息中的配送物信息、该航线和无人机 的至少包括电池信息的属性信息等,确定执行该待处理订单对应的配送任务的运行条件。
具体的,该服务器可根据该待处理订单的订单信息,确定该待处理订单包含的配送物的重量,以及存放该待处理订单包含的配送物的货箱的属性信息。其中,货箱的属性信息至少包括货箱的重量,还可包括货箱的体积、尺寸、形状等信息。然后,根据该待处理订单包含的配送物的重量、存放该待处理订单包含的配送物的货箱的体积和重量、该无人机自身的属性信息、以及步骤S102中确定出的航线,确定执行该配送任务所需的能耗,并根据确定出的该能耗确定执行该配送任务的运行条件。其中,与货箱的属性信息类似,该无人机的属性信息至少包括该无人机的重量,还可包括无人机的体积、尺寸、形状等信息。
由于该无人机在执行配送任务的不同阶段对应的能耗可能不完全相同,为了更准确地确定执行该配送任务的运行条件,该服务器可先确定执行该配送任务的各阶段的能耗,进而基于确定出的各能耗确定该配送任务的运行条件。
首先,该服务器可根据步骤S102中确定出的该航线,确定无人机执行该配送任务的航行路径,并根据该无人机的属性信息和该航行路径确定第一能耗信息。其中,航行路径为完成该待处理订单对应的配送任务,该无人机需要航行的路径。该服务器可根据该无人机自身重量、该无人机自身体积、步骤S102中规划的无人机飞行速度、无人机飞行高度等确定第一能耗信息,确定出的第一能耗信息表征了无人机重量在航行路径上消耗的电能。
其次,迎风面积作为影响空气阻力的因素之一,在无人机执行配送任务时对该无人机的能耗有较大影响,而物体的迎风面积可根据物体的体积、形状、尺寸等确定。因此,该服务器可根据该待处理订单的订单信息,确定该待处理订单包含的配送物在航行路径中的航行路程,并根据该待处理订单包含的配送物的重量、存放该待处理订单包含的配送物的货箱的重量和体积、以及确定出的航行路程,确定第二能耗信息。第二能耗信息表征了待处理订单对应的配送物和存放配送物的货箱的重量和体积在航行路程上消耗的电能。其中,货箱的体积可主要决定无人机执行该配送任务时的迎风面积。
最后,根据该第一能耗信息和第二能耗信息,可确定执行该配送任务所需的电量,则可确定执行该配送任务的运行条件为无人机的电池电量高于确定出的执行该配送任务所需电量。
运行条件还可为无人机的电池电量对应的能量高于确定出的执行该配送任务对应的能耗。实际上,运行条件的具体内容可根据需要进行设置,本说明书对此不做限制。
S106:根据所述航线的起点配送站内各无人机的电池信息,判断所述起点配送站内 是否存在满足所述运行条件的无人机,若是,则执行步骤S108,若否,则执行步骤S110。
为了保证无人机的配送效率,在确定出执行该配送任务的运行条件后,该服务器即可根据航线的起点配送站内各无人机的电池信息确定用于执行该配送任务的无人机。
具体的,该服务器可首先根据航线的起点配送站内各无人机的电池信息,确定起点配送站内各无人机当前电池的电量。然后,可对起点配送站内各无人机当前电池电量与执行该配送任务所需的电量进行比较,当存在当前电池电量高于执行配送任务所需的电量的无人机时,从当前电池电量高于执行配送任务所需的电量的各无人机中,确定用于执行该配送任务的无人机。当不存在当前电池电量高于执行配送任务所需的电量的无人机时,从起点配送站内各无人机中,确定用于执行该配送任务的无人机,并对确定出的无人机的电池进行更换。
S108:从满足所述运行条件的无人机中,确定目标无人机,将所述待处理订单分配给所述目标无人机,以使所述目标无人机执行所述配送任务。
为了保证无人机的电池的利用率,当存在满足执行配送任务的运行条件的无人机时,该服务器可从满足运行条件的无人机中,确定用于执行该配送任务的无人机。
具体的,该服务器可从满足运行条件的各无人机中,即,从当前电池电量高于执行配送任务所需电量的各无人机中,随机确定出某一无人机,作为用于执行该配送任务的目标无人机,并将该待处理订单分配给该目标无人机,使该无人机执行配送任务。
进一步的,为了避免突发性事件导致无人机出现多余能耗时无法顺利回到配送站,该服务器在确定目标无人机时,可从满足该运行条件的各无人机中,选择当前电池电量最高的无人机作为目标无人机。
更进一步的,为了保证电池的利用率,在确定用于执行该配送任务的目标无人机时,该服务器还可从满足该运行条件的各无人机中,选择当前电池电量最低的无人机作为目标无人机。即,从满足该运行条件的各无人机中,选择当前电池电量与运行条件对应的电量最接近的无人机。也就是说,选择当前电池电量与执行配送任务所需消耗的电量最相近的无人机。
另外,该服务器还可根据无人机当前的电池信息,按照电池电量从高到低的顺序,对满足该运行条件的各无人机进行排序,并根据确定出的排序从满足该运行条件的各无人机中确定目标无人机。例如,按照排序确定当前电池电量最高的无人机为目标无人机,或者确定当前电池电量最低的无人机作为目标无人机,或者在排序的后10%的无人机中任选一无人机作为目标无人机,或者在排序的前10%的无人机中任选一无人机作为目标无人机。实际上,具体的根据排序确定目标无人机的规则可根据需要进行设置,本说明 书对此不做限制。
S110:从航线的起点配送站内各无人机中选择执行所述配送任务的目标无人机,并对所述目标无人机进行电池更换,当确定所述目标无人机电池更换完成时,将所述待处理订单分配给所述目标无人机。
当航线的起点配送站内不存在满足运行条件的无人机时,则可确定起点配送站内各无人机在不进行电池更换时执行该配送任务都存在安全隐患。因此,为了保证安全,该服务器可从起点配送站内各无人机中,确定用于执行该配送任务的目标无人机,并对该目标无人机的电池进行更换。
具体的,首先,该服务器可从起点配送站内各无人机中,随机确定出某一无人机,作为用于执行该配送任务的目标无人机。其次,自动换电设备可对该目标无人机进行电池更换。然后,该服务器可接收该目标无人机返回的自检信息,并根据该自检信息确定目标无人机的电池是否更换到位,以及根据该自检信息中携带的电池信息,确定该目标无人机的当前电池电量是否满足执行该配送任务的运行条件。其中,该自检信息为无人机进行电池更换后向该服务器发送的。当确定目标无人机电池更换完成、且该目标无人机的当前电池电量满足执行该配送任务的运行条件时,该服务器可将该待处理订单分配给该目标无人机,使该无人机执行配送任务。
另外,上述对该目标无人机的电池进行更换的步骤,具体可由自动换电设备执行,则该自动换电设备可接收服务器发送的换电信息,将该目标无人机的电池进行更换。且本说明书中的无人机在通电后即可启动,则在自动换电设备将无人机的电池进行更换后,该无人机即可启动并进行自检,以及根据自检结果向服务器发送自检信息,以使服务器根据该自检信息执行后续步骤。
进一步的,同时从配送站出发执行配送任务的无人机可能有多个,则无人机在从配送站出发执行配送任务前可能需要等待一段时间。而无人机在通电状态下进行等待,可能会导致该无人机的能耗增加。于是为了节省电量,在无人机返回配送站后可控制自身切换为待机状态,并保持该待机状态直至接收到服务器发送的待处理订单的订单信息。在该待机状态下,该无人机可使电池仅为主板进行供电,以保持与服务器通信。在接收到服务器发送的待处理订单的订单信息,无人机控制自身切换为正常状态,即使电池为各电路进行供电,以使该无人机可执行该待处理订单对应的配送任务。
或者,在服务器确定需要更换该无人机的电池时,该无人机可在电池更换之后启动,并进行自检,在将自检结果返回该服务器后,控制自身切换为待机状态,等待服务器分配任务。当服务器分配给该无人机配送任务时,由该无人机的主板将该无人机从待机状态切换为正常状态。
更进一步的,为了保证服务器与该无人机之间的通信不间断,还可在无人机内部设置仅用于为主板进行供电的主板电池,则在无人机返回配送站后,各无人机可处于仅由主板电池为主板供电的休眠状态,并通过主板与服务器进行通讯。
另外,为了避免无人机中的主板电池在无人机执行配送任务时额外带来的能耗,还可在无人机外部设置有启动按钮。在无人机返回配送站后,该无人机可处于断电状态。在该断电状态下,该无人机中包括主板在内的所有电路都不被供电。在自动换电设备将无人机的电池更换完成后,该自动换电设备中的机械臂可对该无人机的启动按钮进行操作,以使该无人机开机。该无人机开机后进行自检,并将自检信息发送至服务器。当然,各无人机返回配送站后,即可进入自动换电设备中,则自动换电设备仅需对步骤S108中确定出的目标无人机的启动按钮进行操作使其启动即可。
根据自检信息确定无人机的电池是否更换到位,可通过压力传感器确定卡扣是否到位、通过确定无人机电池部分的是否电阻过大等多种方法实现。当然,由于根据自检信息确定无人机电池是否更换到位已经是本领域较为成熟的技术,本说明书对于具体如何确定不再赘述。
基于图1提供的无人机配送的方法,获取待处理订单的订单信息,基于该订单信息确定执行该待处理订单对应的配送任务的运行条件,并根据获取到的起点配送站内各无人机的电池信息和执行该配送任务的运行条件,确定用于执行该配送任务的目标无人机。本方法通过基于起点配送站内各无人机当前的电池信息和执行该配送任务的运行条件,确定目标无人机以及该目标无人机是否需要更换电池,避免了根据人为经验对无人机的电池进行更换导致的更换电池失误,提高了无人机的配送效率。
进一步的,为了避免出现某配送站中无人机过多导致无人机飞至该配送站上空时无法降落的情况,或出现某配送站中没有充满电的电池使得无人机在飞至该配送站时无法及时更换电池以执行下一配送任务的情况。在步骤S102中,确定终点配送站时,还可根据各配送站中的无人机数量、充满电的电池数量以及空闲充电位的数量等,确定该待处理订单的终点配送站。当然,由于环境信息对无人机执行配送任务的能耗的影响较大,因此,还可根据环境信息确定该终点配送站。其中,环境信息可包括风力、风向、温度、天气、气压等。
另外,在步骤S102中,仅以配送运力将待处理订单对应的配送物送至该待处理订单的起点配送站,由无人机将该待处理订单包含的配送物配送至送货地点之后返回终点配送站为例进行说明,但在实际应用中,还存在由配送运力将待处理订单对应的配送物送至起点配送站,由该起点配送站的无人机将该待处理订单包含的配送物配送至终点配送站,之后由对应的配送运力等将该待处理订单包含的配送物进行从终点配送站到送货 地点的配送的情况,如图4所示。
图4为本说明书提供的执行配送任务的航线的示意图,其中,黑色圆点A0代表该待处理订单的取货地点,黑色圆点B代表该待处理订单的送货地点,黑色圆圈A代表该待处理订单的起点配送站,黑色圆圈C代表该待处理订单的终点配送站。则可由配送运力将待处理订单包含的配送物从取货地点A0送至起点配送站A处,由无人机将待处理订单包含的配送物由起点配送站A送至终点配送站C处,再由配送运力将该待处理订单包含的配送物从终点配送站C处配送至送货地点B,完成该待处理订单对应的配送任务。则从起点配送站A到终点配送站C为无人机执行该配送任务时的航线。
该无人机还可从起点配送站出发,前往该待处理订单的取货地点进行取货,并将该待处理订单包含的配送物送至送货地点后,返回终点配送站。不同的配送策略会导致确定出的航线包含的阶段等不完全相同,但基于订单信息确定航线并基于航线确定能耗信息的步骤是一致的。具体采用何种配送策略,确定出的航线的具体包含的阶段,可根据需要进行设置,本说明书对此不做限制。
进一步的,无人机执行配送任务的能耗受环境因素的影响较大。例如,假设都为逆风飞行,在三级风时,无人机执行该配送任务对应的能耗,显然低于五级风时无人机执行该配送任务对应的能耗。于是,在步骤S104中,为了更准确地确定出执行该待处理订单对应的配送任务的运行条件,该无人机还可根据步骤S102中确定出的航线确定航行路径的环境信息。并在根据该待处理订单包含的配送物的重量、存放该待处理订单包含的配送物的货箱的体积和重量、该无人机自身的重量、以及该航行路径,确定出执行该配送任务的第三能耗信息后,根据该航行路径的环境信息对该第三能耗信息进行更新,并根据更新后的第三能耗信息确定执行该配送任务的运行条件。其中,该环境信息可与步骤S102中确定航线的终点配送站时采用的环境信息相同。
在确定第一能耗信息和第三能耗信息时,该服务器还可根据无人机当前的电池信息,确定无人机当前电池的重量,进而确定无人机的电池重量对应的能耗信息,并对第一能耗信息和第三能耗信息进行更新。其中,电池信息可包括电池的重量,当然,电池信息的具体内容与形式可根据需要进行设置,本说明书对此不做限制。
另外,上述根据环境信息对能耗信息进行更新,可通过拟合函数来实现。具体的,获取无人机历史上执行的若干配送任务,针对每个配送任务,确定该配送任务对应的订单信息、航线信息、环境信息以及实际能耗,基于订单信息和航线信息确定预估能耗,并根据该预估能耗、实际能耗以及环境信息建立拟合函数。于是,在确定出第三能耗信息后,该服务器可根据该拟合函数和环境信息对该第三能耗信息进行更新。该拟合函数具体可置,本说明书对此不做限制。
还可通过模型来实现根据环境信息对能耗信息进行更新。具体的,获取无人机历史上执行的若干配送任务,针对每个配送任务,确定该配送任务对应的订单信息、航线信息、环境信息以及实际能耗,基于订单信息和航线信息确定预估能耗,将该预估能耗和环境信息作为训练样本,通过预测模型得到该训练样本的预测结果,并将实际能耗作为样本标签。这样,以各训练样本的预测结果和相应的样本标签之间的差异最小化为训练目标,对该预测模型进行训练。
进一步的,考虑到一般电池的充电效率存在高效率区间,即电池的电量在某个电量区间内时充电效率可维持在较高水平,如,假设满充电量的20%~80%为电池的高效率区间。为了保证配送效率,还可预设电量阈值为20%。在步骤S108中,该服务器在确定目标无人机时,可从满足运行条件的各无人机中,确定执行该配送任务后的电池剩余电量高于该预设的电量阈值的无人机作为目标无人机。当然,不同类型的电池的高效率区间不完全相同,因此,该电量阈值的具体数值可根据需要进行设置,本说明书对此不做限制。
不同型号的无人机对应的性能参数,如,最大载重等可能不一致。因此,在确定出目标无人机前,还可根据起点配送站内各无人机的性能参数中的最大载重以及该待处理订单包含的配送物和存放配送物的货箱的重量,对起点配送站内各无人机进行筛选。
另外,为了兼顾其他待处理订单,该服务器还可根据强化学习算法确定该目标无人机。首先,该服务器可确定该待处理订单的订单特征、该航线的航线特征、无人机的属性特征、以及起点配送站内满足该运行条件的各无人机的电池电量特征。然后,通过强化学习算法,基于上述特征以及无人机执行配送任务后的电池剩余电量,可确定起点配送站内满足该运行条件的各无人机执行该配送任务的奖励。其中,针对无人机执行配送任务后不同的电池剩余电量,设置有不同的奖励。如,当电池剩余电量较高时,为了保证电池利用率,避免过于频繁充放电给电池性能带来的影响,可设置当电池剩余电量高于第一阈值,如,满充电量的50%时,电池剩余电量越高,则奖励值越高。而当电池剩余电量较低时,为了保证电池的利用率,尽可能使电池在高效率区间进行充电,可设置当电池剩余电量高于第二阈值且低于第一阈值,如,高于满充电量的20%且低于满充电量的50%时,电池剩余电量越接近于第二阈值,则奖励值越高。若电池剩余电量低于第二阈值,则奖励值为负等。最后,基于确定出的起点配送站内满足该运行条件的各无人机的奖励值,以最大奖励值对应的无人机为目标无人机。当然,也可设定奖励阈值,从对应的奖励值高于该奖励阈值的各无人机中,随机确定用于执行该配送任务的模板无人机。
第一阈值高于第二阈值,但第一阈值和第二阈值的具体数值以及各奖励值的具体数 值等,可根据需要进行设置,本说明书对此不做限制。
进一步的,为了保证无人机电池的利用率,在步骤S110中,该服务器可根据起点配送站内各无人机当前的电池信息,确定电池电量最低的无人机,作为执行该配送任务的目标无人机。
另外,还可能存在某配送站的无人机过多使得无人机无法降落,或该配送站内没有足够数量的电池给无人机进行电池更换的情况,因此,本说明书中的无人机还可执行调度任务,即,从一配送站飞至另一配送站,以缓解该配送站的压力。可基于各配送站的运行压力、无人机当前的电池信息等,确定该无人机执行调度任务的终点配送站,并确定该调度任务的航线。其中,确定调度任务的运行条件的方式可与确定配送任务的运行条件相同。
进一步的,在本说明书中,还可根据不同型号的无人机的性能参数,如无人机的重量、体积等,确定各型号的无人机执行该配送任务所需的能耗,进而确定各型号的无人机执行该配送任务对应的运行条件。并在确定出起点配送站内各型号的无人机对应的运行条件后,综合各型号的无人机的数量,待处理订单包含的配送物的重量,确定用于执行该待处理订单的无人机。如,假设A型号无人机的运行条件为当前电池电量高于满充电量的80%,B型号无人机的运行条件为当前电池电量高于满充电量的50%,C型号无人机的运行条件为当前电池电量高于满充电量的30%,A型号无人机有20架,B型号无人机有50架,C型号无人机有10架,则可确定B型号无人机执行该配送任务。当然,具体如何结合无人机的型号等确定用于执行该待处理订单的目标无人机,还可根据需要进行设置,本说明书对此不做限制。
此外,在确定该无人机执行配送任务的运行条件时还可引入冗余参数α,以确保在无人机执行配送任务过程中,当出现突发性事件导致无人机出现多余能耗时,无人机的电池剩余电量还能使无人机顺利回到配送站。参数α取值范围可为(1,1.5)等。因此,在确定运行条件时,可按照第一能耗信息和第二能耗信息之和的α倍确定出带有冗余的总能耗信息,并根据该总能耗信息确定运行条件。当然,参数α的具体值可以在实际应用中按照需要设置。符合逻辑即可,本说明书对此不做限制。
进一步的,由于自动换电设备对于无人机的停放位置等的要求较高,因此,在对无人机的电池进行更换时,还可由工作人员对目标无人机的电池进行更换。具体的,配送站中的工作人员可配置有终端,当目标无人机需要更换电池时,该服务器可向工作人员发送提示信息。该提示信息用于提示工作人员,某区域的某编号的无人机需要更换电池。工作人员接收到提示信息后,根据该提示信息将该目标无人机的电池进行更换。在电池更换完成后,无人机自行启动或由工作人员按下启动按钮使无人机启动。无人机进行自 检并向服务器发送自检信息。当服务器确定无人机自检通过后,可向工作人员发送用于提示工作人员确定对该无人机更换电池完成的确认请求。等工作人员对该确认请求进行确认后,向服务器发送确认信息。这样,可以避免出现更换电池失误的情况。该无人机可接收该服务器发送的订单信息,执行该配送任务。
如图5A所示,图5A为本说明书提供的换电流程示意图,包括:
S200:服务器向工作人员的终端发送提示信息,以提示该工作人员根据终端界面中的提示信息,将无人机的电池进行更换。如图5B所示。
图5B为本说明书提供的更换电池界面示意图。其中,A区和B区分别为无人机返回配送站后停放的区域,01号、02号、03号分别为各无人机在A区和B区中的停放位置。A区的01号位置停放了编号为001的无人机,A区的02号位置停放了编号为002的无人机,A区的03号位置停放了编号为003的无人机,B区的01号位置停放了编号为011的无人机,B区的02号位置停放了编号为012的无人机,B区的03号位置停放了编号为013的无人机。白色区域代表该位置的无人机不需要更换电池,而灰色区域代表该位置的无人机需要更换电池。可见,A区的01号位置、编号为001号的无人机需要更换电池。下方的确认按键为白色代表该按键处于不可用状态;按键为灰色代表该按键处于可用状态,当该按键可用时,工作人员可通过该确认按键向服务器发送确认信息。
S202:无人机进行自检。可由无人机自行启动,或由工作人员对无人机外部的启动按钮进行操作使该无人机启动。在该无人机启动后,可进行自检,确定自检结果。
S204:无人机向服务器发送自检信息。在无人机自检结束后,可由无人机根据自检结果向服务器发送自检信息。其中,该自检信息至少可包括无人机当前的电池信息,还可包括可用于确定无人机当前电池是否更换到位的信息。
S206:服务器向工作人员的终端发送确认请求。在根据步骤S204中的自检信息确定无人机自检成功后,该服务器可向工作人员的终端发送确认请求,该确认请求可用于使图5B中的确认按键由不可用状态转为可用状态。
S208:工作人员的终端向服务器发送确认信息。在终端检测到步骤S206中确认请求时,可根据该确认请求,将图5B中的确认按键由不可用状态转为可用状态,即,将该按键由白色变为灰色。则工作人员可通过该确认按键,向服务器发送确认信息。
S210:服务器向无人机发送待处理订单。在接收到工作人员的终端发送的确认信息后,该服务器可向该无人机发送待处理订单,以使该无人机执行该待处理订单对应的配送任务。
上述界面中的各区域、各位置具体的名称,各无人机的编号以及按键的颜色等可根 据需要进行设置,本说明书对此不做限制。
以上为本说明书的一个或多个实施例提供的无人机配送方法,基于同样的思路,本说明书还提供了相应的无人机配送装置,如图6所示。
图6为本说明书提供的无人机配送装置示意图,具体包括:获取模块300,用于获取待处理订单的订单信息;第一确定模块302,用于根据所述待处理订单的订单信息,确定执行所述待处理订单对应的配送任务的航线,所述航线包括起点配送站和终点配送站;第二确定模块304,用于根据所述订单信息中的配送物信息、所述航线以及无人机的属性信息,确定执行所述配送任务的运行条件;配送模块306,用于根据所述起点配送站内各无人机的电池信息,判断是否存在满足所述运行条件的无人机,若是,则从满足所述运行条件的无人机中确定目标无人机,并将所述待处理订单分配给所述目标无人机,以使所述目标无人机执行所述配送任务,若否,则从所述起点配送站内各无人机中选择执行所述配送任务的目标无人机,并对所述目标无人机进行电池更换,当确定所述目标无人机电池更换完成时,将所述待处理订单分配给所述目标无人机,以使所述目标无人机执行所述配送任务。
可选地,所述第一确定模块302,具体用于:根据所述待处理订单的订单信息,确定所述待处理订单的取货地点和送货地点;根据所述待处理订单的取货地点,确定所述待处理订单的起点配送站;根据所述待处理订单的送货地点,确定所述待处理订单的终点配送站;根据所述待处理订单的起点配送站、送货地点、终点配送站,确定所述待处理订单的航线。
可选地,所述第二确定模块304,具体用于:根据所述订单信息中的配送物信息,确定所述待处理订单包含的配送物的重量,以及存放所述待处理订单包含的配送物所需的货箱的属性信息;根据所述待处理订单包含的配送物的重量、存放所述待处理订单包含的配送物的货箱的属性信息、无人机的属性信息以及所述航线,确定执行所述配送任务的运行条件。其中,所述属性信息至少包括重量信息。
可选地,所述第二确定模块304,具体用于:根据所述航线,确定无人机执行所述配送任务的航行路径;根据所述订单信息,确定所述待处理订单包含的配送物在所述航行路径中所占的航行路程;根据无人机的属性信息和所述航行路径,确定第一能耗信息;根据所述待处理订单包含的配送物的重量、存放所述待处理订单包含的配送物的货箱的属性信息和所述航行路程,确定第二能耗信息;根据所述第一能耗信息和所述第二能耗信息,确定执行所述配送任务的运行条件。其中,根据所述第一能耗信息和所述第二能耗信息,确定执行所述配送任务的运行条件,可包括:根据所述第一能耗信息和所述第二能耗信息确定总能耗信息;根据所述总能耗信息和冗余参数确定执行所述配送任 务的运行条件。
可选地,所述第二确定模块304,具体用于:根据所述航线,确定无人机执行所述配送任务的航行路径以及所述航行路径的环境信息;根据所述待处理订单包含的配送物的重量、存放所述待处理订单包含的配送物的货箱的属性信息、无人机的属性信息以及所述航行路径,确定执行所述配送任务的第三能耗信息;根据所述航行路径的环境信息和冗余参数中的至少一个,更新所述第三能耗信息;根据更新后的第三能耗信息,确定执行所述配送任务的运行条件。
可选地,所述配送模块306,具体用于:从满足所述运行条件的各无人机中,确定执行所述配送任务后的电池剩余电量高于预设的电量阈值的无人机作为目标无人机。
可选地,所述配送模块306,具体用于:根据所述起点配送站内各无人机当前的电池信息,从各无人机中,选择电量最低的无人机作为执行所述配送任务的目标无人机。
可选地,所述配送模块306,具体用于:根据满足所述运行条件的各无人机当前的电池信息,确定电池电量最高的无人机作为目标无人机;或者,根据满足所述运行条件的各无人机当前的电池信息,确定电池电量最低的无人机作为目标无人机。
本说明书还提供了一种计算机可读存储介质,该存储介质存储有计算机程序,计算机程序可用于执行上述图1提供的无人机配送方法。
本说明书还提供了图7所示的电子设备的示意结构图。如图7所述,在硬件层面,该无人驾驶设备包括处理器701、内部总线702、网络接口703、内存704以及非易失性存储器705,当然还可能包括其他业务所需要的硬件。处理器701从非易失性存储器705中读取对应的计算机程序到内存704中然后运行,以实现上述图1所述的无人机配送方法。当然,除了软件实现方式之外,本说明书并不排除其他实现方式,比如逻辑器件抑或软硬件结合的方式等等,也就是说以下处理流程的执行主体并不限定于各个逻辑单元,也可以是硬件或逻辑器件。
在20世纪90年代,对于一个技术的改进可以很明显地区分是硬件上的改进(例如,对二极管、晶体管、开关等电路结构的改进)还是软件上的改进(对于方法流程的改进)。然而,随着技术的发展,当今的很多方法流程的改进已经可以视为硬件电路结构的直接改进。设计人员几乎都通过将改进的方法流程编程到硬件电路中来得到相应的硬件电路结构。因此,不能说一个方法流程的改进就不能用硬件实体模块来实现。例如,可编程逻辑器件(Programmable Logic Device,PLD)(例如现场可编程门阵列(Field Programmable Gate Array,FPGA))就是这样一种集成电路,其逻辑功能由用户对器件编程来确定。由设计人员自行编程来把一个数字系统“集成”在一片PLD上,而不需 要请芯片制造厂商来设计和制作专用的集成电路芯片。而且,如今,取代手工地制作集成电路芯片,这种编程也多半改用“逻辑编译器(logic compiler)”软件来实现,它与程序开发撰写时所用的软件编译器相类似,而要编译之前的原始代码也得用特定的编程语言来撰写,此称之为硬件描述语言(Hardware Description Language,HDL),而HDL也并非仅有一种,而是有许多种,如ABEL(Advanced Boolean Expression Language)、AHDL(Altera Hardware Description Language)、Confluence、CUPL(Cornell University Programming Language)、HDCal、JHDL(Java Hardware Description Language)、Lava、Lola、MyHDL、PALASM、RHDL(Ruby Hardware Description Language)等,目前最普遍使用的是VHDL(Very-High-Speed Integrated Circuit Hardware Description Language)与Verilog。本领域技术人员也应该清楚,只需要将方法流程用上述几种硬件描述语言稍作逻辑编程并编程到集成电路中,就可以很容易得到实现该逻辑方法流程的硬件电路。
控制器可以按任何适当的方式实现,例如,控制器可以采取例如微处理器或处理器以及存储可由该(微)处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器的形式,控制器的例子包括但不限于以下微控制器:ARC 625D、Atmel AT91SAM、Microchip PIC18F26K20以及Silicone Labs C8051F320,存储器控制器还可以被实现为存储器的控制逻辑的一部分。本领域技术人员也知道,除了以纯计算机可读程序代码方式实现控制器以外,完全可以通过将方法步骤进行逻辑编程来使得控制器以逻辑门、开关、专用集成电路、可编程逻辑控制器和嵌入微控制器等的形式来实现相同功能。因此这种控制器可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置也可以视为硬件部件内的结构。或者甚至,可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本说明书时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件 方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而 使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本说明书的实施例可提供为方法、系统或计算机程序产品。因此,本说明书可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本说明书可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本说明书可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本说明书,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本说明书的实施例而已,并不用于限制本说明书。对于本领域技术人员来说,本说明书可以有各种更改和变化。凡在本说明书的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本说明书的权利要求范围之内。

Claims (11)

  1. 一种无人机配送方法,其特征在于,包括:
    获取待处理订单的订单信息;
    根据所述待处理订单的订单信息,确定执行所述待处理订单对应的配送任务的航线,所述航线包括起点配送站和终点配送站;
    根据所述订单信息中的配送物信息、所述航线以及无人机的属性信息,确定执行所述配送任务的运行条件;
    根据所述起点配送站内各无人机的电池信息,判断所述起点配送站内是否存在满足所述运行条件的无人机;
    若是,则从满足所述运行条件的无人机中,确定目标无人机,并将所述待处理订单分配给所述目标无人机,以使所述目标无人机执行所述配送任务;
    若否,则从所述起点配送站内各无人机中选择执行所述配送任务的目标无人机,并对所述目标无人机进行电池更换,当确定所述目标无人机电池更换完成时,将所述待处理订单分配给所述目标无人机,以使所述目标无人机执行所述配送任务。
  2. 如权利要求1所述的方法,其特征在于,根据所述待处理订单的订单信息,确定执行所述待处理订单对应的配送任务的航线,具体包括:
    根据所述待处理订单的订单信息,确定所述待处理订单的取货地点和送货地点;
    根据所述待处理订单的取货地点,确定所述待处理订单的起点配送站;
    根据所述待处理订单的送货地点,确定所述待处理订单的终点配送站;
    根据所述待处理订单的起点配送站、送货地点、终点配送站,确定所述待处理订单的航线。
  3. 如权利要求1所述的方法,其特征在于,根据所述订单信息中的配送物信息、所述航线以及无人机的属性信息,确定执行所述配送任务的运行条件,具体包括:
    根据所述订单信息中的配送物信息,确定所述待处理订单包含的配送物的重量,以及存放所述待处理订单包含的配送物所需的货箱的属性信息;
    根据所述待处理订单包含的配送物的重量、存放所述待处理订单包含的配送物的货箱的属性信息、无人机的属性信息以及所述航线,确定执行所述配送任务的运行条件,其中,所述属性信息至少包括重量信息。
  4. 如权利要求3所述的方法,其特征在于,根据所述待处理订单包含的配送物的重量、存放所述待处理订单包含的配送物的货箱的属性信息、无人机的属性信息以及所述航线,确定执行所述配送任务的运行条件,具体包括:
    根据所述航线,确定无人机执行所述配送任务的航行路径;
    根据所述订单信息,确定所述待处理订单包含的配送物在所述航行路径中所占的航 行路程;
    根据无人机的属性信息和所述航行路径,确定第一能耗信息;
    根据所述待处理订单包含的配送物的重量、存放所述待处理订单包含的配送物的货箱的属性信息和所述航行路程,确定第二能耗信息;
    根据所述第一能耗信息和所述第二能耗信息,确定执行所述配送任务的运行条件。
  5. 根据权利要求4所述的方法,其特征在于,根据所述第一能耗信息和所述第二能耗信息,确定执行所述配送任务的运行条件,包括:
    根据所述第一能耗信息和所述第二能耗信息确定总能耗信息;
    根据所述总能耗信息和冗余参数确定执行所述配送任务的运行条件。
  6. 如权利要求3所述的方法,其特征在于,根据所述待处理订单包含的配送物的重量、存放所述待处理订单包含的配送物的货箱的属性信息、无人机的属性信息以及所述航线,确定执行所述配送任务的运行条件,具体包括:
    根据所述航线,确定无人机执行所述配送任务的航行路径以及所述航行路径的环境信息;
    根据所述待处理订单包含的配送物的重量、存放所述待处理订单包含的配送物的货箱的属性信息、无人机的属性信息以及所述航行路径,确定执行所述配送任务的第三能耗信息;
    根据所述航行路径的环境信息和冗余参数中的至少一个,更新所述第三能耗信息;
    根据更新后的所述第三能耗信息,确定执行所述配送任务的运行条件。
  7. 如权利要求1所述的方法,其特征在于,从满足所述运行条件的无人机中,确定目标无人机,包括以下任一:
    从满足所述运行条件的各无人机中,确定执行所述配送任务后的电池剩余电量高于预设的电量阈值的无人机作为所述目标无人机;
    根据预设的奖励规则,从满足所述运行条件的各无人机中,选择奖励值高于预设的奖励阈值的无人机作为所述目标无人机;
    根据满足所述运行条件的各无人机当前的电池信息,确定电池电量最高的无人机,作为所述目标无人机;
    根据满足所述运行条件的各无人机当前的电池信息,确定电池电量最低的无人机,作为所述目标无人机。
  8. 如权利要求1所述的方法,其特征在于,从所述起点配送站内各无人机中选择执行所述配送任务的目标无人机,具体包括:
    根据所述起点配送站内各无人机当前的电池信息,从所述起点配送站内各无人机中,选择电量最低的无人机,作为执行所述配送任务的目标无人机。
  9. 一种无人机配送装置,其特征在于,包括:
    获取模块,用于获取待处理订单的订单信息;
    第一确定模块,用于根据所述待处理订单的订单信息,确定执行所述待处理订单对应的配送任务的航线,所述航线包括起点配送站和终点配送站;
    第二确定模块,用于根据所述订单信息中的配送物信息、所述航线以及无人机的属性信息,确定执行所述配送任务的运行条件;
    配送模块,用于根据所述起点配送站内各无人机的电池信息,判断是否存在满足所述运行条件的无人机,若是,则从满足所述运行条件的无人机中确定目标无人机,并将所述待处理订单分配给所述目标无人机,以使所述目标无人机执行所述配送任务,若否,则从所述起点配送站内各无人机中选择执行所述配送任务的目标无人机,并对所述目标无人机进行电池更换,当确定所述目标无人机电池更换完成时,将所述待处理订单分配给所述目标无人机,以使所述目标无人机执行所述配送任务。
  10. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述权利要求1至8任一项所述的方法。
  11. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现上述权利要求1至8任一项所述的方法。
PCT/CN2022/086639 2021-05-10 2022-04-13 无人机配送的方法及装置 WO2022237443A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110502867.7A CN112990786A (zh) 2021-05-10 2021-05-10 一种无人机配送方法及装置
CN202110502867.7 2021-05-10

Publications (1)

Publication Number Publication Date
WO2022237443A1 true WO2022237443A1 (zh) 2022-11-17

Family

ID=76337321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086639 WO2022237443A1 (zh) 2021-05-10 2022-04-13 无人机配送的方法及装置

Country Status (2)

Country Link
CN (1) CN112990786A (zh)
WO (1) WO2022237443A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116387652A (zh) * 2023-06-05 2023-07-04 深圳和润达科技有限公司 化成/分容电源设备的在线维护系统及方法
CN117474432A (zh) * 2023-12-27 2024-01-30 运易通科技有限公司 一种无人物流配送方法、系统及无人机

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112990786A (zh) * 2021-05-10 2021-06-18 北京三快在线科技有限公司 一种无人机配送方法及装置
CN113298445B (zh) * 2021-07-22 2022-07-15 北京三快在线科技有限公司 一种模型训练和调度无人设备的方法及装置
CN113869747A (zh) * 2021-09-29 2021-12-31 天津云圣智能科技有限责任公司 全自动机场的电池调度方法、装置及电子设备
CN114429317B (zh) * 2022-04-06 2022-08-23 深圳市永达电子信息股份有限公司 一种小区无人派件方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107491921A (zh) * 2017-08-30 2017-12-19 亿航智能设备(广州)有限公司 订单配送方法及其装置
CN107516181A (zh) * 2017-08-30 2017-12-26 亿航智能设备(广州)有限公司 订单配送方法、装置和系统
CN108229886A (zh) * 2018-01-02 2018-06-29 广州亿航智能技术有限公司 无人机配送管理方法、装置和计算机储存介质
CN111626525A (zh) * 2020-06-04 2020-09-04 中国银行股份有限公司 一种无人机的管理方法、系统、存储介质及电子设备
US20210073715A1 (en) * 2018-01-23 2021-03-11 Ntt Docomo, Inc. Information processing apparatus
CN112529496A (zh) * 2020-12-04 2021-03-19 武汉及时飞智能科技有限公司 基于无人机的配送方法和配送系统
CN112990786A (zh) * 2021-05-10 2021-06-18 北京三快在线科技有限公司 一种无人机配送方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10071803B2 (en) * 2015-01-16 2018-09-11 International Business Machines Corporation Package transport container and transport operations for an unmanned aerial vehicle
CN108550070A (zh) * 2018-04-20 2018-09-18 广州亿航智能技术有限公司 订单配送方法和装置
CN112288350A (zh) * 2020-09-30 2021-01-29 山东华宇工学院 一种自动化快递快餐递送系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107491921A (zh) * 2017-08-30 2017-12-19 亿航智能设备(广州)有限公司 订单配送方法及其装置
CN107516181A (zh) * 2017-08-30 2017-12-26 亿航智能设备(广州)有限公司 订单配送方法、装置和系统
CN108229886A (zh) * 2018-01-02 2018-06-29 广州亿航智能技术有限公司 无人机配送管理方法、装置和计算机储存介质
US20210073715A1 (en) * 2018-01-23 2021-03-11 Ntt Docomo, Inc. Information processing apparatus
CN111626525A (zh) * 2020-06-04 2020-09-04 中国银行股份有限公司 一种无人机的管理方法、系统、存储介质及电子设备
CN112529496A (zh) * 2020-12-04 2021-03-19 武汉及时飞智能科技有限公司 基于无人机的配送方法和配送系统
CN112990786A (zh) * 2021-05-10 2021-06-18 北京三快在线科技有限公司 一种无人机配送方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116387652A (zh) * 2023-06-05 2023-07-04 深圳和润达科技有限公司 化成/分容电源设备的在线维护系统及方法
CN117474432A (zh) * 2023-12-27 2024-01-30 运易通科技有限公司 一种无人物流配送方法、系统及无人机
CN117474432B (zh) * 2023-12-27 2024-05-17 运易通科技有限公司 一种无人物流配送方法、系统及无人机

Also Published As

Publication number Publication date
CN112990786A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2022237443A1 (zh) 无人机配送的方法及装置
US11926340B2 (en) Distributed centralized automatic driving method
CN109353345B (zh) 车辆控制方法、装置、设备、介质和车辆
CN111959331B (zh) 基于接力充电的电动汽车停车场配电系统、方法及装置
CN112288352A (zh) 一种无人车配送方法及装置
US20210078438A1 (en) Information processing system
CN111340412A (zh) 一种订单处理的方法、装置、可读存储介质及电子设备
KR101491366B1 (ko) 차량용 배터리 관리 장치 및 방법
KR102336723B1 (ko) 배터리 관리 장치 및 방법
CN112987796A (zh) 无人机的控制方法、装置、计算机可读存储介质及无人机
WO2023134551A1 (zh) 无人机机场中信标码的分配、无人机降落的方法及装置
CN110509312A (zh) 机器人配置更新方法、电子设备及计算机可读存储介质
CN115499315A (zh) Ota升级任务的执行方法、装置和电子设备
US20230288976A1 (en) Task management device, task management method, and task management program
CN110910074B (zh) 部品出库方法、系统及存储介质
CN113298445A (zh) 一种模型训练和调度无人设备的方法及装置
CN113298467A (zh) 调度方法、装置、设备及存储介质
US20240027199A1 (en) Adaptive electric vehicle (ev) scheduling
CN113452119B (zh) 充电设备调配方法、装置及系统
CN113486452B (zh) 一种用于无人驾驶设备远程遥控的方法及装置
CN116342010B (zh) 一种基于人体姿态识别的人机物流系统
CN113672428B (zh) 一种面向sparc平台的嵌入式软件异常自主处理方法和装置
US20240106240A1 (en) System, method, and computer readable storage medium
CN114881558B (zh) 基于无人机与车辆协同的快递配送方法、装置及电子设备
CN116670025A (zh) 无人机控制系统、无人机、无人机控制方法、以及程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806413

Country of ref document: EP

Kind code of ref document: A1