WO2022237305A1 - 低速自动驾驶方法、装置、设备及存储介质 - Google Patents

低速自动驾驶方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022237305A1
WO2022237305A1 PCT/CN2022/080993 CN2022080993W WO2022237305A1 WO 2022237305 A1 WO2022237305 A1 WO 2022237305A1 CN 2022080993 W CN2022080993 W CN 2022080993W WO 2022237305 A1 WO2022237305 A1 WO 2022237305A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
vehicle
width
type
condition information
Prior art date
Application number
PCT/CN2022/080993
Other languages
English (en)
French (fr)
Inventor
石登仁
潘晖
李云
韦巧
陈钊
Original Assignee
东风柳州汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东风柳州汽车有限公司 filed Critical 东风柳州汽车有限公司
Publication of WO2022237305A1 publication Critical patent/WO2022237305A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0011Planning or execution of driving tasks involving control alternatives for a single driving scenario, e.g. planning several paths to avoid obstacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/50Barriers

Definitions

  • the present application relates to the technical field of automatic driving, and in particular to a low-speed automatic driving method, device, equipment and storage medium.
  • the vehicle perceives the road environment through the on-board perception system, automatically plans the driving route and controls the vehicle to reach the destination.
  • the vehicle perceives the road environment through the on-board perception system, automatically plans the driving route and controls the vehicle to reach the destination.
  • there may be obstacles on the road that affect the normal functions and performance of the vehicle, which will hinder the driving of the vehicle and affect the driving safety of the vehicle.
  • the main purpose of this application is to provide a low-speed automatic driving method, device, equipment and storage medium, aiming to solve the technical problem that there may be obstacles on the road that affect the normal function and performance of the vehicle, which will hinder the driving of the vehicle and affect the driving safety of the vehicle.
  • the present application provides a low-speed automatic driving method, the method comprising the following steps:
  • the vehicle is controlled to travel according to the adjusted planned route.
  • the obstacle type includes a protruding type
  • the method further includes:
  • the obstacle When the obstacle is a protruding obstacle, obtain a height set and a width set of the protruding obstacle according to the road condition information, and determine a maximum height and a width set in the height set The maximum width in;
  • the maximum height is greater than or equal to the target ground clearance corresponding to the vehicle or the maximum width is greater than or equal to the target width, it is determined that the protruding obstacle does not meet the target size requirement.
  • the method further includes:
  • the vehicle is controlled to travel according to the adjusted planned route.
  • the obstacle type includes a flat plate type
  • the method further includes:
  • the obstacle is a plate-type obstacle
  • the vehicle is controlled to travel according to the adjusted planned route.
  • the obstacle type includes a concave type
  • the method further includes:
  • the obstacle When the obstacle is a sunken type obstacle, determine a depth set and a width set of the sunken type obstacle according to the road condition information, and determine the maximum depth in the depth set and the width set in the width set maximum width;
  • the maximum depth is greater than or equal to a preset depth threshold or the maximum width is greater than or equal to the target width, it is determined that the obstacle of the concave type does not meet the target size requirement.
  • determining the obstacle type corresponding to the obstacle includes:
  • the color and the shape are compared with the reference data in the preset database, and the obstacle type is determined according to the comparison result.
  • the method further includes:
  • the vehicle is controlled to travel according to the return route.
  • the present application also proposes a low-speed automatic driving device, which includes:
  • control module configured to obtain an initial planned route, and control the vehicle to travel according to the initial planned route
  • An acquisition module configured to acquire road condition information on the road ahead according to the first scanning device installed on the vehicle;
  • a determination module configured to determine an obstacle type corresponding to the obstacle when it is determined according to the road condition information that there is an obstacle on the road ahead;
  • the determination module is further configured to determine the corresponding target size requirement according to the obstacle type
  • An adjustment module configured to adjust the initial planned path according to the road condition information to obtain an adjusted planned path when it is determined according to the road condition information that the obstacle does not meet the target size requirement
  • the control module is further configured to control the vehicle to travel according to the adjusted planned route.
  • the present application also proposes a low-speed automatic driving device, which includes: a memory, a processor, and a low-speed automatic driving device stored in the memory and operable on the processor. program, the low-speed automatic driving program is configured to implement the steps of the above-mentioned low-speed automatic driving method.
  • the present application also proposes a storage medium, on which a low-speed automatic driving program is stored, and when the low-speed automatic driving program is executed by a processor, the low-speed automatic driving method as described above is realized. step.
  • This application obtains the initial planning route, and controls the driving of the vehicle according to the initial planning route; obtains the road condition information on the road ahead according to the first scanning device installed on the vehicle; when determining that there is an obstacle on the road ahead according to the road condition information, determine the obstacle The obstacle type corresponding to the object; determine the corresponding target size requirement according to the obstacle type; when it is determined that the obstacle does not meet the target size requirement according to the road condition information, the initial planning path is adjusted according to the road condition information, and the adjusted planning path is obtained; according to The adjusted planned path controls the driving of the vehicle.
  • the planned route is adjusted, and the vehicle is controlled according to the adjusted planned route, and the obstacles on the road that affect the normal function and performance of the vehicle are identified. Obstacles, avoiding obstacles, avoiding obstacles hindering vehicle driving and affecting vehicle driving safety.
  • FIG. 1 is a schematic structural diagram of a low-speed automatic driving device in a hardware operating environment involved in the embodiment of the present application;
  • FIG. 2 is a schematic flow chart of the first embodiment of the low-speed automatic driving method of the present application
  • FIG. 3 is a schematic flow chart of the second embodiment of the low-speed automatic driving method of the present application.
  • FIG. 4 is a schematic flow chart of the third embodiment of the low-speed automatic driving method of the present application.
  • FIG. 5 is a schematic flowchart of a fourth embodiment of the low-speed automatic driving method of the present application.
  • Fig. 6 is a structural block diagram of the first embodiment of the low-speed automatic driving device of the present application.
  • FIG. 1 is a schematic structural diagram of a low-speed automatic driving device in a hardware operating environment involved in an embodiment of the present application.
  • the low-speed automatic driving device may include: a processor 1001 , such as a central processing unit (Central Processing Unit, CPU), a communication bus 1002 , a user interface 1003 , a network interface 1004 , and a memory 1005 .
  • the communication bus 1002 is configured to realize connection and communication between these components.
  • the user interface 1003 may include a display screen (Display), an input unit such as a keyboard (Keyboard), and the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may optionally include a standard wired interface and a wireless interface (such as a wireless fidelity (WIreless-FIdelity, WI-FI) interface).
  • Memory 1005 can be a high-speed random access memory (Random Access Memory, RAM), can also be a stable non-volatile memory (Non-Volatile Memory, NVM), such as disk storage.
  • RAM Random Access Memory
  • NVM Non-Volatile Memory
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001 .
  • FIG. 1 does not constitute a limitation on the low-speed automatic driving device, and may include more or less components than shown in the figure, or combine some components, or arrange different components.
  • the memory 1005 as a storage medium may include an operating system, a network communication module, a user interface module, and a low-speed automatic driving program.
  • the network interface 1004 is mainly configured to communicate data with the network server; the user interface 1003 is mainly configured to perform data interaction with the user; the processor 1001 in the low-speed automatic driving device of the present application .
  • the memory 1005 may be set in the low-speed automatic driving device, and the low-speed automatic driving device invokes the low-speed automatic driving program stored in the memory 1005 through the processor 1001, and executes the low-speed automatic driving method provided in the embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a first embodiment of the low-speed automatic driving method of the present application.
  • the low-speed automatic driving method includes the following steps:
  • Step S10 Obtain an initial planned route, and control the vehicle to travel according to the initial planned route.
  • the vehicle in this embodiment can be an unmanned smart car with an automatic driving function, or an automatic guided vehicle (Automated Guided Vehicle, AGV) with an automatic driving function.
  • the executive body of this embodiment is Low-speed automatic driving equipment.
  • the low-speed automatic driving equipment may be a driving computer (Electronic Control Unit, ECU), a processor, or other equipment with the same or similar functions, which is not limited in this embodiment.
  • the process of obtaining the initial planned route may be to obtain the current position of the vehicle through the positioning device installed on the vehicle, determine the target position based on the user's instruction, and obtain the initial planned route according to the navigation map.
  • the first scanning device and the second scanning device are installed in front of the vehicle, the initial planning route is determined according to the current position of the vehicle and the target position, the first scanning device is turned on, and the car is driven automatically along the initial planning route towards the destination.
  • Step S20 Obtaining road condition information on the road ahead according to the first scanning device installed on the vehicle.
  • the first scanning device may include one or more of a camera, a laser radar, an ultrasonic radar, and an infrared sensor, and may be an assembly device of a camera and a laser radar.
  • the first scanning device scans the road surface in real time during driving. and the shape, color, and three-dimensional size of objects on the road to form three-dimensional road condition information, and send the three-dimensional road condition information to the processor.
  • Step S30 When it is determined according to the road condition information that there is an obstacle on the road ahead, determine the obstacle type corresponding to the obstacle.
  • the types of obstacles include protruding types, flat types and concave types.
  • the obstacle information is determined according to the road condition information, and the obstacle information at least includes: image information, shape, color, width and height of the obstacle.
  • the processor analyzes the collected data in real time, compares the scanned obstacle image information, shape, color and size information with the data in the preset database in real time, so as to identify the stones on the road.
  • the distance between each obstacle and the vehicle, as well as the distance between each obstacle can be determined through the first scanning device.
  • the step S30 includes: when it is determined according to the road condition information that there is an obstacle on the road ahead, determining the color and shape corresponding to the obstacle according to the road condition information; The reference data in the preset database is compared, and the obstacle type is determined according to the comparison result.
  • the related data of the obstacle is stored in the preset database in advance, and the obstacle information obtained by scanning is compared with the reference data in the preset database to determine the type of the obstacle, for example, according to the color and the width of the obstacle Dimensional obstacles are stenciled, yellow in color, and much wider than they are tall.
  • Step S40 Determine the corresponding target size requirement according to the obstacle type.
  • mapping table is stored in the preset database in advance, and the mapping table includes the mapping relationship between the obstacle type and the target size requirement. After the current obstacle type is determined, it is determined from the mapping table of the preset database. Corresponding target size requirements.
  • the corresponding target size requirements are different.
  • a protruding type of obstacle such as a stone
  • the vehicle can drive directly over the obstacle, if the height is higher than the minimum ground clearance or the width is greater than the direct distance between the tires, the obstacle needs to be avoided;
  • flat obstacles if The height is low enough that the vehicle can pass directly, but if the height is too high, the vehicle may pass directly and cause damage to the tires and the chassis;
  • concave-type obstacles, such as potholes if it is too deep, the vehicle may pass through and cause damage to the chassis , if the pit depth is less than the preset depth threshold, the vehicle can pass directly.
  • Step S50 When it is determined according to the road condition information that the obstacle does not meet the target size requirement, adjust the initial planned route according to the road condition information to obtain an adjusted planned route.
  • the vehicle chassis data is stored in the memory in advance, and the vehicle chassis data includes wheelbase, wheel base, tire width, departure angle, approach angle and minimum ground clearance, etc., through the road condition information and the vehicle stored in the memory Chassis data is compared to determine whether the currently scanned obstacle meets the target size requirements corresponding to its type.
  • the currently scanned obstacle is a protruding obstacle
  • the maximum width of the protruding obstacle is smaller than the wheelbase and If the difference between the tire width and the maximum height is less than the minimum ground clearance, it is determined that the obstacle meets the target size requirements; if the maximum width of a protruding obstacle is greater than or equal to the difference between the wheelbase and the tire width or the maximum height is greater than or equal to the minimum ground clearance, Then it is determined that the obstacle does not meet the target size requirement.
  • the vehicle When the target size requirements are not met, it is necessary to avoid the obstacle, determine the maximum width of the obstacle according to the road condition information, and determine whether there are lanes on the left and right sides or a free space to go around, and other lanes are available when the road ahead is detected When detouring, select this lane to adjust the initial planning path to obtain the adjusted planning path. In a specific implementation, if there is no other passable lane ahead, the vehicle is controlled to stop, the warning light is turned on, and the user is reminded.
  • Step S60 Control the vehicle to travel according to the adjusted planned route.
  • the method further includes: storing the driving route of the vehicle in a preset storage area; when it is determined that the road ahead is impassable according to the road condition information, Determining a driving route, generating a return path according to the driving route; controlling the vehicle to travel according to the returning route.
  • the vehicle's driving route, speed, heading angle and other information are recorded in real time during the driving process.
  • the user can choose to return to the original route based on the recorded driving data.
  • the first The scanning device scans the road condition information at a low frequency to avoid new obstacles affecting the driving of the vehicle.
  • the vehicle is controlled by obtaining the initial planned route, and the vehicle is controlled according to the initial planned route; the road condition information on the road ahead is obtained according to the first scanning device installed on the vehicle; when it is determined that there is an obstacle on the road ahead according to the road condition information, it is determined The obstacle type corresponding to the obstacle; determine the corresponding target size requirement according to the obstacle type; when it is determined according to the road condition information that the obstacle does not meet the target size requirement, adjust the initial planning path according to the road condition information to obtain the adjusted planning path; The vehicle is controlled according to the adjusted planned path.
  • the planned route is adjusted, and the vehicle is controlled according to the adjusted planned route, and the obstacles on the road that affect the normal function and performance of the vehicle are identified. Obstacles, avoiding obstacles, avoiding obstacles hindering vehicle driving and affecting vehicle driving safety.
  • FIG. 3 is a schematic flowchart of a second embodiment of the low-speed automatic driving method of the present application.
  • the obstacle type includes a protruding type
  • the method also includes:
  • Step S501 When the obstacle is a protruding obstacle, obtain the height set and width set of the protruding obstacle according to the road condition information, and determine the maximum height in the height set and the The largest width in the set of widths described above.
  • the height set and width set of obstacles are determined according to the road condition information.
  • multiple sets of horizontal edge points and multiple sets of vertical edge points are selected according to the preset selection strategy. , Determine the height set based on each set of edge points in the vertical direction, determine the width set based on each set of edge points in the horizontal direction, select the largest value from the multiple height values in the height set as the maximum height, and select the multiple width values in the width set Select the largest value as the maximum width.
  • Step S502 Determine the target width between the wheels according to the corresponding tire width and wheelbase of the vehicle.
  • the target width between the wheels can be obtained by subtracting the tire width from the wheel base.
  • Step S503 When the maximum height is greater than or equal to the target ground clearance corresponding to the vehicle or the maximum width is greater than or equal to the target width, it is determined that the protruding obstacle does not meet the target size requirement.
  • the target ground clearance is the minimum ground clearance of the vehicle, and the target ground clearance, tire width and wheelbase of the vehicle are stored in the memory in advance, and when the determination process is triggered, the target ground clearance, Tire width and wheelbase, determine the target width according to the tire width and wheelbase, compare the maximum height of the protruding obstacle with the target ground clearance, compare the maximum width of the protruding obstacle with the target width, and then determine the protruding type Whether the obstacles meet the target size requirements.
  • the maximum width is greater than or equal to the target ground clearance or the maximum width is greater than or equal to the target width, it is determined that it is not possible to pass directly over the protruding obstacle. At this time, proceed according to the maximum width of the protruding obstacle and the lane information in the road condition information. Plan path adjustments and avoid obstacles.
  • the method further includes: when the maximum height is smaller than the target ground clearance corresponding to the vehicle and the maximum width is smaller than the target width, determining the protruding type of obstacle The object meets the target size requirement; when the obstacle meets the target preset requirement, the short-distance data of the obstacle is obtained according to the second scanning device installed on the vehicle; according to the short-distance data Determine whether the obstacle is a sharp obstacle; when the obstacle is a sharp obstacle, adjust the initial planned path according to the tire width, wheel base and the maximum width corresponding to the vehicle, and obtain the adjusted the planned path; controlling the vehicle to travel according to the adjusted planned path.
  • the second scanning device may include one or more of a camera, a laser radar, an ultrasonic radar, and an infrared sensor.
  • the second scanning device is turned on, the short-distance data of the obstacle is scanned by the second scanning device, and the short-distance data is sent to the processor.
  • the vehicle's tire travel range is determined according to the vehicle's current position, tire width and wheelbase, and according to the position information between the obstacle and the vehicle and the maximum The width determines whether the sharp obstacle is within the driving range of the tire. If the sharp obstacle is within the driving range of the tire, the initial planned path is adjusted according to the obstacle's position information and the maximum width to obtain the adjusted planned path.
  • the height set and the width set of the protruding obstacle are obtained according to the road condition information, and the maximum height and width in the height set are determined.
  • the maximum width in the width set determine the target width between the wheels according to the corresponding tire width and wheelbase of the vehicle; determine the protrusion type when the maximum height is greater than or equal to the target ground clearance corresponding to the vehicle or the maximum width is greater than or equal to the target width
  • the obstacle does not meet the target size requirement; when the protruding obstacle does not meet the target size requirement, the planned path is adjusted according to the road condition information, and the vehicle is controlled according to the adjusted planned path.
  • the type of obstacle is identified, and when the obstacle is a protruding obstacle, the maximum width is compared with the target width, and the maximum height is compared with the target ground clearance to determine the obstacle Whether the objects meet the target size requirements, when it is recognized that the protruding obstacles on the road do not meet the size requirements of the protruding obstacle type, the planned route is adjusted, and the vehicle is controlled according to the adjusted planned route, and the protruding obstacles on the road are identified Protruding obstacles that affect the normal function and performance of the vehicle, avoiding the protruding obstacles, avoiding the protruding obstacles hindering the driving of the vehicle and affecting the driving safety of the vehicle.
  • FIG. 4 is a schematic flowchart of a third embodiment of the low-speed automatic driving method of the present application.
  • the obstacle type includes a flat plate type
  • the method further includes:
  • Step S401 when the obstacle is a plate-type obstacle, obtain a height set of the plate-type obstacle according to the road condition information, and determine a maximum height in the height set.
  • multiple sets of vertical edge points are selected according to a preset selection strategy, a height set is determined based on each set of vertical edge points, and the largest value is selected from the multiple height values in the height set as the maximum height.
  • Step S402 When the maximum height is less than a preset height threshold, it is determined that the plate-type obstacle meets the target size requirement.
  • the preset height threshold is set according to the actual situation.
  • the chassis data of the vehicle can be analyzed to determine the preset height threshold. If the maximum height of the plank is less than the preset height threshold, the vehicle can pass directly And does not damage the chassis and tires.
  • Step S403 When the flat-type obstacle meets the target size requirement, obtain short-distance data of the flat-type obstacle according to the second scanning device installed on the vehicle.
  • the second scanning device is turned on, the short-distance data of the obstacle is scanned by the second scanning device, and the short-distance data is sent to the processing device.
  • Step S404 Determine whether there is a sharp object on the plate-type obstacle according to the short-distance data.
  • Step S405 When there is a sharp object on the plate-type obstacle, determine the current width set of the sharp object according to the short-distance data, and determine the maximum width in the current height set.
  • multiple sets of horizontal edge points are selected according to the preset selection strategy, the width set is determined based on each set of horizontal edge points, and the largest value is selected from the multiple width values in the width set as the maximum width.
  • Step S406 Adjust the initial planned path according to the tire width and wheel base corresponding to the vehicle, and the maximum width corresponding to the sharp object, to obtain an adjusted planned path.
  • the vehicle's tire travel range is determined according to the vehicle's current position, tire width and wheelbase, and according to the position information between the sharp object and the vehicle and The maximum width determines whether the sharp object is within the driving range of the tire. If the sharp object is within the driving range of the tire, the initial planned path is adjusted according to the position information of the obstacle and the maximum width to obtain the adjusted planned path.
  • Step S407 Control the vehicle to travel according to the adjusted planned route.
  • the height set of the plate type obstacle is obtained according to the road condition information, and the maximum height in the height set is determined;
  • the height threshold is set, it is determined that the flat-type obstacle meets the target size requirement;
  • the short-distance data of the flat-type obstacle is obtained according to the second scanning device installed on the vehicle; according to Determine whether there is a sharp object on the obstacle of the flat type based on the close-range data; when there is a sharp object on the obstacle of the flat type, determine the current width set of the sharp object according to the short-distance data, and determine the maximum width in the current width set; according to The vehicle's corresponding tire width, wheel base and the maximum width corresponding to the sharp object are adjusted to the initial planned path to obtain the adjusted planned path; the vehicle is controlled according to the adjusted planned path.
  • the type of obstacle is identified, and when the obstacle is a plate-type obstacle, the maximum height is compared with the preset height threshold, so as to determine whether the obstacle meets the target size requirement, and when the road is recognized
  • the second scanning device is used to identify the short-range situation of the plate type obstacle to determine whether there is a sharp object on the plate type obstacle. If there is a sharp object, it is necessary for planning
  • the path is adjusted, and the vehicle is controlled according to the adjusted planned path.
  • the sharp objects on the flat obstacles on the road that affect the normal function and performance of the vehicle are identified, and the sharp objects are avoided to avoid the sharp objects from damaging the vehicle tires and hindering the vehicle. driving, affecting the driving safety of the vehicle.
  • FIG. 5 is a schematic flowchart of a fourth embodiment of the low-speed automatic driving method of the present application.
  • the obstacle type includes a concave type
  • the method also includes:
  • Step S504 When the obstacle is a sunken obstacle, determine the depth set and width set of the sunken obstacle according to the road condition information, and determine the maximum depth and the width in the depth set The maximum width in the collection.
  • multiple groups of horizontal edge points and vertical groups of edge points are selected according to the preset selection strategy according to the road condition information, the depth set is determined based on each group of vertical edge points, and the width set is determined based on each group of horizontal edge points.
  • the largest value is selected from the multiple depth values in the collection as the maximum depth, and the largest value is selected from the multiple width values in the width set as the maximum width.
  • Step S505 Determine the target width between the wheels according to the corresponding tire width and wheelbase of the vehicle.
  • Step S506 When the maximum depth is greater than or equal to a preset depth threshold or the maximum width is greater than or equal to the target width, it is determined that the obstacle of the concave type does not meet the target size requirement.
  • the preset depth threshold is set according to the actual situation.
  • the chassis data of the vehicle can be analyzed to determine the preset depth threshold. If the maximum depth of the sunken obstacle is less than the preset depth threshold, the vehicle can Pass directly without damaging the chassis and tires.
  • the depth set and the width set of the sunken obstacle are determined according to the road condition information, and the maximum depth and width set in the depth set are determined.
  • the maximum width in determine the target width between the wheels according to the corresponding tire width and wheelbase of the vehicle; when the maximum depth is greater than or equal to the preset depth threshold or the maximum width is greater than or equal to the target width, it is determined that the obstacle of the concave type does not meet the target size
  • the planned path is adjusted according to the road condition information, and the vehicle is controlled according to the adjusted planned path.
  • the type of obstacle is identified, and when the obstacle is a sunken type obstacle, the maximum width is compared with the target width, and the maximum depth is compared with the preset depth threshold, so as to determine the sunken obstacle Whether the object meets the target size requirements.
  • the planned path is adjusted, and the vehicle is controlled according to the adjusted planned path, and the impact on the road is identified.
  • the sunken obstacle of the normal function and performance of the vehicle is avoided, and the sunken obstacle is avoided to prevent the sunken obstacle from hindering the driving of the vehicle and affecting the driving safety of the vehicle.
  • an embodiment of the present application also proposes a storage medium, on which a low-speed automatic driving program is stored, and when the low-speed automatic driving program is executed by a processor, the steps of the above-mentioned low-speed automatic driving method are implemented.
  • FIG. 6 is a structural block diagram of the first embodiment of the low-speed automatic driving device of the present application.
  • the low-speed automatic driving device proposed in the embodiment of the present application includes:
  • the control module 10 is configured to obtain an initial planned route, and control the vehicle to travel according to the initial planned route.
  • the obtaining module 20 is configured to obtain road condition information on the road ahead according to the first scanning device installed on the vehicle.
  • the determination module 30 is configured to determine the obstacle type corresponding to the obstacle when it is determined according to the road condition information that there is an obstacle on the road ahead.
  • the determination module 30 is further configured to determine the corresponding target size requirement according to the obstacle type.
  • the adjustment module 40 is configured to adjust the initial planned route according to the road condition information to obtain an adjusted planned route when it is determined according to the road condition information that the obstacle does not meet the target size requirement.
  • the control module 10 is further configured to control the vehicle to travel according to the adjusted planned route.
  • the vehicle is controlled by obtaining the initial planned route, and the vehicle is controlled according to the initial planned route; the road condition information on the road ahead is obtained according to the first scanning device installed on the vehicle; when it is determined that there is an obstacle on the road ahead according to the road condition information, it is determined The obstacle type corresponding to the obstacle; determine the corresponding target size requirement according to the obstacle type; when it is determined according to the road condition information that the obstacle does not meet the target size requirement, adjust the initial planning path according to the road condition information to obtain the adjusted planning path; The vehicle is controlled according to the adjusted planned path.
  • the planned route is adjusted, and the vehicle is controlled according to the adjusted planned route, and the obstacles on the road that affect the normal function and performance of the vehicle are identified. Obstacles, avoiding obstacles, avoiding obstacles hindering vehicle driving and affecting vehicle driving safety.
  • the obstacle type includes a protruding type
  • the determining module 30 is further configured to obtain a height set and a width set of the protruding obstacle according to the road condition information when the obstacle is a protruding obstacle, and determine the height The maximum height in the set and the maximum width in the width set, determine the target width between the wheels according to the tire width and wheelbase corresponding to the vehicle, when the maximum height is greater than or equal to the target ground clearance corresponding to the vehicle Or when the maximum width is greater than or equal to the target width, it is determined that the protruding obstacle does not meet the target size requirement.
  • the determination module 30 is further configured to determine the protrusion type when the maximum height is less than the corresponding target ground clearance of the vehicle and the maximum width is less than the target width.
  • the obstacle meets the target size requirement, and when the obstacle meets the target preset requirement, the short-distance data of the obstacle is obtained according to the second scanning device installed on the vehicle, and according to the short-distance The data determines whether the obstacle is a sharp obstacle.
  • the adjustment module 40 is further configured to adjust the initial planned path according to the corresponding tire width, wheel base and the maximum width of the vehicle when the obstacle is a sharp obstacle, to obtain an adjusted planning path;
  • the control module 10 is further configured to control the vehicle to travel according to the adjusted planned route.
  • the obstacle type includes a flat plate type
  • the determining module 30 is further configured to, when the obstacle is a flat-type obstacle, obtain a height set of the flat-type obstacle according to the road condition information, and determine a maximum height in the height set , when the maximum height is less than the preset height threshold, it is determined that the flat-type obstacle meets the target size requirement, and when the flat-type obstacle meets the target size requirement, according to the
  • the second scanning device on the mobile phone acquires short-distance data of the flat-type obstacle, and determines whether there is a sharp object on the flat-type obstacle according to the short-distance data. When there is a sharp object on the flat-type obstacle, determine a current width set of the sharp object according to the short-distance data, and determine a maximum width in the current width set;
  • the adjustment module 40 is further configured to adjust the initial planned path according to the tire width and wheel base corresponding to the vehicle, and the maximum width corresponding to the sharp object, to obtain an adjusted planned path;
  • the control module 10 is further configured to control the vehicle to travel according to the adjusted planned route.
  • the obstacle type includes a concave type
  • the determining module 30 is further configured to determine a depth set and a width set of the sunken type obstacle according to the road condition information when the obstacle is a sunken type obstacle, and determine a set of depths in the depth set.
  • the maximum depth of the vehicle and the maximum width in the width set determine the target width between the wheels according to the corresponding tire width and wheelbase of the vehicle, when the maximum depth is greater than or equal to the preset depth threshold or the maximum width is greater than or equal to
  • the target width it is determined that the recessed type of obstacle does not meet the target size requirement.
  • the determination module 30 is further configured to determine the color and shape of the obstacle according to the road condition information when it is determined that there is an obstacle on the road ahead according to the road condition information, according to the The color and the shape are compared with the reference data in the preset database, and the obstacle type is determined according to the comparison result.
  • control module 10 is further configured to store the driving route of the vehicle in a preset storage area, and when it is determined that the road ahead is impassable according to the road condition information, A travel route is determined within, a return path is generated according to the travel route, and the vehicle is controlled to travel according to the return route.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as a read-only memory (Read-only memory) Only Memory, ROM)/RAM, magnetic disk, optical disk), including several instructions to enable a terminal device (which can be a mobile phone, computer, server, or network device, etc.) to execute the methods described in various embodiments of this application.
  • a storage medium such as a read-only memory (Read-only memory) Only Memory, ROM)/RAM, magnetic disk, optical disk
  • a terminal device which can be a mobile phone, computer, server, or network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

公开了一种低速自动驾驶方法,包括:获取初始规划路径,并根据初始规划路径控制车辆行驶(S10);根据安装于车辆上的第一扫描设备获取前方道路上的路况信息(S20);在根据路况信息确定前方道路上存在障碍物时,确定障碍物对应的障碍物类型(S30);根据障碍物类型确定对应的目标尺寸要求(S40);在根据路况信息确定障碍物不满足目标尺寸要求时,根据路况信息对初始规划路径进行调整,得到调整后的规划路径(S50);根据调整后的规划路径控制车辆行驶(S60)。还公开了一种低速自动驾驶装置、一种低速自动驾驶设备及一种存储介质。

Description

低速自动驾驶方法、装置、设备及存储介质
本申请要求于2021年5月11号申请的、申请号为202110513787.1的中国专利申请的优先权,其全部内容通过引用结合于此。
技术领域
本申请涉及自动驾驶技术领域,尤其涉及一种低速自动驾驶方法、装置、设备及存储介质。
背景技术
当前的自动驾驶场景下,车辆通过车载感知系统感知道路环境,自动规划行车路线并控制车辆到达目的地。在自动驾驶车辆行驶过程中,道路上可能存在影响车辆正常功能及性能的障碍物,将阻碍车辆行驶,影响车辆行驶安全。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
技术问题
本申请的主要目的在于提供一种低速自动驾驶方法、装置、设备及存储介质,旨在解决道路上可能存在影响车辆正常功能及性能的障碍物将阻碍车辆行驶,影响车辆行驶安全的技术问题。
技术解决方案
为实现上述目的,本申请提供了一种低速自动驾驶方法,所述方法包括以下步骤:
获取初始规划路径,并根据所述初始规划路径控制车辆行驶;
根据安装于所述车辆上的第一扫描设备获取前方道路上的路况信息;
在根据所述路况信息确定前方道路上存在障碍物时,确定所述障碍物对应的障碍物类型;
根据所述障碍物类型确定对应的目标尺寸要求;
在根据所述路况信息确定所述障碍物不满足所述目标尺寸要求时,根据所述路况信息对所述初始规划路径进行调整,得到调整后的规划路径;
根据所述调整后的规划路径控制所述车辆行驶。
在一实施方式中,所述障碍物类型包括凸出类型;
所述在根据所述路况信息确定所述障碍物不满足所述目标尺寸要求时,根据所述路况信息对所述初始规划路径进行调整,得到调整后的规划路径之前,所述方法还包括:
在所述障碍物为凸出类型的障碍物时,根据所述路况信息获取所述凸出类型的障碍物的高度集合和宽度集合,并确定所述高度集合中的最大高度以及所述宽度集合中的最大宽度;
根据所述车辆对应的轮胎宽度以及轮距确定车轮之间的目标宽度;
在所述最大高度大于等于所述车辆对应的目标离地间隙或者所述最大宽度大于等于所述目标宽度时,确定所述凸出类型的障碍物不满足所述目标尺寸要求。
在一实施方式中,所述根据所述车辆对应的轮胎宽度以及轮距确定车轮之间的目标宽度之后,所述方法还包括:
在所述最大高度小于所述车辆对应的目标离地间隙并且所述最大宽度小于所述目标宽度时,确定所述凸出类型的障碍物满足所述目标尺寸要求;
在所述障碍物满足所述目标预设要求时,根据安装于所述车辆上的第二扫描设备获取所述障碍物的近距离数据;
根据所述近距离数据确定所述障碍物是否为尖锐障碍物;
在所述障碍物为尖锐障碍物时,根据所述车辆对应的轮胎宽度、轮距以及所述最大宽度对所述初始规划路径进行调整,得到调整后的规划路径;
根据所述调整后的规划路径控制所述车辆行驶。
在一实施方式中,所述障碍物类型包括平板类型;
所述根据所述障碍物类型确定对应的目标尺寸要求之后,所述方法还包括:
在所述障碍物为平板类型的障碍物时,根据所述路况信息获取所述平板类型的障碍物的高度集合,并确定所述高度集合中的最大高度;
在所述最大高度小于预设高度阈值时,确定所述平板类型的障碍物满足所述目标尺寸要求;
在所述平板类型的障碍物满足所述目标尺寸要求时,根据安装于所述车辆上的第二扫描设备获取所述平板类型的障碍物的近距离数据;
根据所述近距离数据确定所述平板类型的障碍物上是否存在尖锐物;
在所述平板类型的障碍物上存在尖锐物时,根据所述近距离数据确定所述尖锐物的当前宽度集合,并确定所述当前宽度集合中的最大宽度;
根据所述车辆对应的轮胎宽度、轮距以及所述尖锐物对应的最大宽度对所述初始规划路径进行调整,得到调整后的规划路径;
根据所述调整后的规划路径控制所述车辆行驶。
在一实施方式中,所述障碍物类型包括凹陷类型;
所述在根据所述路况信息确定所述障碍物不满足所述目标尺寸要求时,根据所述路况信息对所述初始规划路径进行调整,得到调整后的规划路径之前,所述方法还包括:
在所述障碍物为凹陷类型的障碍物时,根据所述路况信息确定所述凹陷类型的障碍物的深度集合以及宽度集合,并确定所述深度集合中的最大深度以及所述宽度集合中的最大宽度;
根据所述车辆对应的轮胎宽度以及轮距确定车轮之间的目标宽度;
在所述最大深度大于等于预设深度阈值或者所述最大宽度大于等于所述目标宽度时,确定所述凹陷类型的障碍物不满足所述目标尺寸要求。
在一实施方式中,所述在根据所述路况信息确定前方道路上存在障碍物时,确定所述障碍物对应的障碍物类型,包括:
在根据所述路况信息确定前方道路上存在障碍物时,根据所述路况信息确定所述障碍物对应的颜色以及形状;
根据所述颜色以及所述形状与预设数据库中的参考数据进行比对,根据比对结果确定障碍物类型。
在一实施方式中,所述根据所述调整后的规划路径控制所述车辆行驶之后,所述方法还包括:
将所述车辆的行驶路线存储至预设存储区域;
在根据所述路况信息确定前方道路不可通行时,从所述预设存储区域内确定行驶路线,根据所述行驶路线生成返回路径;
根据所述返回路径控制所述车辆行驶。
此外,为实现上述目的,本申请还提出一种低速自动驾驶装置,所述低速自动驾驶装置包括:
控制模块,被配置为获取初始规划路径,并根据所述初始规划路径控制车辆行驶;
获取模块,被配置为根据安装于所述车辆上的第一扫描设备获取前方道路上的路况信息;
确定模块,被配置为在根据所述路况信息确定前方道路上存在障碍物时,确定所述障碍物对应的障碍物类型;
所述确定模块,还被配置为根据所述障碍物类型确定对应的目标尺寸要求;
调整模块,被配置为在根据所述路况信息确定所述障碍物不满足所述目标尺寸要求时,根据所述路况信息对所述初始规划路径进行调整,得到调整后的规划路径;
所述控制模块,还被配置为根据所述调整后的规划路径控制所述车辆行驶。
此外,为实现上述目的,本申请还提出一种低速自动驾驶设备,所述低速自动驾驶设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的低速自动驾驶程序,所述低速自动驾驶程序配置为实现如上文所述的低速自动驾驶方法的步骤。
此外,为实现上述目的,本申请还提出一种存储介质,所述存储介质上存储有低速自动驾驶程序,所述低速自动驾驶程序被处理器执行时实现如上文所述的低速自动驾驶方法的步骤。
有益效果
本申请通过获取初始规划路径,并根据初始规划路径控制车辆行驶;根据安装于车辆上的第一扫描设备获取前方道路上的路况信息;在根据路况信息确定前方道路上存在障碍物时,确定障碍物对应的障碍物类型;根据障碍物类型确定对应的目标尺寸要求;在根据路况信息确定障碍物不满足目标尺寸要求时,根据路况信息对初始规划路径进行调整,得到调整后的规划路径;根据调整后的规划路径控制车辆行驶。通过上述方式,在识别到道路上的障碍物不满足障碍物类型的尺寸要求时,对规划路径进行调整,根据调整后的规划路径控制车辆行驶,识别了道路上的影响车辆正常功能及性能的障碍物,对障碍物进行避让,避免了障碍物阻碍车辆行驶,影响车辆行驶安全。
附图说明
图1是本申请实施例方案涉及的硬件运行环境的低速自动驾驶设备的结构示意图;
图2为本申请低速自动驾驶方法第一实施例的流程示意图;
图3为本申请低速自动驾驶方法第二实施例的流程示意图;
图4为本申请低速自动驾驶方法第三实施例的流程示意图;
图5为本申请低速自动驾驶方法第四实施例的流程示意图;
图6为本申请低速自动驾驶装置第一实施例的结构框图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
参照图1,图1为本申请实施例方案涉及的硬件运行环境的低速自动驾驶设备的结构示意图。
如图1所示,该低速自动驾驶设备可以包括:处理器1001,例如中央处理器(Central Processing Unit,CPU),通信总线1002、用户接口1003,网络接口1004,存储器1005。其中,通信总线1002被配置为实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如无线保真(WIreless-FIdelity,WI-FI)接口)。存储器1005可以是高速的随机存取存储器(Random Access Memory,RAM),也可以是稳定的非易失性存储器(Non-Volatile Memory,NVM),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的结构并不构成对低速自动驾驶设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及低速自动驾驶程序。
在图1所示的低速自动驾驶设备中,网络接口1004主要被配置为与网络服务器进行数据通信;用户接口1003主要被配置为与用户进行数据交互;本申请低速自动驾驶设备中的处理器1001、存储器1005可以设置在低速自动驾驶设备中,所述低速自动驾驶设备通过处理器1001调用存储器1005中存储的低速自动驾驶程序,并执行本申请实施例提供的低速自动驾驶方法。
本申请实施例提供了一种低速自动驾驶方法,参照图2,图2为本申请低速自动驾驶方法第一实施例的流程示意图。
本实施例中,所述低速自动驾驶方法包括以下步骤:
步骤S10:获取初始规划路径,并根据所述初始规划路径控制车辆行驶。
可以理解的是,本实施例的车辆可以是具备自动驾驶功能的无人智能汽车,也可以是具有自动驾驶功能的自动导引运输车(Automated Guided Vehicle,AGV),本实施例的执行主体为低速自动驾驶设备,所述低速自动驾驶设备可以为行车电脑(Electronic Control Unit,ECU),也可以为处理器,也可以为其他具备相同或相似功能的设备,本实施例对此不加以限制。
需要说明的是,获取初始规划路径的过程可以为通过安装于车辆上的定位装置获取车辆当前位置,基于用户的指令确定目标位置,根据导航地图得到初始规划路径。在具体实现中,在车辆的前方安装第一扫描设备以及第二扫描设备,根据车辆当前位置和目标位置确定初始规划路径,开启第一扫描设备并自动驾驶汽车沿初始规划路径朝目的地行驶。
步骤S20:根据安装于所述车辆上的第一扫描设备获取前方道路上的路况信息。
应当理解的是,第一扫描设备可以包括摄像头、激光雷达、超声波雷达以及红外感应器中的一个或者多个,可以为摄像头以及激光雷达的总成设备,行车过程中第一扫描设备实时扫描路面及路面上物体的形状、颜色以及三维尺寸等信息,形成路况三维信息,将路况三维信息发送给处理器。
步骤S30:在根据所述路况信息确定前方道路上存在障碍物时,确定所述障碍物对应的障碍物类型。
需要说明的是,障碍物类型包括凸出类型、平板类型以及凹陷类型。在根据路况信息确定前方道路上存在障碍物时,根据路况信息确定障碍物信息,障碍物信息至少包括:障碍物的图像信息、形状、颜色、宽度尺寸以及高度尺寸。在具体实现中,处理器实时对采集到的数据进行分析,将扫描得到的障碍物图像信息、形状、颜色以及尺寸信息与预设数据库中的数据进行实时比对,以便识别出道路上的石块、凹坑、木板以及减速带等障碍物信息,此外,通过第一扫描设备还可以确定各个障碍物与车辆之间的距离,以及各个障碍物之间的距离。
具体地,所述步骤S30,包括:在根据所述路况信息确定前方道路上存在障碍物时,根据所述路况信息确定所述障碍物对应的颜色以及形状;根据所述颜色以及所述形状与预设数据库中的参考数据进行比对,根据比对结果确定障碍物类型。
可以理解的是,预先在预设数据库中存储障碍物的相关数据,将扫描得到的障碍物信息与预设数据库中的参考数据进行比对,确定障碍物类型,例如,根据颜色以及障碍物宽度尺寸确定障碍物为模板,颜色为黄色,宽度远远大于高度。
步骤S40:根据所述障碍物类型确定对应的目标尺寸要求。
需要说明的是,提前在预设数据库中存储有映射表,该映射表包括障碍物类型和目标尺寸要求的映射关系,在确定了当前障碍物的类型后,从预设数据库的映射表中确定对应的目标尺寸要求。
应当理解的是,对于不同类型的障碍物,对应的目标尺寸要求不同,例如,对于凸出类型的障碍物,如石块,如果石块的高度低于车辆的最小离地间隙,并且宽度小于轮胎之间的距离,那么车辆可以直接从该障碍物上开过去,如果高度高于最小离地间隙或者宽度大于轮胎直接的距离,需要对该障碍物进行避让;对于平板类型的障碍物,如果高度足够低,车辆可直接通过,但是如果高度过于高,车辆直接通过可能会导致轮胎以及底盘受损;对于凹陷类型的障碍物,如凹坑,如果过深,车辆通过可能会导致底盘受损,如果凹坑深度小于预设深度阈值,车辆可以直接通过。
步骤S50:在根据所述路况信息确定所述障碍物不满足所述目标尺寸要求时,根据所述路况信息对所述初始规划路径进行调整,得到调整后的规划路径。
应当理解的是,提前将汽车底盘数据存储于存储器内,汽车底盘数据包括轴距、轮距、轮胎宽度、离去角、接近角以及最小离地间隙等,通过路况信息以及存储器中存储的汽车底盘数据进行比对,以确定当前扫描到的障碍物是否满足其类型对应的目标尺寸要求,例如,在当前扫描到的障碍物为凸出障碍物,凸出障碍物的最大宽度小于轮距与轮胎宽度之差并且最大高度小于最小离地间隙,则确定该障碍物满足目标尺寸要求;在凸出障碍物的最大宽度大于等于轮距与轮胎宽度之差或者最大高度大于等于最小离地间隙,则确定该障碍物不满足目标尺寸要求。在不满足目标尺寸要求时,需要对该障碍物进行避让,根据路况信息确定障碍物的最大宽度,并确定左右两侧是否有车道或者空闲位置绕行,在检测到前方道路有其他车道可供绕行时,选择该车道对初始规划路径进行调整,得到调整后的规划路径。在具体实现中,如果前方不存在其他可以通行的车道,控制车辆停车、点亮警示灯并提醒用户。
步骤S60:根据所述调整后的规划路径控制所述车辆行驶。
进一步地,所述步骤S60之后,所述方法还包括:将所述车辆的行驶路线存储至预设存储区域;在根据所述路况信息确定前方道路不可通行时,从所述预设存储区域内确定行驶路线,根据所述行驶路线生成返回路径;根据所述返回路径控制所述车辆行驶。
需要说明的是,在行车过程中实时记录车辆的行驶路线、速度以及航向角等信息,在前方道路不可通行时,用户可以选择根据记录的行驶数据进行原路径返回,在返回过程中,第一扫描设备低频率扫描路况信息,避免新增的障碍物影响车辆行驶。
本实施例通过获取初始规划路径,并根据初始规划路径控制车辆行驶;根据安装于车辆上的第一扫描设备获取前方道路上的路况信息;在根据路况信息确定前方道路上存在障碍物时,确定障碍物对应的障碍物类型;根据障碍物类型确定对应的目标尺寸要求;在根据路况信息确定障碍物不满足目标尺寸要求时,根据路况信息对初始规划路径进行调整,得到调整后的规划路径;根据调整后的规划路径控制车辆行驶。通过上述方式,在识别到道路上的障碍物不满足障碍物类型的尺寸要求时,对规划路径进行调整,根据调整后的规划路径控制车辆行驶,识别了道路上的影响车辆正常功能及性能的障碍物,对障碍物进行避让,避免了障碍物阻碍车辆行驶,影响车辆行驶安全。
参考图3,图3为本申请低速自动驾驶方法第二实施例的流程示意图。
基于上述第一实施例,本实施例低速自动驾驶方法中,所述障碍物类型包括凸出类型;
所述步骤S50之前,所述方法还包括:
步骤S501:在所述障碍物为凸出类型的障碍物时,根据所述路况信息获取所述凸出类型的障碍物的高度集合和宽度集合,并确定所述高度集合中的最大高度以及所述宽度集合中的最大宽度。
可以理解的是,根据路况信息确定障碍物的高度集合和宽度集合,在具体实现中,根据障碍物的图像信息和雷达数据,按照预设选取策略选取横向多组边缘点以及纵向多组边缘点,基于纵向的每组边缘点确定高度集合,基于横向的每组边缘点确定宽度集合,从高度集合中的多个高度数值中选取最大的数值作为最大高度,从宽度集合中的多个宽度数值中选取最大的数值作为最大宽度。
步骤S502:根据所述车辆对应的轮胎宽度以及轮距确定车轮之间的目标宽度。
需要说明的是,通过轮距减去轮胎宽度即可得到车轮之间的目标宽度。
步骤S503:在所述最大高度大于等于所述车辆对应的目标离地间隙或者所述最大宽度大于等于所述目标宽度时,确定所述凸出类型的障碍物不满足所述目标尺寸要求。
应当理解的是,目标离地间隙为车辆的最小离地间隙,车辆的目标离地间隙、轮胎宽度以及轮距提前存储于存储器内,在触发判定流程时,从存储器内确定目标离地间隙、轮胎宽度以及轮距,根据轮胎宽度以及轮距确定目标宽度,将凸出障碍物的最大高度与目标离地间隙比对,将凸出障碍物的最大宽度与目标宽度对比,从而确定凸出类型的障碍物是否满足所述目标尺寸要求。在最大宽度大于等于目标离地间隙或者最大宽度大于等于目标宽度时,确定不能直接从凸出类型的障碍物上通过,此时根据凸出类型障碍物的最大宽度以及路况信息中的车道信息进行规划路径调整,对障碍物进行避让。
具体地,所述步骤S502之后,所述方法还包括:在所述最大高度小于所述车辆对应的目标离地间隙并且所述最大宽度小于所述目标宽度时,确定所述凸出类型的障碍物满足所述目标尺寸要求;在所述障碍物满足所述目标预设要求时,根据安装于所述车辆上的第二扫描设备获取所述障碍物的近距离数据;根据所述近距离数据确定所述障碍物是否为尖锐障碍物;在所述障碍物为尖锐障碍物时,根据所述车辆对应的轮胎宽度、轮距以及所述最大宽度对所述初始规划路径进行调整,得到调整后的规划路径;根据所述调整后的规划路径控制所述车辆行驶。
需要说明的是,第二扫描设备可以包括摄像头、激光雷达、超声波雷达以及红外感应器中的一个或者多个。在检测到障碍物,确定障碍物类型为凸出类型且满足目标尺寸要求时,开启第二扫描设备,通过第二扫描设备扫描障碍物的近距离数据,将近距离数据发送给处理器。
应当理解的是,在根据近距离数据确定障碍物为尖锐障碍物时,根据车辆的当前位置、轮胎宽度以及轮距确定车辆的轮胎行驶范围,根据障碍物与本车之间的位置信息以及最大宽度确定尖锐障碍物是否位于轮胎行驶范围内,如果尖锐障碍物位于轮胎行驶范围内,则根据障碍物的位置信息以及最大宽度对初始规划路径进行调整,得到调整后的规划路径。
本实施例通过在根据路况信息确定前方道路上的障碍物为凸出类型的障碍物时,根据路况信息获取凸出类型的障碍物的高度集合和宽度集合,并确定高度集合中的最大高度以及宽度集合中的最大宽度;根据车辆对应的轮胎宽度以及轮距确定车轮之间的目标宽度;在最大高度大于等于车辆对应的目标离地间隙或者最大宽度大于等于目标宽度时,确定凸出类型的障碍物不满足目标尺寸要求;在凸出类型的障碍物不满足目标尺寸要求时,根据路况信息进行规划路径调整,根据调整后的规划路径控制车辆行驶。通过上述方式,对障碍物的类型进行识别,在障碍物为凸出类型的障碍物时,将最大宽度与目标宽度进行比对,将最大高度与目标离地间隙进行比对,从而确定该障碍物是否满足目标尺寸要求,在识别到道路上的凸出障碍物不满足凸出障碍物类型的尺寸要求时,对规划路径进行调整,根据调整后的规划路径控制车辆行驶,识别了道路上的影响车辆正常功能及性能的凸出障碍物,对凸出障碍物进行避让,避免了凸出障碍物阻碍车辆行驶,影响车辆行驶安全。
参考图4,图4为本申请低速自动驾驶方法第三实施例的流程示意图。
基于上述第一实施例,本实施例低速自动驾驶方法中,所述障碍物类型包括平板类型;
所述步骤S40之后,所述方法还包括:
步骤S401:在所述障碍物为平板类型的障碍物时,根据所述路况信息获取所述平板类型的障碍物的高度集合,并确定所述高度集合中的最大高度。
可以理解的是,按照预设选取策略选取纵向多组边缘点,基于纵向的每组边缘点确定高度集合,从高度集合中的多个高度数值中选取最大的数值作为最大高度。
步骤S402:在所述最大高度小于预设高度阈值时,确定所述平板类型的障碍物满足所述目标尺寸要求。
需要说明的是,预设高度阈值根据实际情况设定,在具体实现中,可以对车辆的底盘数据进行分析以确定预设高度阈值,如果木板的最大高度小于预设高度阈值,车辆可以直接通过并且不损伤底盘以及轮胎。
步骤S403:在所述平板类型的障碍物满足所述目标尺寸要求时,根据安装于所述车辆上的第二扫描设备获取所述平板类型的障碍物的近距离数据。
可以理解的是,在检测到障碍物,确定障碍物类型为平板类型且满足目标尺寸要求时,开启第二扫描设备,通过第二扫描设备扫描障碍物的近距离数据,将近距离数据发送给处理器。
步骤S404:根据所述近距离数据确定所述平板类型的障碍物上是否存在尖锐物。
步骤S405:在所述平板类型的障碍物上存在尖锐物时,根据所述近距离数据确定所述尖锐物的当前宽度集合,并确定所述当前高度集合中的最大宽度。
需要说明的是,对于尖锐物的近距离数据,按照预设选取策略选取横向多组边缘点,基于横向的每组边缘点确定宽度集合,从宽度集合中的多个宽度数值中选取最大的数值作为最大宽度。
步骤S406:根据所述车辆对应的轮胎宽度、轮距以及所述尖锐物对应的最大宽度对所述初始规划路径进行调整,得到调整后的规划路径。
应当理解的是,在根据近距离数据确定木板障碍物上包含尖锐物时,根据车辆的当前位置、轮胎宽度以及轮距确定车辆的轮胎行驶范围,根据尖锐物与本车之间的位置信息以及最大宽度确定尖锐物是否位于轮胎行驶范围内,如果尖锐物位于轮胎行驶范围内,则根据障碍物的位置信息以及最大宽度对初始规划路径进行调整,得到调整后的规划路径。
步骤S407:根据所述调整后的规划路径控制所述车辆行驶。
本实施例通过在根据路况信息确定前方道路上的障碍物为平板类型的障碍物时,根据路况信息获取平板类型的障碍物的高度集合,并确定高度集合中的最大高度;在最大高度小于预设高度阈值时,确定平板类型的障碍物满足目标尺寸要求;在平板类型的障碍物满足目标尺寸要求时,根据安装于车辆上的第二扫描设备获取平板类型的障碍物的近距离数据;根据近距离数据确定平板类型的障碍物上是否存在尖锐物;在平板类型的障碍物上存在尖锐物时,根据近距离数据确定尖锐物的当前宽度集合,并确定当前宽度集合中的最大宽度;根据车辆对应的轮胎宽度、轮距以及尖锐物对应的最大宽度对初始规划路径进行调整,得到调整后的规划路径;根据调整后的规划路径控制车辆行驶。通过上述方式,对障碍物的类型进行识别,在障碍物为平板类型的障碍物时,将最大高度与预设高度阈值进行比对,从而确定该障碍物是否满足目标尺寸要求,在识别到道路上的平板障碍物满足平板障碍物类型的尺寸要求时,通过第二扫描设备对平板类型障碍物的近距离情况进行识别,确定平板类型障碍物上是否存在尖锐物,如果存在尖锐物,对规划路径进行调整,根据调整后的规划路径控制车辆行驶,识别了道路上的影响车辆正常功能及性能的平板障碍物上的尖锐物,对尖锐物进行避让,避免了尖锐物损坏车辆轮胎,阻碍车辆行驶,影响车辆行驶安全。
参考图5,图5为本申请低速自动驾驶方法第四实施例的流程示意图。
基于上述第一实施例,本实施例低速自动驾驶方法中,所述障碍物类型包括凹陷类型;
所述步骤S50之前,所述方法还包括:
步骤S504:在所述障碍物为凹陷类型的障碍物时,根据所述路况信息确定所述凹陷类型的障碍物的深度集合以及宽度集合,并确定所述深度集合中的最大深度以及所述宽度集合中的最大宽度。
可以理解的是,根据路况信息按照预设选取策略选取横向多组边缘点以及纵向多组边缘点,基于纵向的每组边缘点确定深度集合,基于横向的每组边缘点确定宽度集合,从深度集合中的多个深度数值中选取最大的数值作为最大深度,从宽度集合中的多个宽度数值中选取最大的数值作为最大宽度。
步骤S505:根据所述车辆对应的轮胎宽度以及轮距确定车轮之间的目标宽度。
步骤S506:在所述最大深度大于等于预设深度阈值或者所述最大宽度大于等于所述目标宽度时,确定所述凹陷类型的障碍物不满足所述目标尺寸要求。
需要说明的是,预设深度阈值根据实际情况设定,在具体实现中,可以对车辆的底盘数据进行分析以确定预设深度阈值,如果凹陷障碍物的最大深度小于预设深度阈值,车辆可以直接通过并且不损伤底盘以及轮胎。
本实施例通过在根据路况信息确定前方道路上的障碍物为凹陷类型的障碍物时,根据路况信息确定凹陷类型的障碍物的深度集合以及宽度集合,并确定深度集合中的最大深度以及宽度集合中的最大宽度;根据车辆对应的轮胎宽度以及轮距确定车轮之间的目标宽度;在最大深度大于等于预设深度阈值或者最大宽度大于等于目标宽度时,确定凹陷类型的障碍物不满足目标尺寸要求;在凹陷类型的障碍物不满足目标尺寸要求时,根据路况信息进行规划路径调整,根据调整后的规划路径控制车辆行驶。通过上述方式,对障碍物的类型进行识别,在障碍物为凹陷类型的障碍物时,将最大宽度与目标宽度进行比对,将最大深度与预设深度阈值进行比对,从而确定该凹陷障碍物是否满足目标尺寸要求,在识别到道路上的凹陷障碍物不满足凸出障碍物类型的尺寸要求时,对规划路径进行调整,根据调整后的规划路径控制车辆行驶,识别了道路上的影响车辆正常功能及性能的凹陷障碍物,对凹陷障碍物进行避让,避免了凹陷障碍物阻碍车辆行驶,影响车辆行驶安全。
此外,本申请实施例还提出一种存储介质,所述存储介质上存储有低速自动驾驶程序,所述低速自动驾驶程序被处理器执行时实现如上文所述的低速自动驾驶方法的步骤。
参照图6,图6为本申请低速自动驾驶装置第一实施例的结构框图。
如图6所示,本申请实施例提出的低速自动驾驶装置包括:
控制模块10,被配置为获取初始规划路径,并根据所述初始规划路径控制车辆行驶。
获取模块20,被配置为根据安装于所述车辆上的第一扫描设备获取前方道路上的路况信息。
确定模块30,被配置为在根据所述路况信息确定前方道路上存在障碍物时,确定所述障碍物对应的障碍物类型。
所述确定模块30,还被配置为根据所述障碍物类型确定对应的目标尺寸要求。
调整模块40,被配置为在根据所述路况信息确定所述障碍物不满足所述目标尺寸要求时,根据所述路况信息对所述初始规划路径进行调整,得到调整后的规划路径。
所述控制模块10,还被配置为根据所述调整后的规划路径控制所述车辆行驶。
应当理解的是,以上仅为举例说明,对本申请的技术方案并不构成任何限定,在具体应用中,本领域的技术人员可以根据需要进行设置,本申请对此不做限制。
本实施例通过获取初始规划路径,并根据初始规划路径控制车辆行驶;根据安装于车辆上的第一扫描设备获取前方道路上的路况信息;在根据路况信息确定前方道路上存在障碍物时,确定障碍物对应的障碍物类型;根据障碍物类型确定对应的目标尺寸要求;在根据路况信息确定障碍物不满足目标尺寸要求时,根据路况信息对初始规划路径进行调整,得到调整后的规划路径;根据调整后的规划路径控制车辆行驶。通过上述方式,在识别到道路上的障碍物不满足障碍物类型的尺寸要求时,对规划路径进行调整,根据调整后的规划路径控制车辆行驶,识别了道路上的影响车辆正常功能及性能的障碍物,对障碍物进行避让,避免了障碍物阻碍车辆行驶,影响车辆行驶安全。
需要说明的是,以上所描述的工作流程仅仅是示意性的,并不对本申请的保护范围构成限定,在实际应用中,本领域的技术人员可以根据实际的需要选择其中的部分或者全部来实现本实施例方案的目的,此处不做限制。
另外,未在本实施例中详尽描述的技术细节,可参见本申请任意实施例所提供的低速自动驾驶方法,此处不再赘述。
在一实施例中,所述障碍物类型包括凸出类型;
所述确定模块30,还被配置为在所述障碍物为凸出类型的障碍物时,根据所述路况信息获取所述凸出类型的障碍物的高度集合和宽度集合,并确定所述高度集合中的最大高度以及所述宽度集合中的最大宽度,根据所述车辆对应的轮胎宽度以及轮距确定车轮之间的目标宽度,在所述最大高度大于等于所述车辆对应的目标离地间隙或者所述最大宽度大于等于所述目标宽度时,确定所述凸出类型的障碍物不满足所述目标尺寸要求。
在一实施例中,所述确定模块30,还被配置为在所述最大高度小于所述车辆对应的目标离地间隙并且所述最大宽度小于所述目标宽度时,确定所述凸出类型的障碍物满足所述目标尺寸要求,在所述障碍物满足所述目标预设要求时,根据安装于所述车辆上的第二扫描设备获取所述障碍物的近距离数据,根据所述近距离数据确定所述障碍物是否为尖锐障碍物。
所述调整模块40,还被配置为在所述障碍物为尖锐障碍物时,根据所述车辆对应的轮胎宽度、轮距以及所述最大宽度对所述初始规划路径进行调整,得到调整后的规划路径;
所述控制模块10,还被配置为根据所述调整后的规划路径控制所述车辆行驶。
在一实施例中,所述障碍物类型包括平板类型;
所述确定模块30,还被配置为在所述障碍物为平板类型的障碍物时,根据所述路况信息获取所述平板类型的障碍物的高度集合,并确定所述高度集合中的最大高度,在所述最大高度小于预设高度阈值时,确定所述平板类型的障碍物满足所述目标尺寸要求,在所述平板类型的障碍物满足所述目标尺寸要求时,根据安装于所述车辆上的第二扫描设备获取所述平板类型的障碍物的近距离数据,根据所述近距离数据确定所述平板类型的障碍物上是否存在尖锐物。在所述平板类型的障碍物上存在尖锐物时,根据所述近距离数据确定所述尖锐物的当前宽度集合,并确定所述当前宽度集合中的最大宽度;
所述调整模块40,还被配置为根据所述车辆对应的轮胎宽度、轮距以及所述尖锐物对应的最大宽度对所述初始规划路径进行调整,得到调整后的规划路径;
所述控制模块10,还被配置为根据所述调整后的规划路径控制所述车辆行驶。
在一实施例中,所述障碍物类型包括凹陷类型;
所述确定模块30,还被配置为在所述障碍物为凹陷类型的障碍物时,根据所述路况信息确定所述凹陷类型的障碍物的深度集合以及宽度集合,并确定所述深度集合中的最大深度以及所述宽度集合中的最大宽度,根据所述车辆对应的轮胎宽度以及轮距确定车轮之间的目标宽度,在所述最大深度大于等于预设深度阈值或者所述最大宽度大于等于所述目标宽度时,确定所述凹陷类型的障碍物不满足所述目标尺寸要求。
在一实施例中,所述确定模块30,还被配置为在根据所述路况信息确定前方道路上存在障碍物时,根据所述路况信息确定所述障碍物对应的颜色以及形状,根据所述颜色以及所述形状与预设数据库中的参考数据进行比对,根据比对结果确定障碍物类型。
在一实施例中,所述控制模块10,还被配置为将所述车辆的行驶路线存储至预设存储区域,在根据所述路况信息确定前方道路不可通行时,从所述预设存储区域内确定行驶路线,根据所述行驶路线生成返回路径,根据所述返回路径控制所述车辆行驶。
此外,需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(Read Only Memory,ROM)/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种低速自动驾驶方法,其中,所述低速自动驾驶方法包括:
    获取初始规划路径,并根据所述初始规划路径控制车辆行驶;
    根据安装于所述车辆上的第一扫描设备获取前方道路上的路况信息;
    在根据所述路况信息确定前方道路上存在障碍物时,确定所述障碍物对应的障碍物类型;
    根据所述障碍物类型确定对应的目标尺寸要求;
    在根据所述路况信息确定所述障碍物不满足所述目标尺寸要求时,根据所述路况信息对所述初始规划路径进行调整,得到调整后的规划路径;
    根据所述调整后的规划路径控制所述车辆行驶。
  2. 如权利要求1所述的低速自动驾驶方法,其中,所述障碍物类型包括凸出类型;
    所述在根据所述路况信息确定所述障碍物不满足所述目标尺寸要求时,根据所述路况信息对所述初始规划路径进行调整,得到调整后的规划路径之前,所述方法还包括:
    在所述障碍物为凸出类型的障碍物时,根据所述路况信息获取所述凸出类型的障碍物的高度集合和宽度集合,并确定所述高度集合中的最大高度以及所述宽度集合中的最大宽度;
    根据所述车辆对应的轮胎宽度以及轮距确定车轮之间的目标宽度;
    在所述最大高度大于等于所述车辆对应的目标离地间隙或者所述最大宽度大于等于所述目标宽度时,确定所述凸出类型的障碍物不满足所述目标尺寸要求。
  3. 如权利要求2所述的低速自动驾驶方法,其中,所述根据所述车辆对应的轮胎宽度以及轮距确定车轮之间的目标宽度之后,所述方法还包括:
    在所述最大高度小于所述车辆对应的目标离地间隙并且所述最大宽度小于所述目标宽度时,确定所述凸出类型的障碍物满足所述目标尺寸要求;
    在所述障碍物满足所述目标预设要求时,根据安装于所述车辆上的第二扫描设备获取所述障碍物的近距离数据;
    根据所述近距离数据确定所述障碍物是否为尖锐障碍物;
    在所述障碍物为尖锐障碍物时,根据所述车辆对应的轮胎宽度、轮距以及所述最大宽度对所述初始规划路径进行调整,得到调整后的规划路径;
    根据所述调整后的规划路径控制所述车辆行驶。
  4. 如权利要求1所述的低速自动驾驶方法,其中,所述障碍物类型包括平板类型;
    所述根据所述障碍物类型确定对应的目标尺寸要求之后,所述方法还包括:
    在所述障碍物为平板类型的障碍物时,根据所述路况信息获取所述平板类型的障碍物的高度集合,并确定所述高度集合中的最大高度;
    在所述最大高度小于预设高度阈值时,确定所述平板类型的障碍物满足所述目标尺寸要求;
    在所述平板类型的障碍物满足所述目标尺寸要求时,根据安装于所述车辆上的第二扫描设备获取所述平板类型的障碍物的近距离数据;
    根据所述近距离数据确定所述平板类型的障碍物上是否存在尖锐物;
    在所述平板类型的障碍物上存在尖锐物时,根据所述近距离数据确定所述尖锐物的当前宽度集合,并确定所述当前宽度集合中的最大宽度;
    根据所述车辆对应的轮胎宽度、轮距以及所述尖锐物对应的最大宽度对所述初始规划路径进行调整,得到调整后的规划路径;
    根据所述调整后的规划路径控制所述车辆行驶。
  5. 如权利要求1所述的低速自动驾驶方法,其中,所述障碍物类型包括凹陷类型;
    所述在根据所述路况信息确定所述障碍物不满足所述目标尺寸要求时,根据所述路况信息对所述初始规划路径进行调整,得到调整后的规划路径之前,所述方法还包括:
    在所述障碍物为凹陷类型的障碍物时,根据所述路况信息确定所述凹陷类型的障碍物的深度集合以及宽度集合,并确定所述深度集合中的最大深度以及所述宽度集合中的最大宽度;
    根据所述车辆对应的轮胎宽度以及轮距确定车轮之间的目标宽度;
    在所述最大深度大于等于预设深度阈值或者所述最大宽度大于等于所述目标宽度时,确定所述凹陷类型的障碍物不满足所述目标尺寸要求。
  6. 如权利要求1-5中任一项所述的低速自动驾驶方法,其中,所述在根据所述路况信息确定前方道路上存在障碍物时,确定所述障碍物对应的障碍物类型,包括:
    在根据所述路况信息确定前方道路上存在障碍物时,根据所述路况信息确定所述障碍物对应的颜色以及形状;
    根据所述颜色以及所述形状与预设数据库中的参考数据进行比对,根据比对结果确定障碍物类型。
  7. 如权利要求1-5中任一项所述的低速自动驾驶方法,其中,所述根据所述调整后的规划路径控制所述车辆行驶之后,所述方法还包括:
    将所述车辆的行驶路线存储至预设存储区域;
    在根据所述路况信息确定前方道路不可通行时,从所述预设存储区域内确定行驶路线,根据所述行驶路线生成返回路径;
    根据所述返回路径控制所述车辆行驶。
  8. 一种低速自动驾驶装置,其中,所述低速自动驾驶装置包括:
    控制模块,被配置为获取初始规划路径,并根据所述初始规划路径控制车辆行驶;
    获取模块,被配置为根据安装于所述车辆上的第一扫描设备获取前方道路上的路况信息;
    确定模块,被配置为在根据所述路况信息确定前方道路上存在障碍物时,确定所述障碍物对应的障碍物类型;
    所述确定模块,还被配置为根据所述障碍物类型确定对应的目标尺寸要求;
    调整模块,被配置为在根据所述路况信息确定所述障碍物不满足所述目标尺寸要求时,根据所述路况信息对所述初始规划路径进行调整,得到调整后的规划路径;
    所述控制模块,还被配置为根据所述调整后的规划路径控制所述车辆行驶。
  9. 一种低速自动驾驶设备,其中,所述设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的低速自动驾驶程序,所述低速自动驾驶程序配置为实现如权利要求1至7中任一项所述的低速自动驾驶方法。
  10. 一种存储介质,其中,所述存储介质上存储有低速自动驾驶程序,所述低速自动驾驶程序被处理器执行时实现如权利要求1至7任一项所述的低速自动驾驶方法。
PCT/CN2022/080993 2021-05-11 2022-03-15 低速自动驾驶方法、装置、设备及存储介质 WO2022237305A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110513787.1 2021-05-11
CN202110513787.1A CN113104033B (zh) 2021-05-11 2021-05-11 低速自动驾驶方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022237305A1 true WO2022237305A1 (zh) 2022-11-17

Family

ID=76721912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080993 WO2022237305A1 (zh) 2021-05-11 2022-03-15 低速自动驾驶方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN113104033B (zh)
WO (1) WO2022237305A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113104033B (zh) * 2021-05-11 2022-06-03 东风柳州汽车有限公司 低速自动驾驶方法、装置、设备及存储介质
CN113650607B (zh) * 2021-07-20 2023-06-06 江铃汽车股份有限公司 一种低速场景自动驾驶方法、系统及汽车
CN113799797B (zh) * 2021-07-27 2022-07-12 北京三快在线科技有限公司 轨迹规划方法、装置、存储介质及电子设备
CN113753078B (zh) * 2021-08-17 2023-09-01 北京百度网讯科技有限公司 障碍物轨迹的预测方法、装置、电子设备及自动驾驶车辆
CN113928340B (zh) * 2021-10-26 2024-05-03 中国第一汽车股份有限公司 应用于车辆中的避障方法、装置、电子设备和存储介质
CN113942513B (zh) * 2021-11-29 2023-08-01 阿维塔科技(重庆)有限公司 基于路况监测的驾驶方法、装置、电子设备及计算机可读存储介质
CN114261929B (zh) * 2021-12-23 2024-02-13 山河智能装备股份有限公司 一种高空作业自动控制方法和高空作业自动控制系统
CN114407901B (zh) * 2022-02-18 2023-12-19 北京小马易行科技有限公司 自动驾驶车辆的控制方法、装置以及自动驾驶系统
CN115535004B (zh) * 2022-11-21 2023-03-10 小米汽车科技有限公司 距离生成方法、装置、存储介质及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170236422A1 (en) * 2014-09-29 2017-08-17 Hitachi Construction Machinery Co., Ltd. Obstacle avoidance system
US20200166352A1 (en) * 2018-11-27 2020-05-28 Electronics And Telecommunications Research Institute Apparatus and method for establishing dual path plan and determining road determination area for autonomous driving
CN111409630A (zh) * 2020-04-13 2020-07-14 新石器慧通(北京)科技有限公司 一种车辆避障方法、系统及装置
CN112034848A (zh) * 2020-08-13 2020-12-04 驭势科技(北京)有限公司 一种障碍物避让方法、装置、电子设备及存储介质
CN112572424A (zh) * 2019-09-11 2021-03-30 北京百度网讯科技有限公司 基于障碍物识别的车辆控制方法、装置、设备和介质
CN113104033A (zh) * 2021-05-11 2021-07-13 东风柳州汽车有限公司 低速自动驾驶方法、装置、设备及存储介质

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101549691B (zh) * 2009-04-23 2011-05-18 上海交通大学 自动识别道路深坑与障碍物的车辆智能装置
JP5855140B2 (ja) * 2011-03-15 2016-02-09 ジャガー・ランド・ローバー・リミテッドJaguar Land Rover Limited 渡り車両制御システム
DE102012101085A1 (de) * 2012-02-10 2013-08-14 Conti Temic Microelectronic Gmbh Bestimmung einer Beschaffenheit einer Fahrbahnoberfläche mittels einer 3D-Kamera
US9731716B2 (en) * 2014-07-30 2017-08-15 Komatsu Ltd. Transporter vehicle, dump truck, and transporter vehicle control method
CN104590271A (zh) * 2014-12-02 2015-05-06 浙江吉利汽车研究院有限公司 一种路面探测方法及系统
KR102366402B1 (ko) * 2015-05-21 2022-02-22 엘지전자 주식회사 운전자 보조 장치 및 그 제어방법
US9605970B1 (en) * 2015-09-03 2017-03-28 Harman International Industries, Incorporated Methods and systems for driver assistance
CN106080480A (zh) * 2016-06-29 2016-11-09 戴姆勒股份公司 汽车底盘防撞装置和方法及汽车
JP6294928B1 (ja) * 2016-09-23 2018-03-14 株式会社Subaru 車両の走行制御装置
DE102016221276A1 (de) * 2016-10-28 2018-05-03 Ford Global Technologies, Llc Rangierverfahren für ein Kraftfahrzeug, Kraftfahrzeug
JP7003500B2 (ja) * 2016-12-21 2022-01-20 トヨタ自動車株式会社 運転支援装置
CN107458376B (zh) * 2017-07-31 2019-11-12 北京新能源汽车股份有限公司 一种自适应巡航控制方法、装置及汽车
CN111566441B (zh) * 2018-04-18 2022-08-09 移动眼视力科技有限公司 利用相机进行车辆环境建模
US11373532B2 (en) * 2019-02-01 2022-06-28 Hitachi Astemo, Ltd. Pothole detection system
CN109741633A (zh) * 2019-02-22 2019-05-10 三一汽车制造有限公司 区域安全行驶方法和车辆
CN110525449B (zh) * 2019-09-20 2020-07-21 昆山聚创新能源科技有限公司 车辆的安全保护方法和系统
CN111325980B (zh) * 2020-02-28 2022-01-14 浙江吉利汽车研究院有限公司 一种基于路况监测的驾驶方法、系统和装置
CN111880541B (zh) * 2020-08-03 2022-08-26 中车长春轨道客车股份有限公司 贵重物品运输车队最优行驶速度控制系统及其方法
CN111976720B (zh) * 2020-08-12 2023-03-14 东风柳州汽车有限公司 自主式代客泊车方法、装置、设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170236422A1 (en) * 2014-09-29 2017-08-17 Hitachi Construction Machinery Co., Ltd. Obstacle avoidance system
US20200166352A1 (en) * 2018-11-27 2020-05-28 Electronics And Telecommunications Research Institute Apparatus and method for establishing dual path plan and determining road determination area for autonomous driving
CN112572424A (zh) * 2019-09-11 2021-03-30 北京百度网讯科技有限公司 基于障碍物识别的车辆控制方法、装置、设备和介质
CN111409630A (zh) * 2020-04-13 2020-07-14 新石器慧通(北京)科技有限公司 一种车辆避障方法、系统及装置
CN112034848A (zh) * 2020-08-13 2020-12-04 驭势科技(北京)有限公司 一种障碍物避让方法、装置、电子设备及存储介质
CN113104033A (zh) * 2021-05-11 2021-07-13 东风柳州汽车有限公司 低速自动驾驶方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN113104033B (zh) 2022-06-03
CN113104033A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
WO2022237305A1 (zh) 低速自动驾驶方法、装置、设备及存储介质
US11747814B2 (en) Autonomous driving device
US11520349B2 (en) Autonomous driving device
US11467576B2 (en) Autonomous driving system
US11157751B2 (en) Traffic guide object recognition device, traffic guide object recognition method, and storage medium
KR102332045B1 (ko) 운전 참고 선 처리 방법, 장치 및 차량
JPWO2018138769A1 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
US11605289B2 (en) Notification device
JP2018067063A (ja) 道路標示認識装置
US10836385B2 (en) Lane keeping assistance system
CN114619825B (zh) 车辆避障方法及车辆
CN113895429A (zh) 一种自动泊车方法、系统、终端及存储介质
US20230242145A1 (en) Mobile object control device, mobile object control method, and storage medium
CN115973164A (zh) 车辆领航辅助驾驶方法、介质和装置
JP2023084370A (ja) 移動体制御装置、移動体制御方法、およびプログラム
US11500389B2 (en) Vehicle control device
JP2023084371A (ja) 移動体制御装置、移動体制御方法、およびプログラム
CN115050205B (zh) 地图生成装置以及位置识别装置
US20230227035A1 (en) Method used for deriving a control variable for lateral guidance of a motor vehicle
US20220176768A1 (en) Vehicle and vehicle operating method
US20220306104A1 (en) Vehicle control device, vehicle control method, and storage medium
KR20230140654A (ko) 운전자 보조 시스템 및 운전자 보조 방법
JP2023149511A (ja) 地図生成装置
CN118209093A (zh) 地图评价装置和车辆控制系统
KR20210070515A (ko) 주행 차선 유지 제어 시스템 및 그의 주행 차선 유지 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806280

Country of ref document: EP

Kind code of ref document: A1